
COMPUTATION OF EXACT GRADIENTS
IN DISTRIBUTED DYNAMIC SYSTEMS1

Yuri EVTUSHENKO

Computing Center of the Russian Academy of Sciences
40, Vavilov Street, 117967 Moscow, Russia

(Received 28 August 1995; in final form 2 June 1997)

Abstract. A new and unified methodology for computing first order derivatives of functions ob-
tained in complex multistep processes is developed on the basis of general expressions for differ-
entiating a composite function. From these results, we derive the formulas for fast automatic
differentiation of elementary functions, for gradients arising in optimal control problems, nonlinear
programming and gradients arising in discretizations of processes governed by partial differential
equations. In the proposed approach we start with a chosen discretization scheme for the state equa-
tion and derive the exact gradient expression. Thus a unique discretization scheme is automatically
generated for the adjoint equation. For optimal control problems, the proposed computational for-
mulas correspond to the integration of the adjoint system of equations that appears in Pontryagin’s
maximum principle. This technique appears to be very efficient, universal, and applicable to a wide
variety of distributed controlled dynamic systems and to sensitivity analysis.

Keywords: Fast automatic differentiation; optimal control problem; differentiation of elementary

functions; rounding error estimation; parabolic system; hyperbolic system; adjoint equation; sensi-

tivity analysis.

1 INTRODUCTION

In 1970-1980 we developed a number of numerical methods and software for solving practical optimal control
problems. Our technique was based on the reduction of the original problem to the nonlinear programming problem
(NLP). This approach turned out to be very efficient for many reasons. It allowed the use of numerous sophisticated
NLP methods; many earlier heuristic methods developed for optimal control became evident; it permitted us to
solve complicated problems with delay, and with mixed phase and control constraints. We obtained formulas for
computing the first and second derivatives of the cost functional for the integration by Euler and Runge-Kutta
formulas of a system of ordinary differential equations that describe a controlled process. Using these results, we
created the library of algorithms for solving a wide class of optimal control problems [7, 8].
This paper extends our technique further to general complex computational processes. We apply the approach

to the optimization of distributed dynamic systems. The mathematical model of a controlled system and its initial
and boundary conditions are approximated by a corresponding optimal parameter selection problem which, in turn,
is viewed as a mathematical programming problem and hence can be solved by existing optimization algorithms.
Using our formulas, we derive the expression for the exact gradient of the objective functional. Once this is
accomplished, efficient gradient based algorithms for solving mathematical programming problems can be easily
applied to solving the parameter selection problem. These gradient algorithms usually require significantly fewer
iterations and function evaluations than derivative-free methods which only use function values.
Our computational formulas were similar to ones developed for fast automatic differentiation (FAD), used for

differentiating multivariate functions. Many publications have been devoted to the FAD technique. We refer
the reader to the proceedings of the first SIAM Workshop on the Automatic Differentiation of Algorithms held
in Breckenridge, Colorado in 1991 (see [10]). An overview of the history and the state of the art in automatic
differentiation and related techniques is given by Iri in [12]. In many cases, FAD is far superior to symbolic
differentiation or to divided differences approximation.
Having studied literature on FAD, we realized that the expressions which we used for computing a gradient

included the FAD formulas as a special case, where an explicitly defined elementary function was differentiated. It
turned out that our formulas are more general and could be used for gradient calculations in both explicitly and
implicitly given functions and for computational processes that arise from discrete approximations of continuous

1Research was supported by grants N 95-01-00779 and N 96-15-96124 from the Russian Foundation for Basic Research, by FAPESP
grant N 1996/6631-5, sponsored by Russian Institute for Mechanics of Smart Materials. Some of this research was carried out during
the author’s visit to the Mathematics Department at the University of Western Australia, which was partially supported by a research
grant of K.L. Teo from the Australian Research Council.

1



systems governed by ordinary and partial differential equations. Later we called these results “generalized FAD
formulas”. Our preliminary investigations in this field were published in [1, 5, 6, 7, 8].
In Section 2, we present general expressions from which we obtain the so-called “forward” and “reverse” dif-

ferentiation expressions as a special case. We introduce a new auxiliary function and use a canonical form which
turns out to be very convenient for the representing the generalized reverse differentiation formulas.
In Section 3, we consider the algebraic complexity of computing a function of several variables and its partial

derivatives with respect to all the variables. If FAD is used, then the ratio of the computer time for calculating all
partial derivatives of an elementary function to the time for calculating the underlying function value is bounded
above by 3.
In Section 4, we derive expressions for the gradient of a function defined by the solution of an initial value

problem for ordinary differential equation. We discretize the problem and, applying the expressions from Section 2,
we obtain the gradient by using forward and reverse computations. Going from the discrete to continuous case, we
obtain the gradient expressions well known in the theory of ordinary differential equations.
Similar results for optimal control problems are given in Section 5, where we describe a general approach

to approximating the infinite-dimensional optimization problem by a finite-dimensional problem. The dynamic
equations are discretized and the optimal control problem is transformed into a nonlinear programming problem,
which is solved by direct gradient numerical methods. We show that the reverse computation of the gradient
corresponds to integrating the adjoint system of equations that appears in Pontryagin’s maximum principle.
Our approach permits us to develop a new methodology for calculating the gradient in a controlled system

described by a partial differential equations (PDE) which we call the “state equation”. In Sections 6 and 7, we
derive the required exact functional gradient using the general expressions given in Section 2. We show how to
apply this technique in two simple cases of parabolic and hyperbolic controlled equations. The adjoint variable
formulations for computing the gradients for continuous systems were obtained in [21, 22, 23] based on calculus of
variations. In these and many similar papers, the adjoint equation technique is employed. The adjoint equations
are derived in the PDE form. This classic approach has a drawback — it is not clear how the state and adjoint
equations should be discretized in order to find the exact functional gradient for a chosen discrete approximation
of the state equation.
The difficulties in integrating the state PDE and adjoint PDE independently are described in numerous papers.

For example, in [16] the authors write, “it is difficult to pass from the continuous to the discrete formulation,
especially for nonlinear advection terms. This has led many researchers to use methods working exclusively from
the discrete equations of the model... it can be noticed that the problems to find the “good” gradient arise from
some of the nonlinear terms of the equation.” In [16], a special “matrix approach” was proposed to overcome these
difficulties.
In our approach, we start with a chosen discretization scheme for the state PDE and initial and boundary

conditions, then we derive the exact gradient expressions which involve adjoint variables. Thus we automatically
generate a unique discretization scheme for the PDE formulation of the adjoint equation. This technique appears
to be very efficient, universal, and it could be used for differentiation in numerous complicated distributed systems
and for sensitivity analysis.

