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1. Consider the problem of �nding the minimax

min
x∈En

max
y∈Em

F (x, y), (1)

where F (x, y) is a continuously di�erentiable function, Ei is i-dimensional Euclidean space, and
x = [x1, . . . , xn], y = [y1, . . . , ym].

Let z∗ = (x∗, y∗) be a strict local solution point of (1). This means that there exist neigh-
borhoods X and Y of the points x∗ and y∗, respectively, such that the following inequalities
hold for any x ∈ X, y ∈ Y , x 6= x∗, y 6= y∗:

F (x∗, y) < F (x∗, y∗) < F (x, ȳ(x)) = sup
y∈Y

F (x, y).

According to [1], for z∗ to be a strict local solution of (1) it is necessary that

Fx(z∗) = Fy(z∗) = 0, (2)

and su�cient that the following quadratic forms be negative de�nite:

y>Fyy(z∗)y < 0, x>[Fxy(z∗)F−1
yy (z∗)Fyx(z∗)− Fxx(z∗)]x < 0 (3)

for ∀y ∈ Em, ‖y‖ 6= 0, ∀x ∈ En, ‖x‖ 6= 0.
In [1] and [2], iterative methods for solving (1) were proposed. However, these methods

turned out to be laborious for problems of high dimensionality, since they required multiple
inversion of the matrices of second derivatives. The following easily implemented method can
be employed for approximate computations. We shall be looking for limit points (as t → ∞)
of the solution of the Cauchy problem

ẋ = −εFx(x, y), ẏ = Fy(x, y), (·) = d/dt, x(0) = x0, y(0) = y0. (4)

A discrete variant is possible, wherein

xs+1 = xs − εαFx(xs, ys), ys+1 = ys + αFy(xs, ys), s = 0, 1, 2, . . . ; (5)

here, 0 < ε < 1 and 0 < α.
We denote the solutions of (4) by x(z0, t, ε), y(z0, t, ε), where z0 = (x0, y0). Making use of

the results of [3] and [4], one can show that the following theorem holds.
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Theorem 1. Let F (x, y) be twice continuously di�erentiable in a neighborhood of a point z∗
at which the conditions (2) and (3) hold. Then there exist a neighborhood W of z∗ and numbers
ᾱ > 0 and ε̄ > 0 such that, for all z0 ∈ W , 0 < α < ᾱ, 0 < ε < ε̄, the solutions of (4) and (5)
converge to z∗, i.e.

lim
t→∞x(z0, t, ε) = x∗, lim

t→∞ y(z0, t, ε) = y∗,

lim
s→∞xs = x∗, lim

s→∞ ys = y∗.

Theorem 1 leads to a simple scheme for solving (1). The existence of variables that change
both slowly and rapidly in (4) and (5) complicates the computations; however, this approach
turns out to be very e�ective in a number of higher-dimensional problems. In fact, we have
made a transition opposite to that usually made in the theory of singular equations. Namely,
instead of solving a degenerate problem (which may be very complicated), we are solving the
problem (4), which is equivalent to the singularly perturbed problem.

Example. Let F (x, y) = ex2
sin 2π(x− y). It is easy to see that

min
x∈E1

max
y∈E1

F (x, y) = 1, max
y∈E1

min
x∈E1

F (x, y) = −1.

Necessary and su�cient conditions for a minimax and a maximin, respectively, are satis�ed
at the solution points of both problems. Therefore, the solutions of (4) and (5) converge to a
minimax solution for ε ¿ 1, and to a maximin solution for ε À 1.

Let us present two more methods of solving (1), in which

ẋ = −Fx(x, y(x)), F (x, y(x)) = max
y∈Em

F (x, y); (6)

ẋ = −εFx(x, y), ẏ = −F−1
yy (x, y)Fy(x, y). (7)

Their discrete versions have the form

xk+1 = xk − εFx(xk, yk), F (xk, yk) = max
y∈Em

F (xk, y); (8)

xk+1 = xk − εFx(xk, yk), yk+1 = yk − F−1
yy (xk, yk)Fy(xk, yk). (9)

Su�cient conditions for convergence are formulated in the same way as in Theorem 1 (except
that one does not need to introduce a small step α in discrete variants).

2. The methods must be changed signi�cantly to solve problems with hierarchic structure
and games with noncon�icting interests [5]. The methods for solving such problems are pre-
sented in [6] and [7]. Following [7], we express the problem of �nding a guaranteeing strategy
in the following form:

J = min
x∈En

F (x, y) min
y∈Em

K(x, y). (10)

Here, for every �xed x one seeks a set of y(x) from the condition

K(x, y(x)) = min
y∈Em

K(x, y),

and then computes

J = min
x∈En

max
y∈y(x)

K(x, y(x)) = K(x∗, y(x∗)) = K(x∗, y∗).
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The point (x∗, y∗) will be called a solution of problem (10). If the function K(x, y) attains a
strict local minimum in y at the points y(x) for all x in a neighborhood of x∗, and if the function
F (x, y(x)) attains a strict local minimum at x∗, then we shall say that z∗ = (x∗, y∗) is a strict
local solution of (10). We set

z = (x, y), B(z) = K−1
yy (z)Kyx(z), H(z, λ) = F (z) + K>

y (z)λ,

N(z, λ) = Hxx(z, λ)−B>(z)Hyx(x, λ)−Hyx(z, λ)B(z) + B>(z)Hyy(z, λ)B(z),

where λ ∈ Em.
According to [7], for z∗ to be a strict local solution of (10) it is necessary that

Ky(z∗) = 0, Fx(z∗)−B>(z∗)Fy(z∗) = 0, (11)

and su�cient that ∀y ∈ Em, ∀x ∈ En, ‖x‖ 6= 0, ‖y‖ 6= 0,

y>Kyy(z∗)y > 0, x>N(z∗, λ∗)x > 0. (12)

Here, λ∗ is determined from the condition

Hx(z∗, λ∗) = 0.

We present three methods of solving (10):

ẋ = −ε[Fx(x, y)−B>(x, y)Fy(x, y)] = −εϕ(x, y), ẏ = −Ky(x, y); (13)

ẋ = −ϕ(x, y(x)), K(x, y(x)) = min
y∈Em

K(x, y); (14)

ẋ = −εϕ(x, y), ẏ = −K−1
yy (x, y)Ky(x, y). (15)

Theorem 2. Let the functions F (z) and K(z) be twice continuously di�erentiable in a
neighborhood of a point z∗ at which the conditions (11) and (12) are satis�ed. Then the methods
(13), (14), and (15), and their discrete variants of the form (5), (8), and (9), converge locally
to the point z∗.

3. Let us apply the approach presented above to the solution of nonlinear programming
problems:

min
x∈X

F (x), X = {x ∈ En : g(x) = 0, h(x) ≤ 0}, (16)

where x ∈ En, g ∈ Ec, and h ∈ Em. Following [8] and [9], we form a modi�ed Lagrangian

L(x, p, w) = F (x) +
c∑

i=1

pigi(x) +
m∑

i=1

(wi)2hi(x).

We shall seek
max
p∈Ec

max
w∈Em

min
x∈En

L(x, p, w).

The methods presented above yield three schemes for solving problem (16):

ṗ = εLp(x, p, w), ẇ = εLw(x, p, w), ẋ = −Lx(x, p, w); (17)

ṗ = Lp(x(p, w), p, w), ẇ = Lw(x(p, w), p, w), L(x(p, w), p, w) = min
x∈En

L(x, p, w); (18)
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ṗ = Lp(x, p, w), ẇ = Lw(x, p, w), ẋ = −L−1
xx (x, p, w)Lx(x, p, w). (19)

We assume that there exists a solution of problem (16), namely a point x∗ at which the
condition for regularity of constraints (CRC) holds, i.e. all the vectors gi

x(x∗) and hj
x(x∗) such

that hj(x∗) = 0 are linearly independent. Moreover, at a stationary point z∗ = (x∗, p∗, w∗)
(a point such that Lx = Lp = Lw), the condition for strict complementary slackness (CSCS)
holds, i.e. hj(x∗) = 0 implies wj 6= 0.

Theorem 3. Let the function L(x, p, w) be twice continuously di�erentiable in a neighbor-
hood of an admissible stationary point z∗, let the matrix Lxx(z∗) be positive de�nite, and let
the CRC and CSCS hold. Then there exist su�ciently small numbers ε̄ and ᾱ such that, for
0 < ε < ε̄ and 0 < α < ᾱ, the methods (17), (18) and (19), and their discrete variants of the
forms (5), (8) and (9), locally converge (exponentially and geometrically, respectively) to the
point z∗.

The convergence of (17) was proved in [7] for ε = 1. The introduction of a small parameter
ε improves the convergence, which makes the method closer to the method (18). The latter,
although more laborious, converges more rapidly in practice.
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