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Abstract
New general theorems of the alternative are presented. The constructive proofs based on
the duality theory are given. From these results many well-known theorems of the alter-
native are obtained by simple substitutions. Computational applications of theorems of
the alternative to solving linear systems, LP and NLP problems are given. A linear sys-
tems of possibly unsolvable equalities and inequalities are considered. With original linear
system an alternative system is associated such that one and only one of these systems is
consistent. If the original system is solvable then numerical method for solving this system
consists of minimization of the residual of the alternative inconsistent system. From the
results of this minimization the normal solution of the original system is determined.
Keywords: theorems of the alternative, duality theory, alternative system, normal solu-
tion, inconsistent system, steepest descent, linear programming.

1. Introduction
Among vast literature on theorems of the alternative we mention only few publications

[1]�[7]. First papers in this �eld was published in 1873 by P. Gordan. Theorems of the al-
ternative (TA) were extended and widely used for proving existence and uniqueness of some
theorems of linear algebra, di�erential and integral equations. In [7] C. Broyden writes: �The-
orems of the alternative lie at the heart of mathematical programming�. TA were employed to
derive necessary optimality conditions for LP and NLP problems and for various other pure
theoretical investigations.

In this paper we present new quite general TA. The constructive proofs based on the duality
theory is given. From our results many well-known TA can be obtained by simple substitu-
tions (Fredholm's TA, Gale's TA, Jordan's TA, Farkas's TA and many others). We consider
these results as a by-product and suppose that the main result of this paper is computational
applications of TA. Below we will show that TA have computational implications. TA give
us an opportunity to construct new numerical methods for solving linear systems, to simplify
computations arising in NLP when the steepest descent method is used, to reduce the �nd-
ing of normal (least-square) solution of LP problem to unconstrained minimization of convex
piecewise-quadratic di�erentiable function.

We consider a linear system of possibly inconsistent equalities and inequalities. Systems
solving are covered in an extensive literature. We mention only [1, 2]. Usually, these systems are
solved by the reduction to unconstrained minimization of the residual (a measure of satisfaction
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of feasibility of the original system). It is not known a priori whether an original system has a
solution. Thus, the problem is, �rstly, to determine whether the given system is solvable and,
secondly, in case if it is solvable to �nd its normal solution (a solution with minimal Euclidean
norm).

In Section 2 we prove 3 key theorems of the alternative. With original linear system we
associate an alternative system such that one and only one of these systems is consistent.
Moreover an alternative system is such that the dimension of its variable equals to the total
amount of equalities and inequalities (except constraints on the signs of variables) in the original
system.

If the original system is solvable then numerical method for solving this system consists of
minimization of the residual of the alternative inconsistent system. From the results of this
minimization we determine a normal solution of the original system. If the original system
is not solvable then numerical method for solving alternative system consists of minimization
of the residual of the original inconsistent system. From the results of this minimization we
determine a normal solution of the alternative system.

Since the dimensions of the variables in original and alternative systems are di�erent, the
passage from the original consistent system to the minimization problem for the residual of
the alternative inconsistent system may be very reasonable. This reduction may lead to the
minimization problem with respect to variables of lower dimension and makes it possible to
determine easy a normal solution of the original system. Proposed technique does not need
an a priori assumption regarding the consistency of the original system. The essence of this
approach is based on the duality theory.

In Section 3 we show that the proposed method can be utilized to determine a steepest
descent direction in the feasible direction method. In Section 4 the theorems of alternative are
used for solving LP problems.

2. Main theorems
Let A be an m× n matrix

A =

[
A11 A12

A21 A22

]
,

where A11, A12, A21, and A22 are arbitrary rectangular matrices of sizes m1 × n1, m1 × n2,
m2 × n1, and m2 × n2, respectively. Suppose that vectors x ∈ Rn, u ∈ Rm, and b ∈ Rm admit
decompositions x> = [x>1 , x>2 ], u> = [u>1 , u>2 ], and b> = [b>1 , b>2 ], where x1 ∈ Rn1 , x2 ∈ Rn2 ,
n = n1 + n2, u1 ∈ Rm1 , u2 ∈ Rm2 , b1 ∈ Rm1 , b2 ∈ Rm2 , and m = m1 + m2. Let us introduce the
auxiliary sets

Πx = {[x1, x2] : x1 ∈ Rn1
+ , x2 ∈ Rn2},

Πu = {[u1, u2] : u1 ∈ Rm1
+ , u2 ∈ Rm2},

Πz = {[z1, z2] : z1 ∈ Rm1
+ , z2 ∈ Rm2}.

