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Abstract. In this paper we give an overview of some current approaches to LP and NLP
based on space transformation technique. A surjective space transformation is used to reduce
the original problem with equality and inequality constraints to a problem involving only equa-
lity constraints. Continuous and discrete versions of the stable gradient projection method and
the Newton method are used for treating the reduced problem. Upon the inverse transfor-
mation is applied to the original space, a class of numerical methods for solving optimization
problems with equality and inequality constraints is obtained. The following algorithms are
presented: primal barrier-projection methods, dual barrier-projection methods, primal barrier-
Newton methods, dual barrier-Newton methods and primal-dual barrier-Newton methods.
Using special space transformation, we obtained asymptotically stable interior-infeasible point
algorithms. The main results about convergence rate analysis are given.

Key words. Linear programming, nonlinear programming, space transformation, surjective
mapping, stable gradient projection method, Newton's method, interior point technique.

1. INTRODUCTION

In the past twenty �ve years quite general and e�ective space transformation technique has been
developed for solving linear programming problems (LP) and nonlinear programming problems
(NLP). The idea of this approach commonly occurs in the optimization literature, it came from
nonlinear programming and projective geometry. Using a space transformation, the original
problem with equality and inequality constraints is reduced to a problem with equality con-
straints only. Continuous and discrete versions of the stable gradient projection method and
the Newton method are applied to the reduced problem. After an inverse transformation to the
original space, a class of numerical methods for solving optimization problems with equality and
inequality constraints was obtained. The proposed algorithms are based on the numerical inte-
gration of systems of ordinary di�erential equations. Vector �elds described by these equations
de�ne �ows leading to the optimal solution. As a result of the space transformation, the vector
�elds are changed and additional terms are introduced which serve as a barrier preventing the
trajectories from leaving the feasible set. Therefore, we call these methods �barrier-projection�
and �barrier-Newton� methods. In our algorithms we use the multiplicative barrier functions
which are continuous and equal to zero on a boundary. We do not introduce conventional
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singular barriers and this feature provides a high rate of convergence. In this paper we give a
survey of principal results which were published in the last two decades [6]�[18].

In Sect. 2 we describe a uni�ed methodology for �nding necessary and su�cient optimality
conditions in extremal problems with functional equality constraints and nonfunctional inequa-
lity constraints. We show how numerous families of algorithms can be developed using various
space transformations.

In Sect. 3, choosing an exponential space transformation, we obtain the Dikin algorithm [5]
from the family of primal barrier-projection methods. This algorithm, however, does not posses
the local convergence properties and, as a result, it converges only if starting points belong to
relative interior of the feasible set. Furthermore, the convergence rate of a discrete version of
the algorithms proves to be weaker than a linear one.

In 1984 N. Karmarkar [25] proposed a special sophisticated step-length rule in the method
similar to discrete version of the Dikin a�ne scaling algorithm. Based on this rule the poly-
nomial complexity was theoretically attained. After this publication an impressive number of
papers have been published devoted to further modi�cations and improvements of the Dikin
and Karmarkar algorithms. Many authors were trying to modify and explain these algorithms
as classical methods. Various methods were obtained along this direction and the �rst of our
algorithms published in seventies [8, 6, 9] were reinvented. Later on in eighties-nineties, we de-
veloped more e�cient versions of these methods which are discussed here. These asymptotically
stable methods are such that a feasible set is an attractor of the vector �elds. They preserve
feasibility, but a starting point can be infeasible. They belong to a class of interior-infeasible
point algorithms. In Sect. 3 we show that among the barrier-projection algorithms there is a
method which converges locally and exponentially fast to the optimal solution (in discrete case
it converges locally with a linear rate).

In subsequent sections we apply our approach to primal and dual linear programming prob-
lems. For the sake of simplicity, we assume that these problems have unique non-degenerate
solutions. In Sect. 4 we use a nonconventional representation of the dual linear programming
problem and we propose a set of algorithms. Upon simplifying the problem and choosing a par-
ticular exponential space transformation we arrive at the dual a�ne scaling method proposed
by I. Adler, N. Karmarkar, M. Resende and G. Veiga [1].

In Sect. 5 we describe the primal the and dual barrier-Newton methods. The primal-dual
interior-infeasible Newton method is set forth in the �nal Sect. 6. For the steepest descent
approach an upper bound for the number of iterations is indicated.

2. BASIC APPROACH AND OUTLINE OF A SPACE TRANSFORMATION
TECHNIQUE

De�ne the following NLP problem:

minimize f(x) subject to x ∈ X = {x ∈ Rn : g(x) = 0m, x ∈ P}, (2.1)

where the functions f and g are twice continuously di�erentiable, f(x) maps Rn onto R and
g(x) maps Rn onto Rm, P is a convex set with nonempty interior, 0s is the s-dimensional null
vector, 0sk is the s× k rectangular null matrix.

Important particular cases of (2.1) are a linear programming problem given in standard
form

minimize c>x subject to x ∈ X := {x ∈ Rn : b− Ax = 0m, x ≥ 0n} (2.2)
and its dual problem

maximize b>u subject to u ∈ U := {u ∈ Rm : v = c− A>u ≥ 0n}, (2.3)
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where v is the n-vector of slack variables; A ∈ Rm×n (m < n); c, x ∈ Rn; b, u ∈ Rm and
rank(A) = m.

We de�ne the relative interior set of X and the interior set of U as:

X0 := {x ∈ Rn : Ax = b, x > 0n}, U0 := {u ∈ Rm : v = c− A>u > 0n},

and assume that these sets are nonempty. We also introduce the following sets:

Rn
+ := {x ∈ Rn : x ≥ 0n}, Rn

++ := intRn
+ = {x ∈ Rn : x > 0n},

V := {v ∈ Rn : there exists u ∈ Rm such that v = c− A>u},
VU := {v ∈ Rn : there exists u ∈ U such that v = c− A>u},

where int denotes the interior. The set VU is the image of U under the mapping v(u) = c−A>u.
Therefore, VU = V ∩ Rn

+.
For convenience, assume that the primal feasible set is bounded and both primal and dual

problems are non-degenerate, which together imply that optimal solutions x∗, u∗ exist and are
unique. We split the vectors x∗ and v∗ = v(u∗) in basic and nonbasic components. Without
any loss of generality we assume that

x∗ =

[
xB
∗

xN
∗

]
, v∗ =

[
vB
∗

vN
∗

]
, xB

∗ > 0m, xN
∗ = 0d, vB

∗ = 0m, vN
∗ > 0d,

where d = n−m.
We denote the components of a vector by using superscripts and the iterate numbers by

using subscripts; In denotes the identity matrix of the order n; D(z) denotes the diagonal matrix
whose entries are the components of the vector z. The dimensionality of D(z) is determined
by the dimensionality of z.

In order to construct a family of computational methods for solving the Problems (2.1) �
(2.3) we use an approach based on space transformation. We introduce a new n-dimensional
space with the coordinates [y1, . . . , yn] and make a di�erentiable transformation from this space
to the original one: x = ξ(y). This surjective transformation maps Rn onto P or intP , i.e.
P = ξ(Rn), where B is the topological closure of B. Let J̃(y) = dx/dy be the Jacobian matrix
of the transformation x = ξ(y) with respect to y.

Consider the transformed minimization problem

minimize f̃(y) subject to y ∈ Y, (2.4)

where f̃(y) = f(ξ(y)), Y = {y ∈ Rn : g̃(y) = g(ξ(y)) = 0m}.
De�ne the Lagrangian functions L(x, u), L̃(y, u) associated with the Problems (2.1) and

(2.4), respectively:

L(x, u) = f(x) + u>g(x), L̃(y, u) = f̃(y) + u>g̃(y).