2 GENERAL EXPRESSIONS

There are many ways to derive the formulas for differentiation of a composite function. Among these the
shortest and most general way is based on the well-known implicit function theorem. Suppose the mappings

Φ : Rn × Rr → Rn and W : Rn × Rr → R1 are differentiable. Let z ∈ Rn and u ∈ Rr satisfy the following
nonlinear system of n scalar algebraic equations:

Φ(z, u) = 0n, (1)

where 0s is the s-dimensional null vector.
We will use the following notation. For f : Rn → Rm, let fTx denote the n×m-matrix, which ij-th element is

equal to ∂f j/∂xi, and mean the first derivative of the vector-row fT over the vector-column x. When m = 1, the
transposition sign in the vector-column fx is omitted. We use partial derivative for differentiation of an explicitly
given function (e.g. ∂f/∂x = fx) and total derivative for differentiation of implicitly definite composite function
(e.g., dΩ/du).
We assume that the matrix ΦTz (z, u) is nonsingular. According to the implicit function theorem, system (1)

defines a continuous vector-valued function z = z(u) which is differentiable and whose derivative dzT /du, denoted

by N (u) ∈ Rr×n, satisfies the following linear algebraic system:
ΦTu (z(u), u) +N (u)Φ

T
z (z(u), u) = 0rn, (2)

2



where 0αβ is the α× β null matrix. Thus,
N(u) = −ΦTu (z(u), u)[ΦTz (z(u), u)]−1. (3)

As a rule, z and u are referred to as dependent and independent variables, respectively. The composite function
Ω(u) = W (z(u), u) is differentiable and the gradient with respect to the independent variable u (the reduced
gradient) is equal to

dΩ(u)/du =Wu(z(u), u) +N(u)Wz(z(u), u). (4)

We introduce the Lagrange function L(z, u, p) = W (z, u) + ΦT (z, u)p with the Lagrange multiplier p ∈ Rn, which
is required to satisfy the linear algebraic system:

Lz(z(u), u, p) =Wz(z(u), u) + Φ
T
z (z(u), u)p = 0n. (5)

If the matrix ΦTz (z(u), u) is nonsingular, then the vector p is uniquely defined by (5) and the formula (4) can be
rewritten in the form

dΩ(u)/du =Wu(z(u), u) + Φ
T
u (z(u), u)p = Lu(z(u), u, p). (6)

Expressions (4) and (6) are mathematically equivalent, but from the computational point of view there is a crucial
difference. A slight variation in the way the function is differentiated will result in a drastic change in the efficiency
of computation. In the first case we use the auxiliary matrix N ; in the second case we use an additional Lagrange
vector p. We shall show that expression (4) corresponds to the so-called forward differentiation, and formula (6)
— to reverse differentiation.
Instead of system (1), let us consider a perturbed system

Φ(z, u) + ε = 0n,

where ε is an n-dimensional vector.
Assume that this system defines a continuous function z = z(u, ε). Taking into account (5), we obtain that the

Lagrange multiplier p(ε) satisfies the following condition

Wz(z(u, ε), u) + Φ
T
z (z(u, ε), u)p(ε) = 0n.

In view of (5), we have p(0n) = p. Then, using (6), we find

dΩ(u, ε)/dε = p(ε).

That is, the vector p that satisfies (5) is the sensitivity of the composite function Ω(u, ε) =W (z(u, ε), u) to changes
in system (1), if the derivative is evaluated at the point ε = 0n.
Similar result was obtained in nonlinear programming (e.g., [3, p.70]) with an additional condition dΩ(u, ε)/du =

0r. Our results do not require this condition. Indeed, let us consider the following nonlinear programming problem:

minimize f(x) subject to g(x) + ε = 0n,

where x ∈ Rc, c = n+ r, ε ∈ Rn, f : Rc → R, g : Rc → Rn.
Here xT = [zT , uT ] and f(x) = W (z, u), g(x) = Φ(z, u). A well-known constraint qualification (CQ) in NLP

is regularity, which requires linear independence of the columns of the constraint gradient matrix gTx (x) at feasible
points. We use a weaker CQ, namely that the matrix gTz (z(u, ε), u) be nonsingular. If this CQ holds, then the
Lagrange multiplier p(ε) is uniquely defined. Substituting z(u, ε) and p(ε) for z(u) and p, respectively, we find
from (6) the total derivative of W (z(u, ε), u) with respect to u. The derivative is zero only in stationary points
u = u∗. As a consequence of the expressions above, the derivative of W (z(u, ε), u) with respect to ε is equal to
p(ε) everywhere in a neighborhood of a stationary point u∗. This is another distinction from the conventional NLP
analysis.
As we will show, all the formulas derived above can be viewed as a basis for a number of expressions for

calculating exact gradients in various complex problems and can be used in numerous minimization algorithms.
In multistep problems, the variables z and u are usually naturally partitioned into k variables of lower dimen-

sionality:
zT = [zT1 , z

T
2 , . . . , z

T
k ], u

T = [uT1 , u
T
2 , . . . , u

T
k ], zi ∈ Rs, ui ∈ Rm, 1 ≤ i ≤ k.

Under this assumption, relation (1) is split into k relations as follows:

zi = F (i, Zi, Ui), 1 ≤ i ≤ k, n = s · k, r = m · k, (7)

3



where Zi and Ui are given sets of variables zj and uj , respectively, and the index i takes integer values from 1 to
k. A more general case, when i ∈ D ⊂ {1, . . . , k}, can be considered, but just for brevity, we suppose further that
D = {1, . . . , k}. For each i ∈ D, we introduce two sets of indices Qi and Ki, containing the indices of all variables
zi and ui belonging to the sets Zi and Ui, respectively. Then

Qi = {j ∈ D : zj ∈ Zi}, Ki = {j ∈ D : uj ∈ Ui}.
Let us introduce the conjugate index sets

Q̄i = {j ∈ D : zi ∈ Zj}, K̄i = {j ∈ D : ui ∈ Uj}
and the corresponding vector sets

Z̄i = {zj : j ∈ Q̄i}, Ūi = {uj : j ∈ K̄i}.
The definition of these sets implies that if zj ∈ Z̄i, ue ∈ Ūq (that is, if j ∈ Q̄i, e ∈ K̄q), then the following explicit
functional dependencies are valid:

zj = F (j, . . . , zi, . . .), ze = F (e, . . . , uq, . . .).

Therefore, the sets Qi and Ki may be called the input index sets at i-th step, while Q̄i and K̄i are the output index
sets at i-th step.
Consider in (1) the mapping Φ(z, u) composed of the mappings F (j, Zj , Uj) − zj , where j ∈ D. Denote

Nij = dz
T
j /dui ∈ Rm×s. Then for process (7), we can rewrite (2) and (4) as follows:

Nij = F
T
ui
(j, Zj , Uj) +

∑
q∈Qj

NiqF
T
zq
(j, Zj , Uj), (8)

dΩ(u)/dui = Wui(z, u) +
∑
j∈D
NijWzj (z, u). (9)

With multiplier vectors pj ∈ Rs we introduce the new auxiliary function

E(z, u, p) =W (z, u) +
∑
j∈D
FT (j, Zj , Uj)pj .

Now, to consider the multistep process, let us turn from nonlinear programming to optimal control. In the last
field the vectors zi, ui, and pi are called state, control, and adjoint variables, respectively. In the sequel we shall
use both terminologies.
It is very convenient to rewrite (7), (5), and (6) in the following canonical form:

zi = Epi(z, u, p), (10)

pi = Ezi(z, u, p) =Wzi(z, u) +
∑
q∈Q̄i

F Tzi (q, Zq, Uq)pq, (11)

dΩ(u)/dui = Eui(z, u, p) =Wui(z, u) +
∑
q∈K̄i

FTui(q, Zq , Uq)pq, (12)

where i ∈ D.
We say that zi is an output vector in process (7) if the index set Q̄i is empty. In this case, pi =Wzi(z, u).
If we regard each step of computational process (10) as a constraint with corresponding Lagrange multiplier pi,

then instead of E we can use the Lagrange function

L(z, u, p) = W (z, u) +
∑
j∈D
[FT (j, Zj , Uj)− zTj ]pj .