Consider the system of linear equalities and inequalities

A11x1 + A12x2 ≥ b1, A21x1 + A22x2 = b2, x1 ≥ 0n1 . (I)

We de�ne the system conjugate to (I) as

A>
11z1 + A>

21z2 ≤ 0n1 , A>
12z1 + A>

22z2 = 0n2 , z1 ≥ 0m1 , (I′)

and the system alternative to (I) as

A>
11u1 + A>

21u2 ≤ 0n1 , A>
12u1 + A>

22u2 = 0n2 , b>1 u1 + b>2 u2 = ρ, u1 ≥ 0m1 . (II)
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Here, ρ > 0 is an arbitrary �xed positive number. Note that the requirement that ρ be positive
automatically implies that ‖b‖ 6= 0.

Let us introduce a vector w ∈ Rn+1 representable in the form

w> = [w>
1 , w>

2 , w3],

where w1 ∈ Rn1 , w2 ∈ Rn2 , and w3 ∈ R1, and the auxiliary set

Πw = {[w1, w2, w3] : w1 ∈ Rn1
+ , w2 ∈ Rn2 , w3 ∈ R1}.

The system conjugate to (II) has the form

A11w1 + A12w2 − b1w3 ≥ 0m1 , A21w1 + A22w2 − b2w3 = 0m2 , w1 ≥ 0n1 . (II′)

We denote the solution sets of (I), (I′), (II), and (II′) by X, Z, U , and W , respectively.
Unlike (I) and (II), systems (I′) and (II′) always have solutions, because 0m ∈ Z and 0n+1 ∈ W .

Let pen (x, X) denote the penalty at a point x ∈ Πx for violation of the condition x ∈ X.
As the penalty, we use the Euclidean norm of the residual vector:

pen (x,X) =
[‖(b1 − A11x1 − A12x2)+‖2 + ‖b2 − A21x1 − A22x2‖2

]1/2
.

Similarly, we de�ne

pen (u, U) =
[‖(A>

11u1 + A>
21u2)+‖2 + ‖A>

12u1 + A>
22u2‖2 + (ρ− b>1 u1 − b>2 u2)

2
]1/2

.

Hereinafter follows, a+ is the nonnegative part of the vector a; i.e., the ith component of
the vector a+ coincides with the ith component of the vector a if it is nonnegative; otherwise,
this component is zero.

Consider the following four quadratic problems:

I1 = min
x∈Πx

[pen (x,X)]2/2, (2.1)

I2 = min
u∈Πu

[pen (u, U)]2/2, (2.2)

Id
1 = max

z∈Z
{b>z − ‖z‖2/2}, (2.3)

Id
2 = max

w∈W
{ρw3 − ‖w‖2/2}. (2.4)

The sets Z and W are always nonempty, because they contain zero vectors. Unlike systems
(I) and (II), which may be solvable or not, problems (2.1) � (2.4) always have solutions. More-
over, problems (2.3) and (2.4) always have unique solutions, because their feasible sets Z and
W are nonempty and strictly concave quadratic objective functions are bounded from above.

Lemma 1. The problems dual to problems (2.3) and (2.4) are the problems (2.1) and
(2.2), respectively. Each problem (2.1) and (2.2) can be converted to an equivalent quadratic
constrained minimization problems, which are dual to (2.3) and (2.4), respectively.

Proof. The �rst statement follows immediately from traditional representations of the dual
problem.

The second statement follows from two-step representation of problems (2.1) and (2.2).
With the help of additional variables it is possible to construct arti�cial quadratic constrained
minimization problems which are equivalent to problems (2.1) and (2.2) and dual to (2.3) and
(2.4), respectively. Such an approach was used in papers [8, 9].
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Let us introduce additional variables y ∈ Rm, y> = [y>1 , y>2 ], where y1 ∈ Rm1 , y2 ∈ Rm2 be
such that

y1 = b1 − A11x1 − A12x2, y2 = b2 − A21x1 − A22x2.

Then the problem (2.1) can be replaced by equivalent problem

I1 = min
[x,y]∈G

f(y), (2.5)

where the goal function and feasible set are

f(y) = ‖(y1)+‖2/2 + ‖y2‖2/2,

G = {[x, y] : A11x1 + A12x2 + y1 = b1, A21x1 + A22x2 + y2 = b2, x ∈ Πx}.
In contrast to set X, the set G is always nonempty.