Then the �rst-order necessary conditions for a local minimum for the Problem (2.4) in the
transformed space are

L̃y(y, u) = f̃y(y) + g̃>y (y)u = 0n, g̃(y) = 0m, (2.5)

where f̃y = J̃>fx, g̃y = gxJ̃ .
If J̃ is a nonsingular, then there exists an inverse transformation y = δ(x), so it is possible

to return from the y-space to the x-space and we obtain in this way a matrix J(x) = J̃(δ(x))
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which is now a function of x. Using this substitution, we rewrite expressions (2.5) in terms of
the variable x. They take the form

J>(x)Lx(x, u) = 0n, g(x) = 0m, x ∈ P. (2.6)

Some properties of the nonlinear systems, which are obtained after space transformations, were
investigated in [15].

Let K(x | P ) and K∗(x | P ), respectively, denote the cone of feasible directions at the point
x relative to the set P and its dual:

K(x | P ) = {z ∈ Rn : ∃λ(z) > 0 such that x + λz ∈ P, 0 < λ ≤ λ(z)},

K∗(x | P ) = {z ∈ Rn : z>y ≥ 0 ∀y ∈ K(x | P )}.
Let S(x | P ) be a linear hull of the cone K∗(x | P ). The set of all vectors orthogonal to S(x | P )
is called orthogonal complement of S(x | P ) and is denoted by S⊥(x | P ).

We will impose the following condition on the space transformation ξ(y).
Condition 2.1. At each point x ∈ P the matrix J(x) is de�ned and the null-space of J>(x)

coincides with the set S(x | P ).
In particular, it follows from this condition that at all interior points x ∈ int P the matrix

J(x) is non-degenerate, becoming singular only on the boundary of the set P .
De�nition 2.1. Any pair [x, u] is a weak KKT pair for the Problem (2.1) if it satis�es the

conditions (2.6).
It follows from this de�nition and Condition 2.1 that Lx(x∗, u∗) ∈ S(x∗ | P ) at any weak

KKT pair. De�ne the Gram matrix G(x) = J(x)J>(x). Since the null-spaces of G(x) and
J>(x) coincide, conditions (2.6) for the pair [x∗, u∗] can be rewritten in the form

G(x)Lx(x, u) = 0n, g(x) = 0m, x ∈ P. (2.7)

De�nition 2.2. A weak KKT pair [x, u] is a KKT pair for the Problem (2.1) if Lx(x, u) ∈
∈ K∗(x | P ).

Let riB denote a relative interior of the set B.
De�nition 2.3. A KKT pair [x, u], is a strong KKT pair if Lx(x∗, u∗) ∈ ri K∗(x∗ | P ).
De�nition 2.4. The constraint quali�cation (CQ) for the Problem (2.1) holds at a point

x ∈ P if all vectors gi
x(x), 1 ≤ i ≤ m, and any nonzero vector p ∈ S(x | P ) are linearly

independent. We say that x is a regular point for the Problem (2.1) if the CQ holds at x.
Theorem 2.1. Let a regular point x∗ be a solution of the Problem (2.1). Then there exists

a vector u∗ ∈ Rm such that [x∗, u∗] forms a weak KKT pair for the Problem (2.1).
The space transformation described above can be used to derive the second-order su�cient

conditions for a point x∗ to be an isolated minimum in the Problem (2.1). Introduce a null-space
N(x) = {z ∈ Rn : gx(x)J(x)z = 0m}.

Theorem 2.2. Assume that f and g are twice-di�erentiable functions and the space trans-
formation ξ(y) satis�es Condition 2.1. Su�cient conditions for a point x∗ ∈ P to be an isolated
local minimum of the Problem (2.1) are that there exists a strong KKT pair [x∗, u∗] such that
z>J>(x∗)Lxx(x∗, u∗)J(x∗)z > 0 for every z ∈ N(x∗) such that ‖J(x∗)z‖ 6= 0.
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If P = Rn (in other words, the condition x ∈ P is missing), we can take the trivial space
transformation x = y. In this case we have

J(x) = In, N(x) = {z ∈ Rn : gx(x)z = 0m},

K(x | Rn) = Rn, S(x | Rn) = K∗(x | Rn) = ri K∗(x | Rn) = 0n.

The Theorem 2.2 reduces to the well-known second-order su�cient conditions for an isolated
local minimum (see, for example, [20]).

Suppose that the function ξ(y) is such that the matrix G(x) is continuously di�erentiable.
Let p ∈ Rn and Gx(x; p) denote a square matrix of order n whose (i, j)-element equals to

Gij
x (x; p) =

n∑

k=1

∂Gik(x)

∂xj
pk.

We impose two additional conditions on the space transformation ξ(y):
Condition 2.2. At each point x ∈ P for any vector p ∈ ri K∗(x | P ) the matrix Gx(x; p) is

symmetric and its null-space coincides with S⊥(x | P ).
Condition 2.3. If x ∈ P , then z>Gx(x; p)z > 0 for any non-zero vector z ∈ S(x | P ) and

any vector p ∈ ri K∗(x | P ).
Let us consider an important particular case of the Problem (2.1), where P = Rn

+:

minimize f(x) subject to x ∈ X = {x ∈ Rn : g(x) = 0m, x ≥ 0n}. (2.8)

It is convenient for this set to use a component-wise space transformation:

xi = ξi(yi), 1 ≤ i ≤ n. (2.9)

For such a transformation the inverse transformation y = δ(x) is also component-wise type
yi = δi(xi), 1 ≤ i ≤ n, and the corresponding matrices J(x) and G(x) are diagonal:

J(x) = D(γ(x)), γ>(x) = [γ1(x1), . . . , γn(xn)], γi(xi) = ξ̇(δi(xi)),

G(x) = D(θ(x)), θ>(x) = [θ1(x1), . . . , θn(xn)], , θi(xi) = [γi(xi)]2, 1 ≤ i ≤ n.

Let σ(x) = {i : xi = 0} be a set of active indices at the point x ∈ Rn
+. In this case

K∗(x | Rn
+) = {z ∈ Rn

+ : if i /∈ σ(x), then zi = 0, 1 ≤ i ≤ n},
S(x | Rn

+) = {z ∈ Rn : if i /∈ σ(x), then zi = 0, 1 ≤ i ≤ n},

condition 2.1 reduces to the following
Condition 2.4. The vector function γ(x) is de�ned at each point x ∈ Rn

+ and γi(xi) = 0
if and only if i ∈ σ(x).

In order to insure Conditions 2.2 and 2.3 we impose the
Condition 2.5. The vector function θ(x) is di�erentiable in some neighborhood of Rn

+ and
θ̇i(0) > 0, 1 ≤ i ≤ n.

As a rule, we perform the following quadratic and exponential transformations:

xi = ξi(yi) =
1

4
(yi)2, J(x) = D1/2(x), G(x) = D(x), (2.10)
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xi = ξi(yi) = eyi

, J(x) = D(x), G(x) = D2(x). (2.11)
In these two cases the Jacobian matrix is singular on the boundary of the set P = Rn

+.
These transformations satisfy Condition 2.4. The Condition 2.5 holds only for the quadratic
transformation (2.10).

Let ei denote the n-th order unit vector whose i-th component is equal to one. The CQ
for the Problem (2.8) holds at a point x, if all the vectors gi(x), 1 ≤ i ≤ m, and all ej, such
that j ∈ σ(x), are linearly independent. The cone N(x) takes the form N(x) = {z ∈ Rn :
: gx(x)D(γ(x))z = 0m}.

The strict complementary condition (SCC) holds at a pair [x, u], if Lxi(x, u) > 0 for all
i ∈ σ(x). From the Theorem 2.2 the following second-order su�cient optimality conditions is
obtained.

