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Preface

Everyday life throws at us an endless number of pattern recognition problems:

smells, images, voices, faces, situations, and so on. Most of these problems we

solve at a sensory level or intuitively, without an explicit method or algorithm.

As soon as we are able to provide an algorithm the problem becomes trivial and

we happily delegate it to the computer. Indeed, machines have confidently replaced

humans in many formerly difficult or impossible, now just tedious pattern recog-

nition tasks such as mail sorting, medical test reading, military target recognition,

signature verification, meteorological forecasting, DNA matching, fingerprint

recognition, and so on.

In the past, pattern recognition focused on designing single classifiers. This book

is about combining the “opinions” of an ensemble of pattern classifiers in the hope

that the new opinion will be better than the individual ones. “Vox populi, vox Dei.”

The field of combining classifiers is like a teenager: full of energy, enthusiasm,

spontaneity, and confusion; undergoing quick changes and obstructing the attempts

to bring some order to its cluttered box of accessories. When I started writing this

book, the field was small and tidy, but it has grown so rapidly that I am faced

with the Herculean task of cutting out a (hopefully) useful piece of this rich,

dynamic, and loosely structured discipline. This will explain why some methods

and algorithms are only sketched, mentioned, or even left out and why there is a

chapter called “Miscellanea” containing a collection of important topics that I

could not fit anywhere else.

The book is not intended as a comprehensive survey of the state of the art of the

whole field of combining classifiers. Its purpose is less ambitious and more practical:

to expose and illustrate some of the important methods and algorithms. The majority

of these methods are well known within the pattern recognition and machine

xiii



learning communities, albeit scattered across various literature sources and dis-

guised under different names and notations. Yet some of the methods and algorithms

in the book are less well known. My choice was guided by how intuitive, simple, and

effective the methods are. I have tried to give sufficient detail so that the methods can

be reproduced from the text. For some of them, simple Matlab code is given as well.

The code is not foolproof nor is it optimized for time or other efficiency criteria. Its

sole purpose is to enable the reader to experiment. Matlab was seen as a suitable

language for such illustrations because it often looks like executable pseudocode.

I have refrained from making strong recommendations about the methods and

algorithms. The computational examples given in the book, with real or artificial

data, should not be regarded as a guide for preferring one method to another. The

examples are meant to illustrate how the methods work. Making an extensive experi-

mental comparison is beyond the scope of this book. Besides, the fairness of such a

comparison rests on the conscientiousness of the designer of the experiment. J.A.

Anderson says it beautifully [89]

There appears to be imbalance in the amount of polish allowed for the techniques.

There is a world of difference between “a poor thing – but my own” and “a poor

thing but his”.

The book is organized as follows. Chapter 1 gives a didactic introduction into the

main concepts in pattern recognition, Bayes decision theory, and experimental com-

parison of classifiers. Chapter 2 contains methods and algorithms for designing the

individual classifiers, called the base classifiers, to be used later as an ensemble.

Chapter 3 discusses some philosophical questions in combining classifiers includ-

ing: “Why should we combine classifiers?” and “How do we train the ensemble?”

Being a quickly growing area, combining classifiers is difficult to put into unified

terminology, taxonomy, or a set of notations. New methods appear that have to

be accommodated within the structure. This makes it look like patchwork rather

than a tidy hierarchy. Chapters 4 and 5 summarize the classifier fusion methods

when the individual classifiers give label outputs or continuous-value outputs.

Chapter 6 is a brief summary of a different approach to combining classifiers termed

classifier selection. The two most successful methods for building classifier ensem-

bles, bagging and boosting, are explained in Chapter 7. A compilation of topics is

presented in Chapter 8. We talk about feature selection for the ensemble, error-cor-

recting output codes (ECOC), and clustering ensembles. Theoretical results found in

the literature are presented in Chapter 9. Although the chapter lacks coherence, it

was considered appropriate to put together a list of such results along with the details

of their derivation. The need of a general theory that underpins classifier combi-

nation has been acknowledged regularly, but such a theory does not exist as yet.

The collection of results in Chapter 9 can be regarded as a set of jigsaw pieces await-

ing further work. Diversity in classifier combination is a controversial issue. It is a

necessary component of a classifier ensemble and yet its role in the ensemble per-

formance is ambiguous. Little has been achieved by measuring diversity and
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employing it for building the ensemble. In Chapter 10 we review the studies in

diversity and join in the debate about its merit.

The book is suitable for postgraduate students and researchers in mathematics,

statistics, computer science, engineering, operations research, and other related dis-

ciplines. Some knowledge of the areas of pattern recognition and machine learning

will be beneficial.

The quest for a structure and a self-identity of the classifier combination field will

continue. Take a look at any book for teaching introductory statistics; there is hardly

much difference in the structure and the ordering of the chapters, even the sections

and subsections. Compared to this, the classifier combination area is pretty chaotic.

Curiously enough, questions like “Who needs a taxonomy?!” were raised at the

Discussion of the last edition of the International Workshop on Multiple Classifier

Systems, MCS 2003. I believe that we do need an explicit and systematic description

of the field. How otherwise are we going to teach the newcomers, place our own

achievements in the bigger framework, or keep track of the new developments?

This book is an attempt to tidy up a piece of the classifier combination realm,

maybe just the attic. I hope that, among the antiques, you will find new tools and,

more importantly, new applications for the old tools.

LUDMILA I. KUNCHEVA

Bangor, Gwynedd, United Kingdom

September 2003
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vk

R
n the n-dimensional real space
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½s1, . . . , sL�
T

si the class label produced by classifier Di for a given input x, si [ V

V the variance operator

x a feature vector, x ¼ ½x1, . . . , xn�
T , x [ Rn (column vectors are

always assumed)

Z the data set, Z ¼ {z1, . . . , zN}, zj [ Rn, usually with known labels

for all zj

V the set of class labels, V ¼ {v1, . . . , vc}

vk a class label
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1
Fundamentals of Pattern

Recognition

1.1 BASIC CONCEPTS: CLASS, FEATURE, AND DATA SET

1.1.1 Pattern Recognition Cycle

Pattern recognition is about assigning labels to objects. Objects are described by a

set of measurements called also attributes or features. Current research builds

upon foundations laid out in the 1960s and 1970s. A series of excellent books of

that time shaped up the outlook of the field including [1–10]. Many of them were

subsequently translated into Russian. Because pattern recognition is faced with

the challenges of solving real-life problems, in spite of decades of productive

research, elegant modern theories still coexist with ad hoc ideas, intuition and gues-

sing. This is reflected in the variety of methods and techniques available to the

researcher.

Figure 1.1 shows the basic tasks and stages of pattern recognition. Suppose that

there is a hypothetical User who presents us with the problem and a set of data. Our

task is to clarify the problem, translate it into pattern recognition terminology, solve

it, and communicate the solution back to the User.

If the data set is not given, an experiment is planned and a data set is collected.

The relevant features have to be nominated and measured. The feature set should be

as large as possible, containing even features that may not seem too relevant at this

stage. They might be relevant in combination with other features. The limitations for

the data collection usually come from the financial side of the project. Another pos-

sible reason for such limitations could be that some features cannot be easily

1
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measured, for example, features that require damaging or destroying the object,

medical tests requiring an invasive examination when there are counterindications

for it, and so on.

There are two major types of pattern recognition problems: unsupervised and

supervised. In the unsupervised category (called also unsupervised learning), the

problem is to discover the structure of the data set if there is any. This usually

means that the User wants to know whether there are groups in the data, and what

characteristics make the objects similar within the group and different across the

Fig. 1.1 The pattern recognition cycle.
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groups. Many clustering algorithms have been and are being developed for unsuper-

vised learning. The choice of an algorithm is a matter of designer’s preference.

Different algorithms might come up with different structures for the same set of

data. The curse and the blessing of this branch of pattern recognition is that there

is no ground truth against which to compare the results. The only indication of

how good the result is, is probably the subjective estimate of the User.

In the supervised category (called also supervised learning), each object in the

data set comes with a preassigned class label. Our task is to train a classifier to

do the labeling “sensibly.” Most often the labeling process cannot be described in

an algorithmic form. So we supply the machine with learning skills and present

the labeled data to it. The classification knowledge learned by the machine in this

process might be obscure, but the recognition accuracy of the classifier will be

the judge of its adequacy.

Features are not all equally relevant. Some of them are important only in relation

to others and some might be only “noise” in the particular context. Feature selection

and extraction are used to improve the quality of the description.

Selection, training, and testing of a classifier model form the core of supervised

pattern recognition. As the dashed and dotted lines in Figure 1.1 show, the loop of

tuning the model can be closed at different places. We may decide to use the same

classifier model and re-do the training only with different parameters, or to change

the classifier model as well. Sometimes feature selection and extraction are also

involved in the loop.

When a satisfactory solution has been reached, we can offer it to the User for

further testing and application.

1.1.2 Classes and Class Labels

Intuitively, a class contains similar objects, whereas objects from different classes

are dissimilar. Some classes have a clear-cut meaning, and in the simplest case

are mutually exclusive. For example, in signature verification, the signature is either

genuine or forged. The true class is one of the two, no matter that we might not be

able to guess correctly from the observation of a particular signature. In other pro-

blems, classes might be difficult to define, for example, the classes of left-handed

and right-handed people. Medical research generates a huge amount of difficulty

in interpreting data because of the natural variability of the object of study. For

example, it is often desirable to distinguish between low risk, medium risk, and

high risk, but we can hardly define sharp discrimination criteria between these

class labels.

We shall assume that there are c possible classes in the problem, labeled v1 to vc,

organized as a set of labels V ¼ {v1, . . . , vc} and that each object belongs to one

and only one class.

1.1.3 Features

As mentioned before, objects are described by characteristics called features. The

features might be qualitative or quantitative as illustrated on the diagram in

BASIC CONCEPTS: CLASS, FEATURE, AND DATA SET 3



Figure 1.2. Discrete features with a large number of possible values are treated as

quantitative. Qualitative (categorical) features are these with small number of poss-

ible values, either with or without gradations. A branch of pattern recognition, called

syntactic pattern recognition (as opposed to statistical pattern recognition) deals

exclusively with qualitative features [3].

Statistical pattern recognition operates with numerical features. These include,

for example, systolic blood pressure, speed of the wind, company’s net profit in

the past 12 months, gray-level intensity of a pixel. The feature values for a given

object are arranged as an n-dimensional vector x ¼ ½x1, . . . , xn�
T [ R

n. The real

space Rn is called the feature space, each axis corresponding to a physical feature.

Real-number representation (x [ R
n) requires a methodology to convert qualitative

features into quantitative. Typically, such methodologies are highly subjective and

heuristic. For example, sitting an exam is a methodology to quantify students’ learn-

ing progress. There are also unmeasurable features that we, humans, can assess

intuitively but hardly explain. These include sense of humor, intelligence, and

beauty. For the purposes of this book, we shall assume that all features have numeri-

cal expressions.

Sometimes an object can be represented by multiple subsets of features. For

example, in identity verification, three different sensing modalities can be used

[11]: frontal face, face profile, and voice. Specific feature subsets are measured

for each modality and then the feature vector is composed by three subvectors,

x ¼ ½x(1), x(2), x(3)�T . We call this distinct pattern representation after Kittler et al.

[11]. As we shall see later, an ensemble of classifiers can be built using distinct pat-

tern representation, one classifier on each feature subset.

Fig. 1.2 Types of features.
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1.1.4 Data Set

The information to design a classifier is usually in the form of a labeled data set

Z ¼ {z1, . . . , zN}, zj [ R
n. The class label of zj is denoted by l(zj) [ V,

j ¼ 1, . . . , N. Figure 1.3 shows a set of examples of handwritten digits, which

have to be labeled by the machine into 10 classes. To construct a data set, the

black and white images have to be transformed into feature vectors. It is not always

easy to formulate the n features to be used in the problem. In the example in

Figure 1.3, various discriminatory characteristics can be nominated, using also

various transformations on the image. Two possible features are, for example, the

number of vertical strokes and the number of circles in the image of the digit.

Nominating a good set of features predetermines to a great extent the success of a

pattern recognition system. In this book we assume that the features have been

already defined and measured and we have a ready-to-use data set Z.

1.2 CLASSIFIER, DISCRIMINANT FUNCTIONS, AND
CLASSIFICATION REGIONS

A classifier is any function:

D : Rn
! V (1:1)

In the “canonical model of a classifier” [2] shown in Figure 1.4, we consider a set

of c discriminant functions G ¼ {g1(x), . . . , gc(x)},

gi : R
n
! R, i ¼ 1, . . . , c (1:2)

each yielding a score for the respective class. Typically (and most naturally), x is

labeled in the class with the highest score. This labeling choice is called the

Fig. 1.3 Examples of handwritten digits.

CLASSIFIER, DISCRIMINANT FUNCTIONS, AND CLASSIFICATION REGIONS 5



maximum membership rule, that is,

D(x) ¼ vi� [ V, gi� (x) ¼ max
i¼1,...,c

{gi(x)} (1:3)

Ties are broken randomly, that is, x is assigned randomly to one of the tied classes.

The discriminant functions partition the feature space Rn into c (not necessarily

compact) decision regions or classification regions denoted by R1, . . . , Rc

Ri ¼ x

���� x [ R
n, gi(x) ¼ max

k¼1,...,c
gk(x)

� �
, i ¼ 1, . . . , c (1:4)

The decision region for class vi is the set of points for which the ith discriminant

function has the highest score. According to the maximum membership rule (1.3),

all points in decision region Ri are assigned in class vi. The decision regions are

specified by the classifier D, or, equivalently, by the discriminant functions G.

The boundaries of the decision regions are called classification boundaries, and con-

tain the points for which the highest discriminant function votes tie. A point on the

boundary can be assigned to any of the bordering classes. If a decision region Ri

contains data points from the labeled set Z with true class label vj, j = i, the classes

vi and vj are called overlapping. Note that overlapping classes for a particular par-

tition of the feature space (defined by a certain classifier D) can be nonoverlapping if

the feature space was partitioned in another way. If in Z there are no identical

points with different class labels, we can always partition the feature space into

Fig. 1.4 Canonical model of a classifier. The double arrows denote the n-dimensional input

vector x, the output of the boxes are the discriminant function values, gi (x ) (scalars), and the

output of the maximum selector is the class label vk [ V assigned according to the maximum

membership rule.
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classification regions so that the classes are nonoverlapping. Generally, the smaller

the overlapping, the better the classifier.

Example: Classification Regions. A 15-point two-class problem is depicted in

Figure 1.5. The feature space R
2 is divided into two classification regions: R1 is

shaded (class v1: squares) and R2 is not shaded (class v2: dots). For two classes

we can use only one discriminant function instead of two:

g(x) ¼ g1(x)� g2(x) (1:5)

and assign class v1 if g(x) is positive and class v2 if it is negative. For this example,

we have drawn the classification boundary produced by the linear discriminant

function

g(x) ¼ �7x1 þ 4x2 þ 21 ¼ 0 (1:6)

Notice that any line in R2 is a linear discriminant function for any two-class pro-

blem in R2. Generally, any set of functions g1(x), . . . , gc(x) (linear or nonlinear) is a
set of discriminant functions. It is another matter how successfully these discrimi-

nant functions separate the classes.

Let G� ¼ {g�1(x), . . . , g
�
c (x)} be a set of optimal (in some sense) discriminant

functions. We can obtain infinitely many sets of optimal discriminant functions

from G� by applying a transformation f (g�i (x)) that preserves the order of the

function values for every x [ R
n. For example, f (z ) can be a log(z ),

ffiffiffi
z
p

for positive

definite g�(x), az, for a . 1, and so on. Applying the same f to all discriminant

functions in G�, we obtain an equivalent set of discriminant functions. Using the

Fig. 1.5 A two-class example with a linear discriminant function.
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maximum membership rule (1.3), x will be labeled to the same class by any of the

equivalent sets of discriminant functions.

If the classes in Z can be separated completely from each other by a hyperplane

(a point inR, a line inR2, a plane inR3), they are called linearly separable. The two

classes in Figure 1.5 are not linearly separable because of the dot at (5,6.6) which is

on the wrong side of the discriminant function.

1.3 CLASSIFICATION ERROR AND CLASSIFICATION ACCURACY

It is important to know how well our classifier performs. The performance of a

classifier is a compound characteristic, whose most important component is the

classification accuracy. If we were able to try the classifier on all possible input

objects, we would know exactly how accurate it is. Unfortunately, this is hardly a

possible scenario, so an estimate of the accuracy has to be used instead.

1.3.1 Calculation of the Error

Assume that a labeled data set Zts of size Nts � n is available for testing the accuracy

of our classifier, D. The most natural way to calculate an estimate of the error is to

run D on all the objects in Zts and find the proportion of misclassified objects

Error(D) ¼
Nerror

Nts

(1:7)

where Nerror is the number of misclassifications committed by D. This is called the

counting estimator of the error rate because it is based on the count of misclassifi-

cations. Let sj [ V be the class label assigned by D to object zj. The counting

estimator can be rewritten as

Error(D) ¼
1

Nts

XNts

j¼1

1� Iðl(zj), sjÞ
� �

, zj [ Zts (1:8)

where I (a, b) is an indicator function taking value 1 if a ¼ b and 0 if a = b.

Error(D) is also called the apparent error rate. Dual to this characteristic is the

apparent classification accuracy which is calculated by 1� Error(D).

To look at the error from a probabilistic point of view, we can adopt the following

model. The classifier commits an error with probability PD on any object x [ R
n

(a wrong but useful assumption). Then the number of errors has a binomial distri-

bution with parameters (PD, Nts). An estimate of PD is

P̂PD ¼
Nerror

Nts

(1:9)
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which is in fact the counting error, Error(D), defined above. If Nts and PD satisfy the

rule of thumb: Nts . 30, P̂PD � Nts . 5 and (1� P̂PD)� Nts . 5, the binomial distri-

bution can be approximated by a normal distribution. The 95 percent confidence

interval for the error is

P̂PD � 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P̂PD(1� P̂PD)

Nts

s
, P̂PD þ 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P̂PD(1� P̂PD)

Nts

s2
4

3
5 (1:10)

There are so-called smoothing modifications of the counting estimator [12] whose

purpose is to reduce the variance of the estimate of PD. The binary indicator function

I (a, b) in Eq. (1.8) is replaced by a smoothing function taking values in the interval

½0, 1� , R.

1.3.2 Training and Testing Data Sets

Suppose that we have a data set Z of size N � n, containing n-dimensional feature

vectors describing N objects. We would like to use as much as possible of the data to

build the classifier (training), and also as much as possible unseen data to test its

performance more thoroughly (testing). However, if we use all data for training

and the same data for testing, we might overtrain the classifier so that it perfectly

learns the available data and fails on unseen data. That is why it is important to

have a separate data set on which to examine the final product. The main alternatives

for making the best use of Z can be summarized as follows.

. Resubstitution (R-method). Design classifier D on Z and test it on Z. P̂PD is

optimistically biased.

. Hold-out (H-method). Traditionally, split Z into halves, use one half for train-

ing, and the other half for calculating P̂PD. P̂PD is pessimistically biased. Splits in

other proportions are also used. We can swap the two subsets, get another esti-

mate P̂PD and average the two. A version of this method is the data shuffle

where we do L random splits of Z into training and testing parts and average

all L estimates of PD calculated on the respective testing parts.

. Cross-validation (called also the rotation method or p-method). We choose an

integer K (preferably a factor of N) and randomly divide Z into K subsets of

size N=K. Then we use one subset to test the performance of D trained on

the union of the remaining K � 1 subsets. This procedure is repeated K

times, choosing a different part for testing each time. To get the final value

of P̂PD we average the K estimates. When K ¼ N, the method is called the

leave-one-out (or U-method).

. Bootstrap. This method is designed to correct the optimistic bias of the

R-method. This is done by randomly generating L sets of cardinality N from

the original set Z, with replacement. Then we assess and average the error

rate of the classifiers built on these sets.
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The question about the best way to organize the training/testing experiment has

been around for a long time [13]. Pattern recognition has now outgrown the stage

where the computation resource was the decisive factor as to which method to

use. However, even with modern computing technology, the problem has not disap-

peared. The ever growing sizes of the data sets collected in different fields of science

and practice pose a new challenge. We are back to using the good old hold-out

method, first because the others might be too time-consuming, and secondly,

because the amount of data might be so excessive that small parts of it will suffice

for training and testing. For example, consider a data set obtained from retail analy-

sis, which involves hundreds of thousands of transactions. Using an estimate of the

error over, say, 10,000 data points, can conveniently shrink the confidence interval,

and make the estimate reliable enough.

It is now becoming a common practice to use three instead of two data sets: one

for training, one for validation, and one for testing. As before, the testing set remains

unseen during the training process. The validation data set acts as pseudo-testing.

We continue the training process until the performance improvement on the training

set is no longer matched by a performance improvement on the validation set. At

this point the training should be stopped so as to avoid overtraining. Not all data

sets are large enough to allow for a validation part to be cut out. Many of the

data sets from the UCI Machine Learning Repository Database (at http://www.
ics.uci.edu/�mlearn/MLRepository.html), often used as benchmarks in pattern

recognition and machine learning, may be unsuitable for a three-way split into

training/validation/testing. The reason is that the data subsets will be too small

and the estimates of the error on these subsets would be unreliable. Then stopping

the training at the point suggested by the validation set might be inadequate, the esti-

mate of the testing accuracy might be inaccurate, and the classifier might be poor

because of the insufficient training data.

When multiple training and testing sessions are carried out, there is the question

about which of the classifiers built during this process we should use in the end. For

example, in a 10-fold cross-validation, we build 10 different classifiers using differ-

ent data subsets. The above methods are only meant to give us an estimate of the

accuracy of a certain model built for the problem at hand. We rely on the assumption

that the classification accuracy will change smoothly with the changes in the size of

the training data [14]. Therefore, if we are happy with the accuracy and its variability

across different training subsets, we may decide finally to train a single classifier on

the whole data set. Alternatively, we may keep the classifiers built throughout the

training and consider using them together in an ensemble, as we shall see later.

1.3.3 Confusion Matrices and Loss Matrices

To find out how the errors are distributed across the classes we construct a confusion

matrix using the testing data set, Zts. The entry aij of such a matrix denotes the

number of elements from Zts whose true class is vi, and which are assigned by D

to class vj.
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The confusion matrix for the linear classifier for the 15-point data depicted in

Figure 1.5, is given as

True Class

D(x)

v1 v2

v1 7 0

v2 1 7

The estimate of the classifier’s accuracy can be calculated as the trace of the

matrix divided by the total sum of the entries, (7þ 7)=15 in this case. The additional
information that the confusion matrix provides is where the misclassifications have

occurred. This is important for problems with a large number of classes because

a large off-diagonal entry of the matrix might indicate a difficult two-class problem

that needs to be tackled separately.

Example: Confusion Matrix for the Letter Data. The Letter data set available

from the UCI Machine Learning Repository Database contains data extracted

from 20,000 black and white images of capital English letters. Sixteen numerical

features describe each image (N ¼ 20,000, c ¼ 26, n ¼ 16). For the purpose of

this illustration we used the hold-out method. The data set was randomly split

into halves. One half was used for training a linear classifier, and the other half

was used for testing. The labels of the testing data were matched to the labels

obtained from the classifier, and the 26� 26 confusion matrix was constructed. If

the classifier was ideal and all labels matched, the confusion matrix would be

diagonal.

Table 1.1 shows the row in the confusion matrix corresponding to class “H.” The

entries show the number of times that true “H” is mistaken for the letter in the

respective column. The boldface number is the diagonal entry showing how many

times “H” has been correctly recognized. Thus, from the total of 379 examples of

“H” in the testing set, only 165 have been labeled correctly by the classifier.

Curiously, the largest number of mistakes, 37, are for the letter “O.”

The errors in classification are not equally costly. To account for the different

costs of mistakes, we introduce the loss matrix. We define a loss matrix with entries

TABLE 1.1 The “H”-Row in the Confusion Matrix for the Letter Data Set Obtained

from a Linear Classifier Trained on 10,000 Points.

“H” mistaken for: A B C D E F G H I J K L M

No of times: 2 12 0 27 0 2 1 165 0 0 26 0 1

“H” mistaken for: N O P Q R S T U V W X Y Z

No of times: 31 37 4 8 17 1 1 13 3 1 27 0 0
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lij denoting the loss incurred by assigning label vi, given that the true label of the

object is vj. If the classifier is unsure about the label, it may refuse to make a

decision. An extra class (called refuse-to-decide) denoted vcþ1 can be added to

V. Choosing vcþ1 should be less costly than choosing a wrong class. For a problem

with c original classes and a refuse option, the loss matrix is of size (cþ 1)� c. Loss

matrices are usually specified by the user. A zero–one (0–1) loss matrix is defined

as lij ¼ 0 for i ¼ j and lij ¼ 1 for i = j, that is, all errors are equally costly.

1.4 EXPERIMENTAL COMPARISON OF CLASSIFIERS

There is no single “best” classifier. Classifiers applied to different problems and

trained by different algorithms perform differently [15–17]. Comparative studies

are usually based on extensive experiments using a number of simulated and real

data sets. Dietterich [14] details four important sources of variation that have to

be taken into account when comparing classifier models.

1. The choice of the testing set. Different testing sets may rank differently clas-

sifiers that otherwise have the same accuracy across the whole population.

Therefore it is dangerous to draw conclusions from a single testing exper-

iment, especially when the data size is small.

2. The choice of the training set. Some classifier models are called instable [18]

because small changes in the training set can cause substantial changes of the

classifier trained on this set. Examples of instable classifiers are decision tree

classifiers and some neural networks. (Note, all classifier models mentioned

will be discussed later.) Instable classifiers are versatile models that are

capable of adapting, so that all training examples are correctly classified.

The instability of such classifiers is in a way the pay-off for their versatility.

As we shall see later, instable classifiers play a major role in classifier

ensembles. Here we note that the variability with respect to the training

data has to be accounted for.

3. The internal randomness of the training algorithm. Some training algorithms

have a random component. This might be the initialization of the parameters

of the classifier, which are then fine-tuned (e.g., backpropagation algorithm

for training neural networks), or a random-based procedure for tuning the clas-

sifier (e.g., a genetic algorithm). Thus the trained classifier might be different

for the same training set and even for the same initialization of the parameters.

4. The random classification error. Dietterich [14] considers the possibility of

having mislabeled objects in the testing data as the fourth source of variability.

The above list suggests that multiple training and testing sets should be used, and

multiple training runs should be carried out for classifiers whose training has a

stochastic element.
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Let {D1, . . . , DL} be a set of classifiers tested on the same data set

Zts ¼ {z1, . . . , zNts
}. Let the classification results be organized in a binary Nts � L

matrix whose ijth entry is 0 if classifier Dj has misclassified vector zi, and 1 if Dj

has produced the correct class label l(zi).

Example: Arranging the Classifier Output Results. Figure 1.6 shows the classi-

fication regions of three classifiers trained to recognize two banana-shaped classes.1A

training set was generated consisting of 100 points, 50 in each class, and another set of

the same sizewas generated for testing. The points are uniformly distributed along the

banana shapes with a superimposed normal distributionwith a standard deviation 1.5.

The figure gives the gradient-shaded regions and a scatter plot of the testing data.

The confusion matrices of the classifiers for the testing data are shown in Table 1.2.

The classifier models and their training will be discussed further in the book. We are

now only interested in comparing the accuracies.

The matrix with the correct/incorrect outputs is summarized in Table 1.3. The

number of possible combinations of zeros and ones at the outputs of the three

classifiers for a given object, for this example, is 2L ¼ 8. The table shows the

0–1 combinations and the number of times they occur in Zts.

The data in the table is then used to test statistical hypotheses about the equival-

ence of the accuracies.

1.4.1 McNemar and Difference of Proportion Tests

Suppose we have two trained classifiers that have been run on the same testing data

giving testing accuracies of 98 and 96 percent, respectively. Can we claim that the

first classifier is significantly better than the second?

1To generate the training and testing data sets we used the gendatb command from the PRTOOLS tool-

box for Matlab [19]. This toolbox has been developed by Prof. R. P. W. Duin and his group (Pattern Rec-

ognition Group, Department of Applied Physics, Delft University of Technology) as a free aid for

researchers in pattern recognition and machine learning. Available at http://www.ph.tn.tudelft.nl/
�bob/PRTOOLS.html. Version 2 was used throughout this book.

Fig. 1.6 The decision regions found by the three classifiers.
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1.4.1.1 McNemar Test. The testing results for two classifiers D1 and D2 are

expressed in Table 1.4.

The null hypothesis, H0, is that there is no difference between the accuracies of

the two classifiers. If the null hypothesis is correct, then the expected counts for both

off-diagonal entries in Table 1.4 are 1
2
(N01 þ N10). The discrepancy between the

expected and the observed counts is measured by the following statistic

x2 ¼
jN01 � N10j � 1ð Þ

2

N01 þ N10

(1:11)

which is approximately distributed as x2 with 1 degree of freedom. The “21” in the

numerator is a continuity correction [14]. The simplest way to carry out the test is to

calculate x2 and compare it with the tabulated x2 value for, say, level of significance

0.05.2

2 The level of significance of a statistical test is the probability of rejecting H0 when it is true, that is, the

probability to “convict the innocent.” This error is called Type I error. The alternative error, when we do

not reject H0 when it is in fact incorrect, is called Type II error. The corresponding name for it would be

“free the guilty.” Both errors are needed in order to characterize a statistical test. For example, if we

always accept H0, there will be no Type I error at all. However, in this case the Type II error might be

large. Ideally, both errors should be small.

TABLE 1.2 Confusion Matrices and Total Accuracies for the

Three Classifiers on the Banana Data.

LDC 9-nm Parzen

42 8 44 6 47 3

8 42 2 48 5 45

84% correct 92% correct 92% correct

LDC, linear discriminant classifier; 9-nn, nine nearest neighbor.

TABLE 1.3 Correct/Incorrect Outputs for the Three Classifiers

on the Banana Data: “0” Means Misclassification, “1” Means

Correct Classification.

D1 ¼ LDC D2 ¼ 9-nn D3 ¼ Parzen Number

1 1 1 80

1 1 0 2

1 0 1 0

1 0 0 2

0 1 1 9

0 1 0 1

0 0 1 3

0 0 0 3

84 92 92 100

LDC, linear discriminant classifier; 9-nn, nine nearest neighbor.
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Then if x2 . 3:841, we reject the null hypothesis and accept that the two classi-

fiers have significantly different accuracies.

1.4.1.2 Difference of Two Proportions. Denote the two proportions of inter-

est to be the accuracies of the two classifiers, estimated from Table 1.4 as

p1 ¼
N11 þ N10

Nts

; p2 ¼
N11 þ N01

Nts

(1:12)

We can use Eq. (1.10) to calculate the 95 percent confidence intervals of the two

accuracies, and if they are not overlapping, we can conclude that the accuracies

are significantly different.

A shorter waywould be to consider just one randomvariable, d ¼ p1 � p2.We can

approximate the two binomial distributions by normal distributions (given that Nts �

30 and p1 � Nts . 5, (1� p1)� Nts . 5, p2 � Nts . 5, and (1� p2)� Nts . 5).

