
U.S.S.R. Comput.Maths.Math. Phys., Vol.19,No.2, pp. 99�119
c©Pergamon Press Ltd. 1980. Printed in Great Britain.

A LIBRARY OF PROGRAMS FOR SOLVING
OPTIMAL CONTROL PROBLEMS1

N.I. GRACHEV and YU.G. EVTUSHENKO

Moscow

(Revised 20 March 2003)

THE MATHEMATICAL basis of a library of standard programs for the numerical
solution of the general optimal control problem with mixed constraints is described.
An example of the solution of an elementary problem of �ight dynamics is given.

The present paper gives the mathematical basis of a library of standard programs for solving
optimal control problems with mixed constraints. The methods employed utilize reduction of
the initial problem to a problem of nonlinear programming. The programs are designed to
solve a wide class of problems including time-optimal problems, problems with moving right-
hand end, problems with non-di�erentiable functionals, and optimization with respect to a
control vector and control parameter, etc. The library is part of the uni�ed package of applied
programs, developed at the Computing Centre of the Academy of Sciences of the USSR, for
solving problems of unconstrained minimization of functions of several variables, and nonlinear
programming and optimal control problems.

1. Basic computational formulae

Of the vast literature on numerical methods for solving optimal control problems, we shall
only mention a few monographs [1, 2, 3] and two survey papers [4, 5]. All the methods described
are based on reduction of the initial problem to a problem of nonlinear programming. This
approach has been developed by various authors (see e.g. [2, 4]). It has proved unusually
e�ective for several reasons: �rst, as a result of it, many previously hypothetical heuristic
algorithms become obvious and can be extended; second, it has enabled the rich stock of
methods of nonlinear programming and unconstrained minimization to be drawn on; and third,
it has created a constructive basis for devising methods for optimizing systems, integrable by
schemes with a high order of accuracy.

Let the controlled process be described by the system of ordinary di�erential equations
dx

dt
= f(x, u, t), 0 ≤ t ≤ T, (1.1)

where t is the independent variable, x is the phase vector, and u the control vector. We shall not
be speci�c about the vector dimensionalities since they are not vitally important. Constraints
are imposed on the controlled process (1.1) of the equation and inequality types:

Γ1(x(t), u(t), t) = 0, Γ2(x(t), u(t), t) ≤ 0. (1.2)
1Zh. v	ychisl.Mat.mat. Fiz. Vol.19, No.2, pp. 367�387, 1979.

1

We are also given the terminal constraints

Γ3(x(T), T) = 0, Γ4(x(T), T) ≤ 0. (1.3)

The functional to be minimized is

I =

T∫

0

F (x(t), u(t), t)dt + FT (x(T), T). (1.4)

The optimal control problem may be stated as follows.

Problem I. To choose the control u(t) such that functional I is minimized in the �xed interval
[0, T], u(t) being chosen from all the possible controls such that conditions (1.2) and (1.3) are
satis�ed for the corresponding solutions u(t) and x(t) of system (1.1).

Section 4 below is devoted to various generalizations of this problem. At present, we shall
simplify the problem as much as possible in order to facilitate the treatment.

We divide the interval [0, T] into k − 1 subintervals. Let hi be the length of the i-th
subinterval; also, we put

t1 = 0, ti =
i−1∑

s=1

hs, xi = x(ti), ui = u(ti), tk = T,

zi = (xi, ui, ti), f(zi) = f(xi, ui, ti), i = 1, 2, . . . , k.

In each i-th subinterval we integrate (1.1) by a scheme belonging to the family of Runge�
Kutta methods:

xi+1 = xi + hi

r∑

s=1

gsf(zis); (1.5)

here, zis = (xis, uis, tis), ui1 = ui, uis = u(tis),

ti1 = ti, ti,j+1 = ti + βjhi, xi1 = xi, xi,j+1 = xi + βjhif(zij), (1.6)

where gs, βj is a collection of numbers, and all the βj lie between 0 and 1. In (1.5) and (1.6), and
throughout the present section unless stipulated otherwise, the subscripts i, s, j take integral
values from the intervals [1, k − 1], [1, r], 1, r − 1], respectively.

In the simplest case, when r = 1, (1.5) transforms to the Euler integration scheme

xi+1 = xi + hif(xi, ui, ti). (1.7)

On evaluating the quadrature in (1.4) according to expressions (1.5), (1.6), we get

I(x̄, w) = FT (zk) +
k−1∑

i=1

hi

r∑

s=1

gsF (zis), (1.8)

where x̄ = (x11, . . . , x1r, x21, . . . , xk), w = (u11, . . . , u1r, u21, . . . , uk).
On specifying the vector of controls w, we can uniquely determine the phase vector x̄ with

the aid of relations (1.5) and (1.6). In view of this connection, we shall write x̄ = x(w).
We replace the constraints (1.2), (1.3) by their discrete analogues

Γ̄1(x̄, w) = 0, Γ̄2(x̄, w) ≤ 0. (1.9)

2

Here, we combine the constraints of the equation and inequality types along a trajectory, and
the terminal constraints:

Γ̄1(x̄, w) = [Γ1(z11), Γ
1(z21), . . . , Γ

1(zi1), . . . , Γ
1(zk), Γ

3(zk)],

Γ̄2(x̄, w) = [Γ2(z11), Γ
2(z21), . . . , Γ

2(zi1), . . . , Γ
2(zk), Γ

4(zk)].

We replace the initial problem I by the following problem of nonlinear programming.

Problem II. To �nd the control vector w such that x̄ = x(w) and w satisfy the constraints
(1.9), and such that functions I(x̄, w) is minimized.

We shall assume that problems I and II have a solution. The question of the closeness of
their solutions when, instead of (1.5), an approximation according to Euler's scheme is used,
has been examined in several papers (see, e.g., [4, 6]). It appears that these results extend to
the more general case of schemes of type (1.5).

