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1. Consider the problem of �nding

min
x∈X

f(x), X = {x ∈ En : g(x) = 0}. (1)

Here, x ∈ En, Ei is i-dimensional Euclidean space, and the di�erentiable functions f(x) and
g(x) realize the mappings f : En → E1 and g : En → Em, respectively.

In the sequel we assume that there exists a vector p∗ ∈ Em and a solution of problem (1)
such that (x∗, p∗) form a Kuhn�Tucker point, i.e.,

fx(x∗) + gx(x∗)p∗ = 0, x∗ ∈ X. (2)

We introduce a function ϕ(gi, pi) of two scalar arguments and the vector

ϕ(g, p) = [ϕ(g1, p1), . . . , ϕ(gm, pm)].

The symbols ϕg, ϕp, ϕgg, ϕpp, ϕgp denote the matrices of �rst and second derivatives, with the
dimensions m × 1, m × 1, m2, m2, and m2, respectively. The matrices of second derivatives
are diagonal. A particular element of the matrices is obtained when its scalar arguments are
indicated, e.g., ϕg(g

i, pi). We form the generalized Lagrangian

H(x, p) = f(x) +
m∑

i=1

ϕ(gi(x), pi) (3)

and impose the following requirements on the function ϕ:

A1. The function ϕ(gi, pi) is continuously di�erentiable, for any real pi the relation
ϕg(0, p

i) = pi holds, and if gi 6= 0, then ϕg(g
i, pi) 6= pi.

Assuming that the problem of unconditional minimization

H(x(p), p) = min
x∈En

H(x, p) (4)

has a solution x = x(p), we turn to the problem of �nding the roots of the system

Φ(p) = ϕg(g(x(p)), p)− p = 0. (5)

If p∗ is a solution of (5), x∗ = x(p∗), and the condition A1 is satis�ed, then (x∗, p∗) is a
Kuhn�Tucker point. This allows one to utilize a broad class of methods for �nding the roots of
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systems of equations in order to solve (5) and, in so doing, to solve the problem (1). Assuming
that Φ(p) is di�erentiable, we obtain the following formula for its derivatives:

Φp(p) = [I − ϕgg(g(x(p)), p)M(x(p), p)]ϕgp(g(x(p)), p)− I,

where

M(x, p) = g>x (x)H−1
xx (x, p)gx(x),

Hxx(x, p) = L(x, p) + gx(x)ϕgg(g(x), p)g>x (x),

L(x, p) = fxx(x) +
m∑

i=1

gi
xx(x)ϕg(g

i(x), pi).

Here, I is the identity matrix of order m and the superscript > denotes matrix transposition.
We set xs = x(ps) and present the following three methods of solving (1):

ps+1 = ϕg(g(xs), ps); (6)
ps+1 = ps − Φ−1

p (ps)[ϕg(g(xs), ps)− ps]; (7)
ps+1 = ϕg(g(xs), ps) + Q(xs, ps)g(xs), Q(x, p) = M−1(x, p)− ϕgg(g(x), p). (8)

Here, (6) is, in essence, the method of simple iteration and (7) is an analog of the Newton
method.

Let us indicate some examples of simplest functions satisfying A1:

ϕ1(gi, pi) = gipi + (gi)2/2, ϕ2(gi, pi) = gi(pi − 1) + exp (gi),

ϕ3(gi, pi) = gipi +
1

2π

[
2giarctg gi − ln[1 + (gi)2]

]
exp (−(pi)2).

In numerical calculations, it is appropriate to take for ϕ(gi, pi) the functions ϕk(τgi, pi)/τ ,
where k = 1, 2, 3, and τ is a positive parameter. For example, taking the �rst of these functions
we obtain that (7) and (8) coincide, and that (6) and (7) lead to the schemes

ps+1 = ps + τg(xs), ps+1 = ps + M−1(xs, ps)g(xs).

The �rst of these methods is well known (see, e.g., [1]).
Let there exist a vector p∗ which is a solution of (5). We introduce the equation

|Φp(p∗) + I − λI| = 0. (9)

The convergence of (6) and (7) follows from the well-known convergence theorems. Let us
reformulate these theorems as applied to (5). We denote by G a neighborhood of p∗.

Theorem 1. Let there exist continuously di�erentiable functions x(p) and Φ(p), and let
the absolute values of all λ be less than one. Then (6) converges locally to p∗.