If the two errors are independent, then d is a normally distributed random vari-

able. Under a null hypothesis, H0, of equal p1 and p2, the following statistic

z ¼
p1 � p2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(2p(1� p))=(Nts)
p (1:13)

has (approximately) a standard normal distribution, where p ¼ 1
2
( p1 þ p2) is the

pooled sample proportion. The null hypothesis is rejected if jzj . 1:96 (a two-

sided test with a level of significance of 0.05).

Note that this test assumes that the testing experiments are done on independently

drawn testing samples of size Nts. In our case, the classifiers use the same testing

data, so it is more appropriate to use a paired or matched test. Dietterich shows

[14] that with a correction for this dependence, we arrive at a statistic that is the

square root of x2 in Eq. (1.11). Since the above z statistic is commonly used in

the machine learning literature, Dietterich investigated experimentally how badly

z is affected by the violation of the independence assumption. He recommends

using the McNemar test rather than the difference of proportions test.

Example: Comparison of Two Classifiers on the Banana Data. Consider the

linear discriminant classifier (LDC) and the nine-nearest neighbor classifier (9-nn)

for the banana data. Using Table 1.3, we can construct the two-way table with

TABLE 1.4 The 2 3 2 Relationship Table with Counts.

D2 correct (1) D2 wrong (0)

D1 correct (1) N11 N10

D1 wrong (0) N01 N00

Total, N11 þ N10 þ N01 þ N00 ¼ Nts.
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counts needed for the calculation of x2 in Eq. (1.11).

N11 ¼ 80þ 2 ¼ 82 N10 ¼ 0þ 2 ¼ 2

N01 ¼ 9þ 1 ¼ 10 N00 ¼ 3þ 3 ¼ 6

From Eq. (1.11)

x2 ¼
(j10� 2j � 1)2

10þ 2
¼

49

12
� 4:0833 (1:14)

Since the calculated x2 is greater than the tabulated value of 3.841, we reject the

null hypothesis and accept that LDC and 9-nn are significantly different. Applying

the difference of proportions test to the same pair of classifiers gives p ¼

(0:84þ 0:92)=2 ¼ 0:88, and

z ¼
0:84� 0:92ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(2� 0:88� 0:12)=(100
p

)
� �1:7408 (1:15)

In this case jzj is smaller than the tabulated value of 1.96, so we cannot reject the null

hypothesis and claim that LDC and 9-nn have significantly different accuracies.

Which of the two decisions do we trust? The McNemar test takes into account the

fact that the same testing set Zts was used whereas the difference of proportions does

not. Therefore, we can accept the decision of the McNemar test. (Would it not have

been better if the two tests agreed?)

1.4.2 Cochran’s Q Test and F -Test

To compare L . 2 classifiers on the same testing data, the Cochran’s Q test or the

F-test can be used.

1.4.2.1 Cochran’s Q Test. Cochran’sQ test is proposed for measuring whether

there are significant differences in L proportions measured on the same data [20].

This test is used in Ref. [21] in the context of comparing classifier accuracies. Let

pi denote the classification accuracy of classifier Di. We shall test the hypothesis

for no difference between the classification accuracies (equal proportions):

H0 : p1 ¼ p2 ¼ � � � ¼ pL (1:16)

If there is no difference, then the following statistic is distributed approximately as

x2 with L� 1 degrees of freedom

QC ¼ (L� 1)
L
PL

i¼1 G
2
i � T2

LT �
PNts

j¼1 (Lj)
2

(1:17)
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where Gi is the number of objects out of Nts correctly classified by Di, i ¼ 1, . . . , L;
Lj is the number of classifiers out of L that correctly classified object zj [ Zts; and T

is the total number of correct votes among the L classifiers

T ¼
XL
i¼1

Gi ¼
XNts

j¼1

Lj (1:18)

To test H0 we compare the calculated QC with the tabulated value of x2 for L� 1

degrees of freedom and the desired level of significance. If the calculated value is

greater than the tabulated value, we reject the null hypothesis and accept that

there are significant differences among the classifiers. We can apply pairwise tests

to find out which pair (or pairs) of classifiers are significantly different.

1.4.2.2 F-Test. Looney [22] proposed a method for testing L independent clas-

sifiers on the same testing set. The sample estimates of the accuracies, �pp1, . . . , �ppL,
and �pp are found and used to calculate the sum of squares for the classifiers

SSA ¼ Nts

XL
i¼1

�pp2i � NtsL�pp
2 (1:19)

and the sum of squares for the objects

SSB ¼
1

L

XNts
j¼1

(Lj)
2 � L Nts �pp

2 (1:20)

The total sum of squares is

SST ¼ NtsL�pp(1� �pp) (1:21)

and the sum of squares for classification–object interaction is

SSAB ¼ SST � SSA� SSB (1:22)

The calculated F value is obtained by

MSA ¼
SSA

(L� 1)
; MSAB ¼

SSAB

(L� 1)(Nts � 1)
; Fcal ¼

MSA

MSAB
(1:23)

We check the validity of H0 by comparing our Fcal with the tabulated value of an

F-distribution with degrees of freedom (L� 1) and (L� 1)� (Nts � 1). If Fcal is

greater than the tabulated F-value, we reject the null hypothesis H0 and can further

search for pairs of classifiers that differ significantly. Looney [22] suggests we use

the same Fcal but with adjusted degrees of freedom (called the Fþ test).
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Example: Cochran’s Q Test and F-Test for Multiple Classifiers. For the three

classifiers on the banana data, LDC, 9-nn, and Parzen, we use Table 1.3 to calculate

T ¼ 84þ 92þ 92 ¼ 268, and subsequently

QC ¼ 2�
3� (842 þ 922 þ 922)� 2682

3� 268� (80� 9þ 11� 4þ 6� 1)
� 3:7647 (1:24)

The tabulated value of x2 for L� 1 ¼ 2 degrees of freedom and level of significance

0.05 is 5.991. Since the calculated value is smaller than that, we cannot reject H0.

For the F-test, the results are

SSA ¼ 100� (0:842 þ 2� 0:922 � 3� 0:89332) � 0:4445

SSB ¼ 1
3
(80� 9þ 11� 4þ 6� 1)� 3� 100� 0:89332 � 17:2712

SST ¼ 100� 3� 0:8933� 0:1067 � 28:5945

SSAB ¼ 28:5945� 0:4445� 17:2712 ¼ 10:8788

MSA ¼ 0:4445=2 � 0:2223

MSAB ¼ 10:8788=(2� 99) � 0:0549

Fcal ¼
0:2223

0:0549
� 4:0492

The tabulated F-value for degrees of freedom 2 and (2� 99) ¼ 198 is 3.09. In

this example the F-test disagrees with the Cochran’s Q test, suggesting that we

can reject H0 and accept that there is a significant difference among the three com-

pared classifiers.

Looney [22] recommends the F-test because it is the less conservative of the two.

Indeed, in our example, the F-test did suggest difference between the three classi-

fiers whereas Cochran’s Q test did not. Looking at the scatterplots and the classifi-

cation regions, it seems more intuitive to agree with the tests that do indicate

difference: the McNemar test (between LDC and 9-nn) and the F-test (among all

three classifiers).

1.4.3 Cross-Validation Tests

We now consider several ways to account for the variability of the training and test-

ing data.

1.4.3.1 K-Hold-Out Paired t-Test. According to Ref. [14], this test is widely

used for comparing algorithms in machine learning. Consider two classifier models,

A and B, and a data set Z. The data set is split into training and testing subsets,

usually 2/3 for training and 1/3 for testing (the hold-out method). Classifiers A

and B are trained on the training set and tested on the testing set. Denote the
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observed testing accuracies as PA and PB, respectively. This process is repeated K

times (typical value of K is 30), and the testing accuracies are tagged with super-

scripts (i), i ¼ 1, . . . , K. Thus a set of K differences is obtained, P(1) ¼ P(1)
A � P(1)

B

to P(K) ¼ P(K)
A � P(K)

B . The assumption that we make is that the set of differences

is an independently drawn sample from an approximately normal distribution.

Then, under the null hypothesis (H0: equal accuracies), the following statistic has

a t-distribution with K � 1 degrees of freedom

t ¼
�PP
ffiffiffiffi
K
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK

i¼1 (P
(i) � �PP)2=(K � 1)

q (1:25)

where �PP ¼ (1=K)
PK

i¼1 P
(i). If the calculated t is greater than the tabulated value for

the chosen level of significance and K � 1 degrees of freedom, we reject H0 and

accept that there are significant differences in the two compared classifier models.

Dietterich argues that the above design might lead to deceptive results because

the assumption of the independently drawn sample is invalid. The differences are

dependent because the data sets used to train the classifier models and the sets to

estimate the testing accuracies in each of the K runs are overlapping. This is

found to be a severe drawback.

1.4.3.2 K-Fold Cross-Validation Paired t-Test. This is an alternative of the

above procedure, which avoids the overlap of the testing data. The data set is split

into K parts of approximately equal sizes, and each part is used in turn for testing of a

classifier built on the pooled remaining K � 1 parts. The resultant differences are

again assumed to be an independently drawn sample from an approximately normal

distribution. The same statistic t, as in Eq. (1.25), is calculated and compared with

the tabulated value.

Only part of the problem is resolved by this experimental set-up. The testing sets

are independent, but the training sets are overlapping again. Besides, the testing set

sizes might become too small, which entails high variance of the estimates.

1.4.3.3 Dietterich’s 5 3 2-Fold Cross-Validation Paired t-Test (5 3
2cv). Dietterich [14] suggests a testing procedure that consists of repeating a

two-fold cross-validation procedure five times. In each cross-validated run, we

split the data into training and testing halves. Classifier models A and B are trained

first on half #1, and tested on half #2, giving observed accuracies P(1)
A and P(1)

B ,

respectively. By swapping the training and testing halves, estimates P(2)
A and P(2)

B

are obtained. The differences are respectively

P(1) ¼ P(1)
A � P(1)

B
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and

P(2) ¼ P(2)
A � P(2)

B

The estimatedmean and variance of the differences, for this two-fold cross-validation

run, are calculated as

�PP ¼
P(1) þ P(2)

2
; s2 ¼ P(1) � �PP

� �2
þ P(2) � �PP
� �2

(1:26)

Let P(1)
i denote the difference P(1) in the ith run, and s2i denote the estimated variance

for run i, i ¼ 1, . . . , 5. The proposed ~tt statistic is

~tt ¼
P(1)
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(1=5)
P5

i¼1 s
2
i

q (1:27)

Note that only one of the ten differences that we will calculate throughout this exper-

iment is used in the numerator of the formula. It is shown in Ref. [14] that under the

null hypothesis, ~tt has approximately a t distribution with five degrees of freedom.

Example: Comparison of Two Classifier Models Through Cross-Validation

Tests. The banana data set used in the previous examples is suitable for experiment-

ing here because we can generate as many as necessary independent data sets from

the same distribution. We chose the 9-nn and Parzen classifiers. The Matlab code for

the three cross-validation methods discussed above is given in Appendices 1A to 1C

at the end of this chapter. PRTOOLS toolbox for Matlab, version 2 [19], was used to

train and test the two classifiers.

K-Hold-Out Paired t-Test. The training and testing data sets used in the previous

example were pooled and the K-hold-out paired t-test was run with K ¼ 30, as

explained above. We chose to divide the data set into halves instead of a 2=3 to

1=3 split. The test statistic (1.25) was found to be t ¼ 1:9796. At level of signifi-
cance 0.05, and degrees of freedom K � 1 ¼ 29, the tabulated value is 2.045

(two-tailed test). Since the calculated value is smaller than the tabulated value,

we cannot reject the null hypothesis. This test suggests that 9-nn and Parzen classi-

fiers do not differ in accuracy on the banana data. The averaged accuracies over the

30 runs were 92.5 percent for 9-nn, and 91.83 percent for Parzen.

K-Fold Cross-Validation Paired t-Test. We ran a 10-fold cross-validation for the

set of 200 data points, so each testing set consisted of 20 objects. The ten testing

accuracies for 9-nn and Parzen are shown in Table 1.5.

From Eq. (1.25) we found t ¼ 1:0000. At level of significance 0.05, and degrees

of freedom K � 1 ¼ 9, the tabulated value is 2.262 (two-tailed test). Again, since the
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calculated value is smaller than the tabulated value, we cannot reject the null

hypothesis, and we accept that 9-nn and Parzen do not differ in accuracy on the

banana data. The averaged accuracies over the 10 splits were 91.50 percent for

9-nn, and 92.00 percent for Parzen.

5 3 2cv. The results of the five cross-validation runs are summarized in Table 1.6.

Using (1.27), ~tt ¼ 1:0690. Comparing it with the tabulated value of 2.571 (level of

significance 0.05, two-tailed test, five degrees of freedom), we again conclude

that there is no difference in the accuracies of 9-nn and Parzen. The averaged accu-

racies across the 10 estimates (5 runs � 2 estimates in each) were 91.90 for 9-nn and

91.20 for Parzen.

Looking at the averaged accuracies in all three tests, it is tempting to conclude

that 9-nn is marginally better than Parzen on this data. In many publications differ-

ences in accuracy are claimed on even smaller discrepancies. However, none of the

three tests suggested that the difference is significant.

To re-confirm this result we ran a larger experiment where we did generate inde-

pendent training and testing data sets from the same distribution, and applied the

paired t-test as in Eq. (1.25). Now the assumptions of independence are satisfied

and the test should be accurate. The Matlab code for this experiment is given in

Appendix 1D at the end of this chapter. Five hundred training and testing samples,

of size 100 each, were generated. The averaged accuracy over the 500 runs was

91.61 percent for 9-nn and 91.60 percent for the Parzen classifier. The t-statistic

was calculated to be 0.1372 (we can use the standard normal distribution in this

case because K ¼ 500 � 30). The value is smaller than 1.96 (tabulated value for

TABLE 1.5 Accuracies (in %) of 9-nn and Parzen Using a 10-Fold Cross-Validation

on the Banana Data.

Sample #

1 2 3 4 5 6 7 8 9 10

9-nn (model A) 90 95 95 95 95 90 100 80 85 90

Parzen (model B) 90 95 95 95 95 90 100 85 85 90

PA 2 PB 0 0 0 0 0 0 0 25 0 0

TABLE 1.6 Accuracies (in %), Differences (in %), and Variances s 2 of 9-nn (A)

and Parzen (B) Using a 5 3 2-Fold Cross-Validation on the Banana Data.

Exp # P(1)
A P (1)

B P (1) P(2)
A P (2)

B P (2) s2

1 93 91 2 93 94 �1 0.00045

2 92 89 3 93 93 0 0.00045

3 90 90 0 88 90 �2 0.00020

4 94 94 0 91 88 3 0.00045

5 93 93 0 92 90 2 0.00020
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level of significance 0.05). Therefore we cannot conclude that there is a significant

difference between the two models on this data set.

It is intuitively clear that simple models or stable classifiers are less likely to be

overtrained than more sophisticated models. However, simple models might not be

versatile enough to fit complex classification boundaries. More complex models

(e.g., neural networks and prototype-based classifiers) have a better flexibility but

require more system resources and are prone to overtraining. What do “simple”

and “complex” mean in this context? The main aspects of complexity can be sum-

marized as [23]

. training time and training complexity;

. memory requirements (e.g., the number of the parameters of the classifier that

are needed for its operation); and

. running complexity.

1.4.4 Experiment Design

When talking about experiment design, I cannot refrain from quoting again and

again a masterpiece of advice by George Nagy titled “Candide’s practical principles

of experimental pattern recognition” [24]:

Comparison of Classification Accuracies

Comparisons against algorithms proposed by others are distasteful and should be

avoided. When this is not possible, the following Theorem of Ethical Data Selection

may prove useful. Theorem: There exists a set of data for which a candidate algorithm

is superior to any given rival algorithm. This set may be constructed by omitting from

the test set any pattern which is misclassified by the candidate algorithm.

Replication of Experiments

Since pattern recognition is a mature discipline, the replication of experiments on new

data by independent research groups, a fetish in the physical and biological sciences, is

unnecessary. Concentrate instead on the accumulation of novel, universally applicable

algorithms. Casey’s Caution: Do not ever make your experimental data available to

others; someone may find an obvious solution that you missed.

Albeit meant to be satirical, the above principles are surprisingly widespread and

closely followed! Speaking seriously now, the rest of this section gives some prac-

tical tips and recommendations.

Example: Which Is the “Best” Result? Testing should be carried out on pre-

viously unseen data. Let D(r) be a classifier with a parameter r such that varying

r leads to different training accuracies. To account for this variability, here we

use a randomly drawn 1000 objects from the Letter data set. The remaining
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19,000 objects were used for testing. A quadratic discriminant classifier (QDC) from

PRTOOLS is used.3 We vary the regularization parameter r, r [ ½0, 1�, which spe-

cifies to what extent we make use of the data. For r ¼ 0 there is no regularization, we

have more accuracy on the training data and less certainty that the classifier will per-

form well on unseen data. For r ¼ 1, the classifier might be less accurate on the

training data, but can be expected to perform at the same rate on unseen data.

This dilemma can be transcribed into everyday language as “specific expertise” ver-

sus “common sense.” If the classifier is trained to expertly recognize a certain data

set, it might have this data-specific expertise and little common sense. This will

show as high testing error. Conversely, if the classifier is trained to have good com-

mon sense, even if not overly successful on the training data, we might expect it to

have common sense with any data set drawn from the same distribution.

In the experiment r was decreased for 20 steps, starting with r0 ¼ 0:4 and taking

rkþ1 to be 0:8� rk. Figure 1.7 shows the training and the testing errors for the 20

steps.

This example is intended to demonstrate the overtraining phenomenon in the pro-

cess of varying a parameter, therefore we will look at the tendencies in the error

curves. While the training error decreases steadily with r, the testing error decreases

to a certain point, and then increases again. This increase indicates overtraining, that

is, the classifier becomes too much of a data-specific expert and loses common

sense. A common mistake in this case is to declare that the quadratic discriminant

3Discussed in Chapter 2.

Fig. 1.7 Example of overtraining: Letter data set.
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classifier has a testing error of 21.37 percent (the minimum in the bottom plot). The

mistake is in that the testing set was used to find the best value of r.

Let us use the difference of proportions test for the errors of the classifiers. The

testing error of our quadratic classifier (QDC) at the final 20th step (corresponding to

the minimum training error) is 23.38 percent. Assume that the competing classifier

has a testing error on this data set of 22.00 percent. Table 1.7 summarizes the results

from two experiments. Experiment 1 compares the best testing error found for QDC,

21.37 percent, with the rival classifier’s error of 22.00 percent. Experiment 2 com-

pares the end error of 23.38 percent (corresponding to the minimum training error of

QDC), with the 22.00 percent error. The testing data size in both experiments is

Nts ¼ 19,000.

The results suggest that we would decide differently if we took the best testing

error rather than the testing error corresponding to the best training error. Exper-

iment 2 is the fair comparison in this case.

A point raised by Duin [16] is that the performance of a classifier depends upon

the expertise and the willingness of the designer. There is not much to be done for

classifiers with fixed structures and training procedures (called “automatic” classi-

fiers in Ref. [16]). For classifiers with many training parameters, however, we can

make them work or fail due to designer choices. Keeping in mind that there are

no rules defining a fair comparison of classifiers, here are a few (non-Candide’s)

guidelines:

1. Pick the training procedures in advance and keep them fixed during training.

When publishing, give enough detail so that the experiment is reproducible by

other researchers.

2. Compare modified versions of classifiers with the original (nonmodified) clas-

sifier. For example, a distance-based modification of k-nearest neighbors

(k-nn) should be compared with the standard k-nn first, and then with other

classifier models, for example, neural networks. If a slight modification of a

certain model is being compared with a totally different classifier, then it is

not clear who deserves the credit, the modification or the original model itself.

3. Make sure that all the information about the data is utilized by all classifiers to

the largest extent possible. For example, a clever initialization of a prototype-

based classifier such as the learning vector quantization (LVQ) can make it

favorite among a group of equivalent but randomly initialized prototype clas-

sifiers.

TABLE 1.7 Comparison of Testing Errors of Two Classifiers.

e1 e2 z jzj . 1.96? Outcome

Experiment 1 21.37 22.00 22.11 Yes Different (e1 , e2)

Experiment 2 23.38 22.00 4.54 Yes Different (e1 . e2)
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4. Make sure that the testing set has not been seen at any stage of the training.

5. If possible, give also the complexity of the classifier: training and running

times, memory requirements, and so on.

1.5 BAYES DECISION THEORY

1.5.1 Probabilistic Framework

Although many types of uncertainty exist, the probabilistic model fits surprisingly

well in most pattern recognition problems. We assume that the class label v is a ran-

dom variable taking values in the set of class labels V ¼ {v1, . . . , vc}. The prior

probabilities, P(vi), i ¼ 1, . . . , c, constitute the probability mass function of the

variable v,

0 � P(vi) � 1

and

Xc
i¼1

P(vi) ¼ 1 (1:28)

We can construct a classifier based on this information only. To make the smallest

possible number of mislabelings, we should always label an object with the class of

the highest prior probability.

However, by measuring the relevant characteristics of the objects, organized as

the vector x [ R
n, we should be able to make a more accurate decision about this

particular object. Assume that the objects from class vi are distributed in R
n accord-

ing to the class-conditional probability density function (pdf ) p(xjvi), p(xjvi) � 0,

8x [ R
n, and

ð
R

n

p(xjvi) dx ¼ 1, i ¼ 1, . . . , c (1:29)

The likelihood of x [ R
n is given by the unconditional pdf

p(x) ¼
Xc
i¼1

P(vi)p(xjvi) (1:30)

Given the prior probabilities and the class-conditional pdfs we can calculate the

posterior probability that the true class label of the measured x is vi using the Bayes

formula

P(vijx) ¼
P(vi)p(xjvi)

p(x)
¼

P(vi)p(xjvi)Pc
j¼1 P(vj)p(xjvj)

(1:31)
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Equation (1.31) gives the probability mass function of the class label variable v

for the observed x. The decision for that particular x should be made with respect to

the posterior probability. Choosing the class with the highest posterior probability

will lead to the smallest possible mistake when classifying x.

The probability model described above is valid for the discrete case as well. Let x

be a discrete variable with possible values in V ¼ {v1, . . . , vs}. The only difference

from the continuous-valued case is that instead of class-conditional pdf, we use

class-conditional probability mass functions (pmf), P(xjvi), giving the probability

that a particular value from V occurs if we draw at random an object from class

vi. For all pmfs,

0 � P(xjvi) � 1, 8x [ V, and
Xs
j¼1

P(vjjvi) ¼ 1 (1:32)

1.5.2 Normal Distribution

An important example of class-conditional pdf is the normal distribution denoted

p(xjvi) � N(mi,Si), where mi [ R
n, and Si are the parameters of the distribution.

mi is the mean of class vi, and Si is an n� n covariance matrix. The class-

conditional pdf is calculated as

p(xjvi) ¼
1

(2p)n=2
ffiffiffiffiffiffiffiffi
jSij

p exp �
1

2
(x� mi)

TS
�1
i (x� mi)

	 

(1:33)

where jSij is the determinant of Si. For the one-dimensional case, x and mi are

scalars, and Si reduces to the variance of x for class vi, denoted s2
i . Equation

(1.33) simplifies to

p(xjvi) ¼
1ffiffiffiffiffiffi
2p
p

si

exp �
1

2

x� mi

si

� �2
" #

(1:34)

The normal distribution (or also Gaussian distribution) is the most natural

assumption reflecting the following situation: there is an “ideal prototype” of

class vi (a point in R
n) and all class members are distorted versions of it. Small dis-

tortions are more likely to occur than large distortions, causing more objects to be

located in the close vicinity of the ideal prototype than far away from it. The proto-

type is represented by the population mean mi and the scatter of the points around it

is associated with the covariance matrix Si.

Example: Data Cloud Shapes and the Corresponding Covariance

Matrices. Figure 1.8 shows four two-dimensional data sets generated from normal

distributions with different covariance matrices as displayed underneath the respect-

ive scatterplot.
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Plots (a) and (b) are generated with independent (noninteracting) features, that is,

the data cloud is either spherical (subplot (a)), or stretched along the coordinate axes

(subplot (b)). Notice that for these cases the off-diagonal entries of the covariance

matrix are zeros. Subplots (c) and (d) represent cases where the features are

dependent.

In the case of independent features we can decompose the n-dimensional pdf as a

product of n one-dimensional pdfs. Let s2
ik be the kth diagonal entry of the covari-

ance matrix Si and mik be the kth component of mi. Then

p(xjvi) ¼
1

(2p)n=2
ffiffiffiffiffiffiffiffi
jSij

p exp �
1

2
(x� mi)

TS
�1
i (x� mi)

	 


¼
Yn
k¼1

1ffiffiffiffiffiffiffiffiffi
(2p)
p

sik

exp �
1

2

xk � mik

sik

� �2
" #( )

(1:35)

The cumulative distribution function for a random variable X [ R with a normal

distribution, F(z) ¼ P(X � z), is available in tabulated form from any statistical

textbook.4

1.5.3 Generate Your Own Data

Trivial though it might be, sometimes you need a piece of code to generate your own

data set with specified probabilistic characteristics.

Fig. 1.8 Normally distributed data sets with mean [0,0 ]T and different covariance matrices

shown underneath.

4F(z) can be approximated with error at most 0.005 for 0 � z � 2:2 as [25]

F(z) ¼ 0:5þ
z(4:4� z)

10
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1.5.3.1 Noisy Geometric Figures. The following example suggests one pos-

sible way for achieving this. (The Matlab code is shown in Appendix 1E.)

Suppose we want to generate two classes in R
2 with prior probabilities 0.6 and

0.4, respectively. Each class will be distributed along a piece of a parametric

curve. Let class v1 have a skeleton of a Lissajous figure with a parameter t, such that

x ¼ a sin nt, y ¼ b cos t, t [ ½�p, p� (1:36)

Pick a ¼ b ¼ 1 and n ¼ 2. The Lissajous figure is shown in Figure 1.9a.

Let class v2 be shaped as a segment of a line with a parametric equation

x ¼ t, y ¼ at þ b, for t [ ½�0:3, 1:5� (1:37)

Let us pick a ¼ 1:4 and b ¼ �1:5. The segment is depicted in Figure 1.9a.

We shall draw random samples with uniform distributions along the skeletons

with overlaid normal distributions of specified variances. For v1 we shall use s
2 ¼

0:005 on both axes and a diagonal covariance matrix. For v2, we shall use s2
1 ¼

0:01� (1:5� x)2 and s2
2 ¼ 0:001. We chose s1 to vary with x so that smaller x

values exhibit larger variance. To design the data set, select the total number of

data points T, and follow the list of steps below. The normal distributions for the

example are generated within the code. Only the standard (uniform) random genera-

tor of Matlab will be used.

1. Generate a random number r [ ½0;1�.

2. If r , 0:6, then proceed to generate a point from v1.

(a) Generate randomly t in the interval ½�p, p�.

(b) Find the point (x, y) on the curve using Eq. (1.36).

(c) To superimpose the noise generate a series of triples of random numbers

u, v within ½�3s, 3s�, and w [ ½0, 1�, until the following condition,

Fig. 1.9 (a) The skeletons of the two classes to be generated. (b) The generated data set.
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coming from the multivariate normal distribution formula (1.33), is met

w ,
1

2ps2
exp �

1

2

u2 þ v2

s2

� �	 

(1:38)

where s2 ¼ 0:005.

(d) Add the new point (xþ u, yþ v) and a label v1 for it to the data set.

3. Otherwise (r � 0:6) proceed to generate a point from v2.

(a) Generate randomly t in the interval �0:3, 1:5.

(b) Find the point (x, y) on the line using Eq. (1.37).

(c) To superimpose the noise generate a series of triples of random numbers

u [ ½�3s1, 3s1�

v [ ½�3s2, 3s2�

w [ ½0, 1�

until the following condition is met

w ,
1

2ps1s2

exp �
1

2

u2

s2
1

þ
v2

s2
2

� �	 

(1:39)

where s2
1 ¼ 0:01� (1:5� x)2 and s2

2 ¼ 0:001.

(d) Add the new point (xþ u, yþ v) and a label v2 for it to the data set.

Any pdfs can be simulated in a similar way.

1.5.3.2 Rotated Check-Board Data. The Matlab code below generates a data

set with complicated decision boundaries. The data is two-dimensional and spans

the unit square ½0, 1� � ½0, 1�. The classes are placed as the white and the black

squares of a check-board and then the whole board is rotated at an angle a. A par-

ameter “a” specifies the side of the individual squares. For example, if a ¼ 0:5, then
before rotation, there will be four squares in total. Figure 1.10 shows a data set of

100,000 points generated from the Matlab code for two sets of input parameters.

The properties that make this data set interesting for experimental purposes are:

. The two classes are perfectly separable, therefore zero error is the target for

both training and testing.

. The classification regions for the same class are disjoint.

. The boundaries are not parallel to the coordinate axes.

. The classification performance will be highly dependent on the sample size.
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The Matlab code for N data points is:

function [d,labd]=gendatcb(N,a,alpha);
d=rand(N,2);
d_transformed=[d(:,1)*cos(alpha)-d(:,2)*sin(alpha), . . .

d(:,1)*sin(alpha)+d(:,2)*cos(alpha)];
s=ceil(d_transformed(:,1)/a)+floor(d_transformed(:,2)/a);
labd=2-mod(s,2);

1.5.4 Discriminant Functions and Decision Boundaries

The class with the highest posterior probability is the most natural choice for a given

x. Therefore the posterior probabilities can be used directly as the discriminant

functions, that is,

gi(x) ¼ P(vijx), i ¼ 1, . . . , c (1:40)

Hence we rewrite the maximum membership rule (1.3) as

D(x) ¼ vi� [ V, P(vi� jx) ¼ max
i¼1,...,c

{P(vijx)} (1:41)

In fact, a set of discriminant functions leading to the same classification regions

would be

gi(x) ¼ P(vi)p(xjvi), i ¼ 1, . . . , c (1:42)

Fig. 1.10 Rotated check-board data (100,000 points in each plot ).
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because the denominator of Eq. (1.31) is the same for all i, and so will not change the

ranking order of gi values. Another useful set of discriminant functions derived from

the posterior probabilities is

gi(x) ¼ log P(vi)p(xjvi)½ �, i ¼ 1, . . . , c (1:43)

Example: Decision/Classification Boundaries. Let x [ R. Figure 1.11 shows two

sets of discriminant functions for three normally distributed classes with

P(v1) ¼ 0:45, p(xjv1) � N 4, (2:0)2
� �

P(v2) ¼ 0:35, p(xjv2) � N 5, (1:2)2
� �

P(v3) ¼ 0:20, p(xjv3) � N 7, (1:0)2
� �

The first set (top plot) depicts a set of functions (1.42), P(vi)p(xjvi), i ¼ 1, 2, 3.

The classification boundaries are marked with bullets on the x-axis. The posterior

probabilities (1.40) are depicted in the bottom plot. The classification regions speci-

fied by the boundaries are displayed with different shades of gray in the bottom plot.

Note that the same regions are found in both plots.

Fig. 1.11 (a) Plot of two equivalent sets of discriminant functions: Pðv1Þpðx jv1Þ (the thin line),

Pðv2Þpðx jv2 Þ (the dashed line), and Pðv3Þpðx jv3 Þ (the thick line). (b) Plot of the three posterior

probability functions Pðv1jxÞ (the thin line), Pðv2jxÞ (the dashed line), and Pðv3jxÞ (the thick

line). In both plots x [ ½0; 10�.
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Sometimes more than two discriminant function might tie at the boundaries. Ties

are resolved randomly.

