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Consider the problem of finding

min f(x), X=A{zekE,:g(x)=0} (1)

zeX
Here, x € E,, F; is i-dimensional Euclidean space, and the differentiable functions f(z) and
g(x) realize the mappings f: E, — E; and ¢ : E, — E,,, respectively.
In the sequel we assume that there exists a vector p. € E,, and a solution of problem (1)
such that (z,,p.) form a Kuhn—Tucker point, i.e.,

fo(Te) + go(ze)ps = 0, T, € X. (2)

We introduce a function ¢(g’, p’) of two scalar arguments and the vector

e(g.p) = [p(g".p"), ..., 0(g™ p™)].

The symbols g4, ©p, ©gq, Ppp, Pgp denote the matrices of first and second derivatives, with the
dimensions m x 1, m x 1, m?, m? and m?, respectively. The matrices of second derivatives
are diagonal. A particular element of the matrices is obtained when its scalar arguments are
indicated, e.g., p,(g",p"). We form the generalized Lagrangian

m

H(z,p) = f(x)+ > ¢(g'(x),p") (3)

=1

and impose the following requirements on the function ¢:

A;. The function (g%, p’) is continuously differentiable, for any real p’ the relation
©y(0,p") = p* holds, and if ¢* # 0, then ¢,(¢,p") # p".

Assuming that the problem of unconditional minimization

H(z(p),p) = min H(z,p) (4)

CIEEEn

has a solution z = z(p), we turn to the problem of finding the roots of the system

(p) = ¢y4(g9(x(p)),p) —p = 0. (5)

If p. is a solution of (5), . = z(p.), and the condition A; is satisfied, then (z.,p.) is a
Kuhn-Tucker point. This allows one to utilize a broad class of methods for finding the roots of
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systems of equations in order to solve (5) and, in so doing, to solve the problem (1). Assuming
that ®(p) is differentiable, we obtain the following formula for its derivatives:

D,(p) = [I — @gg(9(x(p)), P) M (2(p), P))0gp(9(z(p)),p) — I,
where
M(z,p) = g, (v)H,, (z,p)g.(x),
Hoo(z,p) = L(x,p) + 6u(2)pge(9(2), p)gs (2),

Lz.p) = fm<x>+§":lg;m<x>sog<gi<x>,pi>.

Here, I is the identity matrix of order m and the superscript T denotes matrix transposition.
We set x5 = x(p,) and present the following three methods of solving (1):

P = pq(g(xs), ps); (6)
Ps+1 = DPs _(I);;l(pS)[(pg(g(xs)aps) _ps]; (7)
Pt = @g(0(5),ps) + Qs po)g(s),  Qa,p) = M~ (x,p) — @glg(),p)-  (8)

Here, (6) is, in essence, the method of simple iteration and (7) is an analog of the Newton
method.
Let us indicate some examples of simplest functions satisfying A;:

(g ") = P+ (9')%/2, W (g, p") = g' (" — 1) + exp (¢),
(g, p") = ¢p'+ gy [29 arctg g — In[1 + (g )2]] exp (—(p')?).

In numerical calculations, it is appropriate to take for o(g?,p') the functions *(r¢’,p?)/7,
where k = 1,2, 3, and 7 is a positive parameter. For example, taking the first of these functions
we obtain that (7) and (8) coincide, and that (6) and (7) lead to the schemes

Ps+1 = Ds + Tg(:L‘s), Pst1 = DPs + Mﬁl(x&ps)g(xs)'

The first of these methods is well known (see, e.g., [1]).
Let there exist a vector p, which is a solution of (5). We introduce the equation

|[®p(pe) + 1 = Al = 0. (9)

The convergence of (6) and (7) follows from the well-known convergence theorems. Let us
reformulate these theorems as applied to (5). We denote by G a neighborhood of p,.

Theorem 1. Let there exist continuously differentiable functions x(p) and ®(p), and let
the absolute values of all X be less than one. Then (6) converges locally to p..

Theorem 2. Let H(x,p) be twice continuously differentiable in a neighborhood of the
Kuhn—Tucker point (x.,p.), let the matriz H,.(x., ps) be nonsingular, and let there exist a
continuous solution x(p) of problem (4) on G. If @,(p.) is nonsingular, and if the matriz
®,(p) satisfies a Lipschitz condition, then (7) converges locally to p. at quadratic rate.
If M(z.,ps) is nonsingular, and if the matriz Q(x(p),p) satisfies a Lipschitz condition on G,
then (8) converges locally to p. at quadratic rate.



In |2], another modification of the Newton method is given, which is suitable for solving (1)
and (10) and does not require the auxiliary minimization of H over z. Various modifications of
the methods proposed are possible, e.g., the following process is an analog of Seidel’s method:

pls = wg(gl<x(psz>)7pzs—1)a ﬁsi - iv e 7pi_17pi—17pit117 s 7p;n—1]a Z G [1a e 7m]'

The method (6) can be used in the case of problems with inequality-type constraints:

Hél)l(l f(z), X={zeE,:g(x) <0} (10)
We assume that here also there exists a Kuhn-Tucker point (x., p.), i.e., that at this point (2)
holds and p’ > 0, p'g'(z.) = 0 for i € [1,...,m]. We construct the Lagrangian in the form (3).
We denote by P(g°) the set of real nonnegative solutions of the equation p’ = ¢,(g", p").
Instead of A, we impose the following condition on the function ¢:

A,. P(g") =0 for ¢* > 0; P(¢g") =0 for ¢ < 0; if a > 0, then a € P(0); and ¢,(g*,p") > 0
for any ¢° and p* > 0.