Theorem 2.3. Su�cient conditions for a point x∗ ∈ X to be an isolated local minimum of
the Problem (2.8) are that there exists a Lagrange multiplier vector u∗ such that

D(γ(x∗))Lx(x∗, u∗) = 0n,

that the SCC holds at [x∗, u∗] and that

z>D(γ(x∗))Lxx(x∗, u∗)D(γ(x∗))z > 0

for all z ∈ N(x∗), satisfying ‖D(γ(x∗))z‖ 6= 0.
Now we will construct numerical methods for solving the Problem (2.1). We use the stable

version of the gradient projection method for solving the Problem (2.4). The numerical method
is stated as an initial-value problem involving the following system of ordinary di�erential
equations:

dy

dt
= −L̃y(y, ũ(y)), L̃y(y, ũ) = f̃y(y) + g̃>y (y)ũ, y(0, y0) = y0 ∈ Rn. (2.12)

The function ũ(y) is chosen to satisfy the following condition:

dg̃

dt
= g̃y

dy

dt
= −τ g̃(y), τ > 0. (2.13)

From this condition we obtain the system of linear algebraic equations

g̃y(y)g̃>y (y)ũ(y) + g̃y(y)f̃y(y) = τ g̃(y),

where f̃y = J̃>fx, g̃y = gxJ̃ . By di�erentiating ξ(y) with respect to y and taking into account
(2.12) and (2.13), we have

dx

dt
=

dξ

dy

dy

dt
= J(x)

dy

dt
= −G(x)Lx(x, u(x)), x(0, x0) = x0 ∈ P, (2.14)

Γ(x)u(x) + gx(x)G(x)fx(x) = τg(x), (2.15)
where Γ(x) = gx(x)G(x)g>x (x).

Lemma 2.1. Let the space transformation ξ(y) satisfy Condition 2.1, and let the CQ for
the Problem (2.1) hold at a point x ∈ P . Then Γ(x) is invertible and positive de�nite matrix.

Lemma 2.2. Let the space transformation ξ(y) satisfy Condition 2.1. Then the regular
point x∗ is an equilibrium state of system (2.14) if and only if the pair [x∗, u∗], where u∗ = u(x∗),
is a weak KKT pair for the Problem (2.1).
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Hence, corresponding to any regular point x∗ we can de�ne a corresponding Lagrange mul-
tiplier u(x∗) by solving linear algebraic equations (2.15). If a local solution of the original
problem (2.1) occurs at a regular point x∗ ∈ P , then [x∗, u(x∗)] forms a weak KKT pair for the
Problem (2.1) and x∗ is an equilibrium state of (2.14).

Let W be a m × n rectangular matrix whose rank is m. We introduce the pseudo-inverse
matrix W+ = W>(WW>)−1 and the orthogonal projector π(W ) = In −W+W . If at a regular
point x we de�ne u(x) and substitute it into the right-hand side of (2.14), then (2.14) can be
rewritten in the following projective form:

dx

dt
= −J(x){π[gx(x)J(x)]J>(x)fx(x) + τ [gx(x)J(x)]+g(x)}. (2.16)

Let x(t, x0) denote the solution of the Cauchy Problem (2.14) with an initial condition
x0 = x(0, x0). In what follows, we assume that the initial-value problem under consideration
is always uniquely solvable. A trajectory x(t, x0) can be continued as long as points on it are
regular. By di�erentiating f(x(t, x0)) with respect to t we arrive at

df

dt
= −‖J>(x)Lx(x, u(x))‖2 + τu>(x)g(x). (2.17)

Hence the objective function f(x(t, x0)) monotonically decreases either on the feasible set X or
when the trajectory is close to X, i.e. ‖g(x(t, x0))‖ is su�ciently small.

The system of ordinary di�erential equations (2.14), where u(x) is given by (2.15), has the
�rst integral

g(x(t, x0)) = g(x0)e
−τt.

This means that if τ > 0, (2.14) has a remarkable property: all its trajectories approach
the manifold g(x) = 0m, as t tends to in�nity, and this manifold is an asymptotically stable
attractor (see [7, 10, 29]). Therefore, we can call the method (2.16) �the stable version of the
barrier-projection method�. If x0 ∈ X, then the trajectory x(t, x0) of (2.14) remains on this
manifold because g(x(t, x0)) ≡ 0m for all t ≥ 0 and the trajectories of (2.14) coincide with the
trajectories of the following system:

dx

dt
= −J(x)π[gx(x)J(x)]J>(x)fx(x), (2.18)

which can be obtained from (2.16) if we put τ = 0. But in contrast to (2.16) this system
is neutrally stable with respect to equality constraints. It means that if g(x0) = c, then
g(x(t, x0)) ≡ c for all t ≥ 0 and we have to introduce a correction procedure to remove the
violation of constraints. If the condition x ∈ P is missing, then we can put ξ(y) = y, hence
J(x) = In and (2.18) coincides with well-known gradient projection method [26], which is also
neutrally stable.

Note that, according to the Condition 2.1, the subspace S⊥(x | P ) coincides with the space
of the columns of the matrix J(x), and, since the vector G(x)Lx(x, u(x)) belongs to this space,
the velocity vector ẋ always lies in S⊥(x | P ). Thus, if x is a boundary point of P , then
the vector ẋ belongs to the eigen subspace of the space Rn, which coincides with the space
M(x) − x, where M(x) is the intersection of the support planes of the set P at the point x.
If the cone K∗(x | P ) has a non-empty interior, then this subspace degenerates to a single point
(the origin of coordinates).

Let us show that trajectories x(t, x0) of (2.14) cannot cross the boundary of P . To the
contrary, suppose this is not true and a trajectory x(t, x0) starting inside P leaves P at t1 > 0.
Then there exists a vector p ∈ K∗(x(t1, x0) | P ) such that p>ẋ(t1, x0) < 0. But the vector
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ẋ(t, x0) belongs to the orthogonal complement of the subspace S(x | P ) and the vector p
belongs to S(x | P ). Hence p>ẋ(t1, x0) = 0 and, consequently, x(t, x0) ∈ P for all t ≥ 0. Thus
the matrix G(x) plays the role of a �barrier� preventing x(t, x0) from intersecting the boundary
of P . The trajectory x(t, x0) can approach the boundary points only in the limit as t → +∞.
If the initial point x0 lies on the boundary, then the entire trajectory of system (2.14) belongs
to the boundary of P .

By applying the Euler method for solving system (2.16), we obtain

xk+1 = xk − αkJ(xk){π[gx(xk)J(xk)]J
>(xk)fx(xk) + τ [gx(xk)J(xk)]

+g(xk)}, (2.19)

where a step-size αk > 0.
Each equilibrium point x∗ of the system (2.16) is a �xed point of iterations (2.19), i.e.

xk = x∗ implies xk+1 = x∗, and if iterates (2.19) converge to a regular point x∗, then the pair
[x∗, u(x∗)] satis�es conditions (2.7).

Theorem 2.4. Let [x∗, u∗] be a weak KKT pair of the Problem (2.1), where the CQ and
the second-order su�ciency conditions of the Theorem 2.2 hold. Let the space transformation
ξ(y) satisfy the Conditions 2.1 � 2.3 and τ > 0. Then x∗ is an asymptotically stable equilibrium
state of the system (2.16); there exists a positive number α∗ such that for any �xed 0 < αk < α∗
the sequence {xk}, generated by (2.19), converges locally with a linear rate to x∗ while the
corresponding sequence {uk}, where uk = u(xk), converges to u∗.