For quadratic programming problem (2.5) we introduce the Lagrange multiplier vector z ∈
∈ Πz and de�ne the Lagrange function as

L(x, y, z) = f(y) + z>1 (b1 − A11x1 − A12x2 − y1) + z>2 (b2 − A21x1 − A22x2 − y2).

By the simple rearrangement, we can rewrite the Lagrange function as the following:

L(x, y, z) = f(y)− x>1 (A>
11z1 + A>

21z2)− x>2 (A>
12z1 + A>

22z2)+

+ z>1 (b1 − y1) + z>2 (b2 − y2).
(2.6)

We de�ne the Lagrange dual function as the minimum value of the Lagrange function (2.6)
over x ∈ Πx and y ∈ Rm:

F (z) = min
x ∈ Πx

min
y∈Rn

L(x, y, z). (2.7)

Consider the Lagrange dual problem associated with the problem (2.5)

max
z∈Πz

F (z).

Necessary and su�cient saddle point optimality conditions for problem (2.7) can be written
as

Lx1(x, y, z) = −A>
11z1 − A>

21z2 ≥ 0n1 , D(x1)(A
>
11z1 + A>

21z2) = 0n1 , x1 ≥ 0n1 , (2.8)
Lx2(x, y, z) = −A>

12z1 − A>
22z2 = 0n2 , (2.9)

Ly1(x, y, z) = (y1)+ − z1 = 0m1 , Ly2(x, y, z) = y2 − z2 = 0m2 . (2.10)

Hereinafter D(z) denotes the diagonal matrix whose entries are the components of the vec-
tor z.

If z ∈ Πz then from (2.10) we obtain that z = y. Let's substitute this relation in (2.6) and
impose the condition z ∈ Z.

Then due to de�nition (2.7) and optimality conditions (2.8), (2.9) the Lagrange dual function
takes the form F (z) = b>z − ‖z‖2/2. Thus, we obtain problem (2.3), which is dual to (2.5).
Taking into account that (2.5) is equivalent to (2.1), we can say that (2.3) is dual to (2.1).
More generally we say that problems (2.1) and (2.3), problems (2.2) and (2.4) are mutually
dual respectively.

According to strong duality theorem the optimum objective values are the same in problems
(2.1) and (2.3), (2.2) and (2.4), therefore

I1 = Id
1 , I2 = Id

2 . (2.11)
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We refer to systems (I) and (II) as alternative, if either system (I) has a solution, or system
(II) has a solution, but never both.

Lemma 2. Systems (I) and (II) are not solvable simultaneously.
Theorem 3 below implies that there exists a solution of precisely (I) or (II). Therefore,

these systems are alternative. The original system (I) belongs to the class of systems which are
alternative to (II).

We de�ne a projection of a point x̄ on a nonempty closed set X as a point x∗ ∈ X nearest
to x̄, i.e., such that x∗ solves the problem

min
x∈X

‖x̄− x‖2/2 = ‖x̄− x∗‖2/2.

Hence, we can write x∗ = pr (x̄, X); the distance from x̄ to X is denoted by dist (x̄, X) =
= ‖x∗ − x̄‖.

Theorem 1. Each solution x∗ to problem (2.1) determines a unique solution z∗> =
= [z∗1

>, z∗2
>] to problem (2.3) as

z∗1 = (b1 − A11x
∗
1 − A12x

∗
2)+, z∗2 = b2 − A21x

∗
1 − A22x

∗
2, (2.12)

and the following assertions are valid

‖z∗‖2 = b>z∗, (2.13)

z∗⊥Ax∗, z∗⊥(b− z∗), (2.14)

z∗ = pr (b, Z), ‖z∗‖ = pen (x∗, X), ‖b− z∗‖ = dist (b, Z), (2.15)

[pen (x∗, X)]2 + [dist (b, Z)]2 = ‖b‖2. (2.16)

Proof. Necessary and su�cient conditions for optimality in problem (2.1) are following

−A>
11(b1 − A11x

∗
1 − A12x

∗
2)+ − A>

21(b2 − A21x
∗
1 − A22x

∗
2) ≥ 0n1 ,

D(x∗1)[(A
>
11(b1 − A11x

∗
1 − A12x

∗
2)+ + A>

21(b2 − A21x
∗
1 − A22x

∗
2)] = 0n1 , x∗1 ≥ 0n1 ,

A>
12(b1 − A11x

∗
1 − A12x

∗
2)+ + A>

22(b2 − A21x
∗
1 − A22x

∗
2) = 0n2 .