1.5.5 Bayes Error

Let D� be a classifier that always assigns the class label with the largest posterior

probability. Since for every x we can only be correct with probability

P(vi� jx) ¼ max
i¼1,...,c

{P(vijx)} (1:44)

there is some inevitable error. The overall probability of error of D� is the sum of the

errors of the individual xs weighted by their likelihood values, p(x); that is,

Pe(D
�) ¼

ð
R

n

½1� P(vi� jx)� p(x) dx (1:45)

It is convenient to split the integral into c integrals, one on each classification

region. For this case class vi� will be specified by the region’s label. Then

Pe(D
�) ¼

Xc
i¼1

ð
R�i

½1� P(vijx)� p(x) dx (1:46)

where R�i is the classification region for class vi, R
�
i >R

�
j ¼ ; for any j = i andSc

i¼1R
�
i ¼ R

n. Substituting Eq. (1.31) into Eq. (1.46) and taking into account

that
Pc

i¼1

Ð
R�i
� ¼

Ð
R

n �,

Pe(D
�) ¼

Xc
i¼1

ð
R�i

1�
P(vi)p(xjvi)

p(x)

	 

p(x) dx (1:47)

¼

ð
R

n

p(x) dx�
Xc
i¼1

ð
R�i

P(vi)p(xjvi) dx (1:48)

¼ 1�
Xc
i¼1

ð
R�i

P(vi)p(xjvi) dx (1:49)

Note that Pe(D
�) ¼ 1� Pc(D

�), where Pc(D
�) is the overall probability of correct

classification of D�.

Consider a different classifier, D, which produces classification regions

R1, . . . ,Rc, Ri >Rj ¼ ; for any j = i and
Sc

i¼1Ri ¼ R
n. Regardless of the way

the regions are formed, the error of D is

Pe(D) ¼
Xc
i¼1

ð
Ri

½1� P(vijx)� p(x) dx (1:50)
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The error ofD� is the smallest possible error, called the Bayes error. The example

below illustrates this concept.

Example: Bayes Error. Consider the simple case of x [ R and V ¼ {v1, v2}.

Figure 1.12 displays the discriminant functions in the form gi(x) ¼ P(vi)p(xjvi),

i ¼ 1, 2, x [ ½0, 10�.
For two classes,

P(v1jx) ¼ 1� P(v2jx) (1:51)

and Pe(D
�) in Eq. (1.46) becomes

Pe(D
�) ¼

ð
R�1

½1� P(v1jx)� p(x) dxþ

ð
R�2

½1� P(v2jx)� p(x) dx (1:52)

¼

ð
R�1

P(v2jx)p(x) dxþ

ð
R�2

P(v1jx)p(x) dx (1:53)

¼

ð
R�1

P(v2)p(xjv2) dxþ

ð
R�2

P(v1)p(xjv1) dx (1:54)

Fig. 1.12 Plot of two discriminant functions Pðv1Þpðx jv1Þ (left curve) and Pðv2Þpðx jv2 Þ (right

curve) for x [ ½0; 10�. The light gray area corresponds to the Bayes error, incurred if the

optimal decision boundary (denoted by †) is used. The dark gray area corresponds to the

additional error when another boundary (denoted by W) is used.
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By design, the classification regions ofD� correspond to the true highest posterior

probabilities. The bullet on the x-axis in Figure 1.12 splits R intoR�1 (to the left) and

R�2 (to the right). According to Eq. (1.54), the Bayes error will be the area under

P(v2)p(xjv2) in R
�
1 plus the area under P(v1)p(xjv1) in R

�
2. The total area corre-

sponding to the Bayes error is marked in light gray. If the boundary is shifted to

the left or right, additional error will be incurred. We can think of this boundary

as the result from classifier D, which is an imperfect approximation of D�. The

shifted boundary, depicted by an open circle, is called in this example the “real”

boundary. Region R1 is therefore R�1 extended to the right. The error calculated

through Eq. (1.54) is the area under P(v2)p(xjv2) in the whole of R1, and extra

error will be incurred, measured by the area shaded in dark gray. Therefore, using

the true posterior probabilities or an equivalent set of discriminant functions guar-

antees the smallest possible error rate, called the Bayes error.

Since the true probabilities are never available in practice, it is impossible to cal-

culate the exact Bayes error or design the perfect Bayes classifier. Even if the prob-

abilities were given, it will be difficult to find the classification regions in R
n and

calculate the integrals. Therefore, we rely on estimates of the error as discussed

in Section 1.3.

1.5.6 Multinomial Selection Procedure for Comparing Classifiers

Alsing et al. [26] propose a different view of classification performance. The classi-

fiers are compared on a labeled data set, relative to each other in order to identify

which classifier has most often been closest to the true class label. We assume

that each classifier gives at its output a set of c posterior probabilities, one for

each class, guessing the chance of that class being the true label for the input vector

x. Since we use labeled data, the posterior probabilities for the correct label of x are

sorted and the classifier with the largest probability is nominated as the winner for

this x.

Suppose we have classifiers D1, . . . , DL to be compared on a data set Z of size N.

The multinomial selection procedure consists of the following steps.

1. For i ¼ 1, . . . , c,

(a) Use only the Ni data points whose true label is vi. Initialize an Ni � L per-

formance array T.

(b) For every point zj, such that l(zj) ¼ vi, find the estimates of the posterior

probability P(vijzj) guessed by each classifier. Identify the largest pos-

terior probability, store a value of 1 for the winning classifier Dq by set-

ting T( j, q) ¼ 1 and values 0 for the remaining L� 1 classifiers,

T( j, k) ¼ 0, k ¼ 1, . . . ,L, k = q.

(c) Calculate an estimate of each classifier being the winner for class vi

assuming that the number of winnings follows a binomial distribution.

The estimate of this probability will be the total number of 1s stored
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for this classifier divided by the number of tests.

P̂P(Dk wins jvi) ¼
1

Ni

XNi

j¼1

T( j, k)

2. End i.

3. To find an overall measure of the performance of classifier Dk, use the sum of

its performance values for the classes weighted by the respective prior prob-

abilities or their estimates; that is,

P̂P(Dk wins) ¼
Xc
i¼1

P̂P(Dk winsjvi)P̂P(vi) (1:55)

If we estimate the prior probabilities as the proportions on Z, then the estimate of

the probability P(Dk wins) becomes

P̂P(Dk wins) ¼
1

N

Xc
i¼1

NiP̂P(Dk wins jvi) (1:56)

Multinomial selection procedure has been demonstrated in Ref. [26] to be very

sensitive in picking out the winner, unlike the traditional error-based comparisons.

1.6 TAXONOMY OF CLASSIFIER DESIGN METHODS

Since in real-life problems we usually do not know the true prior probabilities nor

the class-conditional pdfs, we can only design flawed versions of the Bayes clas-

sifier. Statistical pattern recognition provides a variety of classifier models

[1,2,4,7,10,27–29]. Figure 1.13 shows one possible taxonomy of methods for clas-

sifier design. The boxes contain representative classifier models from the respective

categories. Some of the classifier models are detailed in the next chapter.

One solution is to try to estimate P(vi) and p(xjvi), i ¼ 1, . . . , c, from Z and

substitute the estimates P̂P(vi) and p̂p(xjvi) in the discriminant functions

gi(x) ¼ P(vi)p(xjvi), i ¼ 1, . . . , c. This is called the plug-in approach to classifier

design. Approximating p(xjvi) as a function of x divides classifier design methods

into two big groups: parametric and non parametric. On the other side of the dia-

gram are classifier design methods that are not derived by approximating the pdfs

but rather by devising decision boundaries or discriminant functions empirically.

The distinction between the groups is not clear-cut. For example, radial basis

function (RBF) networks from the group of structural approximation of the discrimi-
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nant functions can be moved to the group of functional approximation, or even to the

group of semiparametric pdf modeling [30]. Similarly, the k-nearest neighbor (k-nn)

method, although theoretically linked with the nonparametric pdf estimation,

produces a direct estimate of the discriminant functions and can be put under the

heading of structural designs for approximating the discriminant functions.

There is no consensus on a single taxonomy, or even about the definition of para-

metric and nonparametric classifiers. Lippmann [31] lists five types of classifiers:

. probabilistic (LDC, QDC, Parzen);

. global (multilayer perceptron (MLP));

. local (radial basis function neural networks (RBF));

. nearest-neighbor type (k-nn, learning vector quantization neural networks

(LVQ));

. rule-forming (binary decision trees, rule-based systems).

Fig. 1.13 A taxonomy of methods for classifier design.
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Holmström et al. [32] consider another grouping:

. classifiers based on density estimation:

. parametric (LDC, QDC);

. nonparametric (k-nn, kernel methods, finite mixtures, RBF).

. classifiers based on regression:

. parametric (linear regression, logistic regression, MLP);

. nonparametric (projection pursuit, additive models).

. other classifiers (e.g., prototype-based: LVQ, k-nn for small k)

Some authors distinguish between neural and nonneural classifiers, local and

global classifiers, and so on.

1.7 CLUSTERING

Clustering aims at finding groups in data. “Cluster” is an intuitive concept and does

not have a mathematically rigorous definition. The members of one cluster should be

similar to one another and dissimilar to the members of other clusters. A clustering

algorithm operates on an unlabeled data set Z and produces a partition on it, denoted

P ¼ (Z(1), . . . , Z(c)), where Z(i) # Z and

Z(i) > Z( j) ¼ ;, i, j ¼ 1, . . . , c, i = j (1:57)

[c
i¼1

Z(i) ¼ Z (1:58)

There is a vast amount of literature on clustering [33–37] looking for answers to

the main questions, among which are:

. Is there really a structure in the data or are we imposing one by our clustering

algorithms?

. How many clusters should we be looking for?

. How do we define similarity between objects in the feature space?

. How do we know whether our clustering results are good?

Two main groups of clustering algorithms are hierarchical clustering (agglom-

erative and divisive) and nonhierarchical clustering. The nearest neighbor (single

linkage) clustering algorithm shown in Figure 1.14 is an example of the hierarchical

group whereas the c-means clustering algorithm (called also “k-means” ) shown in

Figure 1.15 is an example of the nonhierarchical group.
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Example: Single Linkage and c-Means Clustering for the Banana Data. Consi-

der a banana data set generated with s ¼ 0:7, with 50 points on each banana shape

as shown in Figure 1.16.

Figure 1.17a shows the results from running the single linkage clustering for the

banana data and Figure 1.17b shows the results from running c-means clustering on

the same data set. The obtained clusters are denoted by dots and �’s. Ideally, the

two clusters should match the original labels. The points that are mislabeled (i.e.,

generated by banana “A” and classed as banana “B”) are encircled in both figures.

Neither of the two algorithms was able to identify the two bananas. Finding touching

clusters appears to be difficult for most clustering algorithms.

Fig. 1.14 The single linkage clustering algorithm.

Single linkage clustering

1. Pick the number of clusters c and a similarity measure Sða; bÞ between
two objects a and b. Initialize the procedure by defining an individual

cluster for each point in Z.

2. Identify the two most similar clusters and join them as a new cluster, dis-

missing the initial two clusters. The similarity between clusters A and B

is measured as

min
a[A;b[B

Sða; bÞ:

3. Repeat step 2 until c clusters are found.

Fig. 1.15 The c-means clustering algorithm.

c-Means clustering

1. Pick the number of clusters c and a similarity measure Sða; bÞ between
two objects a and b. Initialize the c cluster centers (e.g., by randomly

selecting c points from Z to be the centers).

2. Label all points in Z with respect to their similarity to the cluster

centers: each point is assigned to the cluster with the most similar center.

3. Calculate the new centers as the mean of the points from Z assigned to

the respective cluster.

4. Repeat steps 2 and 3 until no change in the centers occurs.
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APPENDIX 1A K-HOLD-OUT PAIRED t-TEST

The Matlab code for the calculation of the t-statistic for the banana data and two

classifiers (9-nn and Parzen) is given below. We assume that the data set Z has

already been loaded into the memory, organized in an N � n matrix named “Z,”

where N is the number of objects and n is the number of features. Another matrix

named “labZ” of size N � 1 must contain the class labels of Z encoded as the

consecutive integers 1, 2, . . . , c. For simplicity we assumed that N is even. The

functions from the toolbox PRTOOLS are underlined

Fig. 1.17 Results from the single linkage (a) and c-means (b) clustering on a banana data set

with 50 points on each banana shape. The “mislabeled” points are encircled.

Fig. 1.16 Banana data for the clustering example.
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% Input Z, labZ, number of points N
K=30; % Number of runs
for i=1:K

iii=randperm(N); % random permutation of 1...N
ZZ=Z(iii,:); % arrange the data
labZZ=labZ(iii); % shuffle the labels accordingly
t1=ZZ(1:(N/2),:);t1l=labZZ(1:(N/2));

% take the first half for training
t2=ZZ((N/2)+1:N,:);t2l=labZZ((N/2)+1:N);

% take the second half for testing
e1=testk(t1,t1l,9,t2,t2l);

% test the 9-nn classifier
% (no training is necessary here)

P1(i)=1-e1; % store the testing accuracy
W=parzenc(t1,t1l); % train the Parzen classifier
e2=testd(W,t2,t2l); % test the Parzen classifier
P2(i)=1-e2; % store the testing accuracy

end

P=P1-P2; % calculate the K differences
barP=mean(P) % calculate and print the mean difference
sumD=sum((P-barP).^2);
t=barP*sqrt(K)/sqrt(sumD/(K-1))

% calculate and print the t-statistic

APPENDIX 1B K-FOLD CROSS-VALIDATION PAIRED t-TEST

All the input variables are as in Appendix 1A. Here it is recommended that N is a

multiple of K so that exactly the same size training and testing data is used in

each of the K splits.

% Input Z, labZ, number of points N
K=10; % Number of partitions
n1=ceil(N/K); % find the size of the testing data sets
last=N-(K-1)*n1;% find the size of the last set (if any)
if last==0,

last=n1; % K divides N, all pieces are the same
end
if last<n1/2, % if the last piece is smaller than

% half of the size of the others,
% then issue a warning

fprintf(’%s\n’,’Warning: imbalanced testing sets’)
end
v=[]; % construct indicator-labels for the K subsets
for i=1:K-1;

v=[v;ones(n1,1)*i];
end
v=[v;ones(last,1)*K];
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for i=1:K
l=v==i;
t1=Z(~l,:); % training data
t1l=labZ(~l); % training labels
t2=Z(l,:); % testing data
t2l=labZ(l); % testing labels
e1=testk(t1,t1l,9,t2,t2l); % 9-nn
P1(i)=1-e1;
W=parzenc(t1,t1l); % Parzen classifier
e2=testd(W,t2,t2l);
P2(i)=1-e2;

end
P=P1-P2; % calculate the K differences
barP=mean(P) % calculate and print the mean difference
sumD=sum((P-barP).^2);
t=barP*sqrt(K)/sqrt(sumD/(K-1))

% calculate and print the t-statistic

APPENDIX 1C 5 3 2cv PAIRED t-TEST

% Input Z, labZ, number of points N
K=5;
for i=1:K,

iii=randperm(N);
ZZ=Z(iii,:); % shuffle the data
labZZ=labZ(iii);
% Split into halves
t1=ZZ(1:(N/2),:);t1l=labZZ(1:(N/2));
t2=ZZ((N/2)+1:N,:);t2l=labZZ((N/2)+1:N);
e1=testk(t1,t1l,9,t2,t2l); % 9-nn
P1(i)=1-e1;
W=parzenc(t1,t1l); % Parzen classifier
e2=testd(W,t2,t2l);
P2(i)=1-e2;
% Swap training and testing
e3=testk(t2,t2l,9,t1,t1l); % 9-nn
P3(i)=1-e3;
W=parzenc(t2,t2l); % Parzen classifier
e4=testd(W,t1,t1l);
P4(i)=1-e4;

end;

D1=P1-P2;D2=P3-P4; % the difference arrays
D=(D1+D2)/2 % the five averaged differences
s2=(D1-D).^2+(D2-D).^2 % the 5 variances
tildeT=D1(1)/sqrt(mean(s2))

% calculate and plot the t-statistic
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APPENDIX 1D 500 GENERATIONS OF TRAINING/TESTING DATA
AND CALCULATION OF THE PAIRED t-TEST STATISTIC

K=500;
for i=1:K,

[t1,dummy]=gendatb(50,50,1.5); % generate training data
t1l=[zeros(50,1);ones(50,1)];
[t2,dummy]=gendatb(50,50,1.5); % generate testing data
t2l=[zeros(50,1);ones(50,1)];
e1=testk(t1,t1l,9,t2,t2l); % 9-nn
P1indep(i)=1-e1;
W=parzenc(t1,t1l); % parzen classifier
e2=testd(W,t2,t2l);
P2indep(i)=1-e2;

end;

Pindep=P1indep’-P2indep’;% calculate the K differences
barPindep=mean(Pindep) % the mean difference
sumDindep=sum((Pindep-barPindep).^2) % $s^2$
t=barPindep*sqrt(K)/sqrt(sumDindep/(K-1))

% calculate and print the t-statistic

APPENDIX 1E DATA GENERATION: LISSAJOUS FIGURE DATA

The code below generates the data shown in Figure 1.9. The steps are explained in

the text. We note that the code has not been designed to optimize the execution time.

We kept the assignments and calculations of some constants within the loops for

clarity and readability.

T=1000;

s=0.005; % sigma^2 for class omega_1

DataSet=[];

for i=1:T

if rand<0.6

% Generate a point from class omega_1

% First, generate a point on the curve

t=(rand-0.5)*2*pi; % pick t in [-pi,pi]

x=sin(2*t);y=cos(t);

% Superimpose a normal distribution

flag=0; % we don’t have the noise coordinates yet

while flag == 0,

u=(rand-0.5)*6*sqrt(s);

v=(rand-0.5)*6*sqrt(s);

w=rand;

if w<((1/(2*pi*s))*exp(-(u^2+v^2)/(2*s))),

flag=1;

% u and v are suitable noise coordinates

end % if w

42 FUNDAMENTALS OF PATTERN RECOGNITION



end % while

DataSet=[DataSet;x+u,y+v]; % Add to the data set

Labels(i)=1; % Store the label

else

% Generate a point from class omega_2

% First, generate a point on the curve

t=-0.3+rand*1.8; % pick t in [-0.3, 1.5]

x=t;y=1.4*t-1.5;

s1=0.01*(1.5-x)^2;s2=0.001; % variances

% Superimpose a normal distribution

flag=0; % we don’t have the noise coordinates yet

while flag == 0,

u=(rand-0.5)*6*sqrt(s2);

v=(rand-0.5)*6*sqrt(s1);

w=rand;

if w<((1/(2*pi*sqrt(s1*s2)))*exp(-(u^2/s2+v^2/s1)/2)),

flag=1;

% u and v are suitable noise coordinates

end % if w

end % while

DataSet=[DataSet;x+u,y+v]; % Add to the data set

Labels(i)=2; % Store the label

end % if rand

end % for i
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2
Base Classifiers

2.1 LINEAR AND QUADRATIC CLASSIFIERS

Linear and quadratic classifiers are named after the type of discriminant functions

they use. Thus any set of linear functions gi :R
n
! R, i ¼ 1, . . . , c,

gi(x) ¼ wi0 þ wT
i x, x, wi [ R

n, wi0 [ R (2:1)

can be thought of as a linear classifier.

2.1.1 Linear Discriminant Classifier

Training of linear classifiers has been rigorously studied in the early pattern recog-

nition literature [2], dating back to the Fisher’s linear discriminant, 1936 [312].

Below we derive the linear classifier as the minimum-error (Bayes) classifier for nor-

mally distributed classes with equal covariance matrices. We shall call this model

the linear discriminant classifier (LDC). LDC is simple to calculate from data

and is reasonably robust, i.e., the results might be surprisingly good even when

the classes do not have normal distributions.

As discussed in the previous chapter, any set of discriminant functions obtained

by a monotonic transformation from the posterior probabilities P(vijx) constitutes
an optimal set in terms of minimum error. We form such a set by taking

gi(x) ¼ log½P(vi)p(xjvi)�, i ¼ 1, . . . , c (2:2)

45

Combining Pattern Classifiers: Methods and Algorithms, by Ludmila I. Kuncheva

ISBN 0-471-21078-1 Copyright # 2004 John Wiley & Sons, Inc.



where P(vi) is the prior probability for class vi and p(xjvi) is the class-conditional

probability density function (pdf). Suppose that all classes are normally distributed

with means mi and covariance matrices Si, that is, p(xjvi) � N(mi, Si), i ¼ 1, . . . , c.
Then Eq. (2.2) takes the form

gi(x) ¼ log½P(vi)� þ log
1

(2p)n=2
ffiffiffiffiffiffiffiffi
jSij

p exp �
1

2
(x� mi)

TS
�1
i (x� mi)

� �( )

¼ log½P(vi)� �
n

2
log (2p)�

1

2
log (jSij)

�
1

2
(x� mi)

TS
�1
i (x� mi) (2:3)

Assume that all class-covariance matrices are the same, that is, Si ¼ S, and

p(xjvi) � N(mi, S). Opening the parentheses in the last term of Eq. (2.3) and dis-

carding all terms that do not depend on vi, we obtain a new set of discriminant func-

tions

gi(x) ¼ log½P(vi)� �
1

2
mT
i S
�1
mi þ mT

i S
�1
x ¼ wi0 þ wT

i x (2:4)

wherewi0 [ R andwi [ R
n are the coefficients of the linear discriminant function gi.

In reality, the classes are neither normally distributed nor are the true values of mi

and Si known. We can still calculate the coefficients wi0 and wi from data using esti-

mates of the means and the covariance matrices but the obtained classifier will not be

equivalent to the minimum-error (Bayes) classifier.

2.1.2 Quadratic Discriminant Classifier

Assume that the classes are normally distributed, but now with class-specific covari-

ance matrices, that is, p(xjvi) � N(mi,Si). The set of optimal discriminant functions

is obtained from Eq. (2.3) by discarding all terms that do not depend on the class

label vi,

gi(x) ¼ wi0 þ wT
i xþ xTWix (2:5)

where

wi0 ¼ log½P(vi)� �
1

2
mT
i S
�1
i mi �

1

2
log (jSij) (2:6)

wi ¼ S
�1
i mi (2:7)
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and

Wi ¼ �
1

2
S
�1
i (2:8)

The estimates of the parameters for LDC and the quadratic discriminant classifier

(QDC) are calculated from data. Let Ni be the number of objects in our data set Z

from class vi, i ¼ 1, . . . ; c, and l(zj) [ V be the class label of zj [ Z. The means

are obtained by

m̂mi ¼
1

Ni

X
l(zj)¼vi

zj (2:9)

and the covariance matrices, by5

ŜSi ¼
1

Ni

X
l(zj)¼vi

(zj � m̂mi)(zj � m̂mi)
T (2:10)

The common covariance matrix for LDC is obtained as the weighted average of

the separately estimated class-conditional covariance matrices.

ŜS ¼
1

N

Xc
i¼1

NiSi (2:11)

2.1.3 Using Data Weights with a Linear Discriminant Classifier and
Quadratic Discriminant Classifier

For the purposes of designing ensembles of classifiers it is important to have a mech-

anism to incorporate data weights into LDC and QDC. The most natural way for that

is to calculate the weighted m̂mi and ŜSi. Let W( j) be the weight of object zj [ Z, Wi

be the sum of the weights of all objects in Z from vi, andW ¼
Pc

i¼1 W
i be the total

sum of weights for Z. Then

m̂m
(w)
i ¼

1

Wi

X
l(zj)¼vi

W( j)zj (2:12)

and

ŜS
(w)
i ¼

1

Wi

X
l(zj)¼vi

W( j)(zj � m̂mi)(zj � m̂mi)
T (2:13)

5We use the maximum likelihood estimate of the covariance matrices and note that this estimate is biased.

For an unbiased estimate take ŜSi ¼ 1=(Ni � 1)
P

l(zj)¼vi
(zj � m̂mi)(zj � m̂mi)

T .
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For the common covariance matrix for LDC,

ŜS
(w)
¼

Pc
i¼1 W

iSi

W
(2:14)

2.1.4 Regularized Discriminant Analysis

Since ŜS (for LDC) or ŜSi (for QDC) have to be inverted, it is important that these

matrices are not singular or close to singular. This often poses a problem, especially

for small data sizes (small N) and high dimensionality (large n). When N is smaller

than the number of parameters that need to be estimated, some of the parameters are

not identifiable from the data and the problem is said to be ill-posed. When N only

marginally exceeds the number of parameters to be estimated, the problem is called

poorly posed. To overcome this, we can use regularization.

Regularized discriminant analysis (RDA) is proposed by Friedman [38] to

cope with ill- and poorly posed problems. We shall take Friedman’s definition of

regularization as an “attempt to improve the estimates by biasing them away from

their sample-based values toward values that are deemed to be more ‘physically

plausible’ ”.

Two ways of stabilizing the estimates ŜSi are considered. First, averaging of ŜSi

weighted by the number of observations giving S, Eq. (2.11), is already a good regu-

larization move. However, by using one S for all classes we reduce QDC to LDC.

We can quantify the amount of this reduction by introducing a parameter, l [ ½0, 1�,
and use

ŜSi(l) ¼ (1� l)ŜSi þ lŜS (2:15)

Friedman [38] uses the weighted estimates

ŜS
(w)
i (l) ¼

(1� l)WiŜS
(w)
i þ lWŜS

(w)

(1� l)Wi þ lW
(2:16)

In both formulas, l ¼ 1 means that QDC becomes LDC because all the classes

share the same covariance matrix ŜS, and l ¼ 0 means that no regularization is

implemented. Thus, l spanning the interval between 0 and 1 produces a family of

classifiers between LDC and QDC.

The problem might be ill-posed or poorly posed even for the LDC. The second

way of regularizing the estimates is to add a term to ŜSi that will shrink it toward

a multiple of the identity matrix

ŜSi(r) ¼ (1� r)ŜSi þ
r

n
tr(ŜSi)I (2:17)

where tr denotes the trace of the matrix and I denotes the identity matrix of size

n� n. This estimate has the effect of “equalizing” the eigenvalues of ŜSi which
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counters the bias inherent in sample-based estimates of the eigenvalues [38]. The

parameter r [ ½0, 1� determines to what extent we want to equalize the eigenvalues.

For r ¼ 0, there is no regularization and for r ¼ 1, ŜSi is a diagonal matrix with

eigenvalues equal to the averaged eigenvalues of the sample-based estimate of the

covariance matrix.

Recall the example from Figure 1.7, where a regularization parameter was varied.

In this example we regularized the covariance matrices using Eq. (2.17) for 20

different values of r.6

Friedman defines RDA to be a combination of the two regularization ways so that

ŜSi(l, r) ¼ (1� r)ŜSi(l)þ
r

n
tr½ŜSi(l)�I (2:18)

The values of the two parameters, l and r, have to be determined from the

data. Depending on the problem, a different pair of values might be preferred. A

cross-validation procedure is suggested in Ref. [38] for selecting from a grid of

pairs (l, r).

Example: Choosing Parameter Values for Regularized Discriminant Analy-

sis. To simulate a small data set, we used the first 200 objects from the Letter

data for training and the remaining 19,800 objects for testing. Since there are 26

classes and 16 features, it is likely that the sample estimates of the covariance

matrices will benefit from regularizing. Figure 2.1 shows the training and testing sur-

faces over the unit square ½0, 1�2 spanned by (l, r).

There were singular covariance matrices for l ¼ 0 and r ¼ 0, which is the cause

of the high peak of the error around the origin. A very small regularization appears

to be sufficient to make the most of the linear–quadratic compromise model. The

training error for l ¼ 0, r ¼ 0:2 appeared to be 0, and the corresponding testing

6The QDC implementation in the toolbox PRTOOLS allows for r to be specified as an external parameter.

Fig. 2.1 Training and testing error rates for pairs of values (l, r ) for RDAwith the Letters data set

(see Figure 1.7).
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error was 42.8 percent. The best testing error, 39.2 percent was found for

l ¼ 0:2, r ¼ 0, which suggests a model not very far from the QDC. As the figure

shows, further regularization would increase the error, leading eventually to the

37.0 percent training error and 59.1 percent testing error of LDA trained on this

data set.

2.2 NONPARAMETRIC CLASSIFIERS

The three classifier models in the previous section assumed that the classes are nor-

mally distributed. If this is true, then theoretically either LDC or QDC is the optimal

classifier for the problem. Most often we do not have sufficient knowledge of the

underlying distributions. We can still use LDC or QDC (or a model in-between pro-

vided by RDA) regardless of the suspected nonoptimality. Practice shows that LDC

and QDC often yield reasonable accuracy.

In nonparametric designs the probability density function p(xjvi) is estimated in

the vicinity of x in R
n. The probability p� that x is in a certain region R , R

n is

p� ¼ P(x [ R) ¼

ð
R

p(u) du (2:19)

Assume that N samples are drawn from the distribution in question. Using the

binomial distribution with parameters ( p�, N), the probability that exactly k samples

fall in R is given by

pk ¼
N

k

� �
(p�)k(1� p�)N�k (2:20)

and the value p� can be estimated as the proportion of the points in R with respect to

the total number of samples; that is,

p� �
k

N
(2:21)

Let x be a point inside region R. For a small R, assuming that p(u) is approxi-

mately constant in R, p� can also be approximated as

p� � p(x)

ð
R

du ¼ p(x)VR (2:22)

where VR is the volume of R in R
n. Joining Eqs. (2.21) and (2.22), and solving for

p(x) we obtain

p(x) �
k

NVR

(2:23)

When N tends to infinity and the region R shrinks to a point (VR! 0), Eq. (2.23)

produces the exact p(x). The above result is an important point of departure of

various nonparametric classification methods.
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2.2.1 Multinomial Classifiers

To derive the multinomial classifier (we will call it also “the method of histograms”)

from Eq. (2.23), we fix N and V , and calculate k from Z. The feature space is divided

into bins (cells). Consider a bin B containing m points from the data set Z. Let mi

be the number of points in B from class vi, i ¼ 1, . . . , c, m ¼ m1 þ � � � þ mc.

According to Eq. (2.23)

p(x) �
m

NVB

(2:24)

where VB is the volume of the bin, and

p(xjvi) �
mi

NiVB

(2:25)

Here Ni is the number of elements from class vi in Z. The prior probabilities are

usually estimated by

P̂P(vi) ¼
Ni

N
(2:26)

Then the posterior probabilities are obtained as

P(vijx) ¼
p(xjvi)P(vi)

p(x)
�

mi

NiVB

Ni

N
m

NVB

(2:27)

hence

P(vijx) �
mi

m
(2:28)

The approximation of the Bayes classifier is obtained by using the approximated

values of the posterior probabilities for the classes as the discriminant functions.7

Thus, the bin B is labeled according to the largest mi in it, and all points in B get

the same class label. To classify an input x (not in Z), the histogram classifier

finds the bin where x belongs and retrieves the bin’s class label. Practically, the his-

togram classifier is a look-up table (usually a big one) whose accuracy depends on

the number of bins and the sample size N.

