Comput. Maths. Math. Phys., Vol.35, No.6, pp. 673686, 1995
Pergamon (©1995 Elsevier Science Ltd
Printed in Great Britain. All rights reserved

0965-5425(95)00088-7

THE USE OF NEWTON’S METHOD FOR
LINEAR PROGRAMMING!

YU.G. EVTUSHENKO, V.G. ZHADAN and A.P. CHERENKOV

Moscow

(Revised 04 October 2002)

Continuous and discrete versions of the barrier-Newton method for linear programming are
considered. This primal-dual method is based on the use of Newton’s method to find points
in the direct and dual spaces which satisfy a consistent system of optimality conditions.
The local and non-local properties of the method are investigated. In the discrete versions
of the method, the steps used in the direct and dual spaces are different. When the steps
are chosen by certain rules, the method converges at superlinear and quadratic rates. In
one version of the method the steps are chosen from the condition of steepest descent,
and a range of initial conditions for which not more than two iterations are required is

identified.

INTRODUCTION

Newton’s method is one of the most efficient means of solving systems of non-linear equations
and optimization problems [1, 2, 3]. Numerous versions of the method intended for linear
programming (LP) have appeared recently (see [4, 5, 6], for instance). There is a detailed review
of these methods in [7|. Primal-dual algorithms for which Newton’s method is used to solve a
parametrized system of equations, the limiting form of which gives optimality conditions for the
direct and dual problems, are of special interest [8]-[12]. These methods have both quite a high
local rate of convergence and polynomial algorithms. Another primal-dual method is described
in this paper, based on solving a system of equations which set the optimality conditions in an
LP problem, namely complementary slackness and accessibility (cf. [13]).

If a transformation of spaces is used to avoid having to stipulate that the variables are
nonnegative [14, 15| and Newton’s method is used to find points satisfying the Kuhn—Tucker
conditions, a whole family of different methods is obtained. These have been examined for the
general problem of nonlinear programming in [15, 16], and for LP in [17].

The present paper investigates methods of a special class, corresponding to component-
wise transformations of spaces which involve the right-hand sides of the systems of ordinary
differential equations describing the method, being multiplied by diagonal matrices which act
as barriers and do not permit the trajectories to intersect the boundaries of positive orthants
either in the original space or in the space of dual complementary variables. Unlike [17], the
main focus here is the choice of steps in the direct and dual spaces which, as in [18], might be
different. Versions of the method with small steps and with steps close to one or chosen by
solving auxiliary optimization problems are considered separately.
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1. STATEMENT OF THE PROBLEM, BASIC IDEAS OF THE METHOD

Let x = [z!,...,2"], v = [u',...,u™] be vectors from the Euclidean spaces R" and R,

respectively. We will consider the direct and dual LP problems given in the form

mi)r(lch, X={zeR":b— Az =0, z>0,} (1.1)
Te
mangu, U={ueR™":v=c—A"u>0,}. (1.2)
ue

Here and below A is an m X n matrix in which m < n, 0; is the zero i-dimensional vector,
b e R™, c € R". The symbol 0;; will denote the zero ¢ X j matrix.
We will consider the following sets:

RY = {zeR":2>0,}, RY, = {zeR":2>0,},
intU = {ueR":v=c—ATu>0,}, 11X = {reRl, :Az=0>}

It will be assumed everywhere that the rank of the matrix A is equal to m, the sets int U
and ri X are non-empty, and problem (1.1) has a unique solution x., which is not degenerate.
Then the dual problem (1.2) also has a unique solution u, and is non-degenerate, the vector
r, has m non-zero components, and the vector v, = ¢ — A"u, has m zero components. Also,
the conditions of complementary slackness z7v) = 0, 1 < j < n, and strict complementary
slackness are satisfied, that is, from x4 = 0 it follows that v/ > 0.