The proof of this theorem is given in [15]. It is based on the Lyapunov linearization prin-
ciple. The conditions for asymptotic stability to be valid are expressed in terms of eigenvalues
determined by a matrix arisen from the right-hand side of (2.16) linearized about the equilib-
rium point x∗. The asymptotic stability of the point x∗ implies the local, exponentially fast
convergence of a trajectory x(t, x0) to the optimal solution x∗. The corresponding statement
about the linear convergence of discrete versions follows from [7, Theorem 2.3.7].

The Theorem 2.4, being applied to the Problem (2.8), gives the the following statement:
Theorem 2.5. Let [x∗, u∗] be a weak KKT pair of the Problem (2.8), when the CQ and

the second-order su�ciency conditions of the Theorem 2.3 hold. Let the component-wise space
transformation (2.9) satisfy the Conditions 2.4, 2.5 and τ > 0. Then x∗ is an asymptotically
stable equilibrium state of system (2.16); there exists a positive number α∗ such that for any
�xed 0 < αk < α∗ the sequence {xk}, generated, by (2.19), converges locally with a linear rate
to x∗ while the corresponding sequence {uk} converges to u∗.

This theorem was proved in [10, 12].
The preceding results and algorithms admit straightforward extensions for problems invol-

ving general functional inequality constraints by using space dilation. Consider a problem

minimize f(x) subject to x ∈ X = {x ∈ Rn : g(x) = 0m, h(x) ≤ 0c}, (2.20)

where h(x) maps Rn into Rc.
Space transformation approach can be used in this case by extension of the space and by

converting the inequality constraints to equalities. We introduce an additional variable p ∈ Rc,
de�ne q = m + c, combine primal, dual variables and all constraints:

z =

[
x
p

]
∈ Rn+c, w =

[
u
v

]
∈ Rq, Φ(z) =

[
g(x)

h(x) + p

]
.

Then the original Problem (2.20) is transformed into the equivalent problem

minimize f(x) subject to z ∈ Z = {z ∈ Rn+c : Φ(z) = 0q, p ∈ Rc
+}. (2.21)
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Here P is a positive orthant in Rc. This problem is similar to (2.8). In order to take into
account the constraint p ≥ 0c we introduce a surjective component-wise di�erentiable mapping
ξ : Rc → Rc

+ and make the space transformation p = ξ(y), where y ∈ Rc, ξ(Rc) = Rc
+. Let

ξy(y) be the square c × c Jacobian matrix of the mapping ξ(y) with respect to y. We assume
that it is possible to de�ne the inverse transformation y = ψ(p) and hence we obtain the c× c
Jacobian and Gram diagonal matrices:

J(p) = ξy(y)|y=ψ(p) = D(γ(p)), G(p) = J(p)J>(p) = D(θ(p)).

Combining variables and constraints for the reduced problem, let us de�ne

ẑ =

[
x
y

]
∈ Rn+c, Φ̂(ẑ) =

[
g(x)

h(x) + ξ(y)

]
, Φ̂ẑ =

[
gx 0mc

hx ξy

]
.

The Problem (2.21) can be formulated as follows:

minimize f(x) subject to ẑ ∈ Ẑ = {ẑ ∈ Rn+c : Φ̂(ẑ) = 0q}. (2.22)

In the last Problem we have only equality constraints, therefore we can use the numerical
method described above. After an inverse transformation to the space of x and p we obtain
from (2.14), (2.15)

dz

dt
= −G̃(p)Lz(z, w(z)). (2.23)

Here
L(z, w) = f(x) + w>Φ(z), Lz(z, w) = fz(z) + Φ>

z (z)w,

Φz(z)G̃(p)Lz(z, w(z)) = τΦ(z),

G̃(p) =

[
In 0nc

0cn G(p)

]
, Φz =


 0mc

Φx
Ic


 , Φx =

[
gx

hx

]
, fx =

[
fx

0c

]
.

(2.24)

System (2.23) can be rewritten in the more detailed form

dx

dt
= −Lx(x,w(z)),

dp

dt
= −G(p)v(z), (2.25)

where the function w>(z) = [u>(z), v>(z)] is found from the following linear system of q equa-
tions:

Γ(z)w(z) + Φx(x)fx(x) = τΦ(z), Γ(z) = Φx(x)Φ>
x (x) +

[
0mm 0mc

0cm G(p)

]
.

Condition (2.24) can be written as

dg(x)

dt
= −τg(x),

d(h(x) + p)

dt
= −τ(h(x) + p).

Therefore, system (2.25) has two �rst integrals:

g(x(t, z0)) = g(x0)e
−τt, h(x(t, z0)) + p(t, z0) = (h(x0) + p0)e

τt, z>0 = [x>0 , p>0 ]. (2.26)

Similarly to (2.17) we obtain

df

dt
= −‖Lx‖2 − ‖J>(p)v‖2 + τ [u>g + v>(h + p)].
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Consider the simpli�ed version of method (2.25). Suppose that along the trajectories of
system (2.25) the following condition holds:

h(x(t, z0)) + p(t, z0) ≡ 0c.

From this equality we can de�ne p as a function of h. We exclude from system (2.25) the
additional vector p and integrate the system which does not employ this vector:

dx

dt
= −Lx(x,w(x)), (2.27)

where

Γ(x)w(x) + Φx(x)fx(x) = τ

[
g(x)
0c

]
, Γ(x) = Φx(x)Φ>

x (x) +

[
0mm 0mc

0cm G(−h(x))

]
. (2.28)

Along the trajectories of (2.27) we have

dg

dt
= −τg(x),

dh

dt
= −G(−h(x))v(x),

df

dt
= −‖Lx(x,w(x))‖2 − ‖J>(−h(x))v(x)‖2 + τu>(x)g(x).

(2.29)

Let us show that the solution x(t, x0) does not leave the set X for any t > 0, if x0 ∈ X.
Suppose to the contrary that this is not true and hi(x(t, x0)) > 0 for some t > 0. Then there is
an earlier instant 0 < t1 < t such that hi(x(t1, x0)) = 0 and ḣi(x(t1, x0)) > 0. This contradicts
(2.29) since θi(0) = 0. Hence x(t, x0) ∈ X for all t ≥ 0. Thus the matrix G(−h(x)) plays the
role of a �barrier� preventing x(t, x0) from intersecting the hypersurface hi(x) = 0.

The method (2.27) is closely related to (2.14). Let us consider the Problem (2.8). We
have the two alternatives ensuing from (2.14) or (2.27). The main body of computational work
required when using any numerical integration method is to evaluate the right-hand sides of
equations for various values of x. This could be done by solving the linear system (2.15) of
m equations or the system (2.28) of m + n equations, respectively. One might expect that
introducing a slack variable p increases the computational work considerably. However, with
allowance made for the simple structure of (2.28), we can reduce the computational time by
using the Frobenius formula for an inverse matrix. Upon some transformations we �nd that
(2.27), (2.28) can be written in the form of (2.14), (2.15), respectively, if we put

G(x) = D(µ(x)), µi(xi) =
θi(xi)

1 + θi(xi)
, 1 ≤ i ≤ n.

Therefore, the performances of both methods which seem at a glance to be unrelated are in
fact very similar.

3. PRIMAL BARRIER-PROJECTION METHODS FOR SOLVING LP
PROBLEMS

Applying the stable barrier-projection method (2.14) for solving the Problem (2.2), we obtain
the following continuous and discrete versions:

dx

dt
= −G(x)[c− A>u(x)], x(0, x0) = x0, (3.1)

xk+1 = xk − αkG(xk)[c− A>uk], uk = u(xk), (3.2)
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where the function u(x) is found from the linear equation (2.15) which can be rewritten as

AG(x)A>u(x)− AG(x)c = τ(b− Ax). (3.3)

By di�erentiating the objective function with respect to t we obtain

c>
dx

dt
= −‖J(x)(c− A>u(x))‖2 + τu>(x)(b− Ax).