A drawback of the histogram classifier is that the total number of bins grows

exponentially with the dimensionality of the problem, n. If we use M bins per

axis, the total number of bins will be Mn. This requires correspondingly large

7 In Chapter 5 we discuss a smoothed estimate of this probability by the Laplace estimator.
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data sets because otherwise many bins will be empty or may contain too few

elements to provide reliable estimates of the posterior probabilities. This phenom-

enon is known as the curse of dimensionality. The effect of the small number of

data points can be alleviated using the Laplace correction as explained in Chapter 5.

Example: Multinomial Classifier for the Banana Data. We applied the multi-

nomial classifier on the training set of the banana data (N ¼ 200). The results for

M ¼ 7 and M ¼ 15 bins per axis are shown in Figure 2.2.

The bins where the number of elements for both classes tie, or that are empty, are

left white while the others are shaded. The gray level indicates the class labels. We

calculated the classification error of this design using the leave-one-out method. For

each zj [ Z we found its bin, and then recalculated the class label of the bin by

updating m1 or m2. For example, assume that bin B originally contained m1 ¼ 4

points from v1 and m2 ¼ 3 points from v2 (so, B is labeled in v1). Let zB be a

point from Z such that it is located in B, and its class label is l(zB) ¼ v1. The updated

values for the leave-one-out (in this case leave zB out) are m1 m1 � 1 ¼ 3 and

m2 m2 ¼ 3. Now the class label of B is obtained by breaking the tie randomly.

If zB was from class v2, the label assigned to it would be v1 because the updated

values in that case would be m1  m1 ¼ 4 and m2 m2 � 1 ¼ 2. We also calcu-

lated the resubstitution error and the testing error on the independent test set.

Table 2.1 shows these errors.

Fig. 2.2 Classification regions found by a histogram classifier on the banana data. Plotted also is

the training set.

TABLE 2.1 Error Rates (in %) for Two Multinomial Classifiers

for the Banana Data.

M Resubstitution Leave-one-out Testing

7 7 20 10

15 5 35 26
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With 15 bins the classification boundary is more precise but a larger part of the

feature space remains uncovered by the classifier (the white regions). This means

that more observations will have to be classified randomly and indeed the error

on the independent testing set for M ¼ 15 is bigger than the error for M ¼ 7. The

leave-one-out estimate seems overpessimistic in both examples. To examine this

further, we ran the histogram classifier for M ¼ 2, 3, . . . , 30 and calculated the

three errors as before. Figure 2.3 depicts the error rates versus M.

The curse of dimensionality leads to quick overtraining as the opposite trends of

the training and the testing errors indicate. The plot also demonstrates that the leave-

one-out estimate of the testing accuracy tends to be overpessimistic.

The multinomial classifier is both time and memory consuming, and, besides, cri-

tically depends on how large the data set is. The number of bins acts as a smoothing

factor: the more bins we have, the noisier the approximation of the discriminant

function. With large M, it is more likely that large regions of the feature space

will not be covered. The method of histograms is hardly ever used in the form

described here. However, is it an intuitive nonparametric model related to rule-

based classifiers and especially fuzzy classifiers (cf. [39]).

Fig. 2.3 Resubstitution, leave-one-out and testing error rates of the histogram classifier versus

the number of bins per axis.
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2.2.2 Parzen Classifier

This model is based again on Eq. (2.23) where N and VR are fixed, and k is found

from the data. Let K(t), t ¼ ½t1, . . . , tn�
T [ R

n, be a kernel function (or Parzen

window), which peaks at the origin, is nonnegative, and has integral one over Rn.

The simplest model of a Parzen window is the following function

K(t) ¼
1, if jtij �

1

2
, 8i ¼ 1, . . . , n

0, otherwise

8<
: (2:29)

This function defines a hyperbox in Rn with side 1, centered at the origin. For all

points t within the hypercube, K(t) ¼ 1 and for points in R
n outside the hypercube,

K(t) ¼ 0. Let the Parzen window be centered at some x. Using the set Z for

calculating Eq. (2.23), and taking into account that VR ¼ 1, the pdf at x can be

approximated as

p(x) �
k

N
¼

1

N

XN
j¼1

K(Zj � x) (2:30)

This formula can be interpreted in a different way if we assume that there are

N hyperboxes, each centered on one point from Z. The approximation is then

calculated as the proportion of such hyperboxes that contain x. The multidimen-

sional kernel function centered on zj [ R
n is usually expressed in the form

(1=hn)K(x� zj=h), where h is a smoothing parameter and

ð
R

n

1

hn
K

x� zj

h

� �
dx ¼ 1 (2:31)

A common choice of the kernel function is themultidimensional Gaussian kernel [4]:

1

hn
KG

x� zk

h

� �
¼

1

hn (2p)n=2
ffiffiffiffiffiffi
jSj
p exp �

1

2h2
(x� zk)

TS�1(x� zk)

� �
(2:32)

Here S is a specified covariance matrix determining the shape of the kernel. The

class-conditional pdfs are estimated using the sample set Z [4,24] by

p̂p(xjvi) ¼
1

Ni

X
l(zj)¼vi

1

hn
K

x� zj

h

� �
(2:33)

where Ni is the number of elements of Z from class vi. The estimate is asymptotically

unbiased if the smoothing parameter h is a function of the number of samples Ni, such
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that [4]

lim
Ni!1

h(Ni) ¼ 0 (2:34)

Taking Eq. (2.26) as the estimates of the prior probabilities we obtain

P̂P(vijx) ¼
1

Np(x)

X
l(zj)¼vi

1

hn
K

x� zj

h

� �
(2:35)

¼ C(x, h, N)
X

l(zj)¼vi

K
x� zj

h

� �
(2:36)

where the term C(x, h, N) depends on x, h, and N, but not on the class label. The

approximation of the conditional pdfs under the above conditions is asymptotically

unbiased. Therefore, using the class-conditional pdfs estimated by Eq. (2.36) we obtain

asymptotically the Bayes classifier. A set of optimal discriminant functions can be

obtained from Eq. (2.36) by ignoring C(x, h, N); that is,

gi(x) ¼
X

l(zj)¼vi

K
x� zj

h

� �
(2:37)

For the Gaussian kernel (2.32)

gi(x) ¼
X

l(zj)¼vi

exp �
1

2h2
½dM(x, zj)�

2

� 	
(2:38)

where

½dM(x, zj)�
2
¼ (x� zj)

TS�1(x� zj) (2:39)

is the squared Mahalanobis distance between x and zj in R
n.

Parzen classifier is a beautiful theoretical model whose main disadvantages are:

. Parzen classifier needs all of Z as the prototype set, which can be too time-

consuming for large N.

. The choice of h is difficult: small h leads to spiky approximations of the pdfs;

big h oversmooths the pdfs.

A practical recommendation offered by some authors is to try several values of h and

select the one producing the smallest error rate. Reduced and weighted Parzen

models are proposed in the literature [32,40]. The real value of Parzen classifier

lies in the fact that it is the statistical counterpart of several important classification

methods such as radial basis function networks [41,42], the probabilistic neural net-

work (PNN) [43], and a number of fuzzy classifiers [44–46].
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2.3 THE k-NEAREST NEIGHBOR RULE

Nonparametric classification is often associated with the notion of prototype. We

can think of a prototype as a representative element from a class. The class label

assigned to an example is based on the similarity of this example to one or more pro-

totypes. Typically, similarity is defined in a geometrical sense, that is, based on a

certain distance. The smaller the distance, the higher the similarity between x and

the prototype.

The histogram classifier can be viewed as a prototype classifier. We can place a

prototype at the geometrical center of each bin. The input x is considered similar to

the prototype in whose bin it is located. The class label of that bin becomes the class

label of x. Parzen classifier can be regarded as a prototype classifier as well. Here the

prototypes are all the elements of Z. The votes for each class are weighed according

to the distance between x and the prototype, and added up. The scores for the classes

are then compared to find the class with the maximal support (largest discriminant

function). The classical example of a prototype classifier, however, is the k-nearest

neighbor classifier (k-nn).

2.3.1 Theoretical Background

k-nn is one of the most theoretically elegant and simple classification techniques

[2,4,47]. Let V ¼ {v1, . . . , vv} be a labeled reference set containing v points in

R
n, referred to as prototypes. The prototypes are labeled in the c classes; that is,

for any vi [ V, we know its class label l(vi) [ V. In the classic nearest neighbor

design, V is the whole of Z. To classify an input x, the k nearest prototypes are

retrieved from V together with their class labels. The input x is labeled to the

most represented class label amongst the k nearest neighbors.

To arrive at this classification method, we fix k and N in Eq. (2.23) and allow for a

variable VR. Assuming Euclidean distance, let R be the hypersphere containing

exactly k of the elements of the reference set V. The unconditional pdf is approxi-
mated as

p(x) �
k

NVR

(2:40)

Denoting by ki the number of elements in R from class vi, the class-conditional pdf

for vi, i ¼ 1, . . . , c, approximated in R, is

p(xjvi) �
ki

NiVR

(2:41)
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where Ni is the number of elements from class vi in Z. Using Eq. (2.26) for

estimating P(vi), the posterior probabilities are obtained as

P(vijx) ¼
p(xjvi)P(vi)

p(x)
�

ki

NiVR

Ni

N
k

NVR

(2:42)

hence

P(vijx) �
ki

k
(2:43)

The minimum error (Bayes) classifier using the approximations above will assign

x to the class with the highest posterior probability, that is, the class most rep-

resented amongst the k nearest neighbors of x. The region R and the volume VR,

respectively, are specific for each x [ R
n and a data set Z. The k-nn classification

rule, however, assigns the class label using only the numbers ki, i ¼ 1, . . . , c, so the

winning label does not depend on VR.

k-nn is Bayes-optimal when N ! 1 and VR ! 0. The expression VR! 0 is

equivalent to k! 1 and k=N ! 0. That is, the error rate of the k-nn classifier,

Pk-nn satisfies

lim
N!1
k!1
k=N!0

Pk-nn ¼ PB (2:44)

where PB is the Bayes error. When k is 1 (the nearest neighbor rule, denoted 1-nn),

and N ! 1, the error rate P1-nn is bounded from above by twice the Bayes error rate

[2]; that is,

P1-nn � 2PB (2:45)

Notice that different metrics will define different regions R. Regardless of the

metric used, the k-nn rule is applied in the same way. The type of the metric does

not change the asymptotic properties of k-nn because the shape of R is not fixed

in Eq. (2.23).

Example: 1-nn, 3-nn and Voronoi Diagrams. Figure 2.4a displays the 1-nn and

3-nn rule on a randomly generated data set with two classes. The diamond shows

the vector to be classified and the arrows join this vector to its three nearest neigh-

bors. The new object is assigned to the class of “dots” by the 1-nn rule because such

is the label of the closest neighbor. The 3-nn rule labels the object as a “cross”

because such are the labels of the second and the third neighbors (majority: 2 out

of 3 votes). The classification regions obtained by the 1-nn rule can be depicted
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using Voronoi diagrams as shown in Figure 2.4b. The Voronoi bin V for zj [ Z is

defined as the set of points in R
n whose nearest neighbor from Z is zj; that is,

V(zj) ¼ x x [ R
n, d(zj, x) ¼ min

zk[Z
d(zk, x)






� 	

(2:46)

where d(�, �) is a distance in R
n. In this example we used the Euclidean distance.

There are three basic ways to vary the k-nn classifier:

. different distance metric in R
n;

. different value of k;

. edited versions of Z as prototype sets V.

While there is a neat theory for the case of continuous-valued features,

the problems with discrete and qualitative features start as early as defining simi-

larity. Aha et al. [48] use the following similarity function between two objects rep-

resented by n-dimensional vectors x and y with possibly mixed-type features.

Similarity (x, y) ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

f (xi, yi)

s
(2:47)

where

f (xi, yi) ¼
(xi � yi)

2, if the ith feature is numeric,

1� I (xi, yi), if the ith feature is binary or symbolic:

�
(2:48)

Fig. 2.4 Illustration of the 1-nn and 3-nn classification rules and Voronoi diagrams.
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Recall that I (a, b) is an indicator function such that I (a, b) ¼ 1 if a ¼ b, and 0 if

a = b. Missing values are assumed to be maximally different from the present

values. If both xi and yi are missing, then f (xi, yi) ¼ 1.

Like the histogram method, k-nn is slow and memory-consuming. Unlike the his-

togram method, however, k-nn covers the whole feature space (e.g., see the Voronoi

diagrams). The main drawbacks of k-nn methods are summarized in Ref. [48]:

. they are computationally expensive;

. they are intolerant to noise in the features;

. they are intolerant to redundant features;

. they are sensitive to the choice of the similarity function;

. there is no natural similarity measure for nominal-valued features;

. they do not have a mechanism for handling missing values;

. they provide little information regarding the structure of the data.

2.3.2 Finding k-nn Prototypes

Here we give methods to construct the k-nn reference set V.
Let us assume that in the data set Z, there are no identical objects (coinciding

points in Rn) with different class labels. Then the 1-nn classifier with Z as the refer-

ence set is an ideal classifier producing no resubstitution errors. Each object will find

itself as the nearest neighbor within Z, thereby obtaining its own (correct) class

label. Finding a smaller set of prototypes is essential for two reasons. The first

one is computational: with a smaller number of prototypes, less time and memory

resources will be required for the operation of the classifier. Reducing the compu-

tational demand is important for handling the massive data sets that are currently

available in many application domains: industry, finance, medicine, biology, and

so on. Secondly, in the process of finding V, some noisy objects from Z could be

filtered out [49] and so the classification accuracy can be improved.

To reduce the number of prototypes, either a subset of Z is selected ( prototype

selection) or a set of new prototypes is created ( prototype extraction). Prototype

selection is mostly related to the 1-nn classifier while prototype extraction is related

to a class of neural networks, viz. the vector quantization models, LVQ. In both

cases the idea is the same: Use as few as possible prototypes to achieve as high

as possible 1-nn (k-nn) accuracy.

2.3.2.1 Edited k-nn (Prototype Selection). The simplest way to find proto-

types is to select them from Z. This is called editing of the reference set. There are

two basic strategies [47]:

. Find a subset V # Z that produces zero resubstitution errors on Z when used

as a reference set with the nearest neighbor (1-nn) classifier. Such subsets are

called consistent, and the techniques searching for the smallest consistent sub-
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set are called condensing techniques. Typically, condensing techniques retain

points from Z that are most likely to be misclassified (e.g., points that are

usually close to the classification boundaries).

. Find a subset V [ Z that has low (not necessarily zero) resubstitution error

rate and generalizes well. This will be called error-based editing (in Ref. [1]

it is called just “editing”). Error-based editing methods tend to eliminate the

points close to the boundaries and retain those that belong “most certainly”

in their own Bayes classification regions.

Being diametrically opposite, the two strategies typically lead to very different

reference sets V. Owing to their design, condensing methods cannot trade accuracy

for reduction in the number of prototypes. Such trade-off is very desirable because at

the expense of one or two misclassifications we might be able to halve the size of V.

Standard error-based editing methods do not have an explicit mechanism to limit the

number of prototypes or penalize reference sets of high cardinality. They often pro-

duce more prototypes than are needed. Therefore it is reasonable to apply first an

error-based method and then a condensing method on the resultant set of prototypes.

An alternative approach is to specify explicitly the number of prototypes and the

amount of accuracy to trade off for reducing the number of prototypes. For example,

we can use a criterion of the following type:

max
S#Z

J(S) ¼ max
S#Z

Accuracy(S)� a
jSj

jZj

� 	
(2:49)

where a is a constant weighting the importance of the cardinality reduction. The

accuracy of the candidate subset S is measured using 1-nn with S as the reference

set. We can use random search or guided random search through the subsets of Z

to optimize J(S). Possible optimization techniques are genetic algorithms [50–52]

or tabu search [53].

Three editing algorithms are explained below. These were chosen because they

are possibly the simplest, have different flavors, and have been the points of depar-

ture for many variations.

Hart’s Method. This method belongs to the condensing group [54]. It gradually

builds the subset V starting with z1 and moving into V every element of Z that is

misclassified by 1-nn when using the current V as the reference set. The procedure

loops through Z until all of Z is classified correctly. This technique tends to retain

the points close to the classification boundaries and discard the inside points.

Wilson’s Method. This method [55] is from the error-editing group. Wilson pro-

poses to run k-nn (recommended value k ¼ 3) on Z and mark for deletion all

elements that are misclassified. By deleting the marked elements from Z, we obtain

the reference set V to be used with the 1-nn classifier. Wilson’s method is the basis

of the asymptotically optimal editing method called MULTIEDIT [1]. MULTIEDIT
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works well on large data sets with cloud-shaped classes. If the overlap of the classes

is high, MULTIEDIT could eventually rule out all elements of some of the classes

[29,50].

Random Editing. This is simple and sometimes surprisingly successful [52,56].

We specify the desired number of prototypes v ¼ jVj, c � v , N and the maximum

number of trials T , generate T random subset-candidates V # Z, and return the set

with the smallest resubstitution error.

Example: Prototype Selection for the Banana Data. The three basic editing

methods were applied to the training part of the banana data. We also appliedWilson

followed by Hart (denoted Wilson þ Hart). The results are displayed in Figure 2.5.

The classification region of the “left” banana, obtained by the 1-nn classifier

using the edited reference set is shaded in gray. The original training data is also

plotted and the prototypes that the respective method has retained are encircled.

Fig. 2.5 Training data and classification regions for the banana data set obtained by the 1-nn

classifier and four prototype selection methods. The prototypes retained by the respective

method are encircled.
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As expected, since the classes are not heavily overlapped, Wilson’s method kept

unnecessarily almost the whole data set. Hart’s method retained mostly borderline

points to preserve the boundary. Visually, the combination of the two (Wilson þ

Hart) improves on both. The random editing was run for T ¼ 1000 and desired car-

dinality of the reference set v ¼ 10. Table 2.2 shows the training and testing errors of

the four methods.

We might have been lucky with the random editing for this example as it hap-

pened to be the best (let alone the fastest) among the four methods. It gave the lowest

testing error with the smallest number of prototypes retained. This method is inter-

esting in the context of multiple classifier systems because of its potential to discover

disparate subsets of good reference quality as a basis for a diverse ensemble. Diver-

sity, as we shall discuss later, is among the most important factors for the success of

a classifier ensemble.

2.3.2.2 Calculating Prototypes from Data (Prototype Extraction). By

selecting prototypes from Z we have a limited choice of points in R
n. Better results

might be achieved by constructingV , R
n by choosing from the whole ofRn. There

are numerous strategies and techniques for extracting prototypes including

Competitive Learning. Examples of this group are the neural network models

called vector quantization (VQ) and learning vector quantization (LVQ) [57,58],

and various modifications [59–63]. There are also competitive clustering algorithms

such as the dog–rabbit algorithm, and Chang’s method. A modification of the orig-

inal Chang’s method is proposed by Bezdek et al. [64].

Modified Chang looks for a consistent set of prototypes, which is not necessarily

a subset of Z. The procedure starts with the whole of Z as the set of prototypes V.

The pair of prototypes of the same class label that are closest to each other is

identified and called the “parents.” The two prototypes are averaged to get a single

replacement of the pair, called the “child.” The new set where the two parents are

replaced by the child is checked for resubstitution errors. If no errors occur, the

merger is accepted and the new set becomes the current V. Otherwise, the merger

is rejected and the pair of parents is marked as ineligible. The search continues

with the next (eligible) pair of closest prototypes until all remaining parent couples

become ineligible.

Using Gradient Descent. Tuning prototype locations by gradient descent is pro-

posed in Refs. [65–67].

TABLE 2.2 Error Rates (in %) for 1-nn and Four Editing Methods for the Banana Data.

Whole set Hart Wilson Wilson þ Hart Random

Training error (%) 0 0 7 5 4

Testing error (%) 10 10 8 8 6

No. of prototypes 100 28 92 13 10
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Bootstrap Random Methods. Hamamoto et al. [68] propose four bootstrap

methods for prototype extraction. A modification of the simplest, and the most suc-

cessful of the four (according to Ref. [68]) is explained below.

Bootstrap editing is a variant of the random editing method described earlier.

Again, we perform T trials, where T is a constant determined in advance. We

also have to pick c numbers, vi, i ¼ 1, . . . , c, where vi is the number of prototypes

from class vi that we wish to have in V. At each trial, v elements of Z are picked

at random, vi from class vi. To construct V from these, each selected element is

replaced by the mean of its k nearest neighbors in Z from its own class. The number

of neighbors k . 1 is a tuning parameter of the algorithm. There is no theoretical

reason why the number of prototypes per class should be equal for all classes or

proportional to the prior probabilities. We can pick any set of numbers

v1, . . . , vc(vi � Ni), or choose them at random too.

Example: Prototype Extraction for the Banana Data. Figure 2.6 shows the

regions and the prototypes extracted by the Modified Chang and the bootstrap edit-

ing. The bootstrap method was run for T ¼ 1000 selections (same as the random

editing in the previous example) with 10 prototypes altogether (5 per class), for

number of nearest neighbors k ¼ 5.

Overlaid again is the training set and the prototypes are marked by “�” and

encircled. The training error for Modified Chang is 0 by design and the testing

error was found to be 16 percent. In all, 19 prototypes were found. For the bootstrap

editing, 10 prototypes were constructed showing training error of 3 percent and test-

ing error of 12 percent.

It should be mentioned that even though the prototype extraction method could

theoretically lead to better results, none of the methods described has any theoretical

Fig. 2.6 Training data and classification regions for the banana data set obtained by the 1-nn

classifier and two prototype extraction methods. The prototypes retained by the respective

method are encircled.
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justification. Both methods (as well as a large gallery of others) rely on heuristics

and intuition, which admittedly sometimes work and sometimes do not. So

there are no strong guidelines about what to choose: opt for the simple methods

first, for example, random and bootstrap editing. Tabu search and LVQ have

been found to be good choices from the group of more sophisticated methods

[69].

2.3.3 k-nn Variants

It is tempting to include in the k-nn rule the distance between x and its k neighbors.

Recall the basic nonparametric estimation formula of probability density functions,

Eq. (2.23)

p̂p(x) ¼
k

NVR

(2:50)

where VR is the volume of a region R in R
n containing the k nearest neighbors of x,

and N is the total number of observations (cardinality of Z). Denoting by ki the num-

ber of neighbors from class vi amongst the k neighbors, and by Ni the total number

of elements of Z from vi, the class-conditional pdfs are approximated by

p̂p(xjvi) ¼
ki

NiVRi

(2:51)

Using the approximation

P̂P(vi) ¼
Ni

N
(2:52)

for the prior probabilities, the following estimates of the posterior probabilities are

obtained

P̂P(vijx) ¼
ki

NiVRi

�
Ni

N
�

1

p(x)

¼
ki

Np(x)VRi

(2:53)

Assume that Ri is a hypersphere in R
n with radius ai, centered at x. Then the

volume of Ri can be expressed using the gamma function G

VRi
(ai) ¼

pn=2

G 1
2
nþ 1

� � ani (2:54)
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which reduces to8

VRi
(ai) ¼ Vn(1) a

n
i (2:55)

where Vn(1) is the volume of a hypersphere of radius 1 inRn. Substituting Eq. (2.55)

into Eq. (2.53) yields

P̂P(vijx) ¼
1

Np(x)Vn(1)
�
ki

ani
(2:56)

We can ignore the first fraction, which does not depend on i for a given x, and

arrive at the following set of simple discriminant functions

gi(x) ¼
ki

ani
, i ¼ 1, . . . , c (2:57)

Different interpretations of the above equation give rise to different k-nn variants.

2.3.3.1 Theoretical Model No. 1. Fix ki ¼ k to be the same for all c classes.

Then ai will be the radius of the hypersphere centered at x that contains exactly k

elements from Z with class label vi. Thus, the radius ai is the distance between x

and its kth nearest neighbor from vi. Since k is the same for all i, the largest gi(x)

will be the one with the smallest distance ai in it. Therefore, according to Theoretical

model no. 1, x is assigned to the class of the closest kth nearest neighbor.

Example: k-nn: Theoretical Model No. 1. Figure 2.7a illustrates this model. The

letter data set was used from which we cut the first 50 objects from each of the

classes “H” (16), “N” (16), and “O” (18). The data was normalized so that each

of the 16 features has mean 0 and variance 1. To plot the data we designed two fea-

tures so that x is the sum of original features from 1 to 8, and y is the sum of original

features from 9 to 16. The figure shows a zoom of the scatterplot of the three classes

within the square ½�5, 5�2. Class “H” is plotted as dots, “N” as open circles, and “O”

as triangles. We use k ¼ 5 for each of the three classes. The point to be labeled is the

boldface cross at [0, 0]. The three circles correspond to the regions R, each one con-

taining exactly k ¼ 5 elements from the respective class, the farthest element (defin-

ing ai) being encircled. The fifth neighbor from class “O” (triangles) is closer to x
than the fifth neighbor from either of the other two classes, therefore x is labeled

as an “O.” The label for the same object using k ¼ 1 will be “H” (a dot). Notice

that for k ¼ 1, the model coincides with the nearest neighbor (1-nn) design.

2.3.3.2 Theoretical Model No. 2. Fix k and find k1, k2, . . . , kc, as for the clas-
sical k-nn rule. In Eq. (2.57), the radius of the hypersphere centered at x can be taken

8 see Calculus books, for example, Ref. [70].
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to be the distance from x to its farthest neighbor from vi among the k neighbors.

Then the ratio ki=a
n
i determines the class label of x where ki is the number of neigh-

bors from vi and ai is the distance to the farthest one of them.

Example: k-nn: Theoretical Model No. 2. An illustration of this k-nn model for

k ¼ 9 is presented in Figure 2.7b on the same data set as in Figure 2.7a. The shaded

circle contains the set of nine nearest neighbors to x, regardless of their class labels.

Within this set, there are k1 ¼ 2 “H”s (dots), k2 ¼ 1 “N”s (open circles), and k3 ¼ 6

“O”s (triangles). A (hyper-) sphere with radius a encloses the six triangles, therefore

the respective ratio is gO(x) ¼ 6=a2 ¼ 1:0458. The other two discriminant functions

are respectively gH(x) ¼ 2=b2 ¼ 0:7080 and gN(x) ¼ 1=c2 ¼ 0:3685. The highest

value determines x class label, in this case the label for [0, 0] is the letter “O.”

This model also coincides with the baseline 1-nn design for k ¼ 1.

2.3.3.3 Theoretical Model No. 3. This is the classical k-nn model where one

hypersphere of radius r contains all k nearest neighbors from Z regardless of the

class labels. Then the value of r becomes irrelevant for the classification decision

for a given x, and is dropped from Eq. (2.57). The discriminant functions are the

number of neighbors ki.

We can also vary ki and substitute into Eq. (2.57) the respective radius ai.

Curiously, all these variants are asymptotically Bayes-optimal; that is, for

N ! 1, k! 1 and k=N ! 0, Eq. (2.56) produces the true posterior probability,

therefore Eq. (2.57) ensures the minimal-error classification. In the finite-sample

case, however, there could be better k-nn models. In search of such a model, Dudani

proposed a distance-based k-nn [71]. Denote by Z(x) the subset of Z containing the k

nearest neighbors of x. Dudani’s discriminant functions are

gi(x) ¼
X

zj[Z(x) ,

l(zj )¼vi

wj(x), i ¼ 1, . . . , c (2:58)

Fig. 2.7 Illustration of k-nn Theoretical models no. 1 and no. 2.
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where wj(x) are weights calculated by

wj(x) ¼

dk � dj

dk � d1
, dk = d1,

1, dk ¼ d1,

8<
: (2:59)

where di is the distance between x and its ith neighbor. Thus, the nearest neighbor is

awarded a weight of 1, and the kth one, the weight of 0 (practically not used in the

equation). The author believed that the finite-sample accuracy of the weighted

model is superior to that of the unweighted one, and supported this claim with

two experimental examples. Dudani’s experiments have been criticized for taking

all k-nn ties (for the standard method) as errors [72,73]. Bailey and Jain [72] propose

three ways of tie-breaking: random, using fewer neighbors, or using more neigh-

bors. They show on the Dudani’s experimental set-up that the distance-weighted

and the unweighted k-nn are practically indistinguishable. They prove the following

theorem

Theorem. (Bailey and Jain [72]) In the infinite sample case (N ! 1) the prob-

ability of error of the majority k-nearest neighbor rule is minimum among all

weighted k-nearest neighbor rules (ties are resolved randomlyÞ.

The authors form the difference between the probability of committing an error

by any weighted rule T and the majority rule M, given x and the set of its nearest

neighbors Z(x)

DN ¼ PN(ejx, Z
(x), T)� PN(ejx, Z

(x), M) (2:60)

and prove that for N ! 1, DN is always nonnegative. Thus, the k-nn rule for a fixed

k may not be Bayes-optimal, but it is asymptotically the best one among the rules

using the same k neighbors. In the finite-sample case, however, it is not clear

which of the distance-based models is the best. Macleod et al. [74] state the following

(presumably false!) hypothesis

Hypothesis. The error rate of the unweighted k-nn rule is lower than that of any

weighted k-nn rule even when the number of training samples is finite.

The authors disprove the hypothesis by an example showing analytically that a

weighted 2-nn rule (x [ R, V ¼ {v1, v2}) gives a lower overall error rate than

the corresponding unweighted rule for any training set generated from the specified

pdfs. This result opens up the door for new distance-based k-nn models. Macleod

et al. [74] generalize Dudani’s weighting scheme by introducing a parameter a

and using the sth nearest neighbor for scaling the distances. The overall formula

is the same as Eq. (2.58) but the weights are obtained by

wj(x) ¼

ds � dj þ a(ds � d1)

(1þ a)(ds � d1)
, ds = d1,

1, ds ¼ d1:

8<
: (2:61)
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For a ¼ 0 and s ¼ k, Eq. (2.61) becomes the original formula due to Dudani. The

values of these parameters used in the numerical experiments carried out in Ref. [74]

were a [ {0, 1, 2} and s [ {k, 2k, 3k, ½N=c�, N}.
Parthasarathy and Chatterji [75] propose to estimate the posterior probabilities

as an average of k estimates of type (2.57). They argue that if the individual

estimates are independent and of the same variance u, the variance of the averaged

estimate is k times smaller, u=k. Neglecting the terms that do not depend on i in

the equation proposed in Ref. [75], the discriminant function for class vi is

gi(x) ¼
Xk
j¼1

k(vi, j)

dnj
(2:62)

where k(vi, j) is the number of neighbors from class vi among the nearest j neigh-

bors of x. For example, let k ¼ 6, and neighbors 2, 3, and 5 have class label vi. Then

gi(x) ¼
0

dn1
þ

1

dn2
þ

2

dn3
þ

2

dn4
þ

3

dn5
þ

3

dn6
(2:63)

It is not clear whether the individual estimates k(vi, j)=d
n
j are independent. More

likely, they are not, because each set of j neighbors of x, j ¼ 2, . . . , k, already con-

tains the nearest j� 1 neighbors used for calculating a previous estimate. The

authors assume that the set of discriminant functions (2.62) should be used for

classes with equal prior probabilities and suggest another formula where each gi
is multiplied by P̂P(vi) for unequal probabilities. However, the estimates of posterior

probabilities (2.57) already account for the P(vi), and so does the averaging formula

(2.62). Therefore, multiplying the discriminant functions by the prior probabilities

only moves the classification boundary towards the more probable class and is theor-

etically unnecessary as long as our aim is to minimize the error rate.