Linear and nonlinear programming problems were solved by Newton’s method in [16, 17]. An
entire family of numerical methods was obtained as a result. We shall confine our consideration
here to just one numerical scheme, in which the iterations are constructed from the formula

Tyl — Tk _ &kD([Bk)Uk
W(xk,uk,)\k) |: U1 — U, :| = |: Tk(AiUk _ b) :| . (13)

The subscript k here is the iteration number, D(z) is a diagonal matrix in which the vector
z lies on the principal diagonal, ag, 7,, A are certain positive coefficients, A\ = ay /7%, the
n-dimensional vector v has the form v = v(u) = ¢ — ATu, and W is a square matrix of order
n—+m,

W(z,u,\) = [

AD(v) —D(z)AT }
A O '

At points where the vectors x; and vy, have only non-zero components, system (1.3) can be
written in the form

Trp1 = D(wg)[en + Te(ne — en)], Upt1 = Up + Qpflg, (1.4)

where e, is an n-dimensional vector, all of whose components are equal to one, and the vectors
n € R", peR™ are determined from the formulae

n(z,u) = DY )A" p(z, u), p(r,u) = M~ (z,u)b. (1.5)

Here M(x,u) = AD(x)D1(v)AT is the Gram matrix.
Using the relation v = ¢ — ATu between vectors u and v, we can rewrite (1.4) in variables
x and v:

T = D(zg)len + m(m —en)], vk = D(vg)(en — arng). (1.6)

We now introduce the matrix A € R¥™", where d = n — m is the defect of the matrix A.
The columns of the matrix AT form a basis of the null space of A, that is, AAT = 0,,,4. We then
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consider the set V = {v € R" : A(v —¢) = 04}. If v € V| the vector v — ¢ will lie in the space
of the rows of the matrix A and, for the vector v, there is an m-dimensional vector u such that
v = ¢ — ATu. The second relation of (1.6) implies that A(vy; —¢) = Alvy, —¢) — apAAT g =
A(vg, — ¢). Thus, if vg € V, v, € V for all k and relations (1.4) are equivalent to (1.6). The
iterations can be performed either in the space of x and u, or in the space of z and v.

Lemma 1. Let z, and u, be non-degenerate solutions of problems (1.1) and (1.2). Then
the matriz W (z., u., A) is non-degenerate.

Proof. Without loss of generality, we can assume that the first m components of the vector
x4 are non-zero. Then the vectors x,, v, and the matrices A and W can be represented in the
form

.%'B UB
s e P >0, 2¥N=0, v8P=0, oY¥>04, (1.7
Ormm 0md —D(:I:*B)BT
B N O

Here B € R™™ N ¢ R™*,
To prove this, it is sufficient to show that the following system of homogeneous algebraic
equations has only a zero solution:
D(xz®YB'u=0,, ADMZ"¥ =0,  Bz? + NzV =0,,

where 2% € R™, zV € RY, @ € R™. But this is obvious, since B is a non-degenerate matrix.
]

Lemma 2. Foranyx € R}, ucintU, X € Ri+ the matriz W (x,u, \) is non-degenerate.

Since the matrix M (z, u) is non-degenerate on the sets under consideration, Lemma 2 follows
from Frobenius’ formula for the inverse matrix:

o A ID ) [I, — D(x)ATM~*AD Y (v) D Y(v)D(x)ATM~!
—MAD(v) AM!
Here and below I, is the s x s unit matrix.

We now combine the vectors z and u into one symbol, putting 2" = [z7,u"] € R*"*",
According to Lemma 2, the right-hand sides of relations (1.6) are uniquely defined if all the
components of the vectors x and v(u) are strictly positive. Vectors z for which z € R},
u € int U are called interior. Versions of method (1.3) in which z remains an interior vector on
all iterations will be called interior point methods.

Now consider the scalar ®; = ] vg. It follows from (1.4), (1.6) that

Azpir — b= (1 —7)(Azg — b), (1.9)

(Dk:—i-l = (1 — Tk)q)k =+ (Tk — ozk),u,IAask + O{ka[L;—(Al'k — b) (1.10)

Let xx > 0,, vy > 0,. Then in order to guarantee that the vectors xy; and v, shall be
non-negative, the steps ay, 7, must satisfy the conditions e,, > agnx, €, > 7(e, — nx). It is easy
to see that these conditions apply if

a < ap = ) O0<m <7 =, (1.11)



where [a], = max[0, ], n; and ¥ are, respectively, the maximum and minimum components
of the vector . We shall assume that af = +oo if } <0, and 77 = +oc if ¥ > 1.

The numbers 77 and «;, determine the largest possible steps with respect to the direct and
dual variables along a Newtonian direction for which all the components of the vectors = and
v remain non-negative on the kth iteration.