(2.17)

In formulas (2.17) we introduce the notations

z∗1 = (b1 − A11x
∗
1 − A12x

∗
2)+, z∗2 = b2 − A21x

∗
1 − A22x

∗
2. (2.18)

Now we show, that z∗> = [z∗1
>, z∗2

>] is a unique solution of a constrained quadratic problem
(2.3). Let us rewrite the optimality conditions (2.17) as

A>
11z

∗
1 + A>

21z
∗
2 ≤ 0n1 , A>

12z
∗
1 + A>

22z
∗
2 = 0n2 , (2.19)

D(x∗1)(A
>
11z

∗
1 + A>

21z
∗
2) = 0n1 , x∗1 ≥ 0n1 . (2.20)

From (2.18) and (2.19) we conclude that z∗ ∈ Z. Premultiplying the �rst formula in (2.18)
by z∗1 , second formula by z∗2 , we obtain

‖z∗1‖2 = z∗1
>(b1 − A11x

∗
1 − A12x

∗
2)+ = z∗1

>(b1 − A11x
∗
1 − A12x

∗
2)= b>1 z∗1 − x∗1

>A>
11z

∗
1 − x∗2

>A>
12z

∗
1 ,

‖z∗2‖2 = z∗2
>(b2 − A21x

∗
1 − A22x

∗
2) = b>2 z∗2 − x∗1

>A>
21z

∗
2 − x∗2

>A>
22z

∗
2 .
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Combining these results, we obtain

‖z∗‖2 = ‖z∗1‖2 + ‖z∗2‖2 = b>1 z∗1 + b>2 z∗2 − x∗1
>(A>

11z
∗
1 + A>

21z
∗
2)− x∗2

>(A>
12z

∗
1 + A>

22z
∗
2) =

= (b− Ax∗)>z∗ = b>z∗.
(2.21)

In (2.21) we took into account (2.19) and (2.20), therefore x∗1
>(A>

11z
∗
1 +A>

21z
∗
2)+x∗2

>(A>
12z

∗
1+

+A>
22z

∗
2) = x∗>A>z∗ = 0. Hence the equality (2.13) is proved and it is shown, that

z∗>Ax∗ = 0,

i.e. the vectors z∗ and Ax∗ are orthogonal. The condition (2.13) is equivalent to z∗>(z∗−b) = 0.
We have proved both statements in (2.14).

The Lagrange function associated with problem (2.3) is

L(z, x) = b>z − ‖z‖2/2− x>1 (A>
11z1 + A>

21z2)− x>2 (A>
12z1 + A>

22z2) (2.22)

Kuhn�Tucker optimality conditions yield

Lz1(z, x) = b1 − z1 − A11x1 − A12x2 ≤ 0m1 , (2.23)
D(z1)(b1 − z1 − A11x1 − A12x2) = 0m1 , z1 ≥ 0m1 , (2.24)
Lz2(z, x) = b2 − z2 − A21x1 − A22x2 = 0m2 , (2.25)
Lx1(z, x) = −(A>

11z1 + A>
21z2) ≥ 0n1 , x1 ≥ 0m1 , D(x1)(A

>
11z1 + A>

21z2) = 0n1 , (2.26)
Lx2(z, x) = −(A>

12z1 + A>
22z2) = 0n2 . (2.27)

Let us compare necessary and su�cient conditions (2.18) � (2.20) for a problem (2.1) with
necessary and su�cient optimality conditions (2.23) � (2.27) for quadratic programming prob-
lem (2.3). If in conditions (2.23) � (2.27) we substitute vector x∗ for x and substitute the vector
z∗ de�ned in (2.18) for z, then (2.26), (2.27) transform into (2.19), (2.20). Hence, formulas
(2.18) ensure conditions (2.23) � (2.25). Thus, the saddle point [z∗, x∗] of the Lagrange function
(2.22) consists of vector z∗ which is the solution of problem (2.3) and vector x∗ which is the
solution of problem (2.1), and between these vectors exists relation given by formulas (2.12).

From (2.3), (2.11), (2.13) we obtain

I1 = Id
1 = ‖z∗‖2/2 = [pen (x∗, X)]2 /2.

From this, we get the second statement in (2.15).
We shall transform problem (2.3) to the following equivalent problems:

Id
1 = max

z∈Z

[−‖b− z‖2 + ‖b‖2]

2
=
‖b‖2

2
−min

z∈Z

‖b− z‖2

2
.