The list of weighted k-nn rules can be continued further. The problem is that there

is practically no guideline as to what to choose. The variety of methods seems to be a

hindrance if we are looking for a single method to use. However, in the context of

multiple classifier systems, this variety might be extremely useful.

2.4 TREE CLASSIFIERS

Decision tree classifiers are widely used for building classifier ensembles. Three

important characteristics of tree classifiers are:

1. If all the objects are distinguishable, that is, there are no identical elements of

Z with different class labels, then we can build a tree classifier with zero

resubstitution error. This fact places tree classifiers in the instable group:

capable of memorizing the training data so that small alterations of the data

might lead to a differently structured tree classifier. As we shall see later,
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instability can be an advantage rather than a drawback when ensembles of

classifiers are considered.

2. Tree classifiers are intuitive because the decision process can be traced as a

sequence of simple decisions. Tree structures can capture a knowledge base

in a hierarchical arrangement, most pronounced examples of which are bot-

any, zoology, and medical diagnosis.

3. Both quantitative and qualitative features are suitable for building decision

tree classifiers.9 Binary features and features with a small number of cat-

egories are especially useful because the decision can be easily branched

out. For quantitative features, a point of split has to be found to transform

the feature into a categorical one. Thus decision trees do not rely on a concept

of distance in the feature space. As discussed earlier, a distance is not easy

to formulate when the objects are described by categorical or mixed-type

features. This is why decision trees are regarded as nonmetric methods for

classification [15].

Tree classifiers are usually described in graph terminology. An example is given

below.

Example: Terminology of Tree Classifiers. Shown in Figure 2.8a is a decision

tree for distinguishing between three types of adult bears based upon information

found at http://www.bears-bears.org/. The three classes are displayed in

Figure 2.8b.

The features (attributes) are “coloration,” “size,” and “attack on humans.”

We chose the features so that the classes be overlapping; that is, there is no 100 per-

cent certainty of correct classification on any of the attributes or any combinations

thereof. (Curiously, almost white individuals of the American Black Bear could be

found in the northwestern region of North America.)

The first of a sequence of decisions leading finally to a class label is made at the

root of the tree by asking a question with a small number of different answers.

Depending on the answer, a branch is selected and the child (descendent) node is

visited. Another decision is made at this node, and so on, until a leaf (a terminal

node) is reached. The leaf contains a single class label, which is assigned to the

object being classified. The same label may appear at different leaves. If the same

number of questions (local decisions) is used to assign the class label of every x,
we have a balanced tree. Otherwise, the tree is called imbalanced. Imbalanced

trees reflect the fact that objects that are deep in their classification regions might

need shorter decision chains than objects near the classification boundaries.

Usually one feature is used at each nonterminal node (monothetic trees). Subsets of

features can be used at a node and the branching decisions can be made by a formula

based on these features. The reasons to stick with single features are rather of a

9 Features are often called attributes in the decision tree literature.
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psychological and engineering nature. If more than one feature is involved, the

interpretation of the final decision as a chain of simple decisions might be difficult

or impossible.

To construct a decision tree, we usually start with the root and continue splitting

the tree. A “split” means that a separate part of the data set is taken to each child

node. That part is subsequently split into smaller parts until a termination criterion

is met. A termination criterion could be, for example, that all objects be labeled cor-

rectly. Having constructed a perfect tree we have to prune it to counter overtraining

(called also postpruning). Alternatively, we may use some measurable objective

function to decide when to stop splitting (called also prepruning).

Below we describe a generic tree-growing framework due to Breiman et al. [76],

called CART (classification and regression trees). The main questions of this frame-

work and their possible answers are summarized in Ref. [15].

Fig. 2.8 (a) An illustration of a decision tree and related terminology. (b) Three classes of bear.
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2.4.1 Binary Versus Nonbinary Splits

To automate the tree construction, it is reasonable to choose binary trees, that is,

each nonterminal node has exactly two children nodes. For any node with multiple

answers, there are equivalent representations with binary nodes. For continuous-

valued features, the question for a binary split is usually of the form “Is x � xs?”

where xs is the node’s threshold that is either preset or determined during training.

For ordinal categorical features withM successive categories, there areM � 1 poss-

ible splits into two. For nominal features withM possible values, there are 2M�1 � 1

possible splits (the number of pairs of nonempty subsets).

2.4.2 Selection of the Feature for a Node

The compound objective in designing a tree classifier involves accuracy and simpli-

city. The construction of the tree splits a given training set hierarchically until either

all the objects within the same subregion have the same class label, or the subregion

is “pure enough.”

Consider a c-class problem with V ¼ {v1, . . . , vc}. Let Pj be the probability for

class vj at a certain node t of a decision tree. We can estimate these probabilities as

the proportion of points from the respective class within the data set that reached

node t. The impurity of the distribution of the class labels at t can be measured in

different ways.

2.4.2.1 Entropy-Based Measure of Impurity

i(t) ¼ �
Xc
j¼1

Pj logPj (2:64)

where 0 log 0 ¼ 0. For a pure region (i.e., only one class label), impurity takes its

minimum value, i(t) ¼ 0. The most impure situation is when the classes have uni-

form distribution. In this case, impurity is maximum, i(t) ¼ log c.

2.4.2.2 Gini Impurity

i(t) ¼ 1�
Xc
j¼1

P2
j (2:65)

Again, for a pure region, i(t) ¼ 0. The highest impurity is i(t) ¼ (c� 1)=c, in the

case of uniform distribution of the class labels. The Gini index can be thought of

as the expected classification error incurred if a class label was drawn randomly

from the distribution of the labels at t.
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2.4.2.3 Misclassification Impurity

i(t) ¼ 1�max
c

j¼1
{Pj} (2:66)

Misclassification impurity is best related to the classification accuracy. It gives the

expected error if the node was replaced by a leaf and the chosen label was the one

corresponding to the largest Pj. However, misclassification impurity has the disad-

vantage of being awkward to handle mathematically. The reason is that the deriva-

tive of i(t) is discontinuous and this would be a problem when searching for an

optimal threshold value for the node over a continuous-valued feature.

Assume that we split t into two children nodes t0 and t1 based on a binary feature

X. The gain in splitting t is in the drop of impurity on average, denoted Di(t)

Di(t) ¼ i(t)� P(X ¼ 0)� i(t0)� P(X ¼ 1)� i(t1)

¼ i(t)� P(X ¼ 0)� i(t0)� (1� P(X ¼ 0))� i(t1) (2:67)

where P(z) denotes the probability of event z.

If the features being used are binary, then the task of selecting the best feature for

node t is easy: try each one in turn and pick the feature with the highest Di(t). How-

ever, for features with multiple categories and for continuous-valued features, we

have to find first the optimal threshold to split t into left child (tL) and right child (tR).

Example: Calculation of Impurity Indices. Figure 2.9 shows the three indices cal-

culated for the generated data set from Figure 1.9. One thousand split points were

checked on each axis and the indices Di were plotted as functions of the split-

point. The functions for feature X are projected underneath the data scatterplot,

and the functions on feature Y are projected on the left.

All three functions are bimodal on both X and Y , suggesting that there are two

good split points on each axis. Indeed, we can choose split points such that either

the left or the right subsets are completely pure. Table 2.3 shows the values of Di

for the three indices and the suggested split points. For example, if we use Gini

for building the tree, we should prefer the split on X, point xs ¼ �0:3458, because

TABLE 2.3 Maximal Values of Di and the Respective Split Points for the

Three Impurity Indices.

Entropy Gini Misclassification

X Y X Y X Y

Di 0.1616 0.1168 0.1127 0.0974 0.0680 0.1230

xs, ys 20.3706 21.2105 20.3458 21.1269 20.1278 21.1269
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splitting on X gives the higher value of Di. On the other hand, if we used the mis-

classification index, we should split on Y (higher Di) at ys ¼ �1:1269. Note that

both Entropy and Gini index favor the left peak on X while the Misclassification

index favors the right peak. These discrepancies show that different trees will be

constructed depending on which index we decide to use.

The Gini index is often used in tree construction [15,29] because it can dis-

tinguish between choices for which the misclassification index gives the same

value. The choice of impurity index does not seem to be hugely important for the

success of the tree classifier [15]; more important are the stopping criteria and the

pruning methods.

Note that the choice of the best feature for the current node is a typical example of

a greedy algorithm. The optimality of the local choices does not guarantee that the

constructed tree will be globally optimal, for example, with minimum number of

nodes (zero resubstitution error by design).

Fig. 2.9 Three indices of impurity used in growing decision trees: Entropy-based, Gini, and

Misclassification indices, calculated for 1000 points of split for each of X and Y, for a

generated data set (see Figure 1.9).
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2.4.3 Stopping Criterion

The tree construction could be carried on until there are no further impure nodes. If

the training data contains no objects with the same feature values and different class

labels, then a perfect tree can be constructed. However, as discussed earlier, such a

perfect result could be due to overtraining, and so the tree classifier would not be of

much value. One solution to this problem is to stop the training before reaching pure

nodes. How do we decide where to stop? If the splitting is stopped too early, we

might leave the classifier undertrained. Below we summarize the options suggested

in Ref. [15]:

1. Use a validation set cut out from the training set. When the error on the vali-

dation set begins to increase, stop splitting.

2. Set a small impurity-reduction threshold, b. When the greatest possible

reduction of impurity at node t is Di(t) � b, stop splitting and label this

node as the majority of the points. This approach does not answer the question

“where to stop?” because the stopping is determined by the choice of b, and

this choice lies again with the designer.

3. Set a threshold value for the number of points at a node. For example, we may

decide not to split a node if it contains less than k points or less than l percent

of the total number of points in the training set. The argument is that continu-

ing the splitting beyond this point will most probably be overtraining.

4. Penalize complexity of the tree by using a criterion such as

minimize a� size þ
X

leaves t

i(t) (2:68)

where “size” can be the total number of nodes, branches, or leaves of the tree,

and a is a positive constant. Again, the problem here is choosing the value of a

so that the right balance between complexity and accuracy is achieved.

5. Use hypothesis testing to decide whether a further split is beneficial or not.

Consider a two-class problem. Assume that there are n data points at node

t, n1 of which have labels v1 and n2 have labels v2. Assume that the best fea-

ture for the node has been found to be X, and the best split of X is at some point

xs. The left and the right children nodes obtain nL and nR number of points,

respectively. Denote by nL1 the number of points from v1 in the left child

node, and by nL2 the number of points from v2 in the left child node. If the

distributions of class labels at the children nodes are identical to that at the

parent node, then no purity is gained and the split is meaningless. To test

the equivalence of the distributions at the children and the parent’s node,

calculate

x 2
L ¼

(n� nL1 � nL � n1)
2

n� nL � n1
þ
(n� nL2 � nL � n2)

2

n� nL � n2
(2:69)
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and

x 2
R ¼

(n� nR1 � nR � n1)
2

n� nR � n1
þ
(n� nR2 � nR � n2)

2

n� nR � n2
(2:70)

We can take the average x2 ¼ 1
2
(x2L þ x2R), which, after simple algebraic trans-

formations can be expressed as

x2 ¼
1

2
(x2L þ x2R) ¼

n

2nR
x2L ¼

n

2nL
x2R (2:71)

If x2 is greater than the tabular value with the specified level of significance

and one degree of freedom, then the split is worthwhile. If the calculated

value is smaller than the tabulated value, we should stop splitting and should

label the node as v1 if n1 . n2, and v2 otherwise. The lower the level of sig-

nificance, the smaller the tree would be because greater differences in the dis-

tributions will be required to permit splitting.

For c classes, the degrees of freedom will be c� 1, and the x2 statistic

should be calculated as the average of x2L and x2R where

x2L ¼
Xc
i¼1

(n� nLi � nL � ni)
2

n� nL � ni
(2:72a)

and

x2R ¼
Xc
i¼1

(n� nRi � nR � ni)
2

n� nR � ni
(2:72b)

Note that the x2 statistic (2.69) or (2.72) can be used for a direct comparison with

a threshold set by the user. If the calculated value is greater than the threshold, we

should split the node, otherwise we label it as a leaf. Appropriate values of the

threshold vary between 0 (full tree) and 10 (heavy prepruning).

Example: Growing Tree Classifiers. Consider the banana data set (see

Figure 1.6).10 To construct the tree we use a recursive procedure of the following

general form. Start at the root. At the current node, check whether a split is justified.

If yes, call the same procedure for the left subtree and then for the right subtree, then

join the two trees. If the split is not justified, then designate the current node as a leaf

and label it as the majority of the data points in it.

To find out whether the split is justifiable, we first search for the best split point on

every feature. Once such a point is identified, the Gini index of impurity is calculated

10 The Matlab code for this example is given in Appendix 2A. We borrow the data organization idea from

the maketree routine from PRTOOLS [19].
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as in Eq. (2.65) and the feature with the maximal reduction of impurity, maxDi, is

chosen for that node. To determine the best split point for feature X we first sort the

values of X for all the points at the current node and then check Di for a split point

between every two consecutive values of X. The highest Di signifies the importance

of X for the current node and also the best split point.

Finally, the justifiability of the split is assessed by the x2 criterion, Eq. (2.69). A

split will be permitted only if the calculated x2 exceeds the threshold that was set to

3 for this example.

The code tree_construct in Appendix 2A outputs a description of the

obtained decision tree in the following form. Each row corresponds to a node. If

the node is not a leaf, then the first column is the number of the feature used at

that node, the second column is the split point, the third and the fourth columns

are the numbers of the left and the right children nodes, respectively. If the node

TABLE 2.4 A Tabular Description of the Tree Classifier for the

Banana Data with Threshold t 5 3.

Feature (or

Class Label) Split Point

Left

Child Node

Right

Child Node

1 1.1740 2 9

2 21.5960 3 8

1 25.5197 4 5

2 0 0 0 (leaf)

2 27.4966 6 7

2 0 0 0 (leaf)

1 0 0 0 (leaf)

2 0 0 0 (leaf)

1 0 0 0 (leaf)

Fig. 2.10 Graphical representation of the tree classifier for the banana data. A threshold t 5 3

was used to preprune the tree. Training error 5 5%, testing error 5 11%.
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is a leaf, then the first column is the class label of the leaf, and columns 2, 3, and 4

contain 0s.

The tree in Table 2.4 was obtained using the code in Appendix 2A for the banana

data (Gini index, x2 stopping criterion, threshold t ¼ 3). Its graphical version is

shown in Figure 2.10, and the classification regions are overlaid on the banana

data scatterplot in Figure 2.11. It should be noted that exactly the same tree was gen-

erated when we used the entropy criterion (2.64). For comparison we grew a full tree

with training error 0 percent. The testing error was found to be 13 percent.

One possible way to classify the data after the tree has been built and stored in the

format shown in Table 2.4 is given in Appendix 2A, routine tree_classify.
Using this code, we found that the tree depicted in Figure 2.10 gives 5 percent train-

ing error and 11 percent testing error.

2.4.4 Pruning Methods

Sometimes early stopping can be too shortsighted and prevent further beneficial

splits. This phenomenon is called the horizon effect [15]. To counter the horizon

effect, we can grow the full tree and then prune it to a smaller size. The pruning

seeks a balance between the increase of the training error and the decrease of the

size of the tree. Downsizing the tree will hopefully reduce overtraining. There are

different criteria and methods to prune a tree summarized by Esposito et al. [77]

as follows.

2.4.4.1 Reduced Error Pruning. The reduced error pruning (REP) method is

perceived as the simplest pruning method. It uses an additional training set, called

the “pruning set,” unseen during the growing stage. Starting at the bottom (leaves)

and working our way up to the top (the root), a simple error check is calculated for

all nonleaf nodes. We replace the node with a leaf and label it to the majority class,

Fig. 2.11 Classification regions determined by the tree classifier for the banana data.
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then calculate the error of the new tree on the pruning set. If this error is smaller than

the error of the whole tree on the pruning set, we replace the node with the leaf.

Otherwise, we keep the subtree. This bottom-up procedure guarantees that the

obtained tree is the minimum one that is optimal with respect to the pruning set.

Also, REP has low complexity because each internal node is visited just once. A

drawback of REP is that it has a tendency towards overpruning [77].

2.4.4.2 Pessimistic Error Pruning. Unlike REP, in the pessimistic error

pruning (PEP) method the same data set is used both for growing and pruning the

tree. We cannot directly use the error to prune the tree, as done in REP, because

on the training data the error rate will be zero or some small 1 . 0 due to indiscern-

ible objects in the data (objects with the same feature vectors but different class

labels). The approach is top-down, that is, starting from the root and going through

all internal nodes that have not been pruned yet. Denote by n the number of data

points that reached node t and by e(t), the number of errors if t was replaced by a

leaf. Let Tt be the subtree rooted at t, Lt be the set of leaves of Tt and e
0(Tt) the num-

ber of errors of Tt with a complexity correction

e0(Tt) ¼
X
l[Lt

e(l)þ
jLtj

2
(2:73)

The node t is replaced by a leaf if

e(t) � e0(Tt)þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e0(Tt)½n� e0(Tt)�

n

r
�
1

2
(2:74)

Tree complexity is expressed as the number of leaves of the subtree. Thus a balance

is sought between error and complexity but the suitability of the proposed formula is

theoretically unjustified. Pessimistic error pruning could lead to underpruning or

overpruning.

2.4.4.3 Critical Value Pruning. In the critical value pruning (CVP) method, a

critical value is set up as a threshold. The tree is checked in a bottom-up fashion

(starting at the intermediate nodes immediately above the leaves and finishing at

the root). All the nodes for which the gain in error rate is smaller than the critical

value are replaced by leaves. The bottom-up approach overcomes the horizon effect;

that is, it ensures that when the gain value at node t is not above the threshold but the

values for some of the nodes on the subtree rooted at t are above the threshold, t is

not replaced by a leaf. Setting an increasing sequence of critical values, we can

design a family of nested trees, the last one being just the root. We can then choose

the tree with the minimum error on an independent pruning set. Since the trees were

not pruned with respect to the error on this pruning set, there is no guarantee that the

most accurate pruned tree derived from the full-grown tree will be found.
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2.4.4.4 Cost-Complexity Pruning. The cost-complexity pruning (CCP)

method is known as the CART pruning algorithm [76]. In the first step, a parametric

family of trees is generated, denoted T ¼ {T0, . . . , TK}. Tree Tiþ1 is obtained by

pruning tree Ti according to a certain criterion, associated with a parameter value

aiþ1. For example, a can be the increase in the apparent error rate per leaf, calcu-

lated as

a ¼
e(t)�

P
l[Lt

e(l)

n(jLtj � 1)
(2:75)

that is, the additional error if we replaced t by a leaf, divided by the number of leaves

we get rid of.11 If at node t a is smaller than a fixed threshold, then the high complex-

ity and small error reduction of the subtree at node t are not justified and t is replaced

by a leaf. T0 is obtained by pruning the full tree of those branches that have a ¼ 0

(no added error), and TK is the root tree. It can be shown that each Ti has a different

ai such that ai , aiþ1. Suppose T0 is the full tree. To construct T1, we calculate a

for T0 through Eq. (2.75) for all nonleaf nodes, identify the minimum a, and set this

to be our a1. Then we replace all the nodes whose value is a ¼ a1 by leaves. The so

pruned tree is T1. We continue by identifying the smallest a on T1, and so on. The

second step after constructing the family T is to find the best tree. This can be done

again by using an independent pruning set or by cross-validation [76].

2.4.4.5 Error-Based Pruning. The interesting possibility offered by the error-

based pruning (EBP) method is that the nodes can be replaced by children nodes

together with the remaining subtree, not only replaced by leaves or kept unchanged.

This is called grafting a branch onto its parent’s branch. Thus the tree can be

restructured within the pruning procedure. The criterion that is used for making a

decision at node t is based on a statistical estimate of the confidence interval (CI)

for the error at t. The upper limit of this CI, Ut, is calculated by treating the set of

objects that reached t as a statistical sample and assuming that the number of errors

is a binomial random variable. The Ut values are found and subsequently used to

calculate the error estimates for the leaves and subtrees. The decision about a

node is made based on its expected error, the errors of its children and the error

of the largest of the children nodes (taking the largest number of objects).

An extensive experimental study carried out by Esposito et al. [77] found that

there are problems that benefit from pruning, others that do not, and a third group

where pruning does not lead to significantly different results. Most often pruning

was found to be beneficial. The problems where one class is highly dominant,

that is, with high maxci¼1 P(vi), have been found to benefit from any pruning strat-

egy. There is no unique answer to the question which is the best pruning method?

Using the above abbreviations, CVP and EBP were found to have a tendency

towards overpruning whereas REP has the opposite trend. Finally, it is pointed

out that setting aside a pruning subset as a part of the training set does not always

11Here n is again the number of data points reaching node t.
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pay off. Methods that used the whole training set to grow and then prune the tree

were found to be more successful.

The Matlab code tree_prune in Appendix 2A implements a pruning method

based on the CVP explained above but without going through the two steps. Instead

of making a family of trees and selecting the best tree within the family on an inde-

pendent pruning set, we just use a fixed critical value. The procedure starts with the

leaves. Two leaves are merged if x2 (2.72) exceeds the fixed threshold (the critical

value). We used the code to prune the full tree (25 nodes) for the banana data. We

chose the pruning constant to be t ¼ 3. The pruned tree consisted of 13 nodes with

training accuracy 4 percent and testing accuracy 11 percent.

Example: Tree Pruning for the Banana Data. One hundred pairs of training and

testing banana data sets were generated with s ¼ 1:5 and 100 data points in each set
(50 on each banana). The full tree was grown and pruned varying the threshold from

0 (no pruning) to 10 (heavy pruning). The results were averaged across the 100 pairs

of training/testing sets. The training and testing errors are shown in Figure 2.12 and
the tree size (number of nodes) is shown in Figure 2.13, all as functions of the

threshold t.

The figure suggests that there is an optimal size of the tree for which the testing

accuracy is minimum. A pruning threshold around 4 would find this smaller tree.

Notice that the tabular value for level of significance 0.05 of the x2 test is 3.841.

In terms of accuracy of the final classifier, pruning is perceived to be a better

option than early stopping. For small data sets, pruning is inexpensive because grow-

Fig. 2.12 Training and testing errors of a tree classifier as functions of the pruning threshold

(averaged across 100 experiments).
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ing of the full tree is not going to be overly time-consuming. For large data sets,

however, the cost of growing the full tree and subsequently pruning it could be pro-

hibitive. Early stopping is recommended for this case.

The methodology for tree construction explained so far is within the CART

framework [76]. The two main alternatives for designing trees are the ID3 algo-

rithm and the C4.5 algorithm.

The ID3 algorithm is due to Quinlan [78], a third algorithm from a series of inter-

active dichotomizer algorithms. It is designed for nominal data, so all continuous-

valued variables are first discretized and the categories are treated as unordered.

The main characteristic of ID3 is that each node has as many children nodes as

the number of categories of the (nominal) feature at that node. Since a feature is

completely used up on a single node, the tree can only be grown up to maximum

n layers, where n is the total number of features. Pruning of the resultant tree can

be carried out as discussed above. To select a feature for a node, we should use a

modified version of the impurity criteria because the formulas introduced above

inherently favor multiple splits over two-way splits without a good reason. Instead

of the absolute impurity reduction Di, we should use a scaled version thereof, called

the gain ratio impurity. In an M-way split, let Pi be the proportion of objects going

into the ith child node. Then

DiM ¼
Di

�
PM

i¼1 Pi logPi

(2:76)

The main problem with ID3 when continuous-valued variables are concerned is

the way these are discretized into categories. There is an inevitable loss of infor-

Fig. 2.13 Size of the tree classifier as a function of the pruning threshold (averaged across 100

experiments).
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mation involved in the process. Moreover, a careless formulation of the categories

might “kill” an otherwise important variable.

The C4.5 algorithm avoids the discretization problem by using the continuous-

valued variables as in CART, and the nominal variables as in ID3. Duda et al.

[15] note that C4.5 is the currently most popular tree construction algorithm

among the machine learning researchers.

2.5 NEURAL NETWORKS

Artificial neural networks (ANNs or simply NNs) originated from the idea to model

mathematically human intellectual abilities by biologically plausible engineering

designs. Meant to be massively parallel computational schemes resembling a real

brain, NNs evolved to become a valuable classification tool with a significant influ-

ence on pattern recognition theory and practice. Neural networks are often used as

base classifiers in multiple classifier systems [79]. Similarly to tree classifiers, NNs

are instable, that is, small changes in the training data might lead to a large change in

the classifier, both in its structure and parameters.

Literature on NNs is excessive and continuously growing. Many publications

such as textbooks and monographs [27–29,80–88], paper collections [89], introduc-

tory readings [90–92], and so on, discuss NNs at various theoretical and algorithmic

depths. Modeling of the human brain, at either morphological or functional level,

and trying to understand NNs’ cognitive capacity are also important research topics

[93–95]. Below we give a brief layout of one of the most popular NN models, the

multilayer perceptron (MLP).

Consider an n-dimensional pattern recognition problem with c classes. A neural

network obtains a feature vector x ¼ ½x1, . . . , xn�
T [ R

n at its input, and produces

values for the c discriminant functions g1(x), . . . , gc(x) at its output. Typically

NNs are trained to minimize the squared error on a labeled training set Z ¼

{z1, . . . , zN}, zj [ R
n, and l(zj) [ V

E ¼
1

2

XN
j¼1

Xc
i¼1

{gi(zj)� Iðvi, l(zj)Þ}
2 (2:77)

where Iðvi, l(zj)Þ is an indicator function taking value 1 if the label of zj is vi, and 0

otherwise. It has been shown that the set of discriminant functions obtained by mini-

mizing Eq. (2.77) approach the posterior probabilities for the classes for data size

N ! 1 [96–98]; that is,

lim
N!1

gi(x) ¼ P(vijx), x [ R
n (2:78)

This result was brought to light in connection with NNs, but, in fact, it holds for any

classifier that can approximate an arbitrary discriminant function with a specified
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precision. This universal approximation property has been proven for the two

important NN models: the multi-layered perceptron (MLP) and the radial basis

function (RBF) networks (for summaries of the literature and proofs refer to Refs.

[27] and [29]). Various NN training protocols and algorithms have been developed,

and these have been the key to the success of NN classifiers.

2.5.1 Neurons

The processing units in the human brain are neurons of different specialization and

functioning. The earliest models of neurons including the model of McCulloch and

Pitts [99] and Fukushima’s cognitron [100], reprinted in the collection of Ref. [89],

were more similar to the biological neuron than later models. For example, they

incorporated both activating and veto-type inhibitory inputs. To avoid confusion,

artificial neurons are often given other names: “nodes” [101], “units” [27,29], “neu-

rodes” [28]. Simple models will need a large structure for the whole system to work

well (e.g., the weightless neural networks [93]), while for more complex models of

neurons a few units will suffice. In both cases proper algorithms are needed to train

the system (its structure and/or parameters). The basic scheme of a processing node

is shown in Figure 2.14.

Let u ¼ ½u0, . . . , uq�
T [ R

qþ1 be the input vector to the node and v [ R be

its output. We call w ¼ ½w0, . . . , wq�
T [ R

qþ1 a vector of synaptic weights. The

processing element implements the function

v ¼ f(j); j ¼
Xq
i¼0

wiui (2:79)

where f : R! R is the activation function and j is the net sum. Typical choices for

f are

Fig. 2.14 The NN processing unit.
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. The threshold function

f(j) ¼
1, if j � 0,

0, otherwise.

�
(2:80)

. The sigmoid function

f(j) ¼
1

1þ exp (�j)
(2:81)

. The identity function

f(j) ¼ j (2:82)

The three activation functions are drawn in Figure 2.15.

The sigmoid is the most widely used one because of the following:

. It can model both linear and threshold functions to a desirable precision; f is

almost linear near the origin, whereas for large weights, f is practically the

threshold function.

. The sigmoid function is differentiable, which is important for the NN

training algorithms. Its derivative on j has the simple form f0(j) ¼

f(j)½1� f(j)�.

The weight “�w0” is used as a bias, and the corresponding input value u0 is set

to 1. Equation (2.79) can be rewritten as

v ¼ f½z� (�w0)� ¼ f
Xq
i¼1

wiui � (�w0)

" #
(2:83)

Fig. 2.15 Threshold, sigmoid, and identity activation functions.
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where z is now the weighted sum of the weighted inputs from 1 to q. Geometrically,

the equation

Xq
i¼1

wiui � (�w0) ¼ 0 (2:84)

defines a hyperplane in R
q. A node with a threshold activation function (2.80)

responds with value þ1 to all inputs ½u1, . . . , uq�
T on the one side of the hyperplane,

and value 0 to all inputs on the other side.

2.5.2 Rosenblatt’s Perceptron

Rosenblatt [8] defined the so called perceptron and its famous training algorithm.

The perceptron is implemented as Eq. (2.79) with a threshold activation function

f(j) ¼
1, if j � 0,

�1, otherwise.

�
(2:85)

This one-neuron classifier separates two classes in R
n by the linear discriminant

function defined by j ¼ 0. The algorithm starts with random initial weights w and

modifies them as each sample from Z is subsequently submitted to the input of

the perceptron. The modification takes place only if the current vector zj is misclas-

sified (appears on the wrong side of the hyperplane). The weights are corrected by

w � w� vhzj (2:86)

where v is the output of the perceptron for zj and h is a parameter specifying the

learning rate. Beside its simplicity, perceptron training has the following interesting

properties:

. If the two classes are linearly separable in Rn, the algorithm always converges

in a finite number of steps to a linear discriminant function that gives no resub-

stitution errors on Z, for any h. (This is called “the perceptron convergence

theorem.”)

. If the two classes are not linearly separable in Rn, the algorithm will loop infi-

nitely through Z and never converge. Moreover, there is no guarantee that if

we terminate the procedure the resultant linear function is the best one

found throughout the training.

Appendix 2B contains the code perceptron for a perceptron training. To

ensure that the program returns an output for both separable and nonseparable

classes, a maximum number of 10,000 iterations is set. If this number is reached

and there are still misclassified objects in the training set, the program declares
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the classes nonseparable (setting the iteration counter “pass” to 0) and returns the

last values of the coefficients w.

Example: Perceptron Training. To illustrate the perceptron training algorithm, a

data set of 5000 points was generated, distributed uniformly within the unit square

½0, 1�2. Two classes were subsequently labeled, v1, containing all points for which

x . y and v2 with the remaining points. For visualization purposes, the points

around the diagonal x ¼ y were removed (all points for which jx� yj , 0:012),
leaving a small gap between the classes. Figure 2.16a shows the data set and the dis-

criminant function found by the perceptron training code in Appendix 2B (the learn-

ing rate was h ¼ 0:1). Eleven passes through Z were made to achieve separability

for the particular random initialization of w.

Figure 2.16b depicts the evolution of the class boundary throughout the training.

Each time a misclassification occurred and the weight vector changed, we plotted

the resultant boundary. Thus even though only eleven passes through Z were com-

pleted, there are as many lines as the total number of misclassifications throughout

the training (in this example, 412). Gray lines indicate earlier boundaries whereas

black lines were used for the boundaries toward the end of training.

2.5.3 MultiLayer Perceptron

By connecting perceptrons we can design an NN structure called the multilayer per-

ceptron (MLP). This is a feedforward structure because the output of the input layer

and all intermediate layers is submitted only to the higher layer. The generic model

of a feedforward NN classifier is shown in Figure 2.17.