The main expressions (10)—(12) can be rewritten as follows:

Lpi(z, u, p) = 0s, Lzi(z, u, p) = 0s, dΩ/dui = Lui(z, u, p).

The latter representation is traditionally employed for first-order necessary optimality conditions where the
statement Lui(z, u, p) = 0 is added and all conditions acquire a symmetric form. Since the representation (10)—

4



(12) is based essentially on a particular structure of the mapping Φ given by (7), this representation suits our
purposes better. Therefore, it will be used in sequel.
The multistep process (7) is said to be explicit if for every step j ∈ D the input set Qj is such that for any

element q ∈ Qj the inequality q < j holds. By definition, in this case two sets Q1 and Q̄k must be empty. According
to (8) and (10), each matrix Nij and each vector zj can be expressed for explicit processes by means of the already
computed in previous computational steps matrices Niq and vectors zq, respectively, where 1 ≤ q < j. Expression
(9) yields all required derivatives. We say that all matrices Nij and derivatives (9) are computed in forward, or
bottom-up, or from left to right, or contravariant mode. During their computation the index j increases from 1 to
k.
Let us show that if the multistep process (7) is explicit, then for all i ∈ D the output set Q̄i is such that for

any element q ∈ Q̄i the inequality i < q holds. Assume the converse. Then there exists q ∈ Q̄i such that q ≤ i. It
means that i ∈ Qq. But taking into account that the process (7) is explicit we obtain that i < q. The contradiction
proves the statement.
In the last computational step of explicit process (7) we obtain a vector zk which does not belong to all sets

Qi, 1 ≤ i ≤ k and, therefore, zk is output vector in process (7). From (11) we obtain
pk =Wzk(z, u). (13)

Hence starting from i = k we can sequentially find from (13), (11) all vectors pi and using (12) compute all
derivatives. We say that all vectors pi and derivatives are found in the reverse, or backward, or top-down, or
from right to left, or covariant mode, which means that i decreases from i = k to i = 1. This makes the explicit
processes very simple for computations, they are very often used for solving discrete optimal control problems,
where continuous differential equations are integrated using explicit numerical schemes. But sometimes we have to
deal with implicit formulas. The simplest example of such case is the process (34) given in Section 5.
There is an interesting graph representation for the computational process of evaluating functions and their

derivatives (see for example [12]). The process is visualized figuratively and graphically. However, applying this
technique to an implicit scheme is more complicated. There is a cyclic computational graph and we have to use our
unified approach based on expressions (10)—(12), where we did not postulate the explicitness of the computational
process (7). If implicit integration expressions are used, then at each step i we have to solve the system of nonlinear
equations (7) and find the vector zi. Next, from the linear algebraic systems (8) and (11), we obtain Nij and pi,
respectively.
We should emphasize that there is an important difference between our expressions (8)—(12) and the well–

known “forward” and “reverse” differentiation formulas. Our expressions reduce to the latter when process (7) is
explicit. In the general case, our expressions could not be called “forward” or “reverse”. The difference occurs
when the equation (7) is implicit. In this case, the computation pi requires solving the system of linear equations
where the vector pi appears on the left and right-hand sides of (11). Similarly, the matrix Nij appears on both
sides in (8). Therefore, we cannot define Nij and pi sequentially. We have to solve all linear algebraic equations
(8) or (11) simultaneously.
Let us introduce the so-called z-graph and p-graph. Both these directed graphs have k nodes, each node is

numbered from 1 to k. Nodes are connected by some of possible edges, which are directed by arrows. In z-graph
at each i–th node we have edges coming out of all nodes whose numbers belong to the index set Qi. Similarly in
each i-th node of p-graph we have edges coming from the nodes whose numbers belong to Q̄i. This way in z-graph
at each i-th node we define all vectors zj ∈ Zi which are required in (10) to calculate zi (input data). Analogously
in p-graph at each i-th node, the incoming edges determine all vectors pj , j ∈ Q̄i which are required to calculate
pi in (11). If i ∈ Qi, then we have a loop from node to itself. Assume that i, j belong to D, then j ∈ Qi if and
only if i ∈ Q̄j . We obtain this property from the following functional dependency:

zi = F (i, . . . , zj , . . .).

Hence z-graph and p-graph are the same except the directions of edges which are, respectively, opposite.
Both graphs can be called “informational graphs”, because they illustrate the structure of dependencies between
components of vectors zi and pi, respectively. Beside these graphs two computational graphs must be defined, which
describe the sequence of computations. These graphs are apparent in explicit case (from left to right for computation
zi and opposite for pi). In general case we confront loops, which may contain many nodes (subsystems of nonlinear
equations) and computational graphs are not trivial. We should mention that the “computational graph” described
in [12], coincides with z-graph defined above.
Suppose that at each step of process (7) we determine every state vector zi with error εi. Thus, instead of (7)

we use the following formula:
zi = F (i, Zi, Ui) + εi, 1 ≤ i ≤ k. (14)

5



The auxiliary function can be written as

E(z, u, ε) =W (z, u) +
∑
j∈D
[FT (j, Zj , Uj) + ε

T
j ]pj .

The both vectors zi and pi have the same dimensionality. If process (14) is explicit, then the vector εi is the
machine precision of an arithmetic computation of the vector F (i, Zi, Ui). In the implicit case, the error norms
‖εi‖ tend to be much larger and are mainly determined by the accuracy of the solution to the nonlinear equations
(14). The solution is denoted by z(u, ε) since it is a composite function of the vector u and the error vector
εT = [εT1 , ε

T
2 , . . . , ε

T
k ]. Therefore, we can write Ω(u, ε)=W (z(u, ε), u).

Let us use the canonical equations (10)—(12). Consider εi in these expressions as a component of the vector u.
We obtain exactly the same expressions as (11) and (12). Substituting z(u, ε) in (11), we obtain p(u, ε). Moreover,
we find that the gradient of Ω with respect to εi is given by pi(u, ε) = dΩ(u, ε)/dεi. The vector pi corresponding
to the process (7) can be defined by

pi = dΩ(u, 0n)/dεi. (15)

Suppose that the vector u is given with an error and that, instead of u, we use ū = u + δ. Then for process
(14) we have

Ω(ū, ε)− Ω(u, 0) =
k∑
i=1

[〈pi(u, 0), εi〉+
〈
dΩ(u, 0)

dui
, δi

〉
] +O(‖ε‖2 + ‖δ‖2), (16)

where the derivatives of Ω with respect to ui are obtained from (12) and 〈a, b〉 denotes the inner product of vectors
a and b. This estimate can be used instead of a laborious interval analysis. Theoretical and practical aspects of
error estimation were investigated by Iri [13].
The formulas (15), (16), and similar expressions below have been used often in debugging various programs for

computing vectors pi. In problems where the differentiation of functions F is difficult, the codes for calculating the
adjoint variables according to (11) are not correct at times, and we must use an alternative method for computing
the sequence pi. Here we describe one approach for finding pi without solving system (11).
Suppose that the s-th component psi of the vector pi must be checked. Let ε̄ denote a vector with all zero

components except the s-th component, which is equal to the s-th component εsi of the vector εi. The function
Ω(u, ε) is differentiable with respect to ε at ε = 0n. Therefore, owing to (16) we have

Ω(u, ε̄) = Ω(u, 0n) + p
s
i ε
s
i +O((ε

s
i )
2).