Theorem 2. Let H(x, p) be twice continuously di�erentiable in a neighborhood of the
Kuhn�Tucker point (x∗, p∗), let the matrix Hxx(x∗, p∗) be nonsingular, and let there exist a
continuous solution x(p) of problem (4) on G. If Φp(p∗) is nonsingular, and if the matrix
Φp(p) satis�es a Lipschitz condition, then (7) converges locally to p∗ at quadratic rate.
If M(x∗, p∗) is nonsingular, and if the matrix Q(x(p), p) satis�es a Lipschitz condition on G,
then (8) converges locally to p∗ at quadratic rate.
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In [2], another modi�cation of the Newton method is given, which is suitable for solving (1)
and (10) and does not require the auxiliary minimization of H over x. Various modi�cations of
the methods proposed are possible, e.g., the following process is an analog of Seidel's method:

pi
s = ϕg(g

i(x(p̄si)), p
i
s−1), p̄si = [p1

s, . . . , p
i−1
s , pi

s−1, p
i+1
s−1, . . . , p

m
s−1], i ∈ [1, . . . , m].

2. The method (6) can be used in the case of problems with inequality-type constraints:

min
x∈X

f(x), X = {x ∈ En : g(x) ≤ 0}. (10)

We assume that here also there exists a Kuhn�Tucker point (x∗, p∗), i.e., that at this point (2)
holds and pi

∗ ≥ 0, pi
∗g

i(x∗) = 0 for i ∈ [1, . . . , m]. We construct the Lagrangian in the form (3).
We denote by P (gi) the set of real nonnegative solutions of the equation pi = ϕg(g

i, pi).
Instead of A1, we impose the following condition on the function ϕ:

A2. P (gi) = ∅ for gi > 0; P (gi) = 0 for gi < 0; if a ≥ 0, then a ∈ P (0); and ϕg(g
i, pi) ≥ 0

for any gi and pi ≥ 0.

For every p of (4), we �nd x = x(p), thus de�ning the system p = ϕg(g(x(p)), p). If p∗ is a
solution of this system, x∗ = x(p∗), p∗ ≥ 0, then, by A2, (x∗, p∗) forms a Kuhn�Tucker point.
Taking a p0 ≥ 0, we apply the scheme (6) in order to solve (10). Then all ps ≥ 0, and the limit
points of the sequence (x(ps), ps) form the Kuhn�Tucker point.

For example, the following functions satisfy the condition A2:

ϕ4(gi, pi) = ψ(gi
+) + piegi

,

ϕ5(gi, pi) = ψ(gi
+) + pi





1 + hgi +
h(h + 1)

2!
(gi)2 +

h(h + 1)(h + 2)

3!
(gi)3, if gi ≥ 0,

1

(1− gi)h
, if gi ≤ 0.

Here, 0 < h, gi
+ = max[0, gi], ψ(z) is a su�ciently smooth function such that ψ(0) = ψ′(0) = 0,

and ψ(z) > 0, ψ′(z) > 0, ψ′′(z) > 0 for z > 0 (e.g., ψ(z) = z4).

3. We denote by q the number of integers belonging to the index set B = {j : gj(x∗) = 0,
1 ≤ j ≤ m}. We introduce the matrices ϕ̄gg, ϕ̄pg and ḡx, which coincide with ϕgg, ϕpg and gx,
respectively, in problem (1). In the case of (10), in the formulas for ϕ̄gg, ϕ̄pg and ḡx only those
gj and their derivatives are retained for which j ∈ B. This means that, in problem (10), the
dimensions of ϕ̄gg, ϕ̄pg and ḡx are q2, q2, and n× q, respectively.

We present two additional conditions.

A3. The function ϕ is such that ϕ̄gg(g(x∗), p∗) is positive de�nite, ϕ̄pg(g(x∗), p∗) is the
identity matrix, and the conditions ϕ̄gg(g

j(x∗), pi
∗) = 0, 0 < ϕpg(g

j(x∗), pj
∗) < 1 hold in the

case (10) for all j /∈ B.

A4. The function H(x, p) is twice continuously di�erentiable in a neighborhood of the
Kuhn�Tucker point (x∗, p∗), the columns of the matrix ḡx(x∗) are linearly independent,
and x>L(x∗, p∗)x > 0 for any nonzero x such that x>ḡx(x∗) = 0.