The system of ordinary di�erential equations (3.1) has the �rst integral

Ax(t, x0) = b + (Ax0 − b)e−τt. (3.4)

Under the non-degeneracy assumption all feasible points are regular, and each weak KKT
pair [x, u(x)] is such that x is an equilibrium state of system (3.1). The pair [x, u(x)] is a strong
KKT pair if and only if x = x∗.

Denote

α∗ =
2

µ∗
, µ∗ = max

[
τ, max

m+1≤i≤n
θ̇i(xi

∗)v
i
∗

]
, µ∗ = min

[
τ, min

m+1≤i≤n
θ̇i(xi

∗)v
i
∗

]
.

Here µ∗ and µ∗ are, respectively, the largest and smallest eigenvalues of the �rst approximation
matrix of the right-hand side of (3.1) at the optimal solution x∗.

Theorem 3.1. Let x∗, u∗ be unique non-degenerate solutions of the Problems (2.2) and
(2.3), respectively. Assume that the component-wise space transformation ξ(y) satisfy the Con-
ditions 2.4, 2.5 and τ > 0. Then the following statements are true:

1. The point x∗ is an asymptotically stable equilibrium state of system (3.1).

2. The solutions x(t, x0) of system (3.1) converge locally exponentially fast to the optimal
point x∗.

3. For any �xed 0 < αk < α∗ the sequence {xk}, generated by (3.2), converges locally with a
linear rate to x∗ while the corresponding sequence {uk} converges to u∗.

4. All extreme feasible points of X are unstable equilibrium points of (3.1) and (3.2), except
the optimal solution x∗.

The exponential rate of convergence of the solution x(t, x0) of (3.1) to the equilibrium point
x∗ implies that there exist a neighborhood ∆(x∗) of x∗ and a constant C > 0 such that

‖x(t, x0)− x∗‖ ≤ C‖x0 − x∗‖e−µ∗t

for all x0 ∈ ∆(x∗), t > 0.
In (3.1) we can take a starting vector x0 such that ‖Ax0 − b‖ 6= 0. Moreover, if the

Condition 2.5 holds, then the components of x0 corresponding to nonbasic components of the
vector x∗ may be negative. In this case the entire trajectory x(t, x0) is infeasible. Nevertheless,
owing to the local convergence property, the trajectory x(t, x0) converges to x∗, if ‖x0 − x∗‖ is
su�ciently small. It follows from (3.4) that, if initially Ax0 = b, then Ax(t, x0) ≡ b for all t ≥ 0.
Still further if x0 ≥ 0n, then the trajectory x(t, x0) of (3.1) remains in the feasible set X and
the objective function monotonically decreases along x(t, x0). (3.1) preserves feasibility, hence
it is an interior point method. If Condition 2.5 holds, then this method allows to start the
computation from an infeasible point. Therefore, we can call it an interior-infeasible method.
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If we use the quadratic and exponential space transformations, then (3.1) and (3.2) can be
cast in the form

dx

dt
= Dβ(x)(A>u(x)− c), ADβ(x)A>u(x) = ADβ(x)c + τ(b− Ax), (3.5)

xk+1 = xk + αkD
β(xk)[A

>uk − c], (3.6)
where β = 1 for (2.10), and β = 2 for (2.11).

The continuous version of (3.5) had been studied by Smirnov [27]. He proved that the
estimate

‖xN(t, x0)‖ =

{
O (e−µ∗t) , if β = 1,

O
(
t1/(1−β)

)
, if β > 1

holds for the vector of nonbasic components. Hence the trajectories of (3.5) derived with the
help of the quadratic space transformation locally converge faster than the trajectories of (3.5),
derived with the help of the exponential transformation. Therefore, in our codes we have mainly
used the quadratic space transformation.

It was shown that if β is odd, then x∗ is an asymptotically stable point of (3.5) and the local
convergence takes place. If β is even, then the optimal point x∗ is unstable and trajectories
converge to x∗ provided that x0 ∈ ∆(x∗) ∩X0.

If we set β = 2, τ = 0, then (3.5) leads to the Dikin a�ne scaling method
dx

dt
= D2(x)(A>u(x)− c), AD2(x)A>u(x) = AD2(x)c. (3.7)

Discrete and continuous versions of (3.7) were investigated in numerous papers (see, for example,
[3, 4, 5, 23, 24, 30, 31]). It is worthy of note that the optimal solution x∗ proves to be unstable
equilibrium point and, therefore, (3.7) does not possess the local convergence property. In the
latter case a starting point x0 should meet a constraint x0 ∈ ∆(x∗)∩X0 for the convergence to
take place.

If we set β = 1 τ = 0, then (3.5) yields
dx

dt
= D(x)(A>u(x)− c), AD(x)A>u(x) = AD(x)c. (3.8)

Since the quadratic space transformation is used here, the Condition 2.5 holds and we have
the exponential rate of convergence (in discrete case a linear rate). However, owing to the
simpli�cation τ = 0 a starting point x0 must be such that x0 ∈ ∆(x∗), Ax0 = b. The convergence
property of the method (3.8) is more attractive, than (3.7). Therefore, the method (3.8) is
considered in the West as essential improvement of Dikin�Karmarkar method. The book [22]
claims that (3.8) �is identical with the gradient �ow for linear programming proposed and
studied extensively by Faybusovich (1991). Independently this �ow was also studied by Herzel,
Recchioni and Zirilli (1991)... Starting from the seminal work of Khachian and Karmarkar,
there has been a lot of progress in developing interior point algorithms for linear programming
and nonlinear programming, due to Bayer, Lagarias and Faybusovich�.

In point of fact, (3.8) has been proposed and analyzed as far back as 1977 in [9], and later
on a comprehensive exposition of this method was described in numerous our papers and in
the book [7] appeared in English in 1985 and three years before in Russian.

Still further, the nonlocal convergence analysis of (3.8) was carried out in [14]. We assumed
that a condition

n∑

i=1

xi = 1 was introduced among the other equality constraints. In this case
the Lyapunov function

V (x) =
m∑

i=1

xi
∗[ln xi

∗ − ln xi] (3.9)
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decreases along the trajectories of the system (3.8) insofar as

dV

dt
= c>(x∗ − x) ≤ 0 (3.10)

everywhere on the feasible set X. Using (3.10) we evaluated a number of iterations required
for �nding ε-solution of (2.2), using step-sizes αk determined by the steepest descent approach.

Numerous papers have been published in the West on the interior point techniques [3, 4,
19, 21, 23, 24, 30]. Some remarks deserve to be made concerning the main di�erences between
the methodology adopted in these papers and our original approach:

1. Along with the LP problems we considered the NLP problems as well.

2. We developed asymptotically stable interior-infeasible-point algorithms. Our analysis
was not con�ned to the interior point technique. For this reason the current points are in
general allowed to be infeasible, however if the initial or current points are feasible, then
the corresponding trajectory remains in the feasible set.

3. In all proposed methods multiplicative barriers were used and we did not resort to singular
penalties.

4. The steepest descent approach was employed in computations. The trajectory could move
along the boundary of the feasible set.

All these items can be considered as advantages of presented approach.

4. DUAL BARRIER-PROJECTIONMETHODS FOR SOLVING LP PROBLEMS

By extension of the space and by converting the inequality constraints to equalities, we trans-
form the original dual problem (2.3) into the following equivalent problem:

max
u,y

(b>u) subject to ξ(y) + A>u− c = 0n, (4.1)

where v = ξ(y) ∈ Rn
+, ξ(Rn

+) = Rn
+.