Fig. 2.16 (a) Uniformly distributed two-class data and the boundary found by the perceptron

training algorithm. (b) The “evolution” of the class boundary.
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Here “layer” means a layer of perceptrons. The feature vector x is submitted to

an input layer, and at the output layer there are c discriminant functions

g1(x), . . . , gc(x). The number of hidden layers and the number of perceptrons at

each hidden layer are not limited. The most common default conventions are:

. The activation function at the input layer is the identity function (2.82).

. There are no lateral connections between the nodes at the same layer (feed-

forward structure).

. Nonadjacent layers are not connected directly.

. All nodes at all hidden layers have the same activation function f.

This model is not as constrained as it might look. In fact, most of the theoretical

results in NNs are developed exactly for this model:

. In the late 1980s, based on a simple constructive layout, it was shown that

an MLP (as above) with two hidden layers of threshold nodes can approximate

any classification regions in R
n with a specified precision [90,102,103].

Figure 2.18 shows the classification regions that could be formed by an

MLP with one, two, and three layers of threshold nodes.

Fig. 2.17 A generic model of an MLP classifier.
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. It was proven later that even an MLP with a single hidden layer and threshold

nodes can approximate any function with a specified precision [27,29,104].

The above findings do not tell us how to build and train the MLPs and therefore

have only theoretical significance. The resurfacing of NN in the 1980s was motiv-

ated by the development of the backpropagation training algorithm, which provides

the means to train a neural network.

2.5.4 Backpropagation Training of MultiLayer Perception

We assume that the structure of the NN is already chosen and fixed (the number of

hidden layers and the number of nodes at each hidden layer) and that the activation

function is differentiable. The problem is to determine the values of the parameters

Fig. 2.18 Possible classification regions for an MLP with one, two, and three layers of threshold

nodes. (Note that the “NN configuration” column only indicates the number of hidden layers and

not the number of nodes needed to produce the regions in column “An example”.)
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(weights) for all nodes. Let u be a parameter of the NN and J(u) be some error func-

tion to be minimized. The gradient descent method updates u by

u � u� h
@J

@u
(2:87)

where h . 0 is the learning rate. An obvious candidate for J(u) is the squared error

function E of Eq. (2.77). Calculating the derivatives of E on all the weights of the

MLP is not straightforward. Consider a node somewhere in the NN with net sum

j, inputs u0, . . . , uq and weights w0, . . . , wq. The derivative of E with respect to

wj is

@E

@wj

¼
@E

@j

@j

@wj

¼
@E

@j
uj (2:88)

We call d ¼ @E=@j the error. Let x [ R
n be a training input with known class label

l(x). To calculate the updated weight wj through Eq. (2.87), we need d and the inputs

uj of that node for the given x.

We start the training by assigning small random numbers to all weights and

selecting a value for the learning rate h. Using the current weights and starting

from the input layer, we can calculate subsequently all the uj in the network (forward

propagation). For the d, however, we proceed backwards, that is, from the output,

back to the input (backpropagation). The derivative of E (2.77) with respect to

the ith output gi(x) is

@E

@gi(x)
¼ gi(x)� Iðl(x), viÞ (2:89)

Let j o
i be the net sum at output node i and gi(x) ¼ f(joi ). Using the chain rule,

do
i ¼

@E

@joi
¼

@E

@gi(x)

@gi(x)

@joi
¼ ½gi(x)� Iðl(x),viÞ�

@f(joi )

@joi
(2:90)

For the sigmoid activation function f of Eq. (2.81),

do
i ¼

@E

@joi
¼ ½gi(x)� I (x, vi)�gi(x)½1� gi(x)� (2:91)

The do
i , i ¼ 1, . . . , c, are the errors of the c nodes at the output layer and are used to

update the weights from the last hidden to the output layer. The inputs to every node

at the output layer are the outputs of the nodes at the last hidden layer calculated

through the forward propagation. Suppose there are M nodes at the last hidden

layer with outputs vh1, . . . , v
h
M . Each output node will have vh1, . . . , v

h
M plus a bias

input vh0 ¼ 1 as its inputs u0, . . . , uM in Eq. (2.88). Having calculated doi through
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Eq. (2.90) or Eq. (2.91), we have now all the necessary components to calculate Eq.

(2.88) and update the weights from the last hidden layer to the output layer. Denote

by wo
ik the weight of the connection between kth node at the last hidden layer and the

ith output. From Eqs. (2.87) and (2.88)

wo
ik  wo

ik � hdo
i v

h
k , k ¼ 0, . . . , M, i ¼ 1, . . . , c (2:92)

Consider now the kth node at the last hidden layer. Let wh
jk denote the weight of

the connection coming from the jth node at the previous (hidden or input) layer. We

shall refer to the penultimate hidden layer (or input layer) as “h� 1”. Let j h
k be the

net sum and vhk ¼ f(jhk) be the output of the kth node at the last hidden layer. The

error term for the kth node, dh
k ¼ @E=@jhk , needed for updating all incoming weights

from the previous layer, is obtained as

dhk ¼
@E

@j h
k

¼
@E

@vhk

@vhk
@j h

k

¼
@E

@vhk

@f(j h
k)

@j h
k

(2:93)

The first multiplier can be obtained via the chain rule again. Noticing that E depends

on vhk through the net sums at the output nodes, j1, . . . , jc, and each net sum partici-

pates in a separate summation term of E,

@E

@vhk
¼
Xc
i¼1

@E

@ji

@ji
@vhk
¼
Xc
i¼1

do
i w

o
ki (2:94)

The errors do
i ¼ @E=@j o

i are already calculated. Using Eq. (2.93), the error at the kth

node becomes

dh
k ¼

@E

@jhk
¼

Xc
i¼1

do
i w

o
ik

 !
@f(j h

k )

@jhk
(2:95)

The above equation illustrates the backpropagation of the error: to calculate the

error term for a node at a certain hidden layer we need the errors calculated already

at the higher adjacent layer. For a sigmoid f, Eq. (2.95) becomes

dhk ¼
@E

@j h
k

¼
Xc
i¼1

doi w
o
ik

 !
vhk(1� vhk) (2:96)
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To update the weight wh
ik for the connection from the kth node at layer h� 1 to the

ith node at the last hidden layer, we use

wh
ik  � wh

ik � hdhi v
h�1
k , k ¼ 0, . . . , S, i ¼ 1, . . . , M (2:97)

where S is the number of nodes at layer h� 1 and vh�1k , k ¼ 1, . . . , S are the outputs
at this layer.

Propagating the above formulas backwards through the NN, we calculate the

derivatives of E for a single input x. There are two ways to implement the training

procedure: batch and on-line. In the batch version, the updating (2.87) takes place

once after a pass through the whole Z, called an epoch. Therefore the derivatives

Fig. 2.19 Backpropagation MLP training.

Backpropagation MLP training

1. Choose an MLP structure: pick the number of hidden layers, the number

of nodes at each layer and the activation functions.

2. Initialize the training procedure: pick small random values for all

weights (including biases) of the NN. Pick the learning rate h . 0;
the maximal number of epochs T and the error goal e . 0:

3. Set E ¼ 1, the epoch counter t ¼ 1 and the object counter j ¼ 1.

4. While ðE . e and t � T) do

(a) Submit zj as the next training example.

(b) Calculate the output of every node of the NN with the current

weights (forward propagation).

(c) Calculate the error term d at each node at the output layer by (2.91).

(d) Calculate recursively all error terms at the nodes of the hidden

layers using (2.95) (backward propagation).

(e) For each hidden and each output node update the weights by

wnew ¼ wold � hdu; ð2:98Þ

using the respective d and u:

(f) Calculate E using the current weights and Eq. (2.77).

(g) If j ¼ N (a whole pass through Z (epoch) is completed), then set t ¼

t þ 1 and j ¼ 0. Else, set j ¼ jþ 1:

5. End % (While)
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of E (the update amount @E=@w) are obtained by summing up the derivatives for all

zj [ Z for that particular w. Then we apply Eq. (2.87) to every weight of the NN. In

the on-line implementation the weights are updated for each zj taken as an input to

the NN, with the derivatives calculated as above. The on-line backpropagation

algorithm is explained in Figure 2.19. A simple code for a batch version for an

MLP with a single hidden layer (the most frequent choice) is given in Appendix 2B.

The stochastic backpropagation version [15] selects examples at random from the

training set and updates the weights after the presentation of each selected example.

Thus the concept of “epoch” is not relevant for this case.

Example: Backpropagation NN Training. To simplify notations, we shall num-

ber consecutively all neurons in the NN, regardless of their layer. Then a weight

from i to j will be denoted wij. Let vi be the output of neuron i, and di its error.

The weight update formula will then take the simple form of

wij  � wij � h� djvi (2:99)

Figure 2.20 shows an example of an MLP with one hidden layer. The bias nodes,

3 and 7, are taken outside the layers and connected by dashed lines to the respective

neurons at the higher level. A bias node has no input and always produces 1 at its

output. Since bias nodes can be incorporated in the activation functions, we shall

not count them as separate nodes when specifying the NN structure. So the NN in

Figure 2.20 has two input, three hidden, and two output neurons. Our NN configur-

ation is conventionally written as 2 : 3 : 2 (input : hidden : output).

Assume that the input neurons 8 and 9 have identity activation functions, neurons

3 and 7 always output 1, and all the remaining neurons use the sigmoid activation

function (2.81). We shall demonstrate how the new weights w42 and w95 are calcu-

lated for a single submission of a training example x. Let us start with a random set

of weights as shown in Table 2.5a. Let h ¼ 0:1.
Suppose a vector x ¼ ½2,�1�T from class v2 is submitted as the next training

example. The forward calculation with the random weights gives the following

values of the outputs

v1 ¼ 0:8488 v2 ¼ 0:9267
v3 ¼ 1 v4 ¼ 0:7738 v5 ¼ 0:8235 v6 ¼ 0:9038
v7 ¼ 1 v8 ¼ 2 v9 ¼ �1

The target value (class v2) is [0, 1]. Using Eq. (2.91), we have

d1 ¼ (0:8488� 0)� 0:8488� (1� 0:8488) ¼ 0:1089

d2 ¼ (0:9267� 1)� 0:9267� (1� 0:9267) ¼ �0:0050 (2:100)
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Propagating the error to the hidden layer as in Eq. (2.96), we calculate

d4 ¼ (d1 � w41 þ d2 � w42)� v4 � (1� v4)

¼ (0:1089� 0:05� 0:0050� 0:57)� 0:7738� (1� 0:7738)

� 0:0005 (2:101)

In the same way we obtain d5 ¼ 0:0104 and d6 ¼ 0:0068. We can now calculate

the new values of all the weights through Eq. (2.98). For example,

w42 ¼ w42 � h� d2 � v4

¼ 0:57� 0:1� (�0:0050)� 0:7738 (2:102)

¼ 0:5704 (2:103)

Fig. 2.20 A 2 : 3 : 2 MLP configuration. Bias nodes are depicted outside the layers and are not

counted as separate nodes.

TABLE 2.5 (a) Random Set of Weights for a 2 : 3 : 2 MLP NN; (b) Updated Weights

Through Backpropagation for a Single Training Example.

Neuron Incoming Weights

(a) 1 w31 ¼ 0.4300 w41 ¼ 0.0500 w51 ¼ 0.7000 w61 ¼ 0.7500

2 w32 ¼ 0.6300 w42 ¼ 0.5700 w52 ¼ 0.9600 w62 ¼ 0.7400

4 w74 ¼ 0.5500 w84 ¼ 0.8200 w94 ¼ 0.9600

5 w75 ¼ 0.2600 w85 ¼ 0.6700 w95 ¼ 0.0600

6 w76 ¼ 0.6000 w86 ¼ 1.0000 w96 ¼ 0.3600

(b) 1 w31 ¼ 0.4191 w41 ¼ 0.0416 w51 ¼ 0.6910 w61 ¼ 0.7402

2 w32 ¼ 0.6305 w42 ¼ 0.5704 w52 ¼ 0.9604 w62 ¼ 0.7404

4 w74 ¼ 0.5500 w84 ¼ 0.8199 w94 ¼ 0.9600

5 w75 ¼ 0.2590 w85 ¼ 0.6679 w95 ¼ 0.0610

6 w76 ¼ 0.5993 w86 ¼ 0.9986 w96 ¼ 0.3607
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For input-to-hidden layer weights we use again Eq. (2.98); for example,

w95 ¼ w95 � h� d5 � v9 ¼ w95 � h� d5 � x2 (2:104)

¼ 0:06� 0:1� 0:0104� (�1) ¼ 0:0610 (2:105)

The new values of the weights, updated after the presentation of the single

example x are given in Table 2.5b.

Example: 2 : 3 : 2 MLP for the Banana Data. This example illustrates the back-

propagation training for the banana data set. We chose the NN configuration

depicted in Figure 2.20 and used in the example above. The training protocol was

as follows:

. version of backpropagation: batch;

. maximum number of epochs: T ¼ 1000;

. learning rate: h ¼ 0:1;

. error goal: 0;

. initialization of the weights and biases: random numbers in the interval [0, 1].

The function backprop given in Appendix 2B was used to train the NN. We

measured the squared error at each epoch (the criterion function) and also the appar-

Fig. 2.21 Squared error and the apparent error rate versus the number of epochs for the

backpropagation training of a 2 : 3 : 2 MLP on the banana data.
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ent error rate. Although generally corresponding, the two are not identical.

Figure 2.21 plots the two errors calculated on the training set versus the iteration

count.

As expected, both errors decline, and towards the end of the training process

oscillate along some small residual value. Since the squared error was not brought

down to the target value, 1000 iterations (epochs) were carried out. Figure 2.22

shows the classification regions, shaded with different gray intensity depending

on the value of the NN output. The training error at the 1000th epoch was 4 percent

and the testing error was 9 percent.

There are a number of interesting modifications of backpropagation training aim-

ing at higher effectiveness (e.g., faster convergence, stability, and so on) [28].

APPENDIX 2A MATLAB CODE FOR TREE CLASSIFIERS

The below collection of functions produces a tree classifier for a given data set

Z with numerical labels in “labZ.” The labels should be consecutive integers

starting with 1. The number of classes c is also needed as an input parameter.

The tree is stored in the output array T, as explained in the text. The function

tree_construct uses a threshold which was assigned to 3 in the calculations

for the examples given in the text.

function T=tree_construct(Z,labZ,c,chi2_threshold);

if size(Z,1)>1,

if min(labZ)==max(labZ),

% one class -->

% do not split and make a leaf labeled labZ(1)

T=[labZ(1),0,0,0];

else

[j,s]=tree_select_feature(Z,labZ,c);

Fig. 2.22 The classification regions for the banana data produced by the trained 2 : 3 : 2 MLP.
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chi2=tree_chi2(Z,labZ,c,j,s);

if (chi2>chi2_threshold)&(s~=-999),

left=Z(:,j)<=s;

% accept the split

Tl=tree_construct(Z(left,:),...

labZ(left),c,chi2_threshold);

% left subtree

Tr=tree_construct(Z(~left,:),...

labZ(~left),c,chi2_threshold);

% right subtree

% merge the two trees

Tl(:,[3 4])=Tl(:,[3 4])+(Tl(:,[3 4])>0)*1;

Tr(:,[3 4])=Tr(:,[3 4])+...

(Tr(:,[3 4])>0)*(size(Tl,1)+1);

T=[j,s,2,size(Tl,1)+2;Tl;Tr];

else

% do not split and make a leaf

% labeled as the majority

for i=1:c,

count(i)=sum(labZ==i);

end;

[dummy,majority_label]=max(count);

T=[majority_label,0,0,0];

end;

end;

else

T=[labZ(1),0,0,0]; % there is only one point in Z

end;

function [maxj,maxs]=tree_select_feature(Z,labZ,c);

[n,m]=size(Z);

i_G=Gini(labZ);

% Gini index of impurity at the parent node

for j=1:m,

if min(Z(:,j))==max(Z(:,j)),

% the feature has only one value

D=0;

s=-999; % missing value code

else

[Zsrt,iZsrt]=sort(Z(:,j)); % sort j-th feature

for i=1:n-1, % check the n-1 split points

sp=(Zsrt(i)+Zsrt(i+1))/2;

left=Z(:,j)<=sp;

if (sum(left)>0)&(sum(left)<n),

% there are points in both children nodes

i_GL=Gini(labZ(left));

i_GR=Gini(labZ(~left));

Delta_i(i)=i_G-mean(left)*i_GL ...

-mean(~left)*i_GR;

else

% one node is empty

Delta_i(i)=0;

end;

end;

[D(j),index_s]=max(Delta_i);
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% maximum of Delta_i for the jth feature

s(j)=(Zsrt(index_s)+Zsrt(index_s+1))/2;

end;

end;

[maxD,maxj]=max(D); % maxj is the best feature

maxs=s(maxj); % maxs is the corresponding split point

function chi2=tree_chi2(Z,labZ,c,j,s);

n=size(Z,1);

chi2=0;

left=Z(:,j)<=s;

n_L=sum(left);

for i=1:c,

n_i=sum(labZ==i);

n_iL=sum(labZ(left)==i);

if (n_i>0)&(n_L>0)

chi2=chi2+(n*n_iL-n_i*n_L)^2/(2*n_i*(n_L)*(n-n_L));

end;

end;

function i_G=Gini(labZ);

for i=1:max(labZ),

P(i)=mean(labZ==i);

end;

i_G=1-P*P0;

function [guessed_lab,e]=tree_classify(T,Z,labZ);

% T is a tree constructed by tree_construct

% e is the error rate of the tree classifier for

% the data set Z with labels in labZ

for i=1:size(Z,1),

ind=1;

leaf=0;

while leaf==0,

if T(ind,3)==0,% leaf is found

guessed_lab(i)=T(ind,1);

leaf=1;

else

if a(i,T(ind,1))<=T(ind,2),

ind=T(ind,3); % left child

else

ind=T(ind,4); % right child

end;

end;

end;

end;

e=1-mean(labZ==guessed_lab0);

function Tpr=tree_prune(T,Z,labZ,c,chi2_threshold);

% Find the distributions of points at each node of T

Tdistr=zeros(size(T,1),c); % initialize a distribution array

for i=1:size(Z,1), % for each data point in Z, check which nodes

% it goes through, and increment the respective

% distributions
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ind=1;

leaf=0;

while leaf==0,

Tdistr(ind,labZ(i))=Tdistr(ind,labZ(i))+1; % increment counter

% for class lsbZ(i) at the visited node i

if T(ind,3)==0, % leaf is found

leaf=1;

else

if Z(i,T(ind,1))<=T(ind,2),

ind=T(ind,3); % left

else

ind=T(ind,4); % right

end;

end;

end;

end;

prune=1; % indicator of changes of T,

while prune==1,

prune=0;

for i=1:size(T,1),

if T(i,3)>0, % not a leaf

if (T(T(i,3),3)==0)&(T(T(i,4),3)==0),

% if both children are leaves, consider pruning

n=sum(Tdistr(i,:));

chi2=0;

n_L=sum(Tdistr(T(i,3),:));

for k=1:c,

if Tdistr(i,k)>0,

chi2=chi2+(n*Tdistr(T(i,3),k)-...

Tdistr(i,k)*n_L)^2 /(n*Tdistr(i,k)*n_L);

end;

end;

n_R=sum(Tdistr(T(i,4),:));

chi2=chi2*(n_L+n_R)/(2*n_R);

if chi2<chi2_threshold % merge

prune=1; % set the indicator

[dummy,T(i,1)]=max(Tdistr(i,:));

% label the i-th node

T(T(i,3),:)=zeros(1,4);

% delete the children nodes

T(T(i,4),:)=zeros(1,4);

T(i,2)=0;T(i,3)=0;T(i,4)=0;

end;

end;

end;

end;

end;

% Pack T

Tpr=T;

for i=1:size(T,1),

if T(i,1)==0,

for k=1:size(T,1),

if T(k,3)>i;Tpr(k,3)=Tpr(k,3)-1;end;
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if T(k,4)>i;Tpr(k,4)=Tpr(k,4)-1;end;

end;

end;

end;

Tpr=Tpr(T(:,1)>0,:);

APPENDIX 2B MATLAB CODE FOR NEURAL NETWORK
CLASSIFIERS

function [w,pass]=perceptron(Z,labZ,eta);

ier=1; % initialize a misclassification indicator

pass=0; % initialize iteration counter

w=rand(1,size(Z,2)+1); % initialize weights + threshold

while ier==1, % misclassifications occurred in the

% last pass through Z

ier=0;

for j=1:size(Z,1), % a pass through Z

y=sign([Z(j,:) 1]*w0); % perceptron output

if y*sign(labZ(j)-1.5)<1

% misclassification

ier=1; % switch the indicator

w=w-eta*y*[Z(j,:) 1]; % update weight vector

end;

end;

pass=pass+1;

if pass=10000,

ier=0;

pass=0;

end;

end;

function [W1,B1,W2,B2,estored,miscl]=...

backprop(Z,labZ,M,T,epsilon,eta);

% Backpropagation training of an MLP,

% with a single hidden layer with M nodes in it

%

% W1 and W2 are arrays with weights: input-hidden

% and hidden-output, respectively

%======= INITIALIZATION ========

[n,m]=size(Z);c=max(labZ);

bin_labZ=repmat(labZ,1,c)==repmat(1:c,n,1); % use labels

% to form c-component binary target vectors

W1=rand(M,m); % weights input-hidden

B1=rand(M,1); % biases input-hidden

W2=rand(c,M); % weights hidden-output

B2=rand(c,1); % biases hidden-output

E=inf; % criterion value

t=1; % iteration counter

%======== CALCULATION==========

estored=[];miscl=[];

while (E>epsilon) & (t<=T),

oh=1./(1+exp(-[W1 B1]*[Z ones(n,1)]0));
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% outputs of the hidden layer

o=1./(1+exp(-[W2 B2]*[oh; ones(1,n)]));

% outputs of the output layer

E=sum(sum((o0-bin_labZ).^2));

delta_o=(o-bin_labZ0).*o.*(1-o);

delta_h=[(delta_o0*W2).*oh0.*(1-oh0)]0;

for i=1:c, % update W2 and B2

for j=1:M,

W2(i,j)=W2(i,j)-eta*delta_o(i,:)*[oh(j,:)]0;

end;

B2(i)=B2(i)-eta*delta_o(i,:)*ones(n,1);

end;

for i=1:M, % update W1 and B1

for j=1:m,

W1(i,j)=W1(i,j)-eta*delta_h(i,:)*Z(:,j);

end;

B1(i)=B1(i)-eta*delta_h(i,:)*ones(n,1);

end;

t=t+1;

estored=[estored;E]; % store the MLP squared error

[dummy,guessed_labels]=max(o);

miscl=[miscl;1-mean(guessed_labels0==labZ)];

% store the classification error

end;
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3
Multiple Classifier

Systems

3.1 PHILOSOPHY

By combining classifiers we are aiming at a more accurate classification decision at

the expense of increased complexity. The question is whether a combination of clas-

sifiers is justified. Are we not bringing the fundamental pursuit in pattern recognition

to a different level? Ho expresses this concern in her critical review article “Multiple

classifier combination: Lessons and the next steps” [105]:

Instead of looking for the best set of features and the best classifier, now we look for the

best set of classifiers and then the best combination method. One can imagine that very

soon we will be looking for the best set of combination methods and then the best way

to use them all. If we do not take the chance to review the fundamental problems arising

from this challenge, we are bound to be driven into such an infinite recurrence, drag-

ging along more and more complicated combination schemes and theories and gradu-

ally losing sight of the original problem.

The warning here is that we should be able to make the best use of the tools and

methodologies that we have at present, before setting off for new complicated

designs. Combining classifiers appears as a natural step forward when a critical

mass of knowledge of single classifier models has been accumulated. Although

there are many unanswered questions about matching classifiers to real-life pro-

blems, combining classifiers is rapidly growing and enjoying a lot of attention

from pattern recognition and machine learning communities.
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Dietterich [106] suggests three types of reasons why a classifier ensemble might

be better than a single classifier.

3.1.1 Statistical

Suppose we have a labeled data set Z and a number of different classifiers with a

good performance on Z. We can pick a single classifier as the solution, running

onto the risk of making a bad choice for the problem. For example, suppose that

we run the 1-nn classifier or a decision tree classifier for L different subsets of fea-

tures thereby obtaining L classifiers with zero resubstitution error. Although these

classifiers are indistinguishable with respect to their (resubstitution) training error,

they may have different generalization performances. Instead of picking just one

classifier, a safer option would be to use them all and “average” their outputs.

The new classifier might not be better than the single best classifier but will diminish

or eliminate the risk of picking an inadequate single classifier.

Dietterich gives a graphical illustration of this argument as shown in Figure 3.1.12

The outer circle denotes the space of all classifiers. The shaded inner region contains

all classifiers with good performances on the training data. The best classifier for the

problem (supposedly with a good performance on the training data too) is denoted

by D�. The hope is that some form of aggregating of the L classifiers will bring the

resultant classifier closer to D� than a classifier randomly chosen from the classifier

space would be.

Fig. 3.1 The statistical reason for combining classifiers. D � is the best classifier for the problem,

the outer curve shows the space of all classifiers; the shaded area is the space of classifiers with

good performances on the data set.

12 The appearance and notations in the figures inspired by Ref. [106] are changed so as to be consistent

with the rest of the book.

102 MULTIPLE CLASSIFIER SYSTEMS



3.1.2 Computational

Some training algorithms perform hill-climbing or random search, which may lead

to different local optima. Figure 3.2 depicts this situation. We assume that the train-

ing process of each individual classifier starts somewhere in the space of possible

classifiers and ends closer to the optimal classifier D�. Some form of aggregating

may lead to a classifier that is a better approximation to D� than any single Di.

3.1.3 Representational

It is possible that the classifier space considered for the problem does not contain the

optimal classifier. For example, the optimal classifier for the banana data discussed

earlier is nonlinear. If we restrict the space of possible classifiers to linear classifiers

only, then the optimal classifier for the problem will not belong in this space. How-

ever, an ensemble of linear classifiers can approximate any decision boundary with

any predefined accuracy. If the classifier space is defined differently, D� may be an

element of it. In this case, the argument is that training an ensemble to achieve a cer-

tain high accuracy is more straightforward than training directly a classifier of high

complexity. For example, a single neural network can be trained for the problem

instead of looking at a combination of simple classifiers. When there are many par-

ameters (weights) to be tuned, a local extremum of the error function is likely to be

found. An ensemble of simple classifiers might be a better option for such problems.

Figure 3.3 illustrates the case where the optimal classifier D� is outside the chosen

space of classifiers.

Note that an improvement on the single best classifier or on the group’s average

performance, for the general case, is not guaranteed. What is exposed here are only

Fig. 3.2 The computational reason for combining classifiers. D � is the best classifier for the

problem, the closed space shows the space of all classifiers, the dashed lines are the

hypothetical trajectories for the classifiers during training.
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“clever heuristics.” However, the experimental work published so far and the

theories developed for a number of special cases demonstrate the success of

classifier combination methods.

3.2 TERMINOLOGIES AND TAXONOMIES

The series of annual International Workshops on Multiple Classifier Systems

(MCS), held since 2000, has played a pivotal role in organizing, systematizing,

and developing further the knowledge in the area of combining classifiers [107–

110]. We still do not have an agreed upon structure or a taxonomy of the whole

field, although a silhouette of a structure is slowly crystallizing among the numerous

attempts. Providing yet another taxonomy is not the intention of this chapter. We

will rather look at several popular ways to summarize the work in the field in the

hope that a structure will be found in the future.

Before the series of MCS workshops, classifier combination went through paral-

lel routes within pattern recognition and machine learning, and perhaps in other

areas such as data fusion. This brought various terms for the same notion. We

note that some notions are not absolutely identical but bear the specific flavor of

their area of origin. For example

classifier ¼ hypothesis ¼ learner ¼ expert

and

example ¼ instance ¼ case ¼ data point ¼ object

Fig. 3.3 The representational reason for combining classifiers. D � is the best classifier for the

problem; the closed shape shows the chosen space of classifiers.
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A similar variety of terminology can be observed in the toolbox of methods for clas-

sifier combination.

A starting point for grouping ensemble methods can be sought in the ways of

building the ensemble. The diagram in Figure 3.4 illustrates four approaches aiming

at building ensembles of diverse classifiers.

This book is mainly focused on Approach A. Chapters 4, 5, and 6 contain details

on different ways of combining the classifier decisions. The base classifiers

(Approach B) can be any of the models discussed in Chapter 2 along with classifiers

not discussed in this book. Many ensemble paradigms employ the same classifi-

cation model, for example, a decision tree or a neural network, but there is no evi-

dence that this strategy is better than using different models. The design of the base

classifiers for the ensemble is partly specified within the bagging and boosting

models (Chapter 7) while designing the combiner is not coupled with a specific

base classifier. At feature level (Approach C) different feature subsets can be used

for the classifiers. This topic is included in Chapter 8. Finally, the data sets can

be modified so that each classifier in the ensemble is trained on its own data set

(Approach D). This approach has proven to be extremely successful owing to the

bagging and boosting methods described in Chapter 7.

Although many of the existing streams in classifier combination are captured in

the four-approaches classification, there are many more that are left outside. For

example, a remarkably successful ensemble building heuristic is manipulating the

output labels by using error correcting codes (ECOC) (Chapter 8). Other topics

of interest include clustering ensembles (Chapter 8) and diversity in classifier

ensembles (Chapter 10). Developing a general theory, as impossible as it sounds,

Fig. 3.4 Approaches to building classifier ensembles.
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is an attractive goal in classifier combination. Chapter 9 provides a compilation of

some published theoretical results. Certainly many more methods and paradigms

have been developed, especially those tailored to real-life applications. Such

methods are even more interesting than the general ones, but at the same time

very hard to summarize in the same text.

Below we sketch some of the views in the literature on grouping classifier

methods.

3.2.1 Fusion and Selection

It is accepted now that there are two main strategies in combining classifiers: fusion

and selection. In classifier fusion, each ensemble member is supposed to have

knowledge of the whole feature space. In classifier selection, each ensemble member

is supposed to know well a part of the feature space and be responsible for objects in

this part. Therefore in the fusion approach, we apply combiners such as the average

and majority vote whereas in the selection approach we usually select one classifier

to label the input x. There are combination schemes lying between the two “pure”

strategies. Such a scheme, for example, is taking the average of the outputs with

coefficients that depend on the input x. Thus the local (with respect to x) competence

of the classifiers is measured by the weights. Then more than one classifier is respon-

sible for x and the outputs of all responsible classifiers are fused. The mixture of

experts architecture (Chapter 6) is an example of a scheme between selection and

fusion.

The fusion–selection pair has the following synonyms in the literature

fusion–selection

competitive classifiers–cooperative classifiers

ensemble approach–modular approach ½79�

multiple topology–hybrid topology ½111�

Classifier selection has not attracted as much attention as classifier fusion. This

might change in the future as classifier selection is probably the better of the two

strategies, if trained well. Cascade classifiers also seem to be relatively neglected

although they could be of primary importance for real-life applications.13

3.2.2 Decision Optimization and Coverage Optimization

Decision optimization refers to methods to choose and optimize the combiner for a

fixed ensemble of base classifiers (Approach A in Figure 3.4) [105]. Coverage

optimization refers to methods for creating diverse base classifiers assuming a

13A cascade classifier is an important version of classifier selection where only one classifier is active at a

time and the rest of the ensemble are dormant. When an x is submitted, the first classifier tries to make a

decision. If the classifier is “certain” in its decision, x is labeled and the procedure stops. If not, x is passed

on to the second classifier and is processed in the same way.
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fixed combiner (Approaches B, C, and D). The following correspondences can be

found in the literature

decision optimization–coverage optimization ½105�

nongenerative ensembles–generative ensembles ½112�

Note that the decision–coverage grouping looks at the ensemble methods from a

different perspective than the fusion-selection grouping. The fusion–selection

grouping can be thought of as a subdivision of the decision optimization group.