Let µ denote the set of roots of the equation

|ϕ̄gg(g(x∗), p∗)ḡ>x (x∗)L−1(x∗, p∗)ḡx(x∗)− µI| = 0.
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Here, the identity matrix I in the case of problem (10) has dimension q2. If A3 holds, then
the roots of the equation are real; and if they are not all positive, then α denotes the largest
negative root.

Theorem 3. Let there exist a Kuhn�Tucker point at which the matrix L is nonsingular,
let A3 and A4 hold, let A1 hold in the case of problem (1) and A2 in the case of problem (10),
and let the function ϕ(τg, p)/τ be taken for ϕ(g, p). Then, for any τ > τ̄ , the conditions of
Theorem 1 are satis�ed. Moreover, if all µ > 0, then τ̄ = 0; otherwise τ̄ = −2/α.

4. If (1) and (10) are convex programming problems, then, instead of (4), one can introduce
another auxiliary problem,

min
x∈En

Γ(g(x), p, µ, f(x)), (11)

where
Γ(g(x), p, µ, f(x)) = γ(f(x)− µ) +

m∑

i=1

ϕ(gi(x), pi)

is convex in x, and γ(q) is a continuously di�erentiable function of a scalar argument satisfying
the following conditions.

A5. For all q 6= 0, γ(q) > 0, γ′(q) 6= 0 and γ(0) = γ′(0) = 0.

Assume that ps and µs are known at the sth step of the iterative process, and that xs =
= x(ps, µs) has been found from (11). We shall construct a method in which

ps+1 = ϕg(g(xs), ps)
γ′(f̄ − µ̄)

γ′(f(xs)− µs)
. (12)

Here, any numbers from the intervals

µs ≤ µ̄ < f̄ ≤ f(xs) +
m∑

i=1

pi
sg

i(xs) = Fs

can be taken for f̄ and µ̄. We indicate several simple versions of the choice of f̄ , µ̄, and µs+1:

f̄ = Fs, µ̄ = µs, µs+1 = µs;
f̄ = Fs, µ̄ = f(xs), µs+1 = f(xs);
f̄ = f(xs), µ̄ = µs, µs+1 = µs.

For the algorithms we have presented, it is important that the condition Γ(g(x∗), ps, µs,
f(x)) > 0 holds. If the initial values µ0 and p0 are chosen to satisfy these conditions, then in
the case of convex programming problems (f(x) is convex and g(x) is linear in (1) and convex in
(10)) this property is automatically preserved in subsequent iterations also. The initial values
p0 and µ0 can be found, e.g., with the help of the external penalty function method. In this
connection, we must have µ0 < f(x∗). This condition is satis�ed if one sets µ0 ∈ [f(x0), F0],
where x0 is the minimum point of the external penalty function.

If we set
Γ(g(x), p, µ, f(x)) = (f(x)− µ)2 +

m∑

i=1

ϕ1(τgi(x), pi)/τ (13)

in (11) to solve (1), then the method (12) becomes the following:

ps+1 = (ps + τg(xs))
f̄ − µ̄

f(xs)− µs

. (14)
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In the formulas (13) and (14), we can set p = 0 and ps ≡ 0, respectively, and any value from
the interval [f(xs), Fs] can be taken for µs+1. In particular, if µs+1 = f(xs), then we arrive at
the method of [3]; if µs+1 = µs + (Γ(g(xs), 0, µs, f(xs)))

1/2 = Rs, then we obtain the method
of [4]. The rate of convergence is greater if we take µs+1 = Fs, since Fs ≥ Rs. In the case of
a linear programming problem, the last algorithm (in which µs+1 = Fs) converges in a �nite
number of steps.

5. Experience with numerical solution of problems by the method (6), Seidel type methods,
and the algorithms of � 4 testi�es to their rather high e�ciency. The algorithms of � 4, which
utilize at every step values of the usual Lagrangian (e.g., f̄ = Fs, or µs+1 = Rs), require a
higher precision in solving the auxiliary problem (11) than that required in the unconditional
minimization problem (4) in the methods of � 1 and � 2. It can be shown that the process
of solving (4) can be terminated at every sth step as soon as a point xs is found such that
‖Hx(xs, ps)‖ ≤ es, where es → 0 as s →∞.
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