The Problem (4.1) is similar to (2.22). System (2.25) being applied to solving (4.1) can be
rewritten in terms of u and v as follows:

du

dt
= b− Ax(u, v),

dv

dt
= −G(v)x(u, v), (4.2)

where Φ(v)x(u, v) = A>b + τ(v + A>u− c) and Φ(v) = G(v) + A>A.
If u0 ∈ U , then we can get rid of the equation for v and this way simplify systems (4.2). In

this case, (4.2) can be expressed as

du

dt
= b− Ax(u), (G(v(u)) + A>A)x(u) = A>b, (4.3)

where u(0, u0) = u0 ∈ U .
For this system we obtain the following inequality:

b>
du

dt
= ‖b− Ax(u)‖2 + x>(u)G(v(u))x(u) ≥ 0.

Hence the objective function of the dual problem monotonically increases on a feasible set.
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By applying the Euler numerical integration method we obtain the following iterative algo-
rithm:

uk+1 = uk + αk(b− Axk), vk+1 = vk − αkG(vk)xk,(
G(vk) + A>A

)
xk = A>b + τ(vk + A>uk − c).

(4.4)

Similarly for the system (4.3) we have

uk+1 = uk + αk(b− Axk), (G(vk) + A>A)xk = A>b, (4.5)

where vk = v(uk). Both variants solve the primal and dual problems simultaneously.
Denote

α∗ =
2

λ∗
, λ∗ = max

[
τ, max

1≤i≤m
θ̇(0)xi

∗

]
, λ∗ = min

[
τ, min

1≤i≤m
θ̇(0)xi

∗

]
,

where λ∗ and λ∗ are, respectively, maximum and minimum eigenvalues of the matrix of the
equation of the �rst approximation about the optimal solution u∗.

Theorem 4.1. Let x∗ and u∗ be unique non-degenerate solutions of the Problems (2.2) and
(2.3), respectively, and let v∗ = c−A>u∗. Assume that the component-wise space transformation
ξ(y) satis�es Conditions 2.4, 2.5 and τ > 0. Then the following statements are true:

1. The pair [u∗, v∗] is an asymptotically stable equilibrium state of system (4.2).

2. The solutions u(t, z0), v(t, z0) of system (4.2) converge locally exponentially fast to the pair
[u∗, v∗]. The corresponding function x(u(t, z0), v(t, z0)) converges to the optimal solution
x∗ of the primal Problem (2.2).

3. The point u∗ is an asymptotically stable equilibrium state of system (4.3).

4. The solutions u(t, z0) of system (4.3) converge locally exponentially fast to the optimal
solution u∗ of the dual Problem (2.3). The corresponding function x(u(t, z0)) converges
to the optimal solution x∗ of the primal Problem (2.2).

5. For any �xed 0 < αk < α∗ the sequence {uk, vk}, generated by (4.4), converges locally
with a linear rate to [u∗, v∗] while the corresponding sequence {xk} converges to x∗.

6. There exists an α∗ > 0 such that for any �xed 0 < αk < α∗ the sequence {uk}, generated
by (4.5), converges locally with a linear rate to u∗ while the corresponding sequence {xk}
converges to x∗.

The method (4.3) was proposed and studied in 1977 (see [9]). Method (4.2) was given
in [11]. In [16] we describe nonlocal convergence analysis of dual method. We supposed the
Problem (2.2) is such that Ae = 0m, where e is a vector of ones in Rn. We used the Lyapunov
function similar to (3.9):

V (u) =
n∑

i=m+1

vi
∗[ln vi

∗ − ln vi(u)].

Let P be a full rank d× n matrix such that AP> = 0md. Therefore, the columns of P> are
linearly independent and form a basis for the null-space of A. We partition A as A = [B,N ],
where the square matrix B is nonsingular. We can now write the matrix P as .

P = [−N(B>)−1 | Id].
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The de�nitions of the sets V and VU can be rewritten as follows:

V = {v ∈ Rn : P (v − c) = 0d}, VU = {v ∈ Rn
+ : P (v − c) = 0d}.

Let x̄ ∈ Rn be an arbitrary vector which satis�es the constraint Ax̄ = b. Then

max
u∈U

b>u = max
u∈U

x̄>A>u = max
v∈VU

x̄>(c− v) = x̄>c− min
v∈VU

x̄>v.

Hence the solution of the dual Problem (2.3) can be substituted by the following equivalent
minimization problem:

min
v∈VU

x̄>v.

Applying the stable barrier-projection method (3.1) to this problem, we obtain
dv

dt
= G(v)

(
P>x(v)− x̄

)
, (4.6)

PG(v)P>x(v) = PG(v)x̄ + τP (c− v). (4.7)
If a point v is such that the matrix PG(v)P> is invertible, then we can solve the linear equation
(4.7) and obtain

x(v) = (PG(v)P>)−1(PG(v)x̄ + τP (c− v)).

Let H(v) = G1/2(v) and introduce the pseudo-inverse and projection matrices

(PH)+ = (PH)>(PGP>)−1, (PH)# = (PH)+PH.

The system (4.6), (4.7) can be rewritten in the following projective form:
dv

dt
= H

[
τ(PH)+P (c− v)− (In − (PH)#)Hx̄

]
. (4.8)

The �rst vector in the square brackets belongs to the null-space of AH−1 and the second
vector belongs to the row space of this matrix. Furthermore,

P
dv

dt
= τP (c− v), P (c− v(t, z0)) = P (c− v0)e

−τt.

Hence, the trajectories v(t, z0) approach the set V as t →∞.
If v0 ∈ VU and v0 > 0, then the entire trajectory does not leave the feasible set VU ,

the objective function x̄>v(t, z0) is a monotonically decreasing function of t and (4.8) can be
rewritten as follows:

dv

dt
= −G(v)

(
In − P>(PG(v)P>)−1PG(v)

)
x̄, v0 ∈ ri VU . (4.9)

Theorem 4.2. Suppose that the conditions of the Theorem 4.1 hold. Then:
1) the point v∗ is an asymptotically stable equilibrium point of system (4.6);

2) the solutions v(t, v0) of (4.8) converge locally to v∗ with an exponential rate of convergence;

3) there exists an α∗ > 0 such that for any �xed 0 < αk < α∗ the discrete version

vk+1 = vk − αkG(vk)(x̄− P>xk), xk = x(vk), (4.10)

converges locally with a linear rate to v∗ while the corresponding sequence {xk} converges
to x∗.
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Since for system (4.9) P v̇ = 0d, it follows that the vector v̇ belongs to null-space of P which
coincides with the row space of A. Therefore, there exists a vector λ ∈ Rm such that

v̇ = A>λ. (4.11)

If v > 0n, then after left multiplying both sides of (4.11) with AG−1(v) and in view of (4.9)
we obtain

λ = −(AG−1(v)A>)−1Ax̄ = −(AG−1(v)A>)−1b.

Hence, on the set ri VU the method (4.9) takes the form

dv

dt
= −A>(AG−1(v)A>)−1b, v0 ∈ ri VU .

In u-space this method can be written as

du

dt
= (AG−1(v(u))A>)−1b, u0 ∈ U0.

If we use the quadratic and exponential space transformations (2.10), (2.11) we obtain

du

dt
= (AD−1(v(u))A>)−1b, u0 ∈ U0, (4.12)

and
du

dt
= (AD−2(v(u))A>)−1b, u0 ∈ U0, (4.13)

respectively. The system (4.13) coincides with the continuous version of the dual a�ne scaling
method proposed by I. Adler, N. Karmarkar, M. Resende and G. Veiga in 1989 (see [1]).

According to the Theorem 4.2, the solution of (4.6) converges locally with an exponential
rate to the equilibrium point v∗ = v(u∗). Therefore, the solutions of (4.12) also converge to the
point u∗ on the set U0.