Assume that functions f , Γ1, Γ2, F , FT are di�erentiable with respect to x and u. Later,
expressions will be needed to evaluate the derivatives of a di�erentiable function of the type

B(x̄, w) =
k−1∑

i=1

hi

r∑

s=1

gsR(zis) + α(zk). (1.10)

We de�ne the vectors

pi =
dB

dxi

, pij =
dB

dxij

, pk =
dB

dxk

, pir =
dB

dxir

(1.11)

of the same dimensionality as x. Recalling dependences (1.5) and (1.6), de�ning the vectors xi+1,
xi,j+1 as di�erentiable functions of the �previous� vectors, we obtain the recurrence relations

pi =
∂B

∂xi

+
r∑

s=1

∂xis

∂xi

dB

dxis

+
∂xi+1

∂xi

dB

dxi+1

= pi+1 +
r∑

s=1

pis; (1.12)

pij =
∂B

∂xij

+
∂xi,j+1

∂xij

dB

dxi,j+1

+
∂xi+1

∂xij

dB

dxi+1

,

pir =
∂B

∂xir

+
∂xi+1

∂xir

dB

dxi+1

=
∂B

∂xir

+ higrfx(zir)pi+1. (1.13)

We introduce the function

H(zis, pi+1, pi,s+1) = hi[gsR(zis) + (f(zis), gspi+1 + βspi,s+1)]

Here, (a, b) is the scalar product of the vectors a and b. Noting that βr = 0, pi,r+1 = 0, we can
rewrite relations (1.13) in the compact form

pis = Hx(zis, pi+1, pi,s+1). (1.14)

Here and throughout, the subscripts x and u denote the derivatives with respect to x and u,
respectively. The following basic expression for evaluating the gradient of the function B is
obtained in a similar way:

dB(x(w), w)

duis

=
∂B

∂uis

+
∂xi,s+1

∂uis

dB

dxi,s+1

+
∂xi+1

∂uis

dB

dxi+1

= Hu(zis, pi+1, pi,s+1). (1.15)

3

The present method of derivation is much simpler than that used to obtain system (1.7) in
[2], due to the introduction of the auxiliary vectors by means of relations (1.11).

On specifying the control vector w, we can use relations (1.5) and (1.6) to �nd successively
the phase vector x̄ and evaluate the function B. In the case of a continuous system, this
corresponds to integration of (1.1) �from left to right�. Next, with the aid of (1.12) and (1.14), we
evaluate the sequence pi, pis. These calculations correspond, in optimal control, to integration
of the equations for the pulses �from right to left�. After this, we use expression (1.15) to �nd
the derivatives.

The following circumstance must be emphasized. The use of integration schemes of type
(1.5) with r ≥ 2 presupposes that, in each interval of integration, the function f(x, u, t) has
bounded derivatives with respect to all its arguments. If the control u(t) varies substantially (by
an amount ∼ 1) inside an interval of integration, the calculations lose some of their accuracy.
Hence, in the optimal control search process, we need to monitor the position of the mesh base-
points with respect to t, and if necessary, either change their disposition or else limit the control
variation at each integration step. It is simplest to regard the control as constant within each
interval. This device is justi�ed when solving many practical problems, in which the system
(1.1) has to be integrated with high accuracy, while the optimal control can be evaluated more
crudely. This is bound up with the fact that the optimal control can usually only be realized
approximately, and the step for specifying the control does not need to be particularly small.

If we put the control constant in an interval of integration, then ui = ui1 = . . . = uir, the
vector w can be regarded as consisting of the set [u1, . . . , uk], and for the derivatives of B with
respect to uj we have the expression

dB(x̄, w)

dui

=
r∑

s=1

Hu(zis, pi+1, pi,s+1).

Great simpli�cations are possible in the resulting relations, due to the fact that the gradients
dB/du are only needed to �nd the approximate optimal controls, and the accuracy of computing
them needs to be matched with the accuracy of solving optimization problem II. As a result of
this, small terms in the relations for the gradients and pulses can be disregarded.

Let us consider some particular cases of integration schemes (1.1).
1. In the case of Euler's method (1.7), we have

B =
k−1∑

i=1

hiR(zi) + α(zk), H(zi, pi+1 = hi[R(zi) + (f(zi), pi+1)],

pi = pi+1 + Hx(zi, pi+1, pk = αx(zk),

dB

dui

= Hu(zi, pi+1,
dB

duk

= αu(zk).

(1.16)

To prove the convergence, it is important to be able to evaluate the second derivative of the
function B. If we assume that the functions de�ning problem I are twice di�erentiable with
respect to x and u, we can obtain the relations for the second derivatives of B. We introduce
the square symmetric matrices of second derivatives

Pi =
d2B(x̄, w)

dxidxi

, Gij =
d2B(x̄, w)

duiduj

.

4

It is easy to obtain the following recurrence relations:
Gii = Huu(zi, pi+1 + Φu(zi)Pi+1Φ

>
u (zi), Gk = Bukuk

,

Pi = Hxx(zi, pi+1 + Φx(zi)Pi+1Φ
>
x (zi), Pk = Bxkxk

,

Gij = Φu(zj)D
i
j+1[Hxu(zi, pi+1 + Φx(zi)Pi+1Φ

>
u (zi)],

Di
j+1 =

∂xi

∂xj+1

= Φx(zj+1)Φx(zj+2) . . . Φx(zi−1), Φ(zi) = xi + hif(zi);

here, j < i, Di
i is the identity matrix, and the superscript �>� denotes transposition.

These relations can be generalized for the case (1.5), but since they become unwieldy, we
shall not quote the generalizations. Notice that the relations obtained in [7] for the second
derivatives are incorrect, since they contain no terms with second derivatives of the function
H; they give a correct result only in the case of linear systems.

2. For Euler's method with recalculation
r = 2, g1 = 0, g2 = 1, β1 = 1/2,

xi+1 = xi + hif(zi2), xi2 = xi + 0.5hif(zi1),
pi2 = hi[Rx(zi2) + fx(zi2)pi+1], pi1 = 0.5hifx(zi1)pi2,

dB

dui1

= 0.5hifu(zi1)pi2,
dB

dui2

= hi[Ru(zi2) + fu(zi2)pi+1],

pi = pi+1 + pi1 + pi2.

By comparison with Euler's scheme, the number of points at which the control vector is
sought is here doubled. We can put ui = ui1 = ui2 throughout, and note that, when Euler's
scheme with recalculation is used, terms of order h3

i are discarded at each step of integration.
We can determine the vectors pi and derivatives to the same accuracy. As a result, we obtain
the expressions

pi = pi+1 + hi[fx(zi2)p̄i+1 + Rx(zi2)],

p̄i+1 = pi+1 + 0.5hi[fx(zi2)pi+1 + Rx(zi2)],

dB

dui

= hi[fu(zi2)p̄i+1 + Ru(zi2)].