Since z∗ is a unique solution of a problem (2.3), it follows that z∗ = pr (b, Z) and ‖b − z∗‖ =
= dist (b, Z). Hence all statements (2.15) are proved.

From (2.13) we conclude that the vector z∗ is orthogonal to the vector b − z∗. Therefore,
three points: an origin of Rm, points z∗ and b form a rectangular triangle, at which vector b
de�nes a hypotenuse, vector z∗ is a cathetus which length is equal to pen (x∗, X), vector b− z∗

is the second cathetus with length equal to dist (b, Z). Pyphagoras' law yields (2.16).
From Theorem 1 follows
Criterion 1. System (I) is solvable if and only if problem (2.3) has a zero solution z∗ = 0m.
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This criterion is possible to reformulated it as: system (I) is unsolvable if and only if problem
(2.3) has a nonzero solution ‖z∗‖ = 0.

The analysis of problems (2.2) and (2.4) is similar, therefore we give only the formulation of
corresponding theorem. Consider the vector r ∈ Rn+1 such that r> = [0>n , ρ] and the m×(n+1)
matrix Ā = [−A, b].

Theorem 2. Suppose that u∗> = [u∗1
>, u∗2

>] is an arbitrary solution of problem (2.2). Then
the solution w∗> = [w∗

1
>, w∗

2
>, w∗

3] of problem (2.4) depends on u∗ as

w∗
1 = (A>

11u
∗
1 + A>

21u
∗
2)+, w∗

2 = A>
12u

∗
1 + A>

22u
∗
2, w∗

3 = ρ− b>1 u∗1 − b>2 u∗2 (2.28)

and the following assertions are valid:

‖w∗‖2 = ρw∗
3, (2.29)

w∗⊥Â>u∗, w∗⊥(r − w∗), (2.30)
w∗ = pr (r,W ), ‖w∗‖ = pen (u∗, U), ‖r − w∗‖ = dist (r,W ), (2.31)
[pen (u∗, U)]2 + [dist (r,W )]2 = ‖r‖2, (2.32)
‖w∗‖ ≤ ρ, 0 ≤ w∗

3 ≤ ρ, ‖w∗
1‖2 + ‖w∗

2‖2 ≤ ρ2/4. (2.33)

Criterion 2. System (II) is solvable (is unsolvable) if and only if problem (2.4) has a zero
(nonzero) solution w∗.

Theorem 3. Systems (I) and (II) are alternative, i.e. one and only one of them is consis-
tent, moreover

1) if system (I) has no solutions then the normal solution ũ∗ = pr (0m, U) of system (II) is
de�ned by formula

ũ∗ = ρz∗/‖z∗‖2, (2.34)
where the unique vector z∗ solves problem (2.3) and is related with an arbitrary solution
x∗ of problem (2.1) by (2.12);

2) if system (II) has no solutions then the normal solution x̃∗ of system (I) is de�ned by
x̃∗ = pr (0n, X) and has components

x̃∗1 = w∗
1/w

∗
3, x̃∗2 = w∗

2/w
∗
3, (2.35)

where the unique vector w∗ solves problem (2.4) and is related with arbitrary solution u∗

of problem (2.2) by (2.28).

Proof. Due to Lemma 2 the systems (I) and (II) are not solvable simultaneously. Let us
show, that one of them is necessarily solvable. We consider two cases.

1. Let X = ∅, then pen (x∗, X) 6= 0. Vector z∗ ∈ Z de�ned from (2.12) is such that
‖z∗‖ 6= 0. Multiplying both sides in (2.34) by b, and taking into account (2.13), we obtain
b>ũ∗ = ρ, therefore, ũ∗ ∈ U , U 6= ∅. Let's show, that ũ∗ is the normal unique solution of
system (II), i.e. ũ∗ solves the following quadratic problem:

min
u∈U

‖u‖2/2. (2.36)
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The Lagrange function associated with problem (2.36) is expressed as

L(u, x̂) = ‖u‖2/2 + x̂>1 (A>
11u1 + A>

21u2) + x̂>2 (A>
12u1 + A>

22u2) + x̂3(ρ− b>1 u1 − b>2 u2).