The discrete version of (4.12) consists of the iteration

uk+1 = uk + αk(AD−1(vk)A
>)−1b, u0 ∈ U0, (4.14)

where vk = v(uk). Taking into account the Theorem 2.3.7 from [7] we conclude that the
exponential rate of convergence of (4.12) insures local linear convergence of the discrete variant
(4.14) if the step-length αk is su�cient small.

5. PRIMAL AND DUAL BARRIER-NEWTON METHODS

Let us consider the Problem (2.1) supposing that all functions f(x), gi(x), 1 ≤ i ≤ m, are at
least twice continuously di�erentiable. Equation (2.15) can be written as

gxG(x)Lx(x, u(x)) = τg(x). (5.1)

If the regular point x is such that

G(x)Lx(x, u(x)) = 0, (5.2)

then [x, u(x)] is a weak KKT pair for the Problem (2.1). In Section 2 we actually used a method
of successive approximation for �nding a solution of this nonlinear equation. Now we will apply
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the Newton method for this purpose. The continuous version of the Newton method leads to
the initial value problem for the following system of ordinary di�erential equations:

Λ(x)
dx

dt
= −G(x)Lx(x, u(x)), x(0, x0) = x0, (5.3)

where Λ(x) is a Jacobian matrix of the mapping G(x)Lx(x, u(x)) with respect to x. By following
the trajectories satisfying (5.3), we can theoretically obtain a solution of the system of nonlinear
equations (5.2). In practice, we build the iterative procedures using a discretization of dynamical
systems.

Along the trajectories of (5.3) we have

G(x(t, x0))Lx(x(t, x0), u(x(t, x0))) = e−tG(x0)Lx(x0, u(x0)),

g(x(t, x0)) =
e−t

τ
gx(x(t, x0))G(x0)Lx(x0, u(x0)).

If the trajectories of (5.3) can be continued as t → +∞ and the norm of the vector

gx(x(t, x0))G(x0)Lx(x0, u(x0))

is bounded, then the pair [x(t, x0), u(x(t, x0))] converges to a weak KKT pair.
The brief analysis of method (5.3) for the case where P = Rn

+ is given in [12]. Here we apply
the primal barrier-Newton method (5.3) for solving the linear programming Problem (2.2).
In this case we have

Λ(x) = [In −H(x)]D(θ̇(x))D(c− A>u(x)) + τH(x),

H(x) = D(θ(x))A>(AD(θ(x))A>)−1A.

Using relation (5.1) we obtain that the system (5.3) has �rst integrals

D(θ(x(t, x0)))(c− A>u(x(t, x0))) = D(θ(x0))(c− A>u(x0))e
−t,

b− Ax(t, x0) = (b− Ax0)e
−t.

Introduce a Lebesgue level set in Rn

Ω = {x ∈ Rn
+ : ‖Ax− b‖ ≤ ‖Ax0 − b‖, 0n ≤ D(θ(x))(c− A>u(x)) ≤ D(θ(x0))v0},

where x0 is an initial point in (5.3), v0 = c− A>u0, u0 = u(x0).
Theorem 5.1. Suppose that the set Ω is compact and contains a unique stationary point

x∗. Assume that the space transformation (2.9) satis�es Conditions 2.4, 2.5 and is such that
the matrix Λ(x) is nonsingular everywhere on Ω. If the starting point x0 is such that x0 > 0n,
v0 > 0n, then

lim
t→∞x(t, x0) = x∗, lim

t→∞u(x(t, x0)) = u∗, (5.4)

where x∗, u∗ are the solutions of the Problems (2.2) and (2.3), respectively.
Integrating (5.3) using the Euler method, we obtain the following iterative process:

xk+1 = xk − αΛ−1(xk)D(θ(xk))(c− A>u(xk)), (5.5)

where α > 0 is a step-size.
If the conditions of the Theorem 3.1 hold and the space transformation function satis�es

Conditions 2.4, 2.5, then the matrix Λ(x∗) is nonsingular. Therefore, if the step-size α is �xed
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and 0 < α < 2, then the discrete version (5.5) locally converges to the point x∗ with at least
linear rate. If matrix Λ(x) satis�es the Lipschitz condition in a neighborhood of x∗ and α = 1,
then the sequence {xk} converges quadratically to x∗.

Let a function x(u) be de�ned from (4.3). Substituting this function in feasibility condition
we obtain the following nonlinear system:

Ax(u)− b = 0m.

Applying the Newton method for solving this system, we obtain the following continuous
and discrete versions:

Q(u)
du

dt
= Ax(u)− b, (5.6)

uk+1 = uk + αQ−1(uk)(Axk − b), (5.7)
where

Q(u) = −A
(
D(θ(v)) + A>A

)−1
D(θ̇(v))D(x(u))A>.

Theorem 5.2. Let the mapping ξ(y), de�ned in Section 4, be such that Conditions 2.4
and 2.5 hold. Then the matrix Q(u∗) is nonsingular, the solution u∗ of the Problem (2.3) is an
asymptotically stable equilibrium state of the system (5.6), the discrete version (5.7) converges
locally to the point u∗ with at least linear rate if 0 < α < 2.

The more detailed information about this method can be found in [17].

6. PRIMAL-DUAL BARRIER-NEWTON METHODS

Here we construct a primal-dual barrier-Newton method for solving the Problem (2.8). Intro-
duce an additional mapping

φ(z) = [φ1(z1), . . . , φn(zn)]

and assume that φ(z) satis�es the Conditions 2.4 and 2.5.
Then the necessary optimality conditions (2.7) for the Problem (2.8) can be rewritten in

the form
D(θ(x))φ(Lx(x, u)) = 0n, g(x) = 0m, x ∈ Rn

+. (6.1)
For solving this system we use the continuous version of Newton's method. The computation

process is described by the system of ordinary di�erential equations

W (x, u)

(
ẋ
u̇

)
= −

(
αD(θ(x))φ(Lx(x, u))

τg(x)

)
, (6.2)

where α > 0, τ > 0, W is a square (n + m)2 matrix,

W (x, u) =

(
M D(θ(x))D(φ̇)g>x
gx 0mm

)
, M = D(θ̇)D(φ) + D(θ)D(φ̇)Lxx. (6.3)

Lemma 6.1. Let [x∗, u∗] be a weak KKT pair, where the conditions of the Theorem 2.3 are
satis�ed. Assume that x∗ is a regular point for the Problem (2.8) and the functions θ(x), φ(z)
satisfy Conditions 2.4, 2.5. Then the matrix W (x∗, u∗) is nonsingular.
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Let x(t, z0), u(t, z0) denote the solutions of the Cauchy problem (6.2) with initial conditions
x0 = x(0, z0), u0 = u(0, z0), z>0 = [x>0 , u>0 ]. Using this notation, we rewrite the system of
equations (6.2) as

W (z)
dz

dt
= −D(γ)R(z), z(0, z0) = z0, (6.4)

where γ has the �rst n components equal to α and all other components equal to τ . We denote
γ∗ = min[α, τ ].

Theorem 6.1. Suppose that the conditions of the Lemma 6.1 hold. Then for any α > 0,
τ > 0 the pair z>∗ = [x>∗ , u>∗ ] is an asymptotically stable equilibrium point of system (6.4).
If step-size hk is �xed and 0 < hk < 2/γ∗, then the discrete version

zk+1 = zk − hkW
−1(zk)D(γ)R(zk) (6.5)

locally converges to the point z∗ with at least linear rate. If W (z) satis�es a Lipschitz condition
in a neighborhood of z∗ and hk = α = τ = 1, then the sequence {zk} converges quadratically to
z∗.

Let us use a homogeneous function θ(x) of order λ, i.e. θi(x) = (xi)λ, 1 ≤ i ≤ n. In this
case we modify (6.2) and use the system

W̃ (x, u)

(
ẋ
u̇

)
= −

(
αD(x)φ(Lx(x, u))

τg(x)

)
, (6.6)

where α > 0, τ > 0, W̃ is a square matrix

W̃ (x, u) =

(
M D(x)D(φ̇)g>x
gx 0mm

)
, M = λD(φ) + D(x)D(φ̇)Lxx.