Here, the derivatives with respect to x and u have to be taken into account with an error of
order h2

i .
3. The very popular scheme of the Runge�Kutta method is obtained on putting r = 4,

g1 = g4 = 1/6, g2 = g3 = 1/3, β1 = β2 = 1/2, β3 = 1, β4 = 0. There is no di�culty in writing
all the necessary expressions in this case. We shall, therefore, con�ne ourselves to the case
when the control is constant in the interval of integration. The relations for recalculating the
pulses will be quoted with an error O(h3

i), and the relations for the derivatives, with an error
O(h2

i):

pi = pi+1 + hi

4∑

s=1

gs[Rx(zis) + fx(zis)pi+1] +

+ h2
i

4∑

s=2

gsβs−1fx(zi,s−1)[Rx(zis) + fx(zis)pi+1],

dB

dui

= hi

4∑

s=1

gs[Ru(zis) + fu(zis)pi+1].

The relations for other schemes of integration can be obtained in a similar way.

5

2. Necessary conditions for an extremum

We introduce the dual vectors λ1, λ2, having the same dimensionalities as Γ̄1, Γ̄2, respec-
tively. We form the Lagrange function for problem II:

L(w, λ) = I(x(w), w) + (λ1, Γ̄1(x(w), w)) + (λ2, Γ̄2(x(w), w)). (2.1)
Here, λ is the union of vectors λ1 and λ2.

Using well-known results from nonlinear programming, we can state the necessary and
su�cient conditions for an extremum for problem II. Let w∗ be the solution of problem II,
let x∗ = x(w∗), and let the constraints (1.9) satisfy the regularity condition; then, by the
Kuhn�Tucker theorem, it is necessary that vectors λ1

∗ and λ2
∗ exist, such that

dL(w∗, λ∗)
dw

= 0, λ2`
∗ Γ̄2`(x∗, w∗) = 0, λ2`

∗ ≥ 0, (2.2)

where λ2`, Γ̄2` are, respectively, the `-th coordinates of vectors λ2 and Γ̄2. These conditions
hold for all components of the vectors. The derivative of L with respect to w in (2.2) is found
from relations (1.11) � (1.15) on taking expression (2.1) for B in them. In particular, (1.15) is
rewritten as

dL(w∗, λ∗)
duis

=
∂

∂uis

H(z∗is, p∗i+1, p∗i,s+1, λ∗
1
i , λ∗

2
i),

H(zis, pi+1, pi,s+1, λ∗
1
i , λ∗

2
i) = hi[gsF (zis) + (f(zis), gspi+1 + βspi,s+1)] +

+ (λ∗
1
i , Γ̄

1
i (zi1)) + (λ∗

2
i , Γ̄

2
i (zi1)).

Here, Γ̄1
i , Γ̄2

i are the constraint vectors, evaluated at the i-th step, and λ∗
1
i , λ∗

2
i are the corre-

sponding vectors of Lagrange multipliers.
With certain assumptions, the solution of problem II can be replaced by a search for the

max-min
max

λ1
max
λ2≥0

min
w

L(w, λ1, λ2). (2.3)

The arguments underlying the transformation from problem II to problem (2.3) are similar
to those in nonlinear programming.

Denote by S the set of all indices ` for which Γ̄2`(x(w∗), w∗) = 0.
If vectors w∗, λ1

∗, λ2
∗ exist, such that conditions (2.2) are satis�ed, and for any non-zero

vector w for which
dΓ̄1(x(w∗), w∗)

dw
w = 0,

(
dΓ̄2`(x(w∗), w∗)

dw
, w = 0

)
, ` ∈ S,

we have the inequality
w>d2L(w∗, λ∗)

dw2
w > 0,

then w∗ is an isolated local solution of problem II.
This su�cient condition can be used to prove the convergence of the methods given below

for solving problem II. The su�cient conditions for convergence will not be quoted, however,
since they are no more than a repetition, in slightly changed terms, of the well-known conditions
of nonlinear programming.

Notice that our approach, based on the techniques of nonlinear programming, does not lead
to �discontinuities� in the pulses, as distinct from the results obtained for continuous systems in
[8]. Our scheme can be extended to continuous systems by obtaining for the latter propositions
similar to the maximum principle. By developing this approach, we arrive at the necessary
conditions for an extremum obtained by a di�erent method in [9], or with certain assumptions
about convexity, at the su�cient conditions quoted in [10].

6

3. Description of the algorithms

At present, the library compiled by the authors contains 16 algorithms for solving optimal
control problems. Many of the familiar algorithms are excluded. In particular, there are no
algorithms that are not adapted for taking account of phase constraints, and no algorithms
based on variations in the state space, etc.

In most of the methods outlined below, problem II is solved according to a general scheme:
the vector w is speci�ed, the values of I, Γ̄1, Γ̄2 are computed, and on the basis of these, a
function B of type (1.10) is formed; then B is minimized with respect to w using any method
from the library of unconstrained minimization (u.m.) algorithms.

The u.m. algorithms can be divided into 3 groups: (1) those not requiring the existence of
derivatives of the minimized function, (2) those using the existence of the �rst derivative, and
(3) those using the existence of �rst and second derivatives. By strengthening the conditions
imposed on the minimized function, we can construct more e�cient algorithms. Hence the
highest rate of convergence can be obtained by means of algorithms of group (3); but to realize
them, we are obliged to search for the matrices of second derivatives of the minimized function.
In optimal control problems, when the dimensionality of the vector w reaches 200÷ 500, such
computations demand a large computer memory. When solving practical problems, therefore,
methods of group (2) were basically used (the method of conjugate gradients, or steepest
descent, etc.).

Problem II is a particular case of a nonlinear programming problem. Its most important
feature is the comparative simplicity of evaluating the derivatives of function B with respect to
the components of vector w. This a�ords great scope for e�ectively utilizing various methods
of nonlinear programming, based on the use of �rst derivatives.

The various methods of solving problem II di�er from each other in the ways of constructing
the functions B, and the rules for varying the functions during the iterations. The choice of
scheme for integrating system (1.1) only in�uences the rules for computing I, Γ̄1, Γ̄2, and the
derivatives of B with respect to w, and is unimportant from the point of view of describing
the algorithms. This property was made use of when compiling the library. The procedures for
computing I, Γ̄1, Γ̄2, and seeking the derivatives of B, were formed as separate modules. When
replacing the integration schemes in the library algorithms, only these modules were changed,
while the other units remained unchanged. To simplify the treatment as much as possible, we
shall assume that the integration is performed by Euler's scheme.