For every p of (4), we find x = z(p), thus defining the system p = ¢,(g(z(p)),p). If p. is a
solution of this system, =, = x(ps), p« > 0, then, by A,, (z,p.) forms a Kuhn—Tucker point.
Taking a py > 0, we apply the scheme (6) in order to solve (10). Then all p; > 0, and the limit
points of the sequence (z(ps), ps) form the Kuhn—Tucker point.

For example, the following functions satisfy the condition A,:

g p) = w(g) +pe,

 h(h+1), h(h+1)(h+2) . o
c . 1+hgz+(2,)(g’)2+ ( 3),( Loy, it >0,
¢’ (9", p") = Y(g})+p' 1 : :

(1 =g

Here, 0 < h, g, = max|0, ¢'], () is a sufficiently smooth function such that ¢ (0) = ¢'(0) =0,
and ¥(2) > 0, ¥/(2) > 0, ¢"(2) > 0 for z > 0 (e.g., ¥(z) = 27).

if ¢* < 0.

We denote by ¢ the number of integers belonging to the index set B = {j : ¢/(x,) = 0,
1 <j <m}. We introduce the matrices @44, ¢,y and g,, which coincide with ¢4, ¢,, and g,
respectively, in problem (1). In the case of (10), in the formulas for ¢4, ¢,, and g, only those
¢’ and their derivatives are retained for which j € B. This means that, in problem (10), the
dimensions of @y, @y, and g, are ¢%, ¢%, and n x g, respectively.

We present two additional conditions.

A;. The function ¢ is such that @,4(g(z.),ps) is positive definite, ©,q(g(z),ps) is the
identity matrix, and the conditions @g4(¢? (2.),pL) = 0, 0 < ©py(¢? (2.),p2) < 1 hold in the
case (10) for all j ¢ B.

A,. The function H(z,p) is twice continuously differentiable in a neighborhood of the
Kuhn—Tucker point (z,,p.), the columns of the matrix g,(z.) are linearly independent,
and 2" L(x.,p.)x > 0 for any nonzero x such that z"g,(z.) = 0.

Let 1 denote the set of roots of the equation
[Baq(9(2:), )Gy ()L™ (@, pe)Fa() — pI| = 0.
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Here, the identity matrix I in the case of problem (10) has dimension ¢?. If Az holds, then
the roots of the equation are real; and if they are not all positive, then o denotes the largest
negative root.

Theorem 3. Let there exist a Kuhn—Tucker point at which the matriz L is nonsingular,
let A3 and Ay hold, let Ay hold in the case of problem (1) and Ay in the case of problem (10),
and let the function p(tg,p)/T be taken for ¢(g,p). Then, for any T > T, the conditions of
Theorem 1 are satisfied. Moreover, if all > 0, then T = 0; otherwise T = —2/a.

.|If (1) and (10) are convex programming problems, then, instead of (4), one can introduce
another aux1l1ary problem,

min I'(g(x), p, u, f(z)), (11)

wEEn

where

(o), [(2) = 1(7) = ) + 3 plg'(0), )

is convex in z, and ¥(q) is a continuously differentiable function of a scalar argument satisfying
the following conditions.

A;. Forallg # 0, v(q) > 0,7'(q) # 0 and v(0) = +/(0) = 0.

Assume that ps; and ps are known at the sth step of the iterative process, and that z, =
= x(ps, pts) has been found from (11). We shall construct a method in which

V' (f = ;)
Ps+1 = g\ZTs), Ps . 12
o = ) ) Gy = ) -
Here, any numbers from the intervals
ps < i < f < flas) + D 0.9 (xs) = Fi
i=1

can be taken for f and ji. We indicate several simple versions of the choice of f, fi, and pre;1:

f=F, i = fls, [hs+1 = fLs}
Ji:Fs ﬂ:f(xS)a /Ls+1:f(335);
f:f( ) 1= s, Hs+1 = Hs-

For the algorithms we have presented, it is important that the condition I'(g(x.), ps, fts,
f(z)) > 0 holds. If the initial values pp and pg are chosen to satisfy these conditions, then in
the case of convex programming problems (f(x) is convex and g(x) is linear in (1) and convex in
(10)) this property is automatically preserved in subsequent iterations also. The initial values
po and po can be found, e.g., with the help of the external penalty function method. In this
connection, we must have o < f(z,). This condition is satisfied if one sets py € [f(z0), Fol,
where x( is the minimum point of the external penalty function.

If we set .
D(g(@),p, i, f(2)) = (f(z) = )" + 3@ (79" (2),p) /7 (13)
i=1
n (11) to solve (1), then the method (12) becomes the following:

f—n

Psi1 = (ps + Tg(:vs))W (14)



In the formulas (13) and (14), we can set p = 0 and p, = 0, respectively, and any value from
the interval [f(z,), Fs] can be taken for psyq. In particular, if us 1 = f(z), then we arrive at
the method of [3]; if psy1 = ps + (T(g(xs),0, s, f(25)))Y? = R,, then we obtain the method
of [4]. The rate of convergence is greater if we take ps41 = Fy, since Fy > R,. In the case of
a linear programming problem, the last algorithm (in which ps; = Fy) converges in a finite
number of steps.

Experience with numerical solution of problems by the method (6), Seidel type methods,
and the algorithms of § 4 testifies to their rather high efficiency. The algorithms of § 4, which
utilize at every step values of the usual Lagrangian (e.g., f=F, or g1 = Ry), require a
higher precision in solving the auxiliary problem (11) than that required in the unconditional
minimization problem (4) in the methods of § 1 and § 2. It can be shown that the process
of solving (4) can be terminated at every sth step as soon as a point z is found such that
|H(zs,ps)|| < es, where eg — 0 as s — 0.
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