Maximizing the Lagrange dual function with respect to multiplier vector we obtain the following
problem, which is dual to (2.36).

max
x̂1∈Rn1

+

max
x̂2∈Rn2

max
x̂3∈R1

[
ρx̂3 − ‖(b1x̂3 − A11x̂1 − A12x̂2)+‖2

2
− ‖b2x̂3 − A21x̂1 − A22x̂2‖2

2

]
. (2.37)

Let u∗> = [u∗1
>, u∗2

>] be solution of problem (2.36) and x̂∗> = [x̂∗
>

1 , x̂∗
>

2 , x̂∗3] be solution of
problem (2.37). The pair [u∗, x̂∗] forms a saddle point of the Lagrange function. This pair
satis�es the Kuhn�Tucker conditions that is

u∗1 + A11x̂
∗
1 + A12x̂

∗
2 − b1x̂

∗
3 ≥ 0m1 , D(u∗1)(u

∗
1 + A11x̂

∗
1 + A12x̂

∗
2 − b1x̂

∗
3) = 0, u∗1 ≥ 0m1 , (2.38)

u∗2 + A21x̂
∗
1 + A22x̂

∗
2 − b2x̂

∗
3 = 0m2 , (2.39)

A>
11u

∗
1 + A>

21u
∗
2 ≤ 0n1 , D(x̂∗1)(A

>
11u

∗
1 + A>

21u
∗
2) = 0n1 , x̂∗1 ≥ 0n1 , (2.40)

A>
12u

∗
1 + A>

22u
∗
2 = 0n2 , (2.41)

ρ− b>1 u∗1 − b>2 u∗2 = 0. (2.42)

From (2.38) and (2.39) we obtain, that the solution u∗ of problem (2.36) is related to solution
x̂∗ of problem (2.37) by

u∗1 = (b1x̂
∗
3 − A11x̂

∗
1 − A12x̂

∗
2)+, u∗2 = b2x̂

∗
3 − A21x̂

∗
1 − A22x̂

∗
2.

Using these relations and taking into account the equality of optimal values of the goal functions
of primal problem (2.36) and dual problem (2.37) we have ‖u∗‖2 = ρx̂∗3. Since U 6= ∅ and u∗ ∈ U ,
from condition b>u∗ = ρ > 0 we get ‖u∗‖ 6= 0, which yields x̂∗3 > 0.

Let us transform variables in (2.38) � (2.41)

u∗ = x̂∗3z
∗, x̂∗1 = x̂∗3x

∗
1, x̂∗2 = x̂∗3x

∗
2

Dividing expressions (2.38) � (2.41) by positive value x̂∗3 we obtain Kuhn�Tucker conditions
(2.23) � (2.27) for problem (2.3) which are calculated at point [z∗, x∗]. Substituting the value
u∗ = x̂∗3z

∗ into (2.42) and using (2.13) we obtain
ρ

x̂∗3
− b>z∗ =

ρ

x̂∗3
− ‖z∗‖2.

Hence, if x̂∗3 = ρ/‖z∗‖2, then u∗ = x̂∗3z
∗ = ρz∗/‖z∗‖2 = ũ∗, i.e. the normal solution of (II) is

expressed by formula (2.34).

2. Let U = ∅, then pen (u∗, U) 6= 0. Vector w∗ ∈ W de�ned by (2.28) is such that
‖w∗‖ 6= 0. Owing to conditions (2.29) we have w∗

3 > 0. Vector x̃∗ de�ned by (2.35) satis�es (I).
Now we prove that x̃∗ is the normal solution of system (I), i.e. it solves

min
x∈X

‖x‖2.

Let us de�ne the Lagrange function for this problem by

L(x, µ) =
‖x‖2

2
+ µ>1 (b1 − A11x1 − A12x2) + µ>2 (b2 − A21x1 − A22x2)
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We denote x̃∗
>

= [x̃∗
>

1 , x̃∗
>

2 ], µ̃∗
>

= [µ̃∗
>

1 , µ̃∗
>

2 ]. Let [x̃∗, µ̃∗] be the saddle point of the Lagrange
function L(x, µ). Then the Kuhn�Tucker conditions can be written as

x̃∗1 − A>
11µ

∗
1 − A>

21µ
∗
2 ≥ 0n1 , D(x̃∗1)(x̃

∗
1 − A>

11µ
∗
1 − A>

21µ
∗
2) = 0n1 , x̃∗1 ≥ 0n1 ,

x̃∗2 − A>
12µ

∗
1 − A>

22µ
∗
2 = 0n2 ,

b1 − A11x̃
∗
1 − A12x̃

∗
2 ≤ 0m1 , D(µ∗1)(b1 − A11x̃

∗
1 − A12x̃

∗
2) = 0m1 , µ∗1 ≥ 0m1 ,

b2 − A21x̃
∗
1 − A22x̃

∗
2 = 0m2 .

These conditions can be found if we write the Kuhn�Tucker conditions for problem (2.4)
and denote x∗1 = w∗

1/w
∗
3, x∗2 = w∗

2/w
∗
3, µ∗1 = u∗1/w

∗
3, µ∗2 = u∗2/w

∗
3. Thus, we obtain that vector

x̃∗, with components (2.35) is a normal solution of systems (I).
Alternative system (II) admit various representations. As follows from the theorems stated

above, the system alternative to (I) is obtained from conjugate system (I′) by adding a condition
excluding the trivial solution of problem (2.3). For example, we can require that the solutions
to conjugate system (I′) satisfy the condition b>u > 0 (as in the Farkas alternative) or the
condition b>u = 1 (as in the Gale alternative), and so on. If system (I) has no inequalities then
instead of condition ρ > 0 we can con�ne ourselves only by condition ρ 6= 0.

3. Finding of the steepest descent in feasible directions method
Let z∗ be a nonzero solution of problem (2.3). Introduce normalized vectors zn = z/‖z∗‖,

z∗n = z∗/‖z∗‖ and de�ne a feasible set of the normalized vectors

Zn = {zn ∈ Rm : zn ∈ Z, ‖zn‖ = 1},
where set Z is the conjugate set (I′).

Consider the problem
I3 = max

zn∈Zn

b>zn. (3.1)

Theorem 4. Let x∗ be an arbitrary solution of problem (2.1), the vector z∗, de�ned by
formula (2.12), is the corresponding unique solution of problem (2.3), moreover ‖z∗‖ 6= 0. Then
the vector z∗n = z∗/‖z∗‖ is a solution of problem (3.1) and I3 = b>z∗n = ‖z∗‖.

Proof. We apply strong duality theorem to mutually dual problems (2.1) and (2.3). It
follows that:

1

2
= max

zn∈Z

[
b>zn

‖z∗‖ −
‖zn‖2

2

]
.

Since Zn ⊂ Z this relation implies

‖z∗‖ ≥ max
zn∈Zn

b>zn. (3.2)

If as zn we take vector z∗/‖z∗‖, then owing to (2.13) we obtain equality in (3.2). So, we
conclude that z∗n solves (3.1).

The problem (3.1) arises when feasible directions methods is applied to the following non-
linear programming problem:

min
p∈P

f(p), P = {p ∈ Rm : h(p) ≤ 0n1 , g(p) = 0n2}, (3.3)

where f : Rm → R1, h : Rm → Rn1 , g : Rm → Rn2 , functions f(p), h(p), g(p) are continuously
di�erentiable, the set P is not empty and the problem (3.3) has a solution.
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We assume, that the arbitrary feasible point p ∈ P is �xed. We de�ne the Lagrange
multiplier x ∈ Rn, x> = [x>1 , x>2 ], where x1 ∈ Rn1

+ , x2 ∈ Rn2 , n = n1 + n2. Let us introduce the
Lagrange function

L(p, x) = f(p) + h>(p)x1 + g>(p)x2.

and the complementary slackness conditions

xi
1h

i(p) = 0, 1 ≤ i ≤ n1. (3.4)

The component hi(p) of a vector h(p) is active at a point p ∈ P , if hi(p) = 0. Due to (3.4)
all components of a vector x1, corresponding to nonactive components of vector h(p) are equal
to zero. For simplicity we suppose that all components of vector h(p) are active. The Kuhn�
Tucker conditions for problem (3.3) evaluated at the point [p, x], where p ∈ P , are written
as

Lp(p, x) = fp(p) + hp(p)x1 + gp(p)x2 = 0m, x1 ≥ 0n1 . (I)3

Let us introduce a vector p′ = p + τz, where τ is step-size, z ∈ Rm, ‖z‖ = 1 is descent
direction of problem (3.3). We linearize the goal function and the functions which de�ne the
constraints at the point p. This results in problem of �nding

I4 = min
z∈Ẑn

z>fp(p), Ẑn = {z ∈ Rm : h>p (p)z ≤ 0n1 , g>p (p)z = 0n2 , ‖z‖ = 1}. (3.5)

If this problem has the solution z∗n such that I4 < 0, then we say that z∗n is the steepest
descent direction. It means that at least locally the point p can be improved by taken a new
vector p′. If τ is small enough then the vector p′ remains in feasible set P and the value of
goal function f(p′) < f(p). If the problem (3.5) has no such solution, then it is impossible to
improve the point p locally.

Let h>p (p)A>
21, g>p (p) = A>

22, fp(p) = −b2. According to previous section the system alterna-
tive to (I) is following:

u>hp(p) ≤ 0>n1
, u>gp(p) = 0>n2

, −u>fp(p) = ρ > 0. (II)3

If the system (II)3 is solvable, then due to the theorem 3 its normal solutions is ũ∗ =
= ρz∗/‖z∗‖2, where z∗ is de�ned by (2.12), x∗ can be found from the following unconstrained
minimization problem:

min
x1∈Rn1

+

min
x2∈Rn2

‖Lp(p, x)‖2

2
. (3.6)

We normalize vector ũ∗ and receive ũ∗n = z∗/‖z∗‖ = z∗n. Vector −z∗n belongs to Zn and according
to the Theorem 3 we have I4 = −I3 = −‖z∗‖, i.e. −z∗n is a direction of the steepest descent
in the linearized problem (3.5). This direction exists if and only if [p, x∗] is not Kuhn�Tucker
point, whereas p ∈ P , x∗ ∈ Πx. Owing to Theorem 4 we do not need to solve auxiliary problem
(3.5) for �nding the steepest descent direction. It is enough to solve unconstrained prob-
qlem (3.6).

4. Application to LP problems
Let us apply the results stated above to linear programming problems. Consider the primal

linear programming problem in the form

min
x∈X

c>x, X = {x ∈ Rn : Ax = b, x ≥ 0n}. (P)

10



Here, A is an m × n matrix of rank m; m < n; ν = n − m is the defect of the matrix A; c,
x ∈ Rn and b ∈ Rm are vectors.

Instead of the traditional necessary and su�cient optimality conditions for linear program-
ming problems, we apply the conditions given in [10]. For this purpose, we introduce a ν × n
matrix K of rank ν such that im K> = ker A, AK> = 0, and Rn = im A> ⊕ im K>. Let us
introduce d = Kc ∈ Rν , the dual slack vector v = c− A>u, and two a�ne sets

X̄ = {x ∈ Rn : Ax = b}, V̄ = {v ∈ Rn : Kv = d}.

Let x̄ and v̄ be arbitrary �xed n-vectors satisfying the conditions x̄ ∈ X̄ and v̄ ∈ V̄ , respectively.
According to [10, 11], the necessary and su�cient minimum conditions for problem (P) are




A 0mn

0νn K
v̄> x̄>




[
x
v

]
=




b
d

x̄>v̄


 , x ≥ 0n, v ≥ 0n. (4.1)

If problem (P) has a solution, then system (4.1) is consistent, and solving it gives the
solutions of problem (P) and the conjugate problem

min
v∈V

x̄>v, V = {v ∈ Rn : Kv = d, v ≥ 0n}. (C)

System (4.1) comprises n + 1 equalities and 2n inequalities in 2n unknowns. The alternative
system has only n+1 unknowns and comprises 2n linear inequalities and one equality, namely,

[
A> 0nν v̄
0nm K> x̄

] 


p
q
α


 ≤ 02n, b>p + d>q + x̄>v̄α = ρ, (4.2)

where ρ > 0 is an arbitrary positive constant.
Since system (4.1) is consistent, the alternative system (4.2) is inconsistent. Problem (2.2)

can be written as the following unconstrained minimization problem:

min
p∈Rm

min
q∈Rν

min
α∈R1

[‖(A>p + v̄α)+‖2 + ‖(K>q + x̄α)+‖2 + (ρ− b>p− d>q − x̄>v̄α)2
]

2
.

Solving this problem yields the optimal vectors p∗, q∗, and α∗, which determine the residuals
of inconsistent system (4.2) according to

w∗
x = (A>p∗ + v̄α∗)+, w∗

v = (K>q∗ + x̄α∗)+, w∗
3 = ρ− b>p∗ − d>q∗ − x̄>v̄α∗.

By Theorem 4, normal solutions of system (4.1) are given by the formulas

x̃∗ =
w∗

x

w∗
3

, ṽ∗ =
w∗

v

w∗
3

and they are simultaneously normal solutions to problems (P) and (C).
Thus, we have reduced solving a linear programming problem to unconstrained minimization

of a convex parameter-free globally di�erentiable piecewise-quadratic function of n+1 variables
with a Lipschitz continuous gradient. As the result of such minimization we obtain a unique
least-norm solution of system (4.1), which de�ned the su�cient optimality conditions in (P)
and (C).
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