Let us brie�y describe the main algorithms.
1. The method of penalty functions [11]. We form the penalty function

B(w, τ) = I(x(w), w) + τ [ϕ(Γ̄1(x(w), w)) + ψ(Γ̄2(x(w), w))].

Here, 0 < τ is the penalty coe�cient; in the case of a scalar argument, the functions ϕ(y) and
ψ(y) are such that ϕ(0) = ψ(0) = 0; ϕ(y) > 0 for y 6= 0; if y < 0, then ψ(y) = 0; if y > 0, then
ψ(y) > 0. If y is an `-dimensional vector with components y1, . . . , y`, we put

ϕ(y) =
∑̀

i=1

ϕ(yi), ψ(y) =
∑̀

i=1

ψ(yi).

The method is as follows: for some monotonically increasing sequence τ1 < τ2 < . . . we
construct a sequence of vectors w(τ1), w(τ2), . . ., found by solving the problem of unconstrained
minimization of B with respect to w:

B(w(τs), τs) = min
w

B(w, τs), s = 1, 2, (3.1)

7

Under certain conditions, the sequence w(τs) converges as s → ∞ to the solution of prob-
lem II.

In order to use methods of di�erentiable minimization, it is advisable to take as ϕ and ψ
su�ciently smooth functions. Taking as our guide the use of the method of conjugate gradients,
we used the following twice continuously di�erentiable functions:

ϕ(y) = y2, ψ(y) =





0, y ≤ 0,
k1y

3, 0 < y ≤ R1,
y2 + k2y + k3, y > R1,

k1 = 1/(3R1), k2 = −R1, k3 = R2
1/3, where 0 < R1 is a fairly small number (usually, R1 =

= 10−4).
On next using expression (1.15) to compute the derivatives of the function B, we solve the

approximate problem (3.1). The minimization process stops as soon as a vector w is found such
that

‖Bw(w, τ)‖ ≤ ε(τ), (3.2)
where ε(τ) → 0 as τ → ∞. In the numerical realization of the method, the sequences {τs},
{ε(τs)} were constructed as follows:

τs+1 = ντs, ε(τs+1) = b/(1 + ln τs+1), if τs[ϕ(Γ̄1) + ψ(Γ̄2)] > ẽ,

τs+1 = τs, ε(τs+1) = µε(τs), if τs[ϕ(Γ̄1) + ψ(Γ̄2)] ≤ ẽ.

Here, the numbers τ , ν, µ, ẽ, b are such that 0 < τ1, 1 < ν, 0 < b, 0 < µ < 1, ẽ > 0.
A modi�cation of the method was devised, in which we took as ϕ and ψ non-di�erentiable

functions, with the result that there was no need for τ to tend to in�nity. However, to solve prob-
lem (3.1) we then had to use the less e�ective methods of non-di�erentiable optimization; this
considerably slows the computations. The move to non-di�erentiable penalty functions is, there-
fore, only justi�ed when, among the functions de�ning problem I, some are non-di�erentiable.
The method of penalties is most useful when the initial approximation is roughly known. The
computations usually start from this, and the initial values of the dual variables are found. The
drawback of the method is the low rate of convergence close to the solution.

2. The dual method [12]. As B we take the function

B(w, λ1, λ2) = L(w, λ1, λ2) + τ [ϕ(Γ̄1(x(w), w)) + ψ(Γ̄2(x(w), w))],

where L is de�ned in Section 2, and τ is a �xed positive parameter. Assume that λ1
s, λ2

s are
known; then the s-th step is performed according to the relations

B(ws, λ
1
s, λ

2
s) = min

w
B(w, λ1

s, λ
2
s),

λ1
s+1 = λ1

s + cΓ̄1(x(ws), ws), (3.3)

λ2`
s+1 = λ2`

s + 4cΓ̄2`
s ×

{
e1, if λ2`

s < e1, Γ̄2`
s > 0,

λ2`
s otherwise.

Here, Γ̄2`
s = Γ̄2`(x(ws), ws), is the descent step, and 0 < e1 is a fairly small number (usually,

e1 = 10−4). The u.m. process (3.3) stops when a condition similar to (3.2) is satis�ed.
3. The method of modi�ed Lagrange functions. A lot has been published about this method

(see, e.g., [13]). We form the generalized Lagrange function as

B(w, λ1, λ2) = I(x(w), w) + [‖λ1 + τ Γ̄1‖2 + ‖(λ2 + τ Γ̄2)+‖2]/2τ,

8

where ‖ · ‖ is the Euclidean vector norm; the components of the vector ai
+ are expressed in

terms of the components of the vector ai by ai
+ = ai, if ai > 0; otherwise, ai

+ = 0.
The passage to the (s + 1)-th step is performed according to the relations

B(ws, λ
1
s, λ

2
s) = min

w
B(w, λ1

s, λ
2
s),

λ1
s+1 = λ1

s + τ Γ̄1(x(ws), ws), λ2
s+1 = (λ2

s + τ Γ̄2(x(ws), ws))+.
(3.4)

The parameter τ has to be fairly large, in order to ensure that problem (3.4) is solvable and
the method is convergent.

4. The method of simple iteration [14]. The generalized Lagrange function is constructed
in the form

B(w, λ1, λ2) = I(x(w), w) + [‖λ1 + τ Γ̄1‖2 + ψ(τ Γ̄2) + 2(λ2, γ(τ Γ̄2))]/2τ ;

here, ψ(y) is a fairly smooth penalty function, e.g. ψ(y) = yi
+. The vector function γ(a) is

such that its `-th component γ` is expressed in terms of the `-th component a` of the vector a
according to the rule: if a` ≤ 0, then γ` = (1− a`)−q; otherwise,

γ` = 1 + qa` +
q(q + 1)

2
(a`)2 +

q(q + 1)(q + 2)

3!
(a`)3;

here, q is any positive number (usually, q = 1).
The method is as follows:

B(ws, λ
1
s, λ

2
s) = min

w
B(w, λ1

s, λ
2
s), λ1

s+1 = λ1
s + τ Γ̄1(x(ws), ws), λ2`

s+1 =
∂B(ws, λ

1
s, λ

2
s)

∂Γ̄2`
.

This method provided a very high rate of convergence for a number of test problems. Its
drawback, shared with the two preceding methods, is that a knowledge of the dual variables is
required. To determine the latter, one of methods 1, 5, or 6 was employed.