Hence psi is a derivative of Ω with respect to ε
s
i at the origin. Thus we can generate an approximation to p

s
i by

computing perturbed process with different εsi and using the divided differences:

psi ≈ [Ω(u, ε̄)− Ω(u, 0n)]/εsi .
Unfortunately, several computations of process (7) are necessary before a reasonable approximation to psi can be
obtained.
Throughout the reminder of this section we consider explicit system (7). Let us denote

W k(z1, z2, ..., zk, u) =W (z, u).

Using (10), we express the last state vector zk via the previous vectors and substitute this expression in W . We
now define a new function

W k−1(z1, z2, ..., zk−1, u) =W k(z1, z2, ..., zk−1, F (k, Zk, Uk), u).

Analogously, by reverse recursion, we define a sequence of scalar functions W i as

W i(z1, z2, ..., zi, u) =W
i+1(z1, z2, ..., zi, F (i+ 1, Zi+1, Ui+1), u), 1 ≤ i ≤ k − 1, (17)

W 0(u) =W 1(F (1, Z1, U1), u).

Here we realized a process of sequential elimination of the state vectors zi.

Theorem 2.1 Suppose that

1. all mappings F (i, Zi, Ui), 1 ≤ i ≤ k, and scalar function W are differentiable with respect to the vector z
at the point z, which is found from (7);

2. the multistep process (7) is explicit.

6



Then all vectors pi are uniquely defined by (5) and they are equal to

pi = ∂W
i(z1, z2, . . . , zi, u)/∂zi, 1 ≤ i ≤ k. (18)

Proof. Consider the matrix ΦTz (z, u) for explicit process (7). Define s× s submatrix
Yij = ∂(F

T (j, Zj , Uj)− zTj )/∂zi.
It is obvious that Yij = 0ss if j < i. If i = j, then Yij = −Is, where Iq is the identity q × q matrix. Hence Yij

is an upper triangular matrix and equation (5) can be rewritten as follows

k∑
j=i

FTzi (j, Zj , Uj)pj − pi +Wzi(z, u) = 0s, 1 ≤ i ≤ k. (19)

The absolute value of determinant of the matrix ΦTz (z, u) is equal to one therefore this matrix is nondegenerate
and we conclude that the linear algebraic equation (19) has unique solution for any explicit process (7). Taking
into account the definition of the conjugate index set, we obtain that the system (19) can easily be solved by using
backward formula (11) with terminal condition (13). Thus (11) gives us the solution of (19). It is similar to “back
substitution”, which is used in the method of Gaussian elimination for solving a system of linear equations.
Differentiating (17) with respect to zi and using the chain rule, we obtain

∂W i(z1, z2, . . . , zi, u)

∂zi
=Wzi(z, u) +

∑
j∈Q̄i
FTzi (j, Zj , Uj)

∂W j(z, u)

∂zj
, 1 ≤ i ≤ k. (20)

From comparison expressions (11) and (20) we conclude that (18) holds. This completes the proof of Theorem 2.1.

Below we consider various examples that illustrate the characteristic properties of the different approaches
presented for evaluating gradients. For explicit processes in many cases the reverse mode of computation has an
advantage over the forward mode.

3 DIFFERENTIATION OF ELEMENTARY FUNCTIONS

The expressions presented above cover a wide range of problems. In this section, we apply them to differentiating
elementary functions.
The functions ax (a > 0), xα, loga x (a > 0, a 6= 1), sin x, cosx, tan x, cot x, arcsin x, arccos x, arctan x, arccot x

are called main elementary functions . We assume that the codes for calculating the main elementary functions and
their derivatives are stored electronically and the calculations are carried out exactly (or with machine precision).
One can add new functions to the list of the main elementary functions, if necessary.
Assume that a real-valued function f(u) is given explicitly. We say that a function f(u) is an elementary

function if it can be represented as a finite composition of main elementary functions and arithmetic operations.
Suppose that we have to calculate partial derivatives of a scalar-valued function f(u), u ∈ Rr with respect to

all components ui, 1 ≤ i ≤ r. The function f is assumed to be a differentiable elementary function. Therefore,
f(u) can be defined by a sequential program. We introduce a new vector z ∈ Rk of intermediate variables. The
evaluation of f(u) is now carried out as a k-step computational process:

z1 = F (1, Z1, U1), z2 = F (2, Z2, U2), . . . , zk = F (k, Zk, Uk), (21)

where all zj ∈ R1, zk = f(u); Zi and Ui are sets of some components of the vectors z and u, respectively; Z1 is
empty. The sets Zi consist of the already computed quantities zj with j < i. In other words, f is the composition
of basic operations whose derivatives are assumed to be computable for all arguments of interest.

We introduce scalars pi ∈ R1 and define the function

E(z, u, p) =W (z) +

k∑
i=1

F (i, Zi, Ui)pi.

In (10)–(12) we set W (z) = zk, therefore, (13) yields pk = 1. Using (11) and (12), we find the gradient of f(u)
in reverse mode. In this way we obtain the following expression for FAD:

pi =
∑
q∈Q̄i

F Tzi (q, Zq, Uq)pq, ∂f(u)/∂ui =
∑
q∈K̄i

F Tui(q, Zq, Uq)pq. (22)

7



Many publications analyze various algorithms for automatic differentiation from the point of view of the alge-
braic complexity of the computation, i.e., the total number of arithmetic operations required to compute a function
and its partial derivatives. For results in this field, we refer the interested readers to [2, 9, 10, 11, 12, 13, 14, 15]
and the relevant references cited therein.
Let T0 denote the total time required to calculate the value of the underlying function f(u). Let Tg denote the

additional time required for computing all partial derivatives ∂f(u)/∂ui, 1 ≤ i ≤ r.
Theorem 3.1 Suppose that

1. f(u) is an elementary scalar-valued differentiable function of the vector u ∈ Rr;
2. the time for computing the derivative of each main elementary function is less than twice the time required
to evaluation the main elementary function itself;

3. the time required for memory processing and for execution of the assignment operator is negligible.

If the formulas (22) for fast automatic differentiation of f(u) are used, then the gradient fu is exact and the
ratio R = Tg/T0 is bounded above by 3.

For comparison, recall that if we approximate the derivatives by divided differences, this ratio is R = r, and the
gradient is not exact for any nonlinear scalar function f . The Theorem 3.1 is proved on the basis of the approach
developed in [10, 11, 12, 13, 14].
Let us consider a simple example of an elementary function

f(u) = eu1+u2 + sin(u1 + u2)
2.

The evaluation of this function is represented as the sequence of computations

z1 = u1 + u2,
z2 = ez1 ,
z3 = (z1)

2,
z4 = sin z3,
z5 = z2 + z4.

We introduce the Lagrangian multipliers and function E:

E(z, u, p) = z5 + p1(u1 + u2) + p2e
z1 + p3(z1)

2 + p4 sin z3 + p5(z2 + z4).

The reverse computation of multipliers is represented by

p1 = p2e
z1 + 2p3z1,

p2 = p5,
p3 = p4 cos z3,
p4 = p5,
p5 = 1.

Solving this linear system, we obtain

p1 = e
z1 + 2z1 cos z3, p2 = p4 = p5 = 1, p3 = cos z3.

Therefore, (12) yields
df(u)/du1 = df(u)/du2 = e

u1+u2 + 2(u1 + u2)cos(u1 + u2)
2.