Lemma 6.2. Let x be a regular point, and let the pair [x, u] be such that xi 6= 0, Lxi(x, u) 6=
6= 0 for all 1 ≤ i ≤ n, and M(x, u) is nonsingular. Then W (x, u) is nonsingular.

De�ne the nonnegative Lyapunov function

F (x, u) = ‖D(θ(x))φ(Lx(x, u))‖+ ‖g(x)‖
and introduce two sets:

Ω0 = {[x, u] : F (x, u) ≤ F (x0, u0), x ≥ 0n, Lx(x, u) ≥ 0n},
Ω̃0 = {[x, u] ∈ Ω0 : x > 0n, Lx(x, u) > 0n}.

Theorem 6.2. Suppose that the set Ω0 is bounded and contains the unique KKT pair
[x∗, u∗]. Suppose also that for any pair [x, u] ∈ Ω̃0 the conditions of the Lemma 6.2 are satis�ed.
Then all trajectories of (6.4) starting from a pair [x0, u0] ∈ Ω̃0, converge to [x∗, u∗].

The system of ordinary di�erential equations (6.4) has the �rst integrals

D(θ(x(t, z0)))φ(Lx(x(t, z0), u(t, z0))) = D(θ(x0))φ(Lx(x0, u0))e
−αt, (6.7)

g(x(t, z0)) = g(x0)e
−τt. (6.8)

The solutions of (6.4) belong to Ω0 and are, therefore, bounded. The right-hand sides of (6.7),
(6.8) are strictly positive and tend to zero only as t → ∞. By moving along the trajectories
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of (6.4) we do not violate nonnegativity of x and Lx. Therefore, the trajectories do not cross
the boundary of the set Ω0. The transformation functions θ(x) and φ(v) thus play the role
of the multiplicative barriers preserving nonnegativity. All trajectories that emanate from Ω̃0

remain in the interior of Ω0. According to La Salle's Invariance Principle [2] the solutions
x(t, z0), u(t, z0) can be prolonged as t →∞, the positive limit set of the solution is a compact
connected set contained in Ω0 and coincides with the equilibrium pair [x∗, u∗], which is unique
on Ω0.

Now we apply the Newton method (6.6) to LP problem. For the sake of simplicity we
consider the case, where φ(v) = v and λ = α/τ . Introduce new vectors µ ∈ Rm, η ∈ Rn:

µ =
(
AD(x)D−1(v)A>)−1

b, η = D−1(v)A>µ.

Let e be the vector of ones in Rn. Now the system (6.6) can be written as

dx

dt
= τD(x)[η − e],

du

dt
= αµ. (6.9)

Theorem 6.3. Let [x∗, u∗] be a non-degenerate optimal pair for the Problems (2.2) and
(2.3). Assume that Ω is bounded. Let the starting point x0 ∈ Rn

++ and u0 ∈ U0 be interior,
then the trajectories of (6.9) are such that:

1) the matrix AD(x(t, z0))D
−1(v(t, z0))A

> is non-degenerate ∀t ≥ 0;

2) z(t, z0) ∈ Ω and v(t, z0) ∈ V for all t > 0;

3) the objective function b>u(t, z0) of the dual problem increases monotonically;

4) the pair [x(t, z0), u(t, z0)] is bounded and converges to [x∗, u∗] as t →∞;

5) all components of vectors Dλ(x(t, z0))v(t, z0), Ax(t, z0) change monotonically and

Dλ(x(t, z0))v(t, z0) = e−αtDλ(x0)v0, Ax(t, z0)− b = e−τt(Ax0 − b).

By applying the Euler numerical integration method to system (6.9) we obtain the simplest
discrete version of the method:

xk+1 = D(xk)(e + τk(ηk − e)), uk+1 = uk + αkµk. (6.10)

Note that if we set in (6.9), (6.10) α = 1, τ = 0 and x = e, then we obtain (4.12) and (4.14),
respectively.

We specify three classes of procedures for determining the step lengths:

1) step lengths are �xed and small enough, hence the discrete process (6.10) is close to a
continuous one (6.9);

2) step-sizes are close to one and, therefore, the discrete process has properties of Newton's
method;

3) step-sizes are chosen from steepest descent conditions or from another auxiliary optimiza-
tion problem.

20



The investigation of all these cases can be found in [18]. Here we consider the third approach
to step-size choice, which proved to be computationally the most e�cient.

The iterates produced by algorithm (6.10) are well-de�ned if vectors xk, vk are strictly
positive for all k. In order to ensure the positiveness of xk+1 and vk+1 we have to choose the
step lengths αk and τk such that

e ≥ αkηk, e ≥ τk(e− ηk).

It is now straightforward to verify that non-negativity conditions hold if αk and τk satisfy

0 < αk ≤ α∗k =
1

[η∗k]+
, 0 < τk ≤ τ ∗k =

1

[1− ηk∗ ]+
,

where [α]+ = max[0, α], η∗k and ηk
∗ are maximal and minimal components of the vector ηk,

respectively. De�ne the steps αk = ωα∗k, τk = ωτ ∗k , where 0 < ω < 1 is a safety factor.
Introduce two functions

Φ(x, u) = x>v(u) + ‖Ax− b‖, φ(αk, τk) = Φ(xk+1, uk+1).

The steepest descent step-sizes ᾱk, τ̄k are found from the solution of the following auxiliary
problem:

φ(ᾱk, τ̄k) = min
0≤αk≤ωα∗

k

min
0≤τk≤ωτ∗

k

φ(αk, τk).

Here φ is a bilinear function of α and τ . In [18] this problem was solved analytically. Denote
‖η‖∞ = max

1≤i≤n
|ηi|. Introduce the function

K(x, v) =

⌈
1 + C

ω
ln

Φ(x, v)

ε

⌉
,

where dae is the least integer larger than or equal to a and ε > 0.
Theorem 6.4. Let x0 ∈ Rn

++, u0 ∈ U0 and suppose that the sequence {xk, uk}, generated
by algorithm (6.10) with steepest descent rule, is such that ‖ηk‖∞ ≤ C for all k. Then the
sequence {xk, uk} converges to [x∗, u∗] at �nite number of steps or at least superlinearly and the
function Φ(xk, vk) becomes less then ε in at most K(x0, v0) iterations.

Method (6.10) possesses local convergence property, therefore, it is possible take starting
points outside the positive orthant, but in this case we must take into account that the matrix
AD(x)D−1(v)A> is singular on some manifold and we must complete the step-size rule. A phase
portrait analysis of (6.9), proof of the Theorem 6.4 and illustrative computational example can
be found in [13, 18].

Algorithm (6.10) has one important disadvantage connected with the necessity to know a
starting point u0 ∈ U0. It is possible to get rid of this restriction if we use the barrier-Newton
method in the extended space of variables x, u, v. The simplest version of the method is
described by following system of 2n + m di�erential equations:

dx

dt
= τG(A>ζ − c),

dv

dt
= α(c− v − A>ζ),

du

dt
= α(ζ − u), (6.11)

where ζ = (AGA>)−1[b−Ax+AGc], G = D(x)D−1(v). The essential di�erence in the require-
ments on the initial conditions between systems (6.9) and (6.11) is that in the latter case we
impose only the simplest restrictions: x0 > 0n, v0 > 0n.

Let Ax0 = b. If we set in (6.11) α = 0, τ = 1 and v = e, then we obtain (3.8).
The generalization of systems (6.9) and (6.11) for the LP problem with box constraints is
given in [28].
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