5. Morrison's method [15]. We form the function

B(w, η) = (I(x(w), w)− η)2 + ϕ(Γ̄1) + ψ(Γ̄2),

where ϕ and ψ are constructed in the same way as in the penalty method, and η is a parameter.
We assume that, at the start of the computations, a lower bound is known for the solution of
problem II, i.e. if I∗ = I(x(w∗), w∗), then we can indicate η0 < I∗. At the (s + 1)-th step we
�nd ηs+1 from the relations

B(ws, ηs) = min
w

B(w, ηs), ηs+1 = ηs + [B(ws, ηs)]
1/2. (3.5)

6. The modi�ed Morrison method [14]. This di�ers from Morrison's method in the way that
the parameter η is varied

ηs+1 = ηs +
B(ws, ηs)

(I(x(ws), ws)− ηs)
. (3.6)

The method is justi�ed only in the case of convex programming problems. It is easily shown
that, when solving a u.m. problem exactly, the condition η0 ≤ I∗ implies ηs ≤ I∗ for all s. The
value of ηs+1 given by (3.5) is less than or equal to the ηs+1 obtained from (3.6); this ensures
a higher convergence rate in the latter case. A serious drawback of the two methods is the
requirement that the unconstrained minimization be performed with high accuracy. It is only
then that the necessary condition for operation of the methods, namely, ηs ≤ I∗, is satis�ed

9

during the computations. This requirement is particularly important in the second method,
since the increase of η is faster.

Both methods closely resemble the method of penalties after solving the u.m. problem at
the s-th step, and �nding a point ws, a value of τ can be found for which the solution of the
u.m. problem for the penalty method gives precisely the same result. The advantage of these
methods, therefore, lies in the fact that the variation of η takes place automatically, whereas
in the penalty method a sequence of τs has to be specially assigned.

7. The method of linearization. The method described in [16] for solving problems of non-
linear programming, after being justi�ed in [17], was used in [18] for optimal control problems.

At the s-th step, after linearizing the function to be minimized and the constraints, we
obtain

I(ws + δw) = I(ws) + (Iw(ws), δw) + O(‖δw‖2),

Γ̄1(ws + δw) = Γ̄1(ws) + Γ̄1
w(ws)δw + O(‖δw‖2),

Γ̄2(ws + δw) = Γ̄2(ws) + Γ̄2
w(ws)δw + O(‖δw‖2).

Here, for typographical simplicity, we have omitted the dependence of the functions on x.
We pose the following problem of quadratic programming: to �nd the minimum with respect

to δw of the function
(Iw(ws), δw) + a‖δw‖2 (3.7)

under the constraints

Γ̄1(ws) + Γ̄1
w(ws)δw = 0, Γ̄2(ws) + Γ̄2

w(ws)δw ≤ 0, (3.8)

where a is a positive coe�cient. After �nding the optimal value δw∗ we put

ws+1 = ws + cδw∗.

There are several ways of choosing the step c. Following [17], we �nd c from the condition
that the penalty function decreases at each step:

W = I(ws+1) + N max[0, |Γ̄1(ws+1)|, Γ̄2(ws+1)];

here, N is a fairly large number; Γ̄2 and |Γ̄1| denote, respectively, the set of components of
Γ̄2 and the set of moduli of components of Γ̄1. To solve (3.7), (3.8), a transformation to the
dual problem is performed. If we put a = 0, then (3.7), (3.8) becomes a problem of linear
programming; to (3.8) we have to add the requirement that the moduli of the components of
the vector δw be bounded.

Of all the methods contained in the library, the present one is the most laborious and
demands the largest computer memory for the computations. This is due to the need to store
the gradients of the �active� constraints. It is, therefore, best to use this method only when the
number of essential phase constraints is reasonably small.

8. The method of Krylov�Chernous'ko iterations [19]. This was originally proposed to solve
problems in which there are no phase and terminal constraints. We will show that the method
can be adapted to solve problem I (in this case it has to be regarded as an algorithm for solving
u.m. problems). Put

H̄(x,w, p) =
k−1∑

i=1

Hi(zi, pi+1), pk =
∂B

∂xk

,

Hi(zi, pi+1) = hi[R(zi) + (f(zi), pi+1)].

10

After specifying a control ws, we �nd from system (1.7) x̄s = x(ws) and from (1.16), the
vector p̄s = p(ws). In accordance with Section 1, every vector w̄ minimizing the function
B(x(w)) is a stationary point of the function H̄, i.e.

∂H(x(w̄), w̄, p(w̄))

∂w
= 0. (3.9)

We replace the problem of minimizing B(x(w), w) by the problem of �nding the stationary
points of the function H̄ (i.e. the points w̄ that satisfy (3.9)). If

∂H(x(ws), ws, p(ws))

∂w
= a,

where ‖a‖ 6= 0, then, on solving Eq. (3.9) with respect to ws, that appears explicitly in it, we
obtain

ws = ρ(x(ws), p(ws), a).

For solving (3.9) we use the method of simple iteration, putting

ws+1 = ρ(x(ws), p(ws), 0).

If ‖ws+1−ws‖ < e, where e is the accuracy of the computations, we assume that the stationary
point of the function H̄ has been found. Assume that it coincides with the minimum point of
the function B. We then vary function B in accordance with any of the above algorithms, and
again replace the search for the minimum of B by the search for the stationary point of H̄, etc.

This scheme has an attractive computational simplicity: instead of minimizing B with re-
spect to the vector w of high dimensionality, we solve a large number of problems of �nding
stationary points of a function of a vector of small dimensionality. Unfortunately, this frag-
mentation does not apply in the very commonly encountered case of optimization with respect
to the vector w and a supplementary vector of control parameters (we shall discuss this in
Section 4). Moreover, the method is often divergent and can be used only when ws is fairly
well known. Initially, therefore, minimization of B with respect to w is performed by some
u.m. method, and only then do we go over to the described procedure. In order to somewhat
weaken the divergence of the method, we took ws+1 = ws and carried out the variation of ws+1

�from right to left� till the norm ‖ws+1 − ws‖ was su�ciently small. After this, the variation
of w was stopped, new values of x and p were computed, and ws+1 was again corrected �from
right to left�.