However, some methods from the fusion–selection division come with their own

coverage optimization plan. For example, the mixture of experts model trains the

classifiers and the combiner simultaneously. Thus it cannot be classed as either a

decision optimization or a coverage optimization method.

3.2.3 Trainable and Nontrainable Ensembles

Some combiners do not need training after the classifiers in the ensemble have been

trained individually. An example is the majority vote combiner (Chapter 4). Other

combiners need additional training, for example, the weighted average combiner

(Chapter 5). A third class of ensembles develop the combiner during the training

of the individual classifiers, for example, AdaBoost (Chapter 7). The following

phrases can be found in the literature

trainable combiners� nontrainable combiners ½113�

data-dependent ensembles � data-independent ensembles ½114�

Data-dependent ensembles are split into implicitly dependent and explicitly

dependent. The implicitly data-dependent group contains trainable combiners for

classifier fusion where the fusion parameters do not depend on the input x. In

other words, the fusion parameters are trained before the system is used for labeling

new inputs. The explicit data-dependent combiners use weights that are functions of

x. This group includes the “pure” classifier selection because the data-dependent

weights can be set as a binary vector with 1 corresponding to the classifier respon-

sible for x and 0 for all other classifiers.

3.3 TO TRAIN OR NOT TO TRAIN?

3.3.1 Tips for Training the Ensemble

If a large data set is available, then we have many options among which are:

. train a single (possibly complex) classifier;

. train the base classifiers on nonoverlapping training sets;
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. use the pasting-small-votes idea (Chapter 7);

. evaluate the ensemble and the single classifiers very precisely (using a large

testing set) so as to be able to decide what to use in practice.

While large data sets are abundant with possibilities, relatively small data sets

pose a real challenge. Duin [113] points out the crucial role of the training strategy

in these cases and gives the following recommendations:

1. If a single training set is used with a nontrainable combiner, then make sure

that the base classifiers are not overtrained. In case probabilistic outputs are

needed, these have to be reliably calibrated too, with as little overtraining

as possible. In a way, the accuracy of the base classifiers is regarded as less

important for the success of the ensemble than the reliability of the decisions

and probability estimates.

2. If a single training set is used with a trainable combiner, then leave the base

classifiers undertrained and subsequently complete the training of the combi-

ner on the training set. Here it is assumed that the training set has a certain

amount of training potential. In order to be able to be train the combiner

reasonably, the base classifiers should not use up all the potential.

3. Use separate training sets for the base classifiers and for the combiners. Then

the base classifiers can be overtrained on their training set. The bias will be

corrected by training the combiner on the separate training set.

Dietrich et al. [115] suggest that the second training set, on which the ensemble

should be trained, may be partly overlapping with the first training set used for the

individual classifiers. Let R be the first training set, V be the second training set, and

T be the testing set. All three sets are obtained from the available labeled set Z so

R< V < T ¼ Z. If Z is small, the three sets might become inadequately small

thereby leading to badly trained classifiers and ensemble, and unreliable estimates

of their accuracies. To remedy this, the two training sets are allowed to have an

overlap controlled by a parameter r

r ¼
jR> Vj

jRj
(3:1)

where j.j denotes the cardinality. For r ¼ 0, R and V are disjoined and for r ¼ 1, the

classifiers and the ensemble are trained on a single set R ¼ V. The authors found that

best results were obtained for r ¼ 0.5 compared to the two extreme values. This

suggests that a compromise should be sought when the initial data set Z is relatively

small. Another possible way of expanding the training set is the so-called out of bag

estimate [116]. This estimate is appropriate for bagging where the training sets for

the individual classifiers are sampled with replacement from the initial training set.

The out-of-bag estimates are explained in Chapter 7.
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3.3.2 Idea of Stacked Generalization

Stacked generalization has been defined as a generic methodology for improving

generalization in pattern classification [117]. We will regard it here as a philosophy

for combining classifiers with a special emphasis on the training protocol.

Let Z be our data set with N points zj [ R
n labeled in V ¼ {v1, . . . ,vc}. Let us

partition Z into four disjoint subsets of roughly equal size, A, B, C, and D. Suppose

that we have three classifier models D1, D2, D3, and have trained each classifier

according to the standard four-fold cross-validation process depicted in Figure 3.5.

At the end of this training there will be four versions of each of our classifiers trained

on (ABC), (BCD), (ACD), or (ABD), respectively.

The combiner is trained on a data set of size N obtained in the following way. For

any data point zj in subset A, we take the outputs for that point from the versions of

D1, D2, and D3 built on (BCD). In this way subset A has not been seen during the

training of the individual classifiers. The three outputs together with the label of

zj form a data point in the training set for the combiner. All the points from subset

B are processed by the versions of the three classifiers built on (ACD) and the out-

puts added to the training set for the combiner, and so on. After the combiner has

been trained, the four subsets are pooled again into Z and D1, D2, and D3 are

retrained, this time on the whole of Z. The new classifiers and the combiner are

then ready for operation.

3.4 REMARKS

We might pride ourselves for working in a modern area of pattern recognition and

machine learning that started about a decade ago but, in fact, combining classifiers is

much older. Take for example the idea of viewing the classifier output as a new fea-

ture vector. This could be traced back to Sebestyen [9] in his book Decision-Making

Processes in Pattern Recognition, published in 1962. Sebestyen proposes cascade

machines where the output of a classifier is fed as the input of the next classifier

in the sequence, and so on. In 1975 Dasarathy and Sheila [118] propose a compound

classifier where the decision is switched between two different classifier models

depending on where the input is located. The book by Rastrigin and Erenstein

[119], published in 1981, contains what is now known as dynamic classifier selec-

tion [120]. Unfortunately, Rastrigin and Erenstein’s book only reached the

Fig. 3.5 Standard four-fold cross-validation set-up.
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Russian-speaking reader, and so did the book by Barabash, published in 1983 [121],

containing interesting theoretical results about the majority vote for classifier

combination.

How far have we gone? It is curious that the experts in the field hold diametrically

opposite views about our current level of understanding of combining classifiers. In

his invited lecture at the 3rd International Workshop on Multiple Classifier Systems,

2002, Ghosh proposes that [122]

. . . our current understanding of ensemble-type multiclassifier systems is now quite

mature . . .

And yet, in an invited book chapter, the same year, Ho states that [105]

. . .Many of the above questions are there because we do not yet have a scientific under-

standing of the classifier combination mechanisms.

Ho proceeds to nominate the stochastic discrimination theory by Kleinberg

[123,124] as the only consistent and theoretically sound explanation of the success

of classifier ensembles, criticizing other theories as being incomplete and assump-

tion-bound.

However, as the usual practice invariably shows, ingenious heuristic develop-

ments are the heart, the soul, and the engine of many branches of science and

research. A snapshot of the opinions of the participants in the last edition of the

International Workshop on Multiple Classifier Systems, MCS 2003, in Guildford,

UK, suggests that the area of combining classifiers is very dynamic and active at

present, and is likely to grow and expand in the nearest future.
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4
Fusion of Label Outputs

4.1 TYPES OF CLASSIFIER OUTPUTS

The possible ways of combining the outputs of the L classifiers in an ensemble

depend on what information we obtain from the individual members. Xu et al.

[125] distinguish between three types of classifier outputs:

. Type 1 (The Abstract level). Each classifier Di produces a class label

si [ V, i ¼ 1, . . . , L. Thus, for any object x [ R
n to be classified, the L clas-

sifier outputs define a vector s ¼ ½s1, . . . , sL�
T [ VL. At the abstract level,

there is no information about the certainty of the guessed labels, nor are any

alternative labels suggested. By definition, any classifier is capable of produ-

cing a label for x, so the abstract level is the most universal one.

. Type 2 (The Rank level). The output of each Di is a subset of V, with the

alternatives ranked in order of plausibility of being the correct label

[126,127]. Type 2 is especially suitable for problems with a large number of

classes, for example, character/face/speaker recognition, and so on.

. Type 3 (The Measurement level). Each classifier Di produces a c-dimensional

vector ½di,1, . . . , di,c�
T . The value di, j represents the support for the hypothesis

that vector x submitted for classification comes from class vj.
14 Without loss of

14 The outputs di, j are functions of the input x. To simplify the notation we will use just di, j instead of

di, j(x).
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generality, we can assume that the outputs contain values between 0 and 1,

each classifier output spanning the space ½0, 1�c.

We add to this list one more item:

. Type 0 (The Oracle level). The output of classifier Di for a given x is only

known to be either correct or wrong. We deliberately disregard the information

as to which class label has been assigned. The oracle output is artificial because

we can only apply it to a labeled data set. For a given data set Z, classifier Di

produces an output vector yi such that

yij ¼
1, if Di classifies object zj correctly,
0, otherwise.

�
(4:1)

In this chapter we consider methods for combining label outputs.

4.2 MAJORITY VOTE

4.2.1 Democracy in Classifier Combination

Dictatorship and majority vote are perhaps the two oldest strategies for decision

making. Day [128] reviews the evolution of the concept of consensus in a context

of electoral theory. Its roots are traced back to the era of ancient Greek city states

and the Roman Senate. The majority criterion became established in 1356 for the

election of German kings, by 1450 was adopted for elections to the British House

of Commons, and by 1500 as a rule to be followed in the House itself.

Three consensus patterns, unanimity, simple majority, and plurality, are illus-

trated in Figure 4.1. If we assume that black, gray, and white correspond to class

labels, and the decision makers are the individual classifiers in the ensemble, the

final label will be “black” for all three patterns.

Assume that the label outputs of the classifiers are given as c-dimensional binary

vectors ½di,1, . . . , di,c�
T [ {0, 1}c, i ¼ 1, . . . , L, where di, j ¼ 1 if Di labels x in vj,

and 0 otherwise. The plurality vote will result in an ensemble decision for class

vk if

XL
i¼1

di,k ¼ max
c

j¼1

XL
i¼1

di, j (4:2)

Ties are resolved arbitrarily. This rule is often called in the literature the majority

vote. It will indeed coincide with the simple majority (50 percent of the votes

þ1) in the case of two classes (c ¼ 2). Xu et al. [125] suggest a thresholded plurality

vote. They augment the set of class labels V with one more class, vcþ1, for all

objects for which the ensemble either fails to determine a class label with a sufficient
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confidence or produces a tie. Thus the decision is

vk, if
PL

i¼1 di,k � a � L,

vcþ1, otherwise,

(
ð4:3Þ

where 0 , a � 1. For the simple majority, we can pick a to be 1
2
þ 1, where

0 , 1 , 1=L. When a ¼ 1, Eq. (4.3) becomes the unanimity vote rule: a decision

is made for some class label if all decision makers agree on that label; otherwise

the ensemble refuses to decide and assigns label vcþ1 to x.

The plurality vote of Eq. (4.2), called in a wide sense “the majority vote,” is the

most often used rule from the majority vote group. Various studies are devoted to the

majority vote for classifier combination [121,129–133].

To find out why the majority vote is one of the most popular combination

schemes, we will examine its properties. Assume that:

. The number of classifiers, L, is odd.

. The probability for each classifier to give the correct class label is p for any

x [ R
n.

. The classifier outputs are independent; that is, for any subset of classifiers

A # D, A ¼ {Di1 , . . . , DiK}, the joint probability can be decomposed as

P(Di1 ¼ si1 , . . . , DiK ¼ siK ) ¼ P(Di1 ¼ si1 )� � � � � P(DiK ¼ siK ) (4:4)

where sij is the label output of classifier Di, j.

According to Eq. (4.2), the majority vote will give an accurate class label if at

least bL=2c þ 1 classifiers give correct answers (bac denotes the “floor,” that is,

Fig. 4.1 Consensus patterns in a group of 10 decision makers: unanimity, simple majority, and

plurality. In all three cases the final decision of the group is “black.”
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the nearest integer smaller than a).15 Then the accuracy of the ensemble is

Pmaj ¼
XL

m¼bL=2cþ1

L

m

� �
pm(1� p)L�m (4:5)

The probabilities of correct classification of the ensemble for p ¼ 0.6, 0.7, 0.8, and

0.9, and L ¼ 3, 5, 7, and 9, are displayed in Table 4.1.

The following result is also known as the Condorcet Jury Theorem (1785) [134]:

1. If p , 0:5, then Pmaj in Eq. (4.5) is monotonically increasing and

Pmaj �! 1 as L �! 1 (4:6)

2. If p , 0:5, then Pmaj at Eq. (4.5) is monotonically decreasing and

Pmaj �! 0 as L �! 1 (4:7)

3. If p ¼ 0.5, then Pmaj ¼ 0.5 for any L.

This result supports the intuition that we can expect improvement over the indi-

vidual accuracy p only when p is higher than 0.5. Lam and Suen [131] proceed to

analyze the case of even L and the effect on the ensemble accuracy of adding or

removing classifiers.

Shapley and Grofman [134] note that the result is valid even for unequal p,

provided the distribution of the individual accuracies pi is symmetrical about the

mean.

Example: Majority and Unanimity in Medical Diagnostics. An accepted prac-

tice in medicine is to confirm the diagnosis by several (supposedly independent)

tests. Lachenbruch [135] studies the unanimity and majority rules on a sequence

of three tests for HIV diagnosis.

TABLE 4.1 Tabulated Values of the Majority Vote

Accuracy of L Independent Classifiers with Individual

Accuracy p.

L ¼ 3 L ¼ 5 L ¼ 7 L ¼ 9

p ¼ 0.6 0.6480 0.6826 0.7102 0.7334

p ¼ 0.7 0.7840 0.8369 0.8740 0.9012

p ¼ 0.8 0.8960 0.9421 0.9667 0.9804

p ¼ 0.9 0.9720 0.9914 0.9973 0.9991

15Notice that the majority (50 percent þ 1) is necessary and sufficient for a correct decision in the case of

two classes, and is sufficient but not necessary for c . 2. Thus the “true” accuracy of an ensemble using

plurality when c . 2 could be greater than the majority vote accuracy.
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Sensitivity and Specificity. These are the two most important characteristics of a

medical test. Sensitivity (denoted by U) is the probability that the test procedure

declares an affected individual affected (probability of a true positive). Specificity

(denoted by V) is the probability that the test procedure declares an unaffected indi-

vidual unaffected (probability of a true negative).16

Let T denote the positive test result, and A denote “affected.” Then U ¼ P(T jA)

and V ¼ P( �TTj �AA). We regard the test as an individual classifier with accuracy

p ¼ U � P(A)þ V � ½1� P(A)�, where P(A) is the probability for the occurrence of

the disease among the examined individuals, or the prevalence of the disease. In test-

ing for HIV, a unanimous positive result from three tests is required to declare the

individual affected [135]. Since the tests are applied one at a time, encountering the

first negative result will cease the procedure. Another possible combination is

the majority vote, which will stop if the first two readings agree or otherwise

take the third reading to resolve the tie. Table 4.2 shows the outcomes of the tests

and the overall decision for the unanimity and majority rules.

Assume that the three tests are applied independently and all have the same sen-

sitivity u and specificity v. Then the sensitivity and the specificity of the procedure

with the unanimity vote become

Uuna ¼ u3

Vuna ¼ 1� (1� v)3 (4:8)

For the majority vote,

Umaj ¼ u2 þ 2u2(1� u) ¼ u2(3� 2u)

Vmaj ¼ v2(3� 2v) (4:9)

For 0 , u , 1 and 0 , v , 1, by simple algebra we obtain

Uuna , u and Vuna . v (4:10)

16 In social sciences, for example, sensitivity translates to “convicting the guilty” and specificity to “free-

ing the innocent” [134].

TABLE 4.2 Unanimity and Majority Schemes for Three Independent

Consecutive Tests.

Method Unanimity Majority

Decisions (þ) (2) (þ) (2)

The consecutive readings þþþ 2 þþ 22

þ 2 þ2þ þ22

þþ 2 2þþ 2þ2
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and

Umaj . u and Vmaj . v (4:11)

Thus, there is a certain gain on both sensitivity and specificity if majority vote is

applied. Therefore the combined accuracy Pmaj ¼ U � P(A)þ V � ½1� P(A)� is also

higher than the accuracy of a single test p ¼ u � P(A)þ v � ½1� P(A)�. For the unani-

mity rule, there is a substantial increase of specificity at the expense of decreased

sensitivity. To illustrate this point, consider the ELISA test used for diagnosing

HIV. According to Ref. [135], this test has been reported to have sensitivity u ¼

0:95 and specificity v ¼ 0:99. Then

Uuna � 0:8574 Umaj � 0:9928
Vuna � 1:0000 Vmaj � 0:9997

The sensitivity of the unanimity scheme is dangerously low. This means that the

chance of an affected individual being misdiagnosed as unaffected is above 14 per-

cent. There are different ways to remedy this. One possibility is to apply a more

expensive and more accurate second test in case ELISA gave a positive result, for

example, the Western blot test, for which u ¼ v ¼ 0:99 [135].

4.2.2 Limits on the Majority Vote Accuracy: An Example

Let D ¼ {D1, D2, D3} be an ensemble of three classifiers with the same individual

probability of correct classification p ¼ 0:6. Suppose that there are 10 objects in a

hypothetical data set, and that each classifier labels correctly exactly six of them.

Each classifier output is recorded as correct (1) or wrong (0). Given these require-

ments, all possible combinations of distributing 10 elements into the eight combi-

nations of outputs of the three classifiers are shown in Table 4.3. The penultimate

column shows the majority vote accuracy of each of the 28 possible combinations.

It is obtained as the proportion (out of 10 elements) of the sum of the entries in

columns 111, 101, 011, and 110 (two or more correct votes). The rows of the

table are ordered by the majority vote accuracy. To clarify the entries in

Table 4.3, consider as an example the first row. The number 3 in the column

under the heading 101, means that exactly three objects are correctly recognized

by D1 and D3 (the first and the third 1s of the heading) and misclassified by D2

(the zero in the middle).

The table offers a few interesting facts:

. There is a case where the majority vote produces 90 percent correct classifi-

cation. Although purely hypothetical, this vote distribution is possible and

offers a dramatic increase over the individual rate p ¼ 0.6.
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. On the other hand, the majority vote is not guaranteed to do better than a single

member of the team. The combination in the bottom row has a majority vote

accuracy of 0.4.

The best and the worst possible cases illustrated above are named “the pattern of

success” and the “pattern of failure” [136] and are detailed next.

4.2.3 Patterns of Success and Failure

Consider two classifiers Di and Dk, and a 2� 2 table of probabilities that summar-

izes their combined outputs as in Table 4.4.

TABLE 4.3 All Possible Combinations of Correct/Incorrect Classification of 10 Objects

by Three Classifiers so that Each Classifier Recognizes Exactly Six Objects.

No. 111 101 011 001 110 100 010 000 Pmaj Pmaj 2 p

a b c d e f g h

Pattern of success

1 0 3 3 0 3 0 0 1 0.9 0.3

2 2 2 2 0 2 0 0 2 0.8 0.2

3 1 2 2 1 3 0 0 1 0.8 0.2

4 0 2 3 1 3 1 0 0 0.8 0.2

5 0 2 2 2 4 0 0 0 0.8 0.2

6 4 1 1 0 1 0 0 3 0.7 0.1

7 3 1 1 1 2 0 0 2 0.7 0.1

8 2 1 2 1 2 1 0 1 0.7 0.1

9 2 1 1 2 3 0 0 1 0.7 0.1

10 1 2 2 1 2 1 1 0 0.7 0.1

11 1 1 2 2 3 1 0 0 0.7 0.1

12 1 1 1 3 4 0 0 0 0.7 0.1

Identical classifiers

13 6 0 0 0 0 0 0 4 0.6 0.0

14 5 0 0 1 1 0 0 3 0.6 0.0

15 4 0 1 1 1 1 0 2 0.6 0.0

16 4 0 0 2 2 0 0 2 0.6 0.0

17 3 1 1 1 1 1 1 1 0.6 0.0

18 3 0 1 2 2 1 0 1 0.6 0.0

19 3 0 0 3 3 0 0 1 0.6 0.0

20 2 1 1 2 2 1 1 0 0.6 0.0

21 2 0 2 2 2 2 0 0 0.6 0.0

22 2 0 1 3 3 1 0 0 0.6 0.0

23 2 0 0 4 4 0 0 0 0.6 0.0

24 5 0 0 1 0 1 1 2 0.5 20.1

25 4 0 0 2 1 1 1 1 0.5 20.1

26 3 0 1 2 1 2 1 0 0.5 20.1

27 3 0 0 3 2 1 1 0 0.5 20.1

Pattern of failure

28 4 0 0 2 0 2 2 0 0.4 20.2
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The three-classifier problem from the previous section can be visualized using

two pairwise tables as in Table 4.5. For this case,

aþ bþ cþ d þ eþ f þ gþ h ¼ 1 (4:12)

The probability of correct classification of the majority vote of the three classi-

fiers is (two or more correct)

Pmaj ¼ aþ bþ cþ e (4:13)

All three classifiers have the same individual accuracy p, which brings in the fol-

lowing three equations:

aþ bþ eþ f ¼ p, D1 correct

aþ cþ eþ g ¼ p, D2 correct

aþ bþ cþ d ¼ p, D3 correct

(4:14)

Maximizing Pmaj in Eq. (4.13) subject to conditions (4.12), (4.14), and a, b, c, d, e,

f, g, h � 0, for p ¼ 0.6, we obtain Pmaj ¼ 0:9 with the pattern highlighted in

Table 4.3: a ¼ d ¼ f ¼ g ¼ 0, b ¼ c ¼ e ¼ 0:3, h ¼ 0:1. This example, optimal

for three classifiers, indicates the possible characteristics of the best combination

of L classifiers. The “pattern of success” and “pattern of failure” defined later follow

the same intuition although we do not include a formal proof for their optimality.

TABLE 4.4 The 2 3 2 Relationship Table with

Probabilities.

Dk correct (1) Dk wrong (0)

Di correct (1) a b

Di wrong (0) c d

Total, a þ b þ c þ d ¼ 1.

TABLE 4.5 The Probabilities in Two 2-Way Tables

Illustrating a Three-Classifier Voting Team.

D3 correct (1) D3 wrong (0)

D2! D2!

D1 # 1 0 D1 # 1 0

1 a b 1 e f

0 c d 0 g h
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Consider the ensembleD of L classifiers, each with accuracy p (assume L is odd).

For the majority vote to give a correct answer we need bL=2c þ 1 or more of

the classifiers to be correct. Intuitively, the best improvement over the individual

accuracy will be achieved when exactly bL=2c þ 1 votes are correct. Any extra

correct vote for the same x will be “wasted” because it is not needed to give the

correct class label. Correct votes that participate in combinations not leading

to a correct overall vote are also “wasted”. To use the above idea we make the

following definition.

The “pattern of success” is a distribution of the L classifier outputs for the

ensemble D such that:

1. The probability of any combination of bL=2c þ 1 correct and bL=2c incorrect
votes is a.

2. The probability of all L votes being incorrect is g.

3. The probability of any other combination is zero.

For L ¼ 3, the two-table expression of the pattern of success is shown in Table 4.6.

Here no votes are wasted; the only combinations that occur are where all classi-

fiers are incorrect or exactly bL=2c þ 1 are correct. To simplify notation, let

l ¼ bL=2c. The probability of a correct majority vote (Pmaj) for the pattern of success

is the sum of the probabilities of each correct majority vote combination. Each such

combination has probability a. There are ( L
lþ1

) ways of having lþ 1 correct out of L

classifiers. Therefore

Pmaj ¼
L

lþ 1

� �
a (4:15)

The pattern of success is only possible when Pmaj � 1; that is, when

a �
1

L

lþ 1

� � (4:16)

TABLE 4.6 The Pattern of Success.

D3 correct (1) D3 wrong (0)

D2! D2!

D1 # 1 0 D1 # 1 0

1 0 a 1 a 0

0 a 0 0 0 g ¼ 1 2 3a
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To relate the individual accuracies p to a and Pmaj, consider the following argu-

ment. In the pattern of success, if Di gives a correct vote, then the remaining L� 1

classifiers must give l correct votes. There are ( L�1
l
) ways in which the remaining

L� 1 classifiers can give l correct votes, each with probability a. So the overall

accuracy p of Di is

p ¼
L� 1

l

� �
a (4:17)

Expressing a from Eq. (4.17) and substituting in Eq. (4.15) gives

Pmaj ¼
pL

lþ 1
¼

2pL

Lþ 1
(4:18)

Feasible patterns of success have Pmaj � 1, so Eq. (4.18) requires

p �
Lþ 1

2L
(4:19)

If p . Lþ 1=2L then Pmaj ¼ 1 can be achieved, but there is an excess of correct

votes. The improvement over the individual p will not be as large as for the pattern

of success but the majority vote accuracy will be 1 anyway. The final formula for

Pmaj is

Pmaj ¼ min 1,
2pL

Lþ 1

� �
(4:20)

The worst possible behavior of an ensemble of L classifiers each with accuracy p

is described by the pattern of failure.

The “pattern of failure” is a distribution of the L classifier outputs for the

ensemble D such that:

1. The probability of any combination of bL=2c correct and bL=2c þ 1 incorrect

votes is b.

2. The probability of all L votes being correct is d.

3. The probability of any other combination is zero.

For L ¼ 3, the two-table expression of the pattern of failure is shown in Table 4.7.

The worst scenario is when the correct votes are wasted, that is, grouped in com-

binations of exactly l out of L correct (one short for the majority to be correct). The

excess of correct votes needed to make up the individual p are also wasted by all the

votes being correct together, while half of them plus one will suffice.
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The probability of a correct majority vote (Pmaj) is d. As there are ( L
l
) ways of

having l correct out of L classifiers, each with probability b, then

Pmaj ¼ d ¼ 1�
L

l

� �
b (4:21)

IfDi gives a correct vote then either all the remaining classifiers are correct (prob-

ability d) or exactly l� 1 are correct out of the L� 1 remaining classifiers. For the

second case there are ( L�1
l�1

) ways of getting this, each with probability b. To get the

overall accuracy p for classifier Di we sum the probabilities of the two cases

p ¼ dþ
L� 1

l� 1

� �
b (4:22)

Combining Eqs. (4.21) and (4.22) gives

Pmaj ¼
pL� l

lþ 1
¼

(2p� 1)Lþ 1

Lþ 1
(4:23)

For values of individual accuracy p . 0:5, the pattern of failure is always possible.

Matan [137] gives tight upper and lower bounds of the majority vote accuracy in

the case of unequal individual accuracies. Suppose that classifier Di has accuracy pi,

and {D1, . . . , DL} are arranged so that p1 � p2 � � � � pL. Let k ¼ lþ 1 ¼ (Lþ 1)=2.
Matan proves that

1. The upper bound of the majority vote accuracy of the ensemble is

maxPmaj ¼ min {1, S(k), S(k � 1), . . . , S(1)} (4:24)

where

S(m) ¼
1

m

XL�kþm
i¼1

pi, m ¼ 1, . . . , k (4:25)

2. The lower bound of the majority vote accuracy of the ensemble is

minPmaj ¼ max {0, j(k), j(k � 1), . . . , j(1)} (4:26)

TABLE 4.7 The Pattern of Failure.

D3 correct (1) D3 wrong (0)

D2! D2!

D1 # 1 0 D1 # 1 0

1 d ¼ 1 2 3b 0 1 0 b

0 0 b 0 b 0
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where

j(m) ¼
1

m

XL
i¼k�mþ1

pi �
L� k

m
, m ¼ 1, . . . , k (4:27)

Example: Matan’s Limits on the Majority Vote Accuracy. Let D ¼

{D1, . . . , D5} with accuracies (0.56, 0.58, 0.60, 0.60, 0.62), respectively. For this

ensemble k ¼ ð5þ 1Þ=2 ¼ 3: To find the upper bound of the majority vote accuracy

of this team, form the sums S(m) for m ¼ 1, 2, 3

S(1) ¼ 0:56þ 0:58þ 0:60 ¼ 1:74

S(2) ¼
1

2
(0:56þ 0:58þ 0:60þ 0:60) ¼ 1:17

S(3) ¼
1

3
(0:56þ 0:58þ 0:60þ 0:60þ 0:62) ¼ 0:99 (4:28)

Then

maxPmaj ¼ min {1, 1:74, 1:17, 0:99} ¼ 0:99 (4:29)

For the lower bound,

j(1) ¼ 0:60þ 0:60þ 0:62� (5� 3) ¼ �0:18

j(2) ¼
1

2
(0:58þ 0:60þ 0:60þ 0:62)�

5� 3

2
¼ 0:20

j(3) ¼
1

3
(0:56þ 0:58þ 0:60þ 0:60þ 0:62)�

5� 3

3
¼ 0:32 (4:30)

Then

minPmaj ¼ max {0, �0:18, 0:20, 0:32} ¼ 0:32 (4:31)

The range of possible results from the majority vote across D is wide, so without

more knowledge about how the classifiers are related to each other we can only

guess within this range. If we assume that the classifier outputs are independent,

then Pmaj ¼ 0:67, which indicates that there is much more to be achieved from

the majority vote than what independent outputs can offer.

Matan’s result leads to the pattern of success and the pattern of failure as the

upper and the lower bounds respectively, for p1 ¼ � � � ¼ pL ¼ p. Demirekler and

Altincay [138] and Ruta and Gabrys [133] give further insights into the behavior

of the two limit patterns.
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Hierarchical majority voting ensembles have been found very promising

[133,134,137]. There is a potential gain in accuracy, but this has only been shown

by construction examples.

4.3 WEIGHTED MAJORITY VOTE

If the classifiers in the ensemble are not of identical accuracy, then it is reasonable to

attempt to give the more competent classifiers more power in making the final

decision. The label outputs can be represented as degrees of support for the classes

in the following way

di, j ¼
1, if Di labels x in vj,

0, otherwise.

�
(4:32)

The discriminant function for class vj obtained through weighted voting is

gj(x) ¼
XL
i¼1

bidi, j (4:33)

where bi is a coefficient for classifier Di. Thus the value of the discriminant function

(4.33) will be the sum of the coefficients for these members of the ensemble whose

output for x is vj.

Example: Assigning Weights to the Classifiers. Consider a team of three classi-

fiers D1, D2, and D3 with accuracies 0.6, 0.6, and 0.7, respectively, and with

independent outputs. Then

Pmaj ¼ 0:62 � 0:3þ 2� 0:4� 0:6� 0:7þ 0:62 � 0:7 ¼ 0:6960 (4:34)

Clearly, it will be better if we remove D1 and D2 and reduce the ensemble to the

single and more accurate classifier D3. We introduce weights or coefficients of

importance bi, i ¼ 1, 2, 3, and rewrite Eq. (4.2) as: choose class label vk if

XL
i¼1

bidi,k ¼ max
c

j¼1

XL
i¼1

bidi, j (4:35)

For convenience we normalize the coefficients so that

Xc
i¼1

bj ¼ 1 (4:36)
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Assigning b1 ¼ b2 ¼ 0 and b3 ¼ 1, we get rid of D1 and D2, leading to

Pmaj ¼ p3 ¼ 0:7. In fact, any set of weights that makes D3 the dominant classifier

will yield the same Pmaj, for example, b3 . 0:5 and any b1 and b2 satisfying

Eq. (4.36).