In reverse direction we define the sequence of functions W i and their derivatives:

W 5 = z5, ∂W 5/∂z5 = 1,
W 4 = z2 + z4, ∂W 4/∂z4 = 1,
W 3 = z2 + sin z3, ∂W 3/∂z3 = cos z3,
W 2 = z2 + sin(z1)

2, ∂W 2/∂z2 = 1,
W 1 = ez1 + sin(z1)

2, ∂W 1/∂z1 = ez1 + 2z1 cos z3,
W 0 = f(u).

It is obvious that (18) holds.

8



4 DERIVATIVES WITH RESPECT TO INITIAL CONDITIONS

The expressions for the forward and reverse modes of differentiation should not be considered as a stand-alone
topic in mathematical analysis. In this section we present similar results which were obtained in the theory of
ordinary differential equations. These results can be derived from expressions given in Section 2. We briefly
illustrate how this can be done. To compare the forward and reverse modes of differentiation, we consider the
simplest problem in which we have to differentiate a function W (z), z ∈ Rn with respect to initial condition of a
solution of ordinary differential equation.
Let the process be described by the following system of ordinary differential equations:

dz/dt = f(z), T1 ≤ t ≤ T2. (23)

The solution of (23) is a function z(t, T1, z1), with initial condition z(T1, T1, z1) = z1. Assume that for each
z the right-hand side of (23) is a continuously differentiable function of z and satisfies the known existence and
uniqueness conditions for solution of Cauchy problem for the equation (23). In this case for all T1 ≤ s ≤ t ≤ T2
we have

z(t, T1, z1) = z(t, s, z(s, T1, z1)).

We will find the derivative of the composite function Ω(z1) =W (z(T2, T1, z1)).
By applying Euler numerical integration method, we obtain the following discrete approximation of continuous

system (23)
z1 = u, zi = zi−1 + hf(zi−1), 2 ≤ i ≤ k,

where h = (T2 − T1)/(k − 1).
In discrete case Ω(z1) =W (zk). Denote Ni = dz

T
i /du, 1 ≤ i ≤ k, Ni ∈ Rn×n. Then, using (8), we obtain

N1 = In, Ni = Ni−1 + hNi−1fTz (zi), 2 ≤ i ≤ k. (24)

. Introducing the auxiliary function

E(z, u, p) =W (zk) + p
T
1 u+

k∑
i=2

pTi (zi−1 + hf(zi−1)),

and using (11) and (13), we obtain the difference equations for vectors pi ∈ Rn:
pi = pi+1 + hf

T
zi
(zi)pi+1, pk =Wzk(zk), 1 ≤ i ≤ k − 1. (25)

According to Theorem 2.1 the vector p is uniquely defined by (25). The desired gradient can be computed by either
of the two formulas:

dΩ(z1)/dz1 = NkWzk(zk), dΩ(z1)/dz1 = p1.

For continuous process described by (23) we define a n× n matrix-function

N(t) =
dzT (t, T1, z1)

dz1

with the initial condition N (T1) = In. In the limit, as h → 0 and k → ∞, we find from (24) that the resulting
continuous trajectory is described by the following matrix differential equation:

dN(t)

dt
= N(t)fTz (z(t, T1, z1)). (26)

Using (25), it easy to show that in the limit as h→ 0 and k →∞, the adjoint (or costate) vector p(t) satisfies the
following vector differential equation:

dp(t)

dt
= −fTz (z(t, T1, z1))p(t), (27)

here we defined a n-dimensional vector-function p(t) with the terminal condition

p(T2) =Wz(z(T2, T1, z1)). (28)

The equations (26) and (27) appear in publications devoted to the theory of ordinary differential equations [4].
Equation (26) can be found by differentiating both sides of equation (23) with respect to z1, and using the chain
rule.

9



As in the discrete case above, the gradient of the composite function Ω can be computed in two ways. The
first computational process (from left to right) is based on the integration of differential equations (23) and (26)
forward in time from t = T1 to t = T2 for the given z1 and initial condition N(T1) = In. The other one is based
on the integration of differential equation (27) with the terminal condition (28) backward in time from t = T2 to
t = T1 (from right to left).
The gradient of Ω can be computed, respectively, by one of the two formulas:

dΩ(z1)/dz1 = N(T2)Wz(z(T2, T1, z1)), dΩ(z1)/dz1 = p(T1).

The last expression was obtained in [13]. Both expressions give exactly the same result, but in the first case, we
have to integrate the matrix system (26), which consists of n2 scalar differential equations. In the second case, we
integrate vector system (27) which consists of only n scalar differential equations. Thus the second approach will be
n times less costly than the first one. The formula (27) can be used for numerical solution of two-point boundary-
value problems. The technique is based on the multiple back-and-forth shooting method which transforms a given
boundary-value problem into a sequence of initial-value problems. The method involves forward integration of (23)
and backward integration of (27).
The vector p(T1) is a total derivative of the function W with respect to initial condition z1. We can take as an

initial condition for system (23) at time t the state vector z(t, t, z(t, T1, z1)). The solution of (23) initiating from
this point will be the same as a solution z(t, T1, z1) of (23) (because of uniqueness of the solutions passing through
the point z(t, t, z(t, T1, z1)) at time t). The same function p(t) will be found from integration the adjoint system
(27) with the terminal condition (28). Consequently we obtain that the total derivative of W with respect to new
initial condition is equal to

p(t) =
dW (z(T2, t, z(t, T1, z1)))

dz(t, T1, z1)
.

This result is similar to (15) and (18) but in contrast to general case considered in the second section it gives us a
very simple, clear explanation of vector-function p(t) and it can be also used for debugging computational codes.
We should mention the less common case where forward differentiation is less time consuming than backward

differentiation. This case arises when we need to find the gradients of m functions Ωi(z1) = B
i(z(T2, T1, z1)), where

1 ≤ i ≤ m. We define N(T2) from (26), and all gradients are found as follows:
dΩi(z1)/dz1 = N(T2)B

i
z(z(T2, T1, z1)).

Therefore, if m > n, then the forward mode is more efficient than the reverse mode.

5 THE OPTIMAL CONTROL PROBLEM

Optimal control theory has been formalized as an extension of the calculus of variations. It has many successful
applications in various disciplines ranging from mathematics and engineering to economics, social and management
sciences. Many numerical methods for solving optimal control problems have been proposed, and the research
continues, especially in the field of nonlinear problems.
The basic optimal control problem can be described as follows. Let a process be governed by a system of

ordinary differential equations:

dz/dt = f(t, z, u, ξ), T1 ≤ t ≤ T2, z(T1, T1, z1) = z1, (29)

where the state vector z ∈ Rn, the control u is an arbitrary piecewise continuous function of t having its values in
U . The feasible set U is a given compact subset in the space Rr. The vector of design parameters is ξ ∈ V ⊂ Rs.
As a rule, the scalars T1, T2 and vector z1 are fixed. If T1, T2, z1 must be optimized then we include them into
vector ξ.
The problem is to find a control function u(t) ∈ U and a vector of design parameters ξ ∈ V that minimize the

cost functional W (z(T2, T1, z1), ξ), subject to mixed constraints on state, control and vector of design parameters:

g(t, z(t), u(t), ξ) = 0, q(t, z(t), u(t), ξ) ≤ 0, T1 ≤ t ≤ T2.
As a rule, this problem is reduced to a mathematical programming problem by using the control parameterization

technique. As an example, we consider here the simplest discretized version of (29), which is given by the Euler
formula

zi = zi−1 + hi−1f(ti−1, zi−1, ui−1, ξ) = F (ti−1, zi−1, ui−1, ξ), (30)

where
k∑
i=2

hi−1 = T2 − T1, 0 < hi, t1 = T1, tk = T2, ti = ti−1 + hi−1, 2 ≤ i ≤ k.