Lemma 3. Let x > 0,, vy > 0,, vpy € V and b # 0,,. Then ni > 0. If, in addition,
xr € X, the set X is bounded and the vector ¢ does not belong to the space of rows of the matriz
A, then nf < 1.

Proof. Suppose the contrary: let n; < 0. Then (1.5) implies that AT, < 0,, and
according to (1.4) — (1.6), b ugyy — b up = aph” M~ (zg, up)b > 0, vgy1 > 0,. Thus, moving
in the Newtonian direction, as oz — oo all the components of the vector vi,; are non-negative
and the objective function of the dual problem tends to infinity. This contradicts the existence
of a bounded solution of problem (1.2). Thus 7; > 0 and, therefore, the maximum step «; is
bounded.

Let x; € X. Then according to (1.9) the point 2411 € X. Assuming, on the contrary, that
nk > 1, if ni > 1, there should be a jth component of the vector 7, such that 7, > 1. Hence,
by (1.4), ;,, — o0 as 7, — oo. But this is impossible, since X is bounded. If n¥ = n; = 1,
a; = 1 and when o, = 1 it follows from (1.6) that vg—; = 0,, ¢ = ATwy, contradicting the
conditions of the lemma. Hence 7* < 1. The lemma is proved. [

A full description of the numerical methods (1.3) and (1.5) requires rules for choosing the
steps o and 7. We will describe methods of three types, with different rules for selecting the
steps.

1. Steps « and 7 are fixed and sufficiently small. In that case process (1.3) is similar to the
continuous version of the method, considered in the next section.

2. Steps a and T are close to unity. This method is similar to Newton’s method.

3. At each iteration, the steps aj and 7 are chosen from the solution of auxiliary optimiza-
tion problems. These can be called methods of steepest descent.

Some versions of the methods of these classes will be discussed below.
2. METHODS OF THE FIRST CLASS

In [17], method (1.3) was obtained from the continuous version in which the solution of
problems (1.1) and (1.2) was reduced to finding limit points (as ¢ — oo) of solutions of the
following system of ordinary differential equations:

dx du
D(v)— — D(z)A"— = —aD :
AD) S — D) ATS = —aD(a)n, 2.1)
d
Ad—f = —7(Azx —b). (2.2)
Here z(t, 29), u(t, zp) are solutions of the Cauchy problem (2.1), (2.2) with the initial-conditions
vector zg = [xg,ug].

Let @ > 0, 7 > 0 and A = 1. Then method (2.1), (2.2 is locally convergent. The following
theorem was proved in [17].

Theorem 1. Let x, and u, be isolated non-degenerate solutions of problems (1.1) and (1.2).
Then the pair [x.,u.] is an asymptotically stable position of equilibrium for system (2.1), (2.2).
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The discrete version of method (1.3) converges locally at least linearly for fived parameters Ay,
ag and T such that A\ =1, 0 < ap < 2 and 0 < 7, < 2.

System (2.1), (2.2) has n + m first integrals:

D(x(t, 20)) v(t, 20) = €~ D* ()0,
Ax(t, z) — b= e " (Axg — b).

3)
4)

It follows that the components of the vectors x and v do not change sign on trajectories of
system (2.1), (2.2). Thus if we take 2o > 0,, v9p > 0,, and the paths (2.1), (2.2) are bounded
and continuable as ¢ — oo, the Kuhn-Tucker optimality conditions for problem (1.1) will be
satisfied at the limit points x,, v.:

2.
(2.

Thus problems (1.1) and (1.2) can be solved either by finding the limit points of the solution
of Cauchy’s problem for system (2.1), (2.2), or by finding the limits of the solution of the non-
linear system (2.3), (2.4) ast — oo. The first technique will be used below. If all the components
of the vectors x and v are non-zero, system (2.1), (2.2) can be solved for the derivatives and
we will obtain the equivalent system

dx du

o TD(SU)[U(%U) - en]> %

= = ap(z,u). (2.5)

The right-hand sides of system (2.5) are defined at all points for which 27 (¢, 29) = [T (¢, 20),
u'(t,20)] is an interior vector. However, the right-hand sides are not defined at the point
2zl = [z],u]]. We will show that if as z(¢, z9) approaches z, it remains an interior point, the
vector functions p(x(t, 20), u(t, 29)), and n(z(t, z0), u(t, 20)) have finite limits. As in (1.7), (1.8)

we will represent the vector 7 in the form o7 = [(n®)T, (n™)T], % € R™, n¥ € R%.

Lemma 4. Let the points x. and u. be non-degenerate solutions of problems (1.1) and
(1.2), respectively, where the point x, can be represented in the form (1.7), (1.8). Then for any
x>0 and u € intU

n? = en— D HaP)éxP + 51(62), (2.6)

N = D7HuM)euN + s5(82), (2.7)

p = —ou—+ s3(dz), (2.8)

where 0z = x—1x,, 0u = u—1u,, 62" = [0x",0u’], v = —ATdu; ||5;(62)|| = o(||0z]]), i = 1,2,3;

the vectors dx and dv are separated into components 6xZ, 5z and dvB, SvV, respectively, as

in (1.7, (1.8).

Proof. After separation of the vector x,, the matrix M (z,u) can be represented in the
form
M(x,u) = MP(z,u) + MY (z,u). (2.9)

Here
M®(z,u) = BD(z®)D*(v®(u))B", MY (z,u) = ND(@™)D (o™ (u))N . (2.10)
If MB(z,u) is a non-degenerate matrix, then apart from (2.9), we have

M(z,u) = MB(z,u) {1, + [MP (2, u)] "M (z,u)}.



Thus
M= =L, + (MB) MY Y MPY ™ = [MP(2,u)] 7t + S(z,u), (2.11)

where S = —(MB)*MN[I,, — (MB)*MN + .. J(MB)~?
On the basis of (2.10) we have
[ME(z,u)]™ = (B 'Dw?(u)) D™ (2P)B~. (2.12)

Since, by virtue of the fact that the solutions of the direct and dual problems are non-
degenerate, 2 = 0, vZ = 0,,, v > 04, it follows from (2.11) and (2.12) that [M (., u,)]™' =

[MB(a:*,u*)] = 0m-

We have the obvious representations

b= Bx? = Bx® — Boa®, (2.13)
v = —NTéu=N"(B")'ov?, IS (z,w)|| = o(||6z]]). (2.14)

Substituting (2.11) and (2.13) into (1.5), we obtain
n(x,u) = D (v(w))A" Mz, u)b = ny(z,u) + s(02). (2.15)

Here 1 (z,u) = D™ (v(u)) AT (MP) "1 B(a” — dz7), [|s(d2)] = o(]|dz])).
Using relation (2.12) and the first equation of (2.14), we obtain (2.8) and the following
formulae:

W = DUP)BT(BT) I D(P) D (oP) BB — 6”) =
= DY (2B (2P - 52P) = e,, — DM (aP)62P + 0P (52),

m = DT(WM)N'(B")'D(@”)D7 (x B)BAB(ZUB—MB):
= D '@M)N' (BB +0Y(62) = DM )NT(BT)svB 4 0V (62) =
= D 'wM)eN +0N(5z)

where [|67(52)| = o(||dz]]), [|6Y(62)|| = o(||dz||). Since v = 0, equations (2.6) and (2.7) follow
from this and (2.15). This proves the lemma. O

The lemma explains why the vector n(z,u) is often referred to as an indicator vector (see
[19], for example). All the components of the vector 7(z., u.) comprise zeros and ones, the basic
components of the vector z, corresponding to ones in the vector 7(z., u.). Zero components of
x, correspond to zeros of n(z., u).

We now consider the Lyapunov function F'(z,u) and Lebesgue set €y given by the formulae

F(z,u) = [|DM(z)(c — ATu)|| + || Az — b],
Qo = {[z,u] : F(z,u) < F(zo,u), >0, v>0, blug<blu}.

Theorem 2. Let [x,,u,] be a pair of non-degenerate solutions of problems (1.1) and (1.2).
Suppose, further, that the Lebesque set €y is bounded. Then for any interior initial conditions
vector zg we have the following properties:

(1) the matriz M(x(t, 29), u(t, 29)) is non-degenerate for any t > 0,
(2) z(t,z0) € Qo and v(t,z9) €V for all t >0,

(3) the objective function of the dual problem b"u increases monotonely on trajectories of
system (2.5),



(4) the pair of solutions [x(t, zo),u(t, z0)] of system (2.5) is bounded, is continuable and con-
verges to the pair [z.,u.] ast — oo.

We can illustrate the properties of the method by the simplest example in which n = 2,

m=1 A =[1,1], b = 1, ¢ = [-2,1]. Obviously, z] = [1,0], u, = —2, v = [0,3],
fo=clz, =—2.
5(72
A
2
N
0 2 3> 2
\
\
\
-1 \\
\\ 2t+22=1
\
) \
Fig. 1
ZL’Q
A
2t a?=1 9
\\\ — 1
-2 1 0 1 g
Fig. 2

Figure 1 shows the phase trajectories of system (2.1), (2.2) in the z!, 2% plane. We have
taken uy = —3 as the initial vector of the dual variables, in which case vy = [1,4]. All
trajectories starting from points with strictly positive components will converge to the point
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r,. The dashed line denotes the ray z'v} + z%v2 = 0, ! > 0, 2? < 0, corresponding to the set
of points for which the matrix M (z,ug) is degenerate. The quantities = and v vary during the
iterations, and the ray rotates, approaching the vertical axis as ¢ — oo. It is clear from the
figure that there is convergence towards z, for any xy above that ray.

Figure 2 shows the phase portrait in the case where ug = 2 and vy = [—4,—1]. All the
trajectories starting from Rfur converge to the point z* = [0, 1], which is a solution of the
problem of finding the maximum of the function ¢'z on X. In that case, the point z, is
unstable, while z* is an attractor.

Integrating system (2.1), (2.2) by Euler’s method, we obtain method (1.4). The iterative
process (1.4) will be similar to the process described by the system of differential equations (2.1),
(2.2) if the steps oy and 75 are small enough. The properties of this version of the methods have
been investigated by G.V. Smirnov, who has shown, in particular, that the discrete version of
the method for small o and 7, involves a polynomial. At the same time, it is obvious that
method (1.4) is more effective if steps oy and 74 are sufficiently large. These versions of the
method will be analyzed later.

3. LOCAL PROPERTIES OF THE METHOD

It follows from formulae (1.5) that the vector D(x)n is a solution of the system of linear
algebraic equations AD(x)n = b. If x = x,, then the components of the vector n corresponding
to basic components of the vector z, will be one, and those corresponding to non-basic com-
ponents will be zero. Therefore, n, = 0, n* = 1, o = 7 = 1. Thus, the largest admissible
steps giving non-negative x and v in the neighborhood of a solution are close to one. We will
consider the simplest way of choosing o and 7. Assume that

o = (1 — or)ay, 7 = (1 — or)7%, (3.1)

where 0 < g < 1. Three rules for choosing o are:

0<or <1, khm o =0, (32)

or = max [Py, 1 — 4], 0<s, 0<0<]1, (3.3)
%(I)k

= — > 0. 3.4

For all three methods, it is guaranteed that 0 < 1 — g < 1. Thus if z; > 0,,, vx > 0, these
vectors are also strictly positive on the next iteration.

Theorem 3. Under the assumptions of Lemma 4, let steps oy, and 1, be chosen according
to (3.1) — (3.4) at each iteration. Then method (1.4) converges locally to [z.,u.] superlinearly
at least, that is,

hmM:O, 11m|kf1—"‘:o, 1<i<n, 1<j<m. (3.5)
lim o) = lim 7 =1, lim gy = 0, lim =1, lim ¥ =0. (3.6)
k—o0 k—o0 k—o0 k—o0 k—o0

If rules (3.3) or (3.4) are used the convergence is quadratic.



Proof. Let Axy = x — x4, Avy, = v — s, Aug, = ug — uy, Az, = [Axy, Aug]. Then method
(1.4) can be written in the form

Azgpr = [In — meD(en — ni)|Azy, — 71D () (€n — Mi), (3.7)
Avgrr = [I, — axD(np)|Avg — aD(vi)ng, (3.8)
Aukﬂ = Auk + O - (39)

Suppose that the pair of vectors [y, uy] is close to [z, u.] and the norm of the vector Az
is a small quantity of order €. Suppose also, to fix our ideas, that the basis at the point x,
comprises the first m columns of the matrix A, that is, representation (1.7), (1.8) is being used.
Then it follows from (2.6) and (2.7) that

e = em— D N aP)AxP + 51(Az), (3.10)
= DHoM)AuY + sy(Az), (3.11)
M = —AUk + Sg(AZk), (312)

where ||s;(Az)|| = O(e?), i =1,2,3.
Substituting these relations into the right-hand sides of (3.7) — (3.9), we obtain

Al’k+1 = (1 — Tk)Axk + 91(Azk), (313)
Avk+1 = (1 - Oék)A’Uk + 02(AZk)7 (314)
A’U,k+1 = (1 — ozk)Auk + 03(Azk) (315)

Here ||0;(Az)|| = O(e?), i = 1,2,3; oy, and 73, are determined from conditions (3.1). Under
these assumptions we have

1 o * w?ﬂ 2
o = k= 2 - min L—] +0(e)7,
1 %
— = 17y =2-— min {%} + O(e)?
T 1<i<n Ui
It follows that
ap=1+0(e), T =1+ 0(e). (3.16)

We now substitute these formulae and (3.1) into the right-hand side of (3.13) — (3.15), and
after some reduction obtain

Azp1 = oAz + 51(A2k), Aupyr = opAuy, + 9~2<A2k)7

where [|6;(Az)|| = O(£?), i = 1,2. Then using (3.2) we arrive at (3.5). Equations (3.6) follow
from (3.10) — (3.12) and (3.16).
If rules (3.3) or (3.4) are used, near a solution

oK =" (Zx Avl + Z vAxk>+O( 2).

i=m-+1

From this and (3.13) — (3.15) we conclude that ||Azy, ]| = O(g?), that is, the convergence is
quadratic. This proves the theorem. O

The possibility in some cases of solving problems (1.1) and (1.2) in a finite number of steps
is an important feature of method (1.4). Let us consider this property. We introduce index sets
depending on the vectors x and v:

oz)={1<i<n:e' =0}, olv)={1<i<n:v" =0}



If all the components of x and v are non-zero, then o(z) = 0, o(v) = 0.
Let ', denote the set of initial pairs [zg, uo] such that algorithm (1.3) for 7, = ay = 1 gives
a solution of both problems (1.1) and (1.2) after k iterations. We will define the sets

Q0 = Ax,u]:x=a, ol@)No
Q = {[r,ul:u=u, olz)No
Qs = A{lz,u]:0(x) =0(z,), olx)No(v) =0}

Theorem 4. Suppose that problems (1.1) and (1.2) have non-degenerate solutions . and
us. Suppose also that the parameters in method (1.3) are chosen as follows: N\, = 7, = a = 1;
then 4 C Ty, Qy C Ty, Q3 C T,

Proof. When )\, = 7, = ay, = 1 method (1.3) can be simplified to the form
D(vp)wps1 — D(xp) AT upy = —D(a) AT uy, Az =b.
Thus if the pair [z, uo] € T}, we must have
D(vo)x, = D(20) AT (s — up). (3.17)

It is easy to show that any pair of initial conditions [eg, ug] from §2; or €, satisfies (3.17).
Let us prove the last statement, that {23 C T,. Suppose that there is a representation similar
to (1.7), (1.8) for a point xo, that is x¥ # 0,,, x)Y = 04. Then

D(wia? — D(x§)BTuy = —D(x8) B uy, D(vi )zl = 0y, BxP + Nz =b.

All the components of the vector v¥ are non-zero, and, therefore,

oY =04 2P =B=28 w=u+ (BN D (al)DwF)P

% *

Thus, the exact vector x = z, is obtained in one step.
Letting £ = 1 we find

D(vf)xf — D(:L‘lB)BTU/Q = —D(m?)BTul, D(v{v)xé\f = 04, Bmf + Nxév =b.

The solution of this system is obvious:

B B N T\—1 B B
x5y = wx., Ty =04 us=(B') ¢, vy =0p,
N N T/pT\—1 B N

vy = ¢ =N'(B") ¢ =uv >04

hence the exact solution of both problems has been found. This proves the theorem. [

The result just obtained is global in character. For example, if [z, ug] € €22, the vector zg
can even have negative components.

4. THE INTERIOR POINT METHOD WITH STEEPEST DESCENT

We will determine the rules for choosing steps y, and 7 at an interior point z; = [z}, v} ]

from the solution of certain auxiliary problems. In order for the point z, ; to be an interior
point, we must have
0 < ap <wag, = ay, 0 <7 <wr, =T, (4.1)



where 0 < w < 1. For simplicity, we will assume that «j and 7 are finite. From (4.1) and

(1.11) we obtain the inequality
1 1 1
—+ == (4.2)
(073 Tk w
Under condition (4.1), the steps oy and 73 are best chosen so as to minimize ®;,, and the
norm of the discrepancy ||Azg1 — b||, determined from formulae (1.10) and (1.9), as much as
possible. Omitting the subscript k£ in order to simplify matters, and introducing the notation

L=p"Ax, M = u'b, N = ||Ax — b||, we arrive at the two criteria:
o(la,7) =P — La+ (L — @)1+ (L — M)ar, ©a(T) = N|1 — 7.

We combine these into one by means of their linear convolution. The auxiliary problem thus
obtained is: to find

0/~ =\ __ .
p(a,7) = 0<a<%1,1{)1<7<%(’0(a’ 7); (4.3)

pla,7) = pi(@, 7) + a(T). (4.4)

Denote the solution of problem (4.3) by o, 7°. We will assume that b # 0,,, so that M > 0.
In addition, we will use the fact that ¢1(c, 7) > 0 on the set under consideration.

In the general case, the function ¢(a,7) is piecewise-bilinear. Thus at least one of the
extremal points will be the vertex of one of the rectangular regions where it is bilinear.

& &

1 T 7 -
"Tq r L f 9
p S o p S o
=l =l
0 a 0 a
Fig. 3 Fig. 4
If 7 < 1, the function ¢(«, 7) is bilinear and can be expressed by the formula
ola,7) =P+ N—-La+(L—®—N)r+(L— M)ar, (4.5)

its range of definition being the rectangle pgrs (Fig. 3). We now write the values of p(«, 7) at
its vertices:

¢p = P+ N, 0 =(®+N)(1—-7)+ L7, (4.6)
o = (P+N)1—-7)+ L(T—a)+ (L— M)ar, ps =P+ N — La. (4.7)

Since s < ¢, for L > 0 and ¢, < ¢, if L < 0, min ¢ cannot be reached at the point p. The
form of the solution will depend on the behavior of the function ¢ on the segments gr and rs.
Since dp(a, 7)/0a = —L(1 —T) — M7, 0p(a,7) /0T = —(®+ N + Ma) + L(1 + &), we find the
solution of the problem. It is given in Table 1, the values ¢°(@,7) being found using formulae
(4.6), (4.7).

If 7> 1 and 7 < 1, the function ¢(«, 7) has the form (4.5), and if 7 > 1

ola,7) =P —N—La+ (L—P+ N)T+ (L — M)ar.
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The function ¢(a, 7) is piecewise-bilinear. The subregions where the function is bilinear are
the rectangles pfgs and fqrg (Fig. 4). We find the values of p(«a, 7) at their vertices:

@p:q)_‘_N? Sof:Lv @q:(q)_N)(l_%)—i_L%? (48)

o, =(®-N+La)(T-1)+(L-Ma)r, ¢,=L—-Ma, ¢,=®+N-—La, (4.9)

Table 1
(00)/(00) s > 0 | (9¢)/(0c)lrer = 0 | (8)/(90) s < 0
(09)/(07)|a=a < 0 point ¢ segment qr point r
(09)/(07)|a=a = 0 ) ) segment s
iz not realized .
(0¢)/(07)|a=a >0 point s

The vertex p cannot be the point of a minimum of ¢(«, 7) since, in view of the relation
¢1(a, 7) > 0, we must have L > 0 and, therefore, ¢5 < ¢,. The minimum of ¢(a, 7) cannot be
reached at the vertex f either, since ¢, < ¢s. Analyzing the behavior of ¢(a,7) on the sides
qr and rs, using the relations

(3_90)T: = L(T—-1)—Mr,

oa ) __

dp _ _ Oy

- e J— >  — =
(aT)a><1x L(l+a)+N ((I>+Moz)_(87>a<%

= L(l+a)—(P+ N+ Ma),

various possible versions of the solution are obtained. These are given in Table 2, the values
¢%(a, 7) being found from (4.8), (4.9).

Thus, if the optimum strategies we have obtained for choosing steps oy and 7 are followed,
in every case the step oy can be taken equal to 0 or . In the case when 7 > 1, apart from the
extreme values 0 and 7, the step 7 can also take the intermediate value 1. With steps a; and
7 chosen from the solution of the auxiliary problem (4.4), the interior point method (1.4) is
called the method of steepest descent.

We will now find bounds for the quantity ¢"(@, 7) on the assumption that

%
g <
[1elloe = max |ni| < C.

In that case, according to (1.11) and (4.1), we have

a> 7>

: — (4.10)

Qle

We will find
Y* = sup (@, 7).
a>w/C, 7>w/(1+C)

We use the fact that at any admissible point of [a, 7] the value of ©°(@, 7) should not be larger
than the value p(a, 7).

12



In the case when 7 > 1, we take s and f as such points:

O+ N

(@, 7) < minf{e,, pr} < m?xmin{L, O+ N—-alL}= a5 (4.11)
o)
Table 2
(06)/(00) 1= > 0 | (99)/(00) 1= = 0 | (99)/(B) r—r < 0

(00)/(07)|a=a,r>1 <0 segment qr point 7
O <0= dp } point ¢ {
or a=g or a=g open polygon qrg segment rg
Jp dp
Ol a=a 0= orl aza is not realized is not realized segment rs

T<1 T>1
dp Iy
2 - <0< ol aza arg min {¢q, ©g} point g point g

T<1 T>1
Iy Iy
ol aca = 0< 2 arg min {¢g, Psq} segment sg segment sg

T<1 T>1
0 < (0¢)/(07)|a=a,r<1 arg min {¢q, s} point s point s

In the case when 7 < 1 we turn to points ¢, r and s. Since M > 0, we have p, <
<(®P+N)(1—-7)+(T—a+ar)L. Thus

¢ (a,7) < (Ff—a+ar)L, o+ N —aL} <
< (P+N)(1—-7)+ mLaxmin{%L, (T—a+ar)L,(P+ N)T —alL}. (4.12)
It follows from 7 < 1 that 7 — a + a7 < 7. Thus if 7T — a + a7 > 0, the maximum with
respect to L is found from the condition (7 — & + a7)L = (® + N)7 — aL and is reached at
the point L = (® + N)/(1 4 @), as shown in Fig. 5. Substituting the given value of L into the
right-hand side of (4.12), we arrive at the conclusion that inequality (4.11) still applies under
this assumption. The case 7 — @ + a7 < 0 corresponds to the situation shown in Fig. 6. The
maximum is determined from the condition 7L = (7 —a+ a7)L and is reached at zero. Instead
of (4.11), we have
©’(a,7) < (®+ N)(1-7). (4.13)

a,
It follows from (4.1), (4.11) and (4.13) that

w
14+C°

(4.14)

* 1 —

" <v(d+ N), y—max{arznﬁ/><01+a,%2urjl}%>ic)(l 7')} =1
This maximum is unattainable and unimprovable. That (¢°(@,7) < ©*) is unattainable follows
from the previous argument, and that the estimate cannot be improved is clear from the
following example: putting ® = N =1, L =0, M — 0, w = 0.8, C = 0.6, a* = 1.875,
7" = 0.625 and checking that conditions (4.2), (4.10) and 7 < 1 are satisfied, and that the
point 7 is an optimum, using (4.6), (4.7) and (4.14) we find ¢ =1 —3M/4, v(® + N) = 1,
that is, lim W =v(®+ N).
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Fig. 5
<'A 7L
(®+ N)T
(®+ N)T —al
0 L
————
(T—a+7a)L
Fig. 6

On the basis of (4.14), using the definition of ¢*, we obtain
pp1 + |[Azpig — b < v(Pp + |[ Ay — b))
This inequality enables us to estimate the sufficient number of steps for the point [z, uy]

to be in some neighborhood of the solution of problems (1.1) and (1.2).

Theorem 5. Let zy = [xg,ug| be an interior point, and let the sequences {xy} and {u}
generated by the method of steepest descent be such that ||Nkllee < C for all k. Then for any
e >0, the function ®(x,u) = v (u)z + | Az — b|| will become less than ¢ after not more than

K — ’71+C In CI)(I'(),U,Q)—‘

w 3

iterations, where [a] is the smallest integer approaching the number a from above.

The solution of the example of Section 2 found by the method of steepest descent is shown
in Fig. 7. The parameter w was taken equal to 0.9. Note that as w approaches one, the number
of iterations needed to solve the problem with prescribed accuracy decreases, reaching two for
some initial points.
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10.

Fig. 7
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