9. Reduction to a boundary value problem [1, 5]. Assume that ws, x(ws), p(ws) are known
at the s-th iterative step. Denote by ξ the vector identical with vector p1(ws). We integrate
(1.7), (1.16) �from left to right�. The sequence of pi is here found from the implicit scheme. The
control at each step of the integration is found from condition (3.9). At the last k-th integration
step, we obtain the vectors x̄ks, p̄ks. If

p̄ks =
∂B(x̄ks, uks)

∂xk

, (3.10)

the auxiliary problem of �nding the stationary point of the function H̄ with respect to w is
solved. Assume that these points coincide with the minimum point of B with respect to w.
Using any of algorithms 1�7, we vary B and pass to the new (s + 1)-th step. Otherwise,
if (3.10) does not hold, we seek the vector ξ in such a way that this condition is satis�ed.
Usually, Newton's method is employed to �nd ξ. When realizing the method, various numerical
di�culties connected with the divergence, are encountered (for more details see [5]).

11

It was shown in [20] that, with certain assumptions, a necessary condition for an extremum,
similar to Pontryagin's maximum principle, holds in problem II:

Hi(x
∗
i , u

∗
i , p

∗
i+1, λ

1
∗, λ

2
∗) = min

ui
Hi(x

∗
i , ui, p

∗
i+1, λ

1
∗, λ

2
∗); (3.11)

here, the asterisk means that the relevant vector is evaluated for the optimal solution of problem
II. The function Hi is de�ned in Section 2.

Condition (3.11) enables us to replace the search for stationary points of function Hi by
the need to �nd the minimum of Hi with respect to ui. Hence the search for the minimum
of function B splits into the solution of a sequence of problems of minimizing Hi with respect
to a vector ui of low dimensionality. However, this device only proves successful close to the
solution, and is, therefore, only used towards the end of the computations.

To conclude this section, notice that many other methods of nonlinear programming can
be extended in a similar way to solve problem I. We only quote here the methods which form
part of our library and have been tested by us for solving a number of practical problems.

4. Some generalizations

The algorithms in the library are designed to solve problems of a more general type than
are described in Section 1. Let us indicate the main generalizations.

1. Instead of (1.1) we consider systems that contain the vector ξ of control parameters:
ẋ = f(x, u, t, ξ) = f(z, ξ). (4.1)

The functions F , FT , Γ̄1, Γ̄2 may also depend on ξ. In problem I we have to choose the control
u(t) and vector ξ in such a way that (1.2) and (1.3) are satis�ed, and I is minimized. The
gradient of the function B with respect to ξ is evaluated as follows:

dB

dξ
=

∂α(zk, ξ)

∂ξ
+

k−1∑

i=1

r∑

s=1

Hξ(zis, ξ, pi+1, pi,s+1). (4.2)

We combine the control vector and vector of parameters in a single symbol, putting w̄ = (w, ξ).
Then, all the expressions and methods described above can be used, after replacing w in them
by the vector w̄. The optimization process with respect to w and ξ takes place simultaneously.

2. For system (1.1), part of the components of vector x may not be de�ned at t = 0. We
refer them to the components of vector ξ. To evaluate the derivatives, we use expression (3.2),
after adding to it the term (∂x1/∂ξ)p1. The components of the vector x, speci�ed at t = T ,
have to be referred to the terminal constraints (1.3).

Computing experience shows that problems are often unusually sensitive to the accuracy
of solving the boundary value problem for system (1.1). It is, therefore, advisable to start the
computations with optimization with respect to ξ for �xed u(t), and then go over to simulta-
neous optimization with respect to ξ and u(t), and �nally perform supplementary optimization
with respect to ξ for �xed u(t). The library of optimization methods was compiled in such
a way that these computations are carried out according to the same algorithms without any
transformations.

3. The time optimal problem can easily be reduced to the class considered. Assume that we
seek for system (1.1) the control such that u(t) and the corresponding trajectory everywhere
satisfactory (1.2) and the terminal set

Γ3(x(t), u(t), t) = 0, Γ4(x(t), u(t), t) ≤ 0 (4.3)

12

is reached for the least possible value of t. As ξ we take a (k − 1)-dimensional vector in which
every i-th component is the same as the size hi of the integration step in the i-th interval.
Then, the minimized function is equal to the sum

I =
k−1∑

i=1

ξi.

We �x the number of discretization intervals k and seek ξ, w such that conditions (1.9) and
(4.3) are satis�ed, and I is minimized. We have to evaluate the derivative of B with respect to
ξ from the expression

dB

dξi
=

r∑

s=1

∂H(zis, ξ
i, pi+1, pi,s+1)

∂hi

.

The problem now has the standard form and any of the methods described above can be
used.

If the integration steps are constant everywhere, h = h1 = . . . = hk−1, it is su�cient to
introduce a scalar ξ, put I = ξ(k − 1), and evaluate the derivative of B from the expression

dB

dξ
=

k−1∑

i=1

dB

dξi
.

4. If the vector function f(x, u, t) is di�erentiable with respect to x and u everywhere except
for a �nite number of points {tj}, where there is a discontinuity of the �rst kind, then the step
sizes hj need to be chosen in such a way that all the points {tj} are at base-points of the main
mesh for t. The expressions given in Section 1 remain unchanged. Similarly, if, at some points
{ti} of the main t mesh, the phase trajectory has a given discontinuity, independent of x and
u, then the expressions of Section 1 for evaluating the derivatives are again unchanged. If the
discontinuity depends on x and u, i.e.

x(ti+) = ψ(x(ti−), u(ti)),

where
x(ti+) = lim

t→ti+0

x(t), x(ti−) = lim
t→ti−0

x(t),

then we have to recalculate the pulses at these points. When �nding pi−1, instead of pi we have
to take the vector (∂ψ(x(ti−), u(ti))/∂x)pi and in the expression for the derivative dB/dui we
have to add the term (∂ψ(x(ti−), u(ti))/∂u)pi.

5. If system (1.1) is linear, we arrive at an extremely simple particular case of problem I.
All the algorithms are still applicable; they are merely simpli�ed, since the derivatives of the
right-hand sides of (1.1) are constant.

6. In many problems there are constraints of the �parallelepiped� type:

a ≤ w ≤ b. (4.4)

It is not advisable to refer such constraints to constraints (1.9). It is simpler to allow for
them when solving the unconstrained minimization problems. For, it can be shown that all the
above expressions remain in force if, instead of the usual unconstrained minimization of B with
respect to w, we solve the problem of minimizing B with respect to w on the set (4.4). Hence
the library of u.m. programs was compiled in two versions: with and without an allowance for
the constraints (4.4). In the linearization method, the vector δw is sought under constraints
(3.7) and the condition a ≤ ws + δw ≤ b.

13

7. In some problems an additional constraint is imposed on the rate of change of the control:

|du(t)/dt| ≤ c. (4.5)

If ti and ti+1 are adjacent mesh points for the integration with respect to t, then, in the
discrete version, constraint (4.5) is rewritten in the form

−chi ≤ u(ti+1)− u(ti) ≤ chi.

These two constraints can be referred to constraints Γ2. When using the expressions of Section 1
for the derivatives, we have to allow for extra terms due to the fact that the constraints at the
i-th step depend on ui+1 as well as on ui.

Notice that constraints (4.5) can be introduced arti�cially for regularizing the problem.
Delay conditions in system (1.1) can be taken into account in a similar way.

8. When seeking structures of optimal strength, it is required that the control u(t) be
constant in certain given intervals Aj = [tj, tj + τj]. To allow for this factor, we have to specify
the initial control satisfying this requirement, and then in later computations, take as dB/dujs,
where tjs ∈ Aj, the sum of the derivatives dB/dujs, where the summation is over all indices
such that tjs ∈ Aj.

9. According to [5], it becomes much more di�cult to use modern methods for solving
problem I if the functional has the form

I1 = max
0≤t≤T

v(x(t), u(t), t), I2 =

T∫

0

|v(x(t), u(t), t)|dt.

In spite of the fact that v is a di�erentiable function of its arguments, the functionals I1 and
I2 are only directionally di�erentiable. In the �rst case, we introduce an auxiliary control
parameter ξ, with respect to which the minimization is performed, and a new constraint,
putting

I1 = ξ, v(x(t), u(t), t) ≤ ξ.

In the second case, we use the usual device: we introduce a new control ũ(t) and two constraints,
putting

I2 =

T∫

0

ũ(t)dt, −v(x(t), u(t), t) ≤ ũ(t) ≥ v(x(t), u(t), t).

The minimization is performed with respect to u(t) and ũ(t). In both cases the problems are
reduced to type I. No non-di�erentiable functions appear, and all the methods can be applied
without any supplementary modi�cations. Elementary min-max problems can be reduced in a
similar way [21].

5. Example of numerical computations

Of the many varied practical problems that have been solved with the aid of the library, we
shall just quote one, concerning optimization of the motion are given by the system

ẋ = V cos θ cos ψ, ẏ = V sin θ, ż = −V cos θ sin ψ,

GV̇ = g(k1P cos α− CxqS −G sin θ), Ġ = −Cs,

V θ̇ = g(k2N cos γ − cos θ), ψ̇V cos θ = −gk2N sin γ.

(5.1)

14

Here, x, y, z are the Cartesian coordinates of the f.v., V is the modulus of the velocity vector,
θ is the angle of inclination of the trajectory, ψ is the heading angle, G is the weight, α is the
angle of attack, γ is the rolling angle, k1 is the motor thrust, referred to maximum thrust P ,
k2 is the acceleration g, referred to maximum value N , k3 is the relative braking force, S is the
characteristic area of the f.v., Cx is the diag coe�cient, g = 9.81m/sec2, q is the form drag,
and Cs is the fuel consumption per sec.

We utilized the following dependences:

q = ρ(y)V 2/2, ρ(y) = 3.3 · 10−10y2 − 1.155 · 10−5y + 0.125,

P = [10 + V 2/a2(y)](2500− y)/12.5, a(y) = 340.3− 4.08 · 10−3y,

α =
k2NG

k1P + 4.6qS
, Cs = [0.7 + 2(k1 − 0.3)2]k1P/3600, S = 55m2,

N = min
(

qS

G
,
150000

G
, 8

)
, Cx = 0.02 + 3.174α2 + 0.03k3.

The following constraints were imposed on the controls:

0.05 ≤ k1 ≤ 1, 0.01 ≤ k2 ≤ 1, 0 ≤ k3 ≤ 1,

|k̇1| ≤ 0.2, |k̇2| ≤ 0.25, |k̇3| ≤ 1, |γ̇| ≤ 1.57 rad/sec.
(5.2)

The initial values of the phase coordinates and controls were

x = z = 0, y = 5000m, V = 300m/sec, ψ = θ = 0,

G = 20000 kG, k1 = 1, k2 = 1/N, k3 = 0, γ = 0.
(5.3)

For system (5.1) the controls k1(t), k2(t), k3(t), γ(t) were sought, such that they satisfy
conditions (5.2) and move the f.v. in the shortest time from (5.3) to the domain speci�ed by
the conditions

y = 7000m, θ = 0, ψ = −π, k2 = 1/N, γ = 0. (5.4)

As the initial control we took

k1(t) ≡ 1, k2(t) ≡ 0.3, k3(t) ≡ 0, γ(t) = 1.5 sin(πt/T1), T1 = 21 sec.

The problem was solved by �ve methods. In order to trace the convergence process more
clearly, the same conjugate gradients method was always used to solve the u.m. problem; the
computations ended either when (3.2) is satis�ed, or when the number of steps exceeded the
amount D. We denote by T the running value of the functional during the computations (the
time for moving from (5.3) to (5.4)). In Fig. 1 we show the variation of T as a function of
the computing time t1 on the BESM-6 computer. The points indicate the values of T at the
instant of ending each s-th iteration; interpolation was performed in the intervening intervals.
The numbers of the curves correspond to the numbers of the algorithms quoted in Section 4.
Methods 3 and 4 demanded a knowledge of the dual variables. Hence they were only used after
making one step by the penalty method.

Let us emphasize that the computing process is strongly in�uenced by a successful choice
of the parameters of the methods. The authors did not perform any special optimization with
respect to the parameters, nor did they attempt to obtain �record� results. Usually, 2-3 runs
were made with each method, and the best result is quoted in Fig. 1. The following parameters
were taken:

15

For method 1: R1 = 10−4, τ1 = b = 1, ν = 1.5, µ = 0.9, D = 100, ẽ = 10−4.
For method 3: τ = 10, ε(s) = 0.5/(1 + 0.5s), D = 100.
For method 4: τ = 10, ε(s) = 0.5/(1 + 0.05s), D = 100.
For method 5: η0 = 10, ε(s) = 0.1/(1 + s), D = 100.
For method 6: η0 = 10, ε(s) = 0.01/(1 + s), D = 200.

In every case a uniform mesh with respect to the independent variable with k = 51 was used,
the integration was performed according to Euler's scheme, and the initial problem was reduced
to a problem of nonlinear programming, in which the minimum was sought with respect to 205
variables in the presence of 702 constraints of the inequality type, and 5 constraints of the
equation type. Constraints of the �parallelepiped� type were allowed for in the unconstrained
minimization method, while other constraints were referred to constraints of type (1.9). The
number of them was 405. The vector of dual variables λ had the same dimensionality. The
computations by each method were stopped if the di�erence between two consecutive values of
T proved to be less than 10−4. It can be seen from Fig. 1 that methods 4 and 3 have the fastest
rate of convergence. An acceptable accuracy was reached after 25 mins. The penalty method
required over an hour to achieve closely similar results. When using method 6 the accuracy of
solving the u.m. problem had to be increased as compared with the case of using method 5,
since otherwise a value of T exceeding the optimal value was obtained after the second step. In
spite of serious e�orts, the authors were not able to obtain results by the linearization method
that could compete with those obtained with other methods; they are, therefore, not included
in Fig. 1.

..

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

.......

•

•

• • • •

0 10 20 30
10

15

20

T, sec

t1, min

•

•
•

•
• •

• •
• • • • •

1

..
..............
..............
.............
..........
..........
..........
...

...............
.........................

....................
...................

...
..

...............................
...

•

•

•
•

• • •
• • • • • •

3

...
...........
...........
...........
...........
...........
...

..............
.......................................

...............
...................................

...
................••

• •
• • • •

4

..
....................................

....................................
...

...........
..........
..........
...

•

•

•

•

•
•

•
•

• •
• • • • •

5

...
........
........
........
........
........
........
........
........
........
........
..........
.........
.........
.........
.........
.........
.........
..........
..........
..........
..........
..........
..........
...........
..........
..........
..........
..........
............
...........
...........
.............
............
............
.................

..................
.................

...................
....................

...........................
.............................

.................................
..........................

•

•
•

6

...
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
...........
.....................................

.....................................
.....................

..

...........................
...

Fig.1

16

Our library of programs has been used to solve many other problems. In particular, in [22]
we describe the solution of problems of optimal design of power structures, and solve Isaac's
game dolichobrachistochrone problem.

REFERENCES
1. MOISEEV, N.N., Numerical methods in the theory of optimal systems (Chislennye metody v teorii

optimal'nykh sistem), Nauka, Moscow, 1971.

2. POLAK, E., Numerical optimization methods, A uni�ed approach (Chislennye metody optimizatsii.
Edinyi podkhod), Mir, Moscow, 1974.

3. VASIL'EV, F.P., Lectures on methods of solving extremal problems (Lektsii po metodam resheniya
ekstremal'nykh zadach), Izd-vo MGU, Moscow, 1974.

4. ERMOL'EV, Yu.M., and GULENKO, V.P., The �nite di�erence method in optimal control prob-
lems, Kibernetika, No.3, 1�20, 1967.

5. FEDORENKO, R.P., Approximate solution of modern variational problems, in: Mathematical
programming and allied topics. Computational methods (Matem. programmirovanie i smezhnye
voprosy. V	ychisl. metody), TsEMI Akad. Nauk SSSR, Moscow, 28�97, 1976.

6. BUDAK, B.M., BERKOVICH, E.M., and SOLOV'EVA, E.N., On the convergence of di�erence
approximations for optimal control problems, Zh. v	ychisl. Mat. mat. Fiz., 9, No.3, 522�547, 1969.

7. OUTRATA, I.V., Second-order methods in discrete optimal control problems, Kybernetika, 12,
No.1, 38�45, 1976.

8. DUBOVITSKII, A.Ya., and MILYUTIN, A.A., Constrained extremum problems, Zh. v	ychisl. Mat.
mat. Fiz., 5, No.3, 395�453, 1965.

9. SMOL'YAKOV, E.R., The maximum principle for problems with phase constraints, in: Operations
research (Issl. operatsii), No.2, 136�155, VTs Akad. Nauk SSSR, Moscow, 1971.

10. MANGASARIAN, O.L., Su�cient conditions for the optimal control of non-linear systems, SIAM
J. Control, 4, No.1, 139�158, 1966.

11. FIACCO, A., and McCORMICK, G., Nonlinear programming, Wiley, 1968.

12. EVTUSHENKO, Yu.G., Numerical methods for solving problems of non-linear programming, Zh.
v	ychisl. Mat. mat. Fiz., 16, No.2, 307�324, 1976.

13. ROCKAFELLAR, R.T., Augmented Lagrange multiplier functions and duality in nonconvex pro-
gramming, SIAM J. Control, 12, No.2, 268�285, 1974.

14. GOLIKOV, A.I., and EVTUSHENKO, Yu.G., A class of methods for solving problems of nonlinear
programming, Dokl. Akad. Nauk SSSR, 239, No.3, 519�522, 1978.

15. MORRISON, D., Optimization by least squares, SIAM J. Numer. Analys., 5, No.1, 83�88, 1968.

16. GRIFFITH, R.E., and STEWART, R.A., A nonlinear programming technique for the optimization
of a continuous processing system Manag. Sci., 7, No.4, 379�392, 1961.

17. PSHENICHNYI, B.N., and DANILIN, Yu.M., Numerical methods in extremal problems (Chislen-
nye metody v ekstremal'nykh zadachakh), Nauka, Moscow, 1975.

17

18. FEDORENKO, R.P., Approximate solution of some optimal control problems, Zh. v	ychisl. Mat.
mat. Fiz., 4, No.6, 1045�1064, 1964.

19. KRYLOV, I.A., and CHERNOUS'KO, F.L., Algorithm of the method of successive approximations
for optimal control problems, Zh. v	ychisl. Mat. mat. Fiz., 12, No.1, 14�34, 1972.

20. DAVYDOV, E.G., Distribution of resources in graphs, in: Systems of distribution of resources
in graphs (Sistemy raspredeleniya resursov na grafakh), 31�48, VTs Akad. Nauk SSSR, Moscow,
1970.

21. MAGNANTI, T.L., Nonlinear programming and the maximum principle for discrete time optimal
control problems, Rev. franc. Automat. inform. Rech. oper., No.3, 75�91, 1975.

22. GRACHEV, N.I., and EVTUSHENKO, Yu.G., Packet of programs for solving optimal control
problems, VTs Akad. Nauk SSSR, Moscow, 1978.

18