10



Thus we approximate the control by a piecewise constant function. We take into account the mixed constraints
at each grid point:

g(ti, zi, ui, ξ) = 0, q(ti, zi, ui, ξ) ≤ 0, 1 ≤ i ≤ k. (31)

Now the objective function is W (zk, ξ) and the auxiliary function is expressed as

E(z, u, p, ξ) =W (zk, ξ) +

k∑
i=2

F T (ti−1, zi−1, ui−1, ξ)pi.

Discretizing control and constraints, we arrive at the following parameterization-discretization scheme for an
approximate solution of optimal control problem.
Minimize W (zk, ξ) with respect to ui ∈ U, 1 ≤ i ≤ k, and ξ ∈ V , subject to mixed constraints (31).
In order to apply NLP solvers to this problem we must have an efficient algorithm for computing the first order

derivatives of the objective and the constraint functions. Applying the results of Section 2, we find that all vectors
pi ∈ Rn and the derivatives of Ω(u, ξ) =W (zk, ξ) can be calculated from

pi = pi+1 + hif
T
zi
(ti, zi, ui, ξ)pi+1, 1 ≤ i ≤ k − 1, pk =Wzk(zk, ξ),

dΩ/dui = hif
T
ui
(ti, zi, ui, ξ)pi+1, 1 ≤ i ≤ k − 1, dΩ/duk = 0, (32)

dΩ/dξ =Wξ(zk, ξ) +

k∑
i=2

FTξ (ti−1, zi−1, ui−1, ξ)pi,

pi = dW (zk, ξ)/dzi, 1 ≤ i ≤ k − 1.
The finite-dimensional approximate problems are solved by standard or adapted nonlinear programming meth-

ods (penalty function method, modified Lagrangian, gradient projection method, linearization, interior point tech-
niques, etc.). The gradient methods have been successfully implemented and have been found to be more effective
and robust than derivative-free methods. Second derivative methods are most attractive, but suffer from high
dimensionality.
To solve the discretized problem by standard nonlinear programming methods we introduce additional functions

(for example, a penalty function, the Lagrangian, the modified Lagrangian and so on). According to (11)— (12),
the expressions for computing their derivatives will be similar to (32) if instead of W we substitute these functions
and take into account all nonzero derivatives Wui , Wξ and Wzi .
If we use a differentiable exterior penalty function with penalty coefficient τ , then the function E is defined as

follows:

E =W (zk, ξ) +

k∑
i=2

FT (ti−1, zi−1, ui−1, ξ)pi+

+τ

k∑
i=1

[‖g(ti, zi, ui, ξ)‖2 + ‖q+(ti, zi, ui, ξ)‖2],

where a+ denotes the vector in Rl with components

(a+)
i = max[ai, 0], 1 ≤ i ≤ l.

The expressions for computing gradients of the objective and constraints are derived via the adjoint system
for the Euler and Runge-Kutta discretization schemes in [7]. These expressions and similar results for second
derivatives were used for solving the optimal control problem with mixed constraints by gradient and Newton’s
methods. The implementation of expressions (32), a short description of an optimal control package, and some
numerical illustrative examples are given in [7, 8].
In the limit as hi → 0 and k → ∞, we find from (32) that the function p(t) satisfies the following differential

equation:
ṗ = −fTz (t, z, u, ξ)p, p(T2) =Wz(z(T2, T1, z1), ξ). (33)

This is the so-called costate (or adjoint, or conjugate) equation, which is used in Pontryagin maximum principle
[18]. The adjoint system is integrated backward in time, from the t = T2 to t = T1.
If system (29) is stiff, we have to use an implicit integration scheme [20]. For example, the application of the

implicit Euler formula leads to
zi = zi−1 + hif(ti, zi, ui, ξ), 2 ≤ i ≤ k. (34)

11



Although we have to solve a system of nonlinear equations at each step in this case, we can take a much bigger
step size hi in (34) than in (30). We obtain the following discrete costate equations from (11):

pi = pi+1 + hif
T
zi
(ti, zi, ui, ξ)pi, 2 ≤ i ≤ k − 1,

pk =Wzk(zk, ξ) + hkf
T
zk
(tk, zk, uk, ξ)pk.

Hence all vectors pi are found from implicit linear algebraic system. The gradient expressions become

dΩ/dui = hif
T
ui
(ti, zi, ui, ξ)pi, 2 ≤ i ≤ k, dΩ/du1 = 0.

In the limit (hi → 0, k →∞) we obtain the same expressions as given in (33).
In some publications, the gradients are found from necessary optimality conditions by discretizing the initial

and costate systems. In this case, some errors may arise. Indeed, if we simultaneously discretize the system of
ordinary differential equations (29) and (33) using the Euler scheme, then we obtain (30) and

pi+1 = pi − hifTzi(ti, zi, ui, ξ)pi, 1 ≤ i ≤ k − 1,

dΩ/dui = hif
T
ui
(ti, zi, ui, ξ)pi.

These expressions do not coincide with (32) and therefore the gradient based on this approach is not correct. If
hi is rather small then the difference between this expression and exact expression (32) is O(h

2
i ). But the error

in the gradient calculation is not desirable when we use sensitive minimization algorithms (for example conjugate
gradients) or when the step size hi is not small enough.
We emphasize the following important conclusion. When we deal with optimal control problems, the discretiza-

tion of the costate equation must correspond to the integration scheme of the initial system. It should not be
performed independently. The same is required in the case of more complicated processes described by partial
differential equations. However, these requirements are not as obvious there as in the case of ordinary differential
equations.

6 THE OPTIMAL CONTROL PROBLEM OF A PARABOLIC

SYSTEM

Optimal control theory for distributed parameter systems has been extensively studied in [17, 21, 22, 23] and
in many others research publications. In this and in the next sections we will show that our approach gives us
a new methodology for finding exact gradients in complicated controlled systems governed by partial differential
equations.
We discretize the infinite dimensional optimization problem to obtain an approximate finite dimensional non-

linear programming problem. The determination of the functional gradient is done using the adjoint variable
formulation.
Consider, as an example, the second order parabolic heat equation

∂z(x, t)

∂t
= a2

∂2z(x, t)

∂x2
+ u(x, t), 0 < x < l, 0 < t < T, (35)

where z(x, t) is the temperature at time t at a point x and u(x, t) is a distributed control.
The initial and boundary conditions are given by

z(x, 0) = ϕ(x), 0 ≤ x ≤ l, (36)

∂z(0, t)

∂x
= 0,

∂z(l, t)

∂x
= ν[g(t)− z(l, t)], 0 < t ≤ T, (37)

where g(t) is a boundary control.
The problem is to find control functions u(x, t) and g(t) that minimize the cost functional

W =

l∫
0

Ψ(z(s, T ))ds, (38)

where Ψ is continuously differentiable with respect to its argument.

12



For given control functions u(x, t) and g(t), we solve equation (35) with conditions (36) and (37), and then
substitute this solution into (38) to evaluate W . This value is a composite function of u and g. Denote it by
Ω(u, g).
Since the optimal control cannot be obtained as an analytic solution of the necessary and sufficient optimality

conditions, we attempt to find it numerically by minimizing Ω via a descent algorithm. We are thus faced with
computing the gradient of the cost functional for which we apply the expressions given in Section 2. The problem
is discretized by a finite difference approximation scheme. For the simplicity, we use a uniform grid and denote

xi = i∆x, tj = j∆t, i = 0, . . . , k, j = 0, . . . ,m,

∆x = l/k, ∆t = t/m, zji = z(i∆x, j∆t), u
j
i = u(i∆x, j∆t),

ϕi = ϕ(i∆x), g
j = g(j∆t), i = 0, . . . , k, j = 0, . . . ,m.

Let us discretize the parabolic equation (35) with an explicit forward Euler scheme in time, a centered scheme
in space and use the simplest discretization in the vicinity of boundaries. Then the cost functional (38), the
differential equation (35) and the conditions (36), (37) are replaced by

W̃ = ∆x

k∑
i=0

αiΨ(z
m
i ), (39)

zji =


(1−2λ)zj−1i +λ(zj−1i−1 +z

j−1
i+1 )+∆tu

j−1
i , 1 ≤ i ≤ k − 1, 1 ≤ j ≤ m,

zj1, i = 0, 1 ≤ j ≤ m,
µz
j
k−1 + µν∆xg

j , i = k, 1 ≤ j ≤ m,
ϕi, 0 ≤ i ≤ k, j = 0,

(40)

where αi are the quadrature coefficients, λ = a
2∆t/(∆x)2, µ = 1/(1 + ν∆x).

We introduce the adjoint variables pji and the auxiliary function

E = W̃ +

k−1∑
i=1

m∑
j=1

[(1− 2λ)zj−1i + λ(zj−1i−1 + z
j−1
i+1 ) + ∆tu

j−1
i ]pji+

+

m∑
j=1

[zj1p
j
0 + µ(z

j
k−1 + ν∆xg

j)pjk] +

k∑
i=0

ϕip
0
i .

Applying formula (11) we obtain

p
j
i =



(1− 2λ)pj+1i + λ(pj+1i−1 + p
j+1
i+1 ), 2 ≤ i ≤ k − 2, 0 ≤ j ≤ m− 1,

(1− 2λ)pj+11 + pj0 + λp
j+1
2 , i = 1, 1 ≤ j ≤ m− 1,

(1− 2λ)pj+1k−1 + µpjk + λpj+1k−2, i = k − 1, 1 ≤ j ≤ m− 1,
αi∆xΨzm

i
+ pm0 δ

1
i + µp

m
k δ
k−1
i , 0 ≤ i ≤ k, j = m,

(1− 2λ)p1i + λp1i+1, i = 1, i = k − 1, j = 0,
λpj+11 , i = 0, 0 ≤ j ≤ m− 1,
λp
j+1
k−1, i = k, 0 ≤ j ≤ m− 1,

where δβα = 1 if α = β, else δ
β
α = 0. Then, using (12) we find the derivatives

dΩ/duji = ∆tp
j+1
i , 1 ≤ i ≤ k − 1, 0 ≤ j ≤ m− 1,

dΩ/duj0 = dΩ/du
j
k = 0, 0 ≤ j ≤ m− 1,

dΩ/dumi = 0, 0 ≤ i ≤ k,
dΩ/dgj = µν∆xpjk, 1 ≤ j ≤ m.

(41)

According to [19], the discrete approximation (40) is stable only if λ ≤ 1/2. We can replace it with the more
complicated implicit scheme which is stable for all λ:

zj+1i = zji + λ(z
j+1
i−1 − 2zj+1i + zj+1i+1 ) + ∆tu

j+1
i .

In the interior region, the vector p is now defined by the difference equation

pji = p
j+1
i + λ(pji+1 − 2pji + pji−1).

13



If we let k → ∞, ∆t → 0, ∆x → 0, then in both cases we find that the function p(x, t) satisfies the following
conditions:

∂p(x, t)

∂t
+ a2

∂2p(x, t)

∂x2
= 0, 0 < x < l, 0 < t < T, (42)

p(x, t) = Ψz(z(x, T )), 0 ≤ x ≤ l,
∂p(0, t)

∂x
= 0,

∂p(l, t)

∂x
+ νp(l, t) = 0, 0 < t < T.

Discrete approximations of all these conditions were obtained on the basis of (11) and, therefore, (41) gives us
the exact gradients for the discretized process (40). Equation (42) is conjugate (or adjoint) to (35).
The gradients of the cost functional for the continuous problem are given by

dΩ/du(x, t) = p(x, t), dΩ/dg(t) = νa2p(l, t). (43)

Using the expressions widely used in classical calculus of variations, we can rewrite (43) in the following standard
form:

δΩ =

T∫
0

l∫
0

p(x, t)δu(x, t)dxdt+ νa2
T∫
0

p(l, t)δg(t)dt.

This clarifies notation (43). These functional derivatives were obtained in [23] by calculus of variations.

7 THE OPTIMAL CONTROL PROBLEM OF A HYPERBOLIC

SYSTEM

Consider now a dynamical system described by the linear hyperbolic partial differential equation

∂2z(x, t)

∂t2
= a2

∂2z(x, t)

∂x2
+ u(x, t), 0 < x < l, 0 < t < T, (44)

with the initial and boundary conditions

z(x, 0) = ϕ1(x), zt(x, 0) = ϕ
2(x), 0 ≤ x ≤ l,

zx(0, t) = g1(t), zx(l, t) = g2(t), 0 < t ≤ T.
Controls u(x, t), g1(t), g2(t) are chosen to minimize the functional:

W =

l∫
0

Ψ(z(s, T ), zt(s, T ))ds,

where the function Ψ is continuously differentiable with respect to its arguments.
Replacing the continuous optimal control problem by its discrete version, we construct an approximation

W̃ = ∆x

k∑
i=0

αiΨ(z
m
i , (z

m
i − zm−1i )/∆t),

zji =


2(1−λ)zj−1i −zj−2i +λ(zj−1i+1 +z

j−1
i−1 )+∆t

2uj−1i , 1 ≤ i ≤ k − 1, 2 ≤ j ≤ m,
zj1 −∆xgj1, i = 0, 1 ≤ j ≤ m,
z
j
k−1 +∆xg

j
2, i = k, 1 ≤ j ≤ m,

ϕ1i , 0 ≤ i ≤ k, j = 0,
z0i +∆tϕ

2
i , 1 ≤ i ≤ k − 1, j = 1,

where λ = a2(∆t)2/(∆x)2, ϕ1i = ϕ
1(i∆x), ϕ2i = ϕ

2(i∆x), gj1 = g1(j∆t), g
j
2 = g2(j∆t).

Applying here the results of Section 2, as in the previous section, we define

E = W̃ +

k−1∑
i=1

m∑
j=2

[2(1 − λ)zj−1i − zj−2i + λ(zj−1i+1 + z
j−1
i−1 ) + ∆t

2u
j−1
i ]pji+

14



+

m∑
j=1

[(zj1 −∆xgj1)pj0 + (zjk−1 +∆xgj2)pjk] +
k∑
i=0

ϕ1i p
0
i +

k−1∑
i=1

(z0i +∆tϕ
2
i )p
1
i .

The adjoint variables are found from the following discrete algebraic difference equations

p
j
i =



2(1− λ)pj+1i − pj+2i + λ(pj+1i−1 + p
j+1
i+1 ), 2 ≤ i ≤ k − 2, 1 ≤ j ≤ m− 2,

2(1− λ)pj+11 − pj+21 + λpj+12 + pj0, i = 1, 1 ≤ j ≤ m− 2,
2(1− λ)pj+1k−1 − pj+2k−1 + λpj+1k−2 + pjk, i = k − 1, 1 ≤ j ≤ m− 2,
λpj+11 δ0i + λp

j+1
k−1δ

k
i , i = 0, i = k, 1 ≤ j ≤ m− 2,

W̃zj
i
+ 2(1− λ)pmi + λ(pmi−1 + pmi+1), 2 ≤ i ≤ k − 2, j = m− 1,

W̃zj1
+ pj0 + 2(1− λ)pm1 + λpm2 , i = 1, j = m− 1,

W̃zj
i
+ pjk + 2(1− λ)pmi + λpmi−1, i = k − 1, j = m− 1,

W̃zj
i
+ λpm1 δ

0
i + λp

m
k−1δ

k
i , i = 0, i = k, j = m− 1,

W̃zm
i
+ pm0 δ

1
i + p

m
k δ
k−1
i , 0 ≤ i ≤ k, j = m,

p1i − p2i , 1 ≤ i ≤ k − 1, j = 0,
0, i = 0, i = k, j = 0.

The required derivatives are defined by

dΩ/duji = ∆t
2p
j+1
i , 1 ≤ i ≤ k − 1, 1 ≤ j ≤ m− 1,

dΩ/duj0 = dΩ/du
j
k = 0, 0 ≤ j ≤ m− 1,

dΩ/du0i = dΩ/du
m
i = 0, 0 ≤ i ≤ k,

dΩ/dgj1 = −∆xpj0, dΩ/dgj2 = ∆xpjk, 1 ≤ j ≤ m,
dΩ/dg01 = dΩ/dg

0
2 = 0.

If we let k →∞, ∆t→ 0, ∆x→ 0, then the conjugate equation and boundary conditions are given by
∂2p(x, t)

∂t2
= a2

∂2p(x, t)

∂x2
, 0 < x < l, 0 < t < T, (45)

∂p(0, t)

∂x
= 0,

∂p(l, t)

∂x
= 0, 0 < t < T.

As earlier, we have automatically obtained the discrete scheme of the adjoint equation (45) and initial and bound-
ary conditions which yield an exact gradient. Once the exact derivatives of the discretized cost functional are
determined, the minimization can be performed by using any available gradient algorithm. Thus, we don’t see any
necessity to choose a special finite-dimensional approximation of (44) and other conditions in order to get “a good
discretized gradient”, which is the main aim of many publications including the cited paper [16].

8 CONCLUSION

We have described a technique that provides a unified tool for computing the gradients for complex systems
defined by explicit and implicit expressions. The proposed approach requires only a solution of the linear costate
system after the cost function is evaluated. The approach provides an opportunity to evaluate relatively easily the
exact gradient of the cost function for the chosen discrete approximation of a continuous process.
The technique used above is by no means restricted to the described problems. It can be applied to problems

that involve other types of distributed parameter systems and can be used for sensitivity analysis.
In order to distill our technique we have applied the proposed approach to the problem considered in [16] and we

have obtained some illustrative computational results. The corresponding paper has been accepted for publication
by the Journal on Computational Mathematics and Mathematical Physics and it will appear there late in 1997.
In conclusion, I would like to agree with M. Iri who wrote in [12] to the effect that the automatic differentiation

technique is a fundamental tool for the future computations in science and technology, and it is a most worthy area
of investment in research and development.

Acknowledgements

The author would like to thank E. Spedicato, N. Alexandrov, A. Albou, N. Tzannetakis, K.L. Teo, V. Rehbock,
V. Zubov for useful suggestions and comments. The author is deeply indebted to Professor Masao Iri, who passed
on numerous papers and reports devoted to FAD.

15



References

[1] K.R. Aida-Zade and Y.G. Evtushenko, Fast automatic differentiation, Mathematical Modeling, 1, 121-139
(1989) (in Russian).

[2] W. Baur and V. Strassen, The complexity of partial derivatives, Theoretical Computer Sciences, 22, 317-320
(1983).

[3] D. Bertsekas, Constrained optimization and Lagrange multiplier methods, Academic Press, New York (1982).

[4] C. Caratheodory, Variationsrechnung und partielle Differentialgleichungen erster Ordnung, Band 1, Leipzig
(1956).

[5] Y.G. Evtushenko and V.P. Mazouric, Optimization Software, Znanie, Moscow (1989) (in Russian).

[6] Y.G. Evtushenko, Automatic differentiation viewed from optimal control theory, in [9], 25-30 (1991).

[7] Y.G. Evtushenko, Numerical Optimization Techniques, Optimization Software, Inc., Publications Division,
New York (1985).

[8] N.I. Grachev and Y.G. Evtushenko, A library of programs for solving optimal control problems, U.S.S.R.
Comput. Maths. Math. Phys. (Pergamon Press), 19, 99-119 (1980).

[9] A. Griewank, On automatic differentiation, in: M. Iri and K. Tanabe (Eds.), Mathematical Programming:
Recent Developments and Applications, Kluwer Academic Publishers, 83-108 (1989).

[10] A. Griewank and G.F. Corliss, Eds., Automatic Differentiation of Algorithms. Theory, Implementation and
Application, SIAM, Philadelphia (1991).

[11] A. Griewank, Achieving logarithmic growth of temporal and spatial complexity in reverse automatic differen-
tiation, Optimization Methods and Software, 1, 35-54 (1992).

[12] M. Iri, History of Automatic differentiation and rounding error estimation, in [9], 3-16 (1991).

[13] M. Iri, Simultaneous computation of functions, partial derivatives and estimates of rounding errors — Com-
plexity and practicality, Japan Journal of Applied Mathematics, 1, 223-252 (1984).

[14] M. Iri and K. Kubota, Methods of fast automatic differentiation and applications, Research memorandum RMI
87-02. Department of Mathematical Engineering and Instrumental Physics, Faculty of Engineering, University
of Tokyo (1987).

[15] K. Kim, Y. Nesterov, V. Skokov, B. Cherkasskij, Efficient algorithm for differentiation and extremal problem,
Economy and Mathematical Methods, 20, 309-318 (1984) (in Russian).

[16] J.M. Lellouche, J.L. Devenon, I. Dekeyser, Boundary control of Burger’s equation — A numerical approach,
Computers and Mathematics with Applications, 28(5), 33-44 (1994).

[17] G.I. Marchuk, Conjugate equations and analysis of complex systems, Science, Moscow (1992) (in Russian).

[18] L.S. Pontryagin, V.G. Boltyansky, R.V. Gamkrelidze, E.F. Mitshenko, Mathematical Theory of Optimal
Process, Nauka, Moscow (1961).

[19] A.A. Samarskii, Introduction to the Theory of Finite-difference Methods, Nauka, Moscow (1971) (in Russian).

[20] H.J. Stetter, Analysis of Discrimination Methods for Ordinary Differential Equations, Springer-Verlag, Berlin,
Heidelberg, New York (1973).

[21] K.L. Teo and Z.S. Wu, Computation Methods for Optimizing Distributed Systems, Academic Press, Inc (1984).

[22] K.L. Teo, C.J. Goh, K.H. Wong, A Unified Computation Approach to Optimal Control Problems, Longman
Scientific & Technical, England (1991).

[23] F.P. Vasiliev, Numerical Methods for Solving Optimization Problems, Nauka, Moscow (1981) (in Russian).

16