In the above example the weighted voting did not improve on the single best clas-

sifier in the team even for independent classifiers. The following example shows

that, in theory, the weighting might lead to a result better than both the single

best member of the team and the simple majority.

Example: Improving the Accuracy by Weighting. Consider an ensemble of five

classifiers D1, . . . , D5 with accuracies (0.9, 0.9, 0.6, 0.6, 0.6).17 If the classifiers are

independent, the majority vote accuracy (at least three correct out of five votes) is

Pmaj ¼ 3� 0:92 � 0:4� 0:6þ 0:63 þ 6� 0:9� 0:1� 0:62 � 0:4

� 0:877 (4:37)

Assume now that the weights given to the voters are (1/3, 1/3, 1/9, 1/9, 1/9).
Then the two more competent classifiers agreeing will be enough to make the

decision because the score for the class label they agree upon will become 2/3. If
they disagree, that is, one is correct and one is wrong, the vote of the team will

be decided by the majority of the remaining three classifiers. Then the accuracy

for the weighted voting will be

Pw
maj ¼ 0:92 þ 2� 3� 0:9� 0:1� 0:62 � 0:4þ 2� 0:9� 0:1� 0:63

� 0:927 (4:38)

Again, any set of weights that satisfy Eq. (4.36) and make the first two classifiers

prevail when they agree, will lead to the same outcome.

One way to select the weights for the classifiers is formalized through the follow-

ing theorem.

Theorem 4.1. Consider an ensemble of L independent 18 classifiers D1, . . . , DL,

with individual accuracies p1, . . . , pL. The outputs are combined by the weighted

majority vote (4.35). Then the accuracy of the ensemble (Pw
maj) is maximized by

assigning weights

bi / log
pi

1� pi
(4:39)

17After Ref. [134].
18 The conditional independence is considered, that is, P(sjvj) ¼

QL
i¼1 P(sijvj).
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Proof. Denote by s ¼ ½s1, . . . , sL�
T the vector with the label output of the ensemble,

where si [ V is the label suggested for x by classifier Di. A Bayes-optimal set of

discriminant functions based on the outputs of the L classifiers is

gj(x) ¼ logP(vj)P(sjvj), j ¼ 1, . . . , c (4:40)

From the conditional independence

gj(x) ¼ log P(vj)
YL
i¼1

P(sijvj)

" #
(4:41)

¼ logP(vj)þ log
Y

i,si¼vj

P(sijvj)
Y

i,si=vj

P(sijvj) (4:42)

¼ logP(vj)þ log
Y

i,si¼vj

pi
Y

i,si=vj

(1� pi) (4:43)

¼ logP(vj)þ log
Y

i,si¼vj

pi(1� pi)

1� pi

Y
i,si=vj

(1� pi) (4:44)

¼ logP(vj)þ log
Y

i,si¼vj

pi

1� pi

YL
i¼1

(1� pi) (4:45)

¼ logP(vj)þ
X
i,si¼vj

log
pi

1� pi
þ
XL
i¼1

log(1� pi) (4:46)

The last term in this summation does not depend on the class label j; therefore we

can reduce the discriminant function to

gj(x) ¼ logP(vj)þ
XL
i¼1

di, j log
pi

1� pi
(4:47)

B

Note that assigning the weights to the classifiers is not sufficient for guaranteeing

the minimum classification errors. The prior probabilities for the classes have to be

taken into account too.

Results similar to that of the above theorem have been derived independently by

several researchers in different fields of science such as democracy studies, pattern

recognition and automata theory, leading to the earliest reference [139] according to

Refs. [121,134]. Curiously, the optimal weights do not take into account the per-

formance of other members of the team but only magnify the relevance of the indi-

vidual classifier based on its accuracy.
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4.4 NAIVE BAYES COMBINATION

This scheme assumes that the classifiers are mutually independent given a class label

(conditional independence). This is the reason why it is called “independence

model” [140], “naive Bayes,” “simple Bayes” [141] and even “idiot’s Bayes”

[15,29]. Sometimes the first adjective is skipped and the combination method is

named just “Bayes combination.”

Denote by P(sj) the probability that classifier Dj labels x in class sj [ V. The

conditional independence allows for the following representation

P(sjvk) ¼ P(s1, s2, . . . , sLjvk) ¼
YL
i¼1

P(sijvk) (4:48)

Then the posterior probability needed to label x is

P(vkjs) ¼
P(vk)P(sjvk)

P(s)

¼
P(vk)

QL
i¼1 P(sijvk)

P(s)
, k ¼ 1, . . . , c (4:49)

The denominator does not depend on vk and can be ignored, so the support for

class vk can be calculated as

mk(x)/ P(vk)
YL
i¼1

P(sijvk) (4:50)

The practical implementation of the naive Bayes (NB) method on a data set Z

with cardinality N is explained below. For each classifier Di, a c� c confusion

matrix CMi is calculated by applying Di to the training data set. The (k, s)th entry

of this matrix, cmi
k,s is the number of elements of the data set whose true class

label was vk, and were assigned by Di to class vs. By Ns we denote the total number

of elements of Z from class vs. Taking cmi
k,si

=Nk as an estimate of the probability

P(sijvk), and Nk=N as an estimate of the prior probability for class vs, Eq. (4.50)

is equivalent to

mk(x)/
1

NL�1
k

YL
i¼1

cmi
k,si

(4:51)

Example: Naive Bayes Combination. Consider a problem with L ¼ 2 classifiers,

D1 and D2, and c ¼ 3 classes. Let the number of training data points be N ¼ 20.
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From these, let eight be from v1, nine from v2, and three from v3. Suppose the fol-

lowing confusion matrices have been obtained for the two classifiers

CM1 ¼

6 2 0

1 8 0

1 0 2

2
4

3
5 and CM2 ¼

4 3 1

3 5 1

0 0 3

2
4

3
5 (4:52)

Assume D1(x) ¼ s1 ¼ v2 and D2(x) ¼ s2 ¼ v1 for the input x [ R
n. Using

Eq. (4.51)

m1(x)/
1

8
� 2� 4 ¼ 1

m2(x)/
1

9
� 8� 3 ¼

8

3
� 2:67

m3(x)/
1

3
� 0� 0 ¼ 0 (4:53)

As m2(x) is the highest of the three values, the maximum membership rule will

label x in v2.

Notice that a zero as an estimate of P(sijvk) automatically nullifies mk(x) regard-
less of the rest of the estimates. Titterington et al. [140] consider the naive Bayes

classifier for independent categorical features. They discuss several modifications

of the estimates to account for the possible zeros. The formula they use, rewritten

for the naive Bayes combination is

P(sjvk)/
YL
i¼1

cmi
k,si
þ 1=c

Nk þ 1

( )B

(4:54)

where Nk is the number of elements in the training set Z from class vk and B is a

constant.19

Example: Naive Bayes Combination with a Correction for Zeros. Take the 20-

point data set and the confusion matrices CM1 and CM2 from the previous example.

Using Eq. (4.54), the estimates of the class-conditional pmfs for the values s1 ¼ v2,

19 Titterington et al. [140] used B ¼ 1, 0:8, and 0:5.
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s2 ¼ v1, and B ¼ 1 are

m1(x)/
N1

N
�

cm1
1,2 þ

1
3

N1 þ 1

� �
cm2

1,1 þ
1
3

N1 þ 1

� �

¼
8

20
�

2þ 1
3

8þ 1

� �
4þ 1

3

8þ 1

� �
� 0:050

m2(x)/
N2

N
�

cm1
2,2 þ

1
3

N2 þ 1

� �
cm2

2,1 þ
1
3

N2 þ 1

� �

¼
9

20
�

8þ 1
3

9þ 1

� �
3þ 1

3

9þ 1

� �
� 0:250

m3(x)/
N3

N
�

cm1
3,2 þ

1
3

N3 þ 1

� �
cm2

3,1 þ
1
3

N3 þ 1

� �

¼
3

20
�

0þ 1
3

3þ 1

� �
0þ 1

3

3þ 1

� �
� 0:001 (4:55)

Again, label v2 will be assigned to x. Notice that class v3 has now a small non-

zero support.

The Bayes classifier has been found to be surprisingly accurate and efficient in

many experimental studies. The surprise comes from the fact that the entities

being combined are seldom independent. Thus the independence assumption is

nearly always violated, sometimes severely. However, it turns out that the classifier

performance is quite robust, even in the case of dependence. Even more, attempts to

amend the naive Bayes by including estimates of some dependencies do not always

pay off [141].

4.5 MULTINOMIAL METHODS

In this group of methods we estimate the posterior probabilities P(vkjs), for all k ¼

1, . . . , c and every combination of votes s [ VL. The highest posterior probability

determines the class label for s. Then, given an x [ R
n, first the labels s1, . . . , sL

are assigned by the classifiers in the ensembleD, and then the final label is retrieved

for s ¼ ½s1, . . . , sL�
T .

4.5.1 Behavior Knowledge Space Method

Behavior knowledge space (BKS) is a fancy name for the multinomial combination.

The label vector s gives an index to a cell in a look-up table (the BKS table) [142].

The table is designed using a labeled data set Z. Each zj [ Z is placed in the cell
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indexed by the s for that object. The number of elements in each cell are tallied and

the most representative class label is selected for this cell. The highest score corre-

sponds to the highest estimated posterior probability P(vkjs). Ties are resolved arbi-

trarily. The empty cells are labelled in some appropriate way. For example, we can

choose a label at random or use the result from a majority vote between the elements

of s.

Example: BKS Combination Method. Consider a problem with three classifiers

and two classes. Assume that D1, D2, and D3 produce output (s1, s2, s3) ¼

(v2, v1, v2). Suppose that there are 100 objects in Z for which this combination

of labels occurred: 60 having label v1, and 40 having label v2. Hence the table

cell indexed by (v2, v1, v2) will contain label v1 no matter that the majority of

the classifiers suggest otherwise.

To have a reliable multinomial combiner, the data set should be large. The BKS

combination method is often overtrained: it works very well on the training data but

poorly on the testing data.

4.5.2 Wernecke’s Method

Wernecke’s combination method (WER) is similar to BKS and aims at reducing

overtraining. It also uses a look-up table with labels. The difference is that in con-

structing the table, Wernecke [143] considers the 95 percent confidence intervals of

the frequencies in each cell. If there is overlap between the intervals, the prevailing

class is not considered dominating enough for labeling the cell. The “least wrong”

classifier among the L members of the team is identified by calculating L estimates

of the probability P½error and Di(x) ¼ si�. Then the classifier with the smallest prob-

ability is authorized to label the cell.

The confidence intervals are calculated according to the following assumptions

and procedures. Let k1, . . . , kc be the number of training data points from classes

v1, . . . , vc in the cell indexed by classifier outputs s ¼ (s1, . . . , sL), si [ V. The

BKS combiner would label the cell right away as vj, where j ¼ argmaxi ki. In

case of a tie, any of the tied class labels could be picked. In WER, if there is a tie

for the maximum, there is no need to calculate any confidence intervals: the least

wrong classifier must be found that minimizes P½error and Di(x) ¼ si�. If there is

a clear winner vj, the dominance of this class over the rest of the classes has to

be established. According to Wernecke [143], we assume that ki are binomially dis-

tributed. To calculate the 95 percent confidence intervals (CI), we use either the Nor-

mal approximation of the Binomial distribution or the Chebyshev inequality [25].

4.5.2.1 Normal Approximation of the Binomial Distribution. To go for-

ward with this approximation and calculate the 95 percent CI for kj [denoted
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CI(vj, 95)] the following (rule of thumb) must be true:

k ¼
Xc
i¼1

ki � 30

(4:56)

kj � 5

k � kj � 5

Then, taking into account the continuity correction, CI(vj, 95) is calculated as

CI(vj, 95) ¼ kj � 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kj(k � kj)

k

r
þ
1

2
, kj þ 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kj(k � kj)

k

r
�
1

2

" #
(4:57)

Example: Confidence Interval Calculation for Normal Approximation of the

Binomial Distribution. Take again the outputs of D1, D2, and D3 to be

s ¼ (s1, s2, s3) ¼ (v2, v1, v2). Suppose there are 32 objects in the cell labeled by

s: 20 from v1, and 12 from v2. To calculate CI(v1, 95), first check the conditions

(4.56): 32 � 30; 20 � 5; 32–20 � 5. Then

CI(v1, 95) ¼ 20� 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
20(32� 20)

32

r
þ
1

2
, 20þ 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
20(32� 20)

32

r
�
1

2

" #

� ½15:13, 24:87� (4:58)

The conditions (4.56) hold also for k2, so

CI(v2, 95) ¼ 12� 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12� 20

32

r
þ
1

2
, 12þ 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12� 20

32

r
�
1

2

" #

� ½7:13, 16:87� (4:59)

There is a slight overlap of the 95 percent CIs as shown in Figure 4.2, therefore

WER will label this cell according to the “least wrong” classifier regardless of the

counts (k1 ¼ 20 and k2 ¼ 12) in the cell.

Fig. 4.2 CI overlap.
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Example: The “Least Wrong” Classifier. In the example with the overlapping

CIs, the label for the cell is produced by the least wrong among the three classifiers.

To identify this classifier, the confusion matrices are used. Let the three confusion

matrices be as follows

CM1 CM2 CM3

60 27

42 71

� �
53 34

14 99

� �
70 17

33 80

� �

where, again, cmi
j,k is the number of objects with true class label vj, classified as vk

by Di. Then the least wrong classifier is found by

P̂P(error and s1 ¼ v2) ¼ P̂P(v1js1 ¼ v2)P̂P(s1 ¼ v2) ¼
27

98
�
98

200
¼

27

200

P̂P(error and s2 ¼ v1) ¼ P̂P(v2js2 ¼ v1)P̂P(s2 ¼ v1) ¼
14

67
�
67

200
¼

14

200

P̂P(error and s3 ¼ v2) ¼ P̂P(v1js3 ¼ v2)P̂P(s3 ¼ v2) ¼
17

97
�
97

200
¼

17

200

As P̂P(error and s2 ¼ v1) ¼
14
200

is the smallest of the three, classifier D2 is auth-

orized to label x, and thus the assigned class is v1. Note that even though the

majority disagree with this decision, D2’s decision is taken by the authoritative

power of the least wrong classifier.

The Normal approximation of the Binomial distribution is convenient but the

confidence intervals are sometimes too wide because the training sample is not

large enough. Besides, for many cells in the table, there will be just a few examples,

and then the rules of thumb (4.56) might not hold. Then another estimate of the CI is

needed, and the Chebyshev inequality is suggested for this purpose [143]. However,

the CIs using the Chebyshev inequality are even wider, which will easily lead to

abandoning the multinomial model completely and resorting to the least wrong clas-

sifier decision for all values of s. To prevent such a situation and still make use of the

CIs, we can decide to consider, say, 70 percent CIs instead of 95 percent CIs. During

the design, we can find out what portion of the cells are labeled by the multinomial

model and what are labeled by the least wrong classifier, and subsequently pick the

percentage of confidence so as to optimize the balance according to the designer’s

insight.

4.6 PROBABILISTIC APPROXIMATION

Consider s ¼ ½s1, . . . , sL�
T , sj [ V to be an L-dimensional random variable consist-

ing of the class label outputs. An approximation of P(xjvk) is obtained based on
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first-order dependencies as explained below. These estimates are used to calculate

the support for the classes

mj(x) ¼ P(vj)P(sjvj), j ¼ 1, . . . , c (4:60)

From probability theory

P(sjvk) ¼ P(sm1
jvk)P(sm2

jsm1
, vk)P(sm3

jsm1
, sm2

;vk)

. . .P(smL
jsm1

, . . . , smL�1
, vk) (4:61)

for any permutation (m1, . . . , mL) of the integers 1, 2, . . . , L. The simplest

implementation of Eq. (4.61) requires conditional independence (the naive Bayes

approximation) so that

P(sjvk) ¼
YL
i¼1

P(sijvk), j ¼ 1, . . . , c (4:62)

Although the naive Bayes method has been shown to be practically robust enough

[140,141], further studies have been carried out aiming at a more accurate estimation

of P(sjvj). Kang et al. [144–146] suggest using approximations of kth order for

combining classifiers. In other words, the probabilities in the product (4.61) can

be conditioned by at most k variables.

Below we explain an algorithm due to Chow and Liu [147] for approximating a

joint probability distribution by a product of first-order distributions. To simplify

notation we shall consider P(s) bearing in mind that the same algorithm will be

used separately for each P(sjvk), k ¼ 1, . . . , c. Each of the outputs smi
is paired

with another output indexed by mj(i) where 0 � j(i) � i. A fictional output s0 is intro-

duced that is used to allow for the following relationship

P(sijs0) ¼ P(si)

Each of the probabilities participating in the product, P(smi
jsmj(i)

), is conditioned on a

single other output encountered already. For example, suppose that the chosen per-

mutation of indices is 1, 2, . . . , L. Then s4 can only be conditioned by s0, s1, s2, or

s3. The suggested approximation is

P(s) ¼
YL
i¼1

P(smi
jsmj(i)

), 0 � j � i (4:63)

where (m1, . . . , mL) is unknown permutations of integers 1, 2, . . . , L. Equation

(4.63) is called a probability distribution of first-order tree dependence. A distri-

bution of type (4.63) can be conveniently visualized using a line diagram as

shown in Figure 4.3.
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Each variable is represented as a node in the diagram. Two variables si and sk are

joined by an arrow from si to sk if k ¼ j(i). Thus, as P(s2js3) participates in the pro-

duct, there is an arrow from s2 to s3. For all P(sijs0), the node si will appear on the

diagram but will have no successors (this will indicate a term P(si) in the product

(4.63)).

Chow and Liu use an information theoretic measure to assess the goodness of the

approximation of the true probability P by P̂P

f(P, P̂P) ¼
X

s

P(s) log
P(s)

P̂P(s)
(4:64)

For an ideal approximation where P(s) ; P̂P(s) for any s, f(P, P̂P) ¼ 0. Otherwise,

f(P, P̂P) . 0. The closer P̂P and P are, the lower the value of the measure. The

approximation of the L-dimensional joint distribution by a distribution of first-

order tree dependence derived in Ref. [147] is optimal in terms of f(P, P̂P). Let TL
be the set of all possible first-order dependence trees. We seek to find a tree t [
TL such that the approximation P̂Pt of the true distribution P satisfies

f(P, P̂Pt) � f(P, P̂Pt), 8t [ TL (4:65)

An exhaustive search among the trees in TL might be infeasible for large L, as

there are L(L�2) possible trees with L nodes. Therefore, an optimization procedure

for minimizing f(P, P̂Pt) is devised. It is based on the mutual information between

two variables si and sk

I(si, sk) ¼
X
si,sk

P(si, sk) log
P(si, sk)

P(si)P(sk)
(4:66)

Fig. 4.3 A diagram of a first-order dependence tree corresponding to the probability

approximation P(sssss) ¼ P(s3)P(s2js3)P(s4js3)P(s1js2)P(s5js2). The permutation m1, . . . , mL is

3; 2; 4; 1:5.
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The mutual information is nonnegative. It takes value zero only if the two variables

are statistically independent. We can attach weights to each edge of the dependence

tree illustrating the first-order dependencies. The weight of a branch from si to sk
will be I(si, sk). To measure the quality of a dependence tree, we sum up the

weights of all its branches and call the sum the weight of the tree. Intuitively, the

tree captures most information if it has the highest possible weight among the

trees in TL.

4.6.1 Calculation of the Probability Estimates

Example: Estimation of the First-Order Probabilities. Let V ¼ {v1, v2,

v3, v4}. Let the data set Z consist of 1000 data points, 100 from v1, 200 from

v2, 300 from v3, and 400 from v4. Five classifiers were trained on Z and the coinci-

dence matrices between all pair of classifiers were stored, separately for each class.

A possible coincidence matrix produced by classifiers D2 and D3 with regard to

class v1, that is, using only the 100 elements from this class in Z, is

s2 ¼ D2(x)

s3 ¼ D3(x)

v1 v2 v3 v4

v1 43 7 10 4

v2 10 2 1 1

v3 6 2 1 2

v4 8 0 1 2

Assume that the tree found through the analysis is the one shown in Figure 4.3.

A relevant coincidence matrix would be that of D2 and D3 as P(s2js3) participates in

the expression. Note that in this example we are estimating P(sjv1), so all terms in

the approximation are conditioned also by v1; that is,

P(sjv1) ¼ P(s3jv1)P(s2js3, v1)P(s4js3, v1)P(s1js2, v1)P(s5js2, v1) (4:67)

The estimate P̂P(s2js3, v1) is calculated from the coincidence matrix of D2 and D3

for class v1. For example, let s2 ¼ v3 and s3 ¼ v1,

P̂P(s2js3, v1) ¼ P̂P(s2 ¼ v3 j s3 ¼ v1, (true class¼)v1)

¼
6

43þ 10þ 6þ 8
¼

6

67
(4:68)

The value for the multipliers in the approximation that are only conditioned by

the class is taken from the confusion matrix of the respective classifier. In this
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example, P(s3jv1) is estimated as the proportion labeled as s3 by D3 out of the 100

elements from Z from v1. For s3 ¼ v1,

P̂P(s3 ¼ v1jv1) ¼
43þ 10þ 6þ 8

100
¼

67

100
(4:69)

The final class label is inferred using the Bayes formula. It is sufficient to calcu-

late P(vi)P(sjvi) for i ¼ 1, . . . , 4, and decide in favor of the class that maximizes the

expression.

To understand the gain in the representation of the combiner compared to the

BKS table, we can estimate the necessary memory space for each of the combiners.

For the BKS lookup table, we need cL table cells. For the first-order approximation,

for each of the c classes, we will need at most L� 1 coincidence matrices and one set

of c values for the term conditioned only on the (true) class label (P(s3jv1) in the

example above). This amounts to c� ½(L� 1)� c2 þ L�. Thus, for the naive

Bayes combiner, the required space is L� c2. Finally, for the above example:

. BKS requires cL ¼ 45 ¼ 1024 cells;

. The first-order probabilistic combination requires c� ½(L� 1)� c2 þ L� ¼

4� ½(5� 1)� 42 þ 5� ¼ 276 cells;

. Naive Bayes requires L� c2 ¼ 5� 42 ¼ 80 cells; and

. Majority vote requires none.

For small-scale examples such as this, there will be no substantial difference.

However, when character recognition is concerned with number of classes

c ¼ 26, multinomial methods might become infeasible and first-order approxi-

mation might be just the solution. Of course the cost of implementing the combiner

depends also on the complexity of the algorithm used.

4.6.2 Construction of the Tree

The dependence tree for each class is constructed using the subset of data set Z for

that class. According to the proof given in Appendix 4B, the tree has to be con-

structed to maximize the total mutual information; that is,

max
X

{all branches}

I(si, sk) (4:70)

The algorithm for constructing the tree is as follows. After calculating the pair-

wise mutual information for all pairs (si, sk), 1 � i, k � L, i = k, we make use of

the minimum spanning tree (MST) algorithm. This MST produces an undirected

graph. To recover the terms in the approximation we convert it into a directedmaxi-

mum mutual information tree.
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One possible algorithm is described in Figure 4.4a. The tree is constructed by

subsequently adding branches, one at a time. Figure 4.4b shows an example of con-

structing a directed tree from a minimum spanning tree (MST).

The calculation of the mutual information is straightforward as illustrated in the

example below.

Example: Calculation of the Mutual Information. Let us calculate I(s2, s3) using

the coincidence matrix from the previous example. From Eq. (4.66)

ÎI(s2, s3) ¼
X

all cells

cell entry

100
log

cell entry� 100

½column sum� � ½row sum�

� �
(4:71)

Fig. 4.4a Construction of a first-order probability dependence tree for class vj .

Construction of a probabilistic tree for class vj

1. Input the matrix S of size Nj � L containing the label outputs of the L

classifiers for the Nj elements of Z from class vj.

2. Calculate an L� L matrix MI containing the pairwise mutual infor-

mation between every pair of classifier outputs, si and sk.

3. Since we want the tree with the largest mutual information, use �MI as

a distance matrix and run the minimum spanning tree (MST) algorithm

(see the single linkage algorithm in Figure 1.14).

4. Construct a directed tree from the MST using the following steps.

4.1. Start with an empty set NewTree. Suppose that the branches of the

MST are arranged in order of decreasing mutual information. Take

the first branch, say from s1 to s2, mark both its ends as “used”, and

add to NewTree a directed branch from s1 to s2.

4.2. Take the next branch in the MST list, say from si to sk. If si is

marked as “used”, append a branch from si to sk to NewTree

and mark sk as “used”. If sk is marked as “used”, append to

NewTree a branch from sk to si and mark si as “used”. If none

of the two is marked then append the branch in any order and

mark both ends as “used”.

4.3. Continue from 4.2 until all branches of MST are added to

NewTree.
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Thus for our example, excluding all cells with zero entries

ÎI(s2, s3) ¼
43

100
log

43� 100

½43þ 10þ 6þ 8� � ½43þ 7þ 10þ 4�

� �

þ � � � þ
2

100
log

2� 100

½4þ 1þ 2þ 2� � ½8þ 0þ 1þ 2�

� �

� 0:0332 (4:72)

The next example shows the results from the algorithm in Figure 4.4a. It should

be noted that there is more than one way to write the approximation formula for the

same dependence tree. This is due to the symmetry of the mutual information:

I(si, sk) ¼ I(sk, si).

Fig. 4.4b Illustration of finding a directed tree from a minimum spanning tree (MST). The

probability approximation is Pðsjvk Þ ¼ Pðs4jvk ÞPðs2js4;vk Þ � � �Pðs3js2;vk ÞPðs1js4;vk ÞPðs5js1;
vk ÞPðs6js2;vk ÞPðs7js5;vk Þ:
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Example: Results from the Tree Construction Algorithm. Table 4.8 shows a

hypothetical distribution of five classifier outputs across a data set of 300 data points.

Assume that all the data comes from class v1. Using the algorithm in Figure 4.4, we

build a first-order dependence tree to approximate the probability P(sjv1).

The algorithm produced the following four pairs of classifiers: (4,5), (5,2), (5,1),

and (2,3). One possible directed tree is shown in Figure 4.5 together with the

approximation formula for P(sjv1).

After deriving all the approximations for all the classes, P(sjvk), k ¼ 1, . . . , c,
the operation of the combiner is illustrated by the following example.

Example: Combining Classifiers by First-Order Dependence Trees – Opera-

tion. To classify an x [ R
n, we first obtain the label vector s ¼ ½s1, s2, . . . , sL�

T .

Next we show how to calculate Pðsjv1Þ:
We assume again the 300 data points whose vote distribution is given in Table 4.8

come from class v1. The first-order dependence tree in Figure 4.5 shows the relevant

pairwise dependencies: (D4, D5), (D5, D2), (D5, D1), and (D2, D3). Also, we have to

use the confusion matrix of D4. Using the data in Table 4.8, the pairwise dependen-

cies are found to be as shown in Table 4.9. A hypothetical confusion matrix for

classifier D4 is displayed in Table 4.10.

Fig. 4.5 The dependence tree corresponding to the data in Table 4.8. The probability approxi-

mation is P(sssssjv1) ¼ P(s4jv1)P(s5js4, v1)P(s1js5, v1)P(s2js5, v1)P(s3js2, v1).

TABLE 4.8 A Hypothetical Distribution of the Classifier Outputs for D1, . . . ,D5 and Two

Classes. To Save Space, Only the Class Subscripts Are Shown (1 and 2, Instead of v1

and v2).

Outputs Freq. Outputs Freq. Outputs Freq. Outputs Freq.

11111 5 12111 8 21111 7 22111 4

11112 4 12112 7 21112 10 22112 9

11121 10 12121 10 21121 9 22121 8

11122 8 12122 9 21122 8 22122 15

11211 3 12211 10 21211 5 22211 8

11212 14 12212 14 21212 10 22212 11

11221 10 12221 12 21221 7 22221 16

11222 10 12222 12 21222 8 22222 19
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Let s ¼ ½s1, . . . , s5� ¼ ½v1, v1, v2, v1, v2�
T , or, in short notation, 11212. The

approximation of P(sjv1) is calculated as

P(s4 ¼ v1jv1) ¼
129

300
(from the confusion matrix in Table 4.10)

P(s5 ¼ v2js4 ¼ v1, v1) ¼
79

50þ 79

P(s1 ¼ v1js5 ¼ v2, v1) ¼
78

78þ 90

P(s2 ¼ v1js5 ¼ v2, v1) ¼
72

72þ 96
(4:73)

P(s3 ¼ v2js2 ¼ v1, v1) ¼
67

61þ 67

P(sjv1) ¼
129

300
�
79

129
�
78

168
�
72

168
�
67

128
� 0:0274 (4:74)

TABLE 4.9 Relevant Pairwise Coincidence Matrices for

Approximating P(sjv1) for the Dependence Tree in

Figure 4.5.

D5 D1

D4 1 2 D5 1 2

1 50 79 1 68 64

2 82 89 2 78 90

D2 D3

D5 1 2 D2 1 2

1 56 76 1 61 67

2 72 96 2 70 102

TABLE 4.10 The Hypothetical

Confusion Matrix for Classifier D4.

Guessed Label

True Label 1 2

1 129 171

2 12 88
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To label x, we need the discriminant scores P(v1)P(sjv1) and P(v2)P(sjv2).

From the above calculations, and from the confusion matrix forD4, we can only esti-

mate P(v1)P(sjv1) � 0:75� 0:0274 ¼ 0:02055. For the score for class v2, the

approximation of P(sjv2) has to be obtained, using the respective dependence

tree. The highest score will determine the label of x.

4.7 CLASSIFIER COMBINATION USING SINGULAR VALUE
DECOMPOSITION

Using correspondence analysis, Merz [148] proposes to map the space spanned by

the classifier outputs to a low-dimensional real space. Each class label is represented

by a prototype in the new space. The classification decision is made by the nearest

prototype. Finding a mapping T is in fact feature extraction in the space VL spanned

by the classifier outputs s ¼ ½s1, . . . , sL�, called the intermediate feature space.

The procedure outlined below follows the idea of Ref. [148] except for some

details as explained in the text.

Consider a matrix M ¼ {mi, j} of size N � (L � c) containing the outputs of the

ensemble for the N data points in Z. Each classifier output (a class label) is rep-

resented as a binary vector with 1 at the position of the suggested class label, and

0s at the other c� 1 positions. A row in M consists of the concatenated outputs

of the L classifiers for the respective data point. For example, for L ¼ 3 classifiers,

c ¼ 4 classes, and outputs s ¼ ½v4, v2, v1�
T , the row in M for this object will be

(0,0,0,1,0,1,0,0,1,0,0,0).

Correspondence analysis20 is a technique to analyze two-way and multiway

tables containing some measure of correspondence between rows and columns. It

is similar to factor analysis but is designed for categorical variables. In our case,

the table of interest is the matrix M. We may look at M as a description of N objects

in an L . c-dimensional binary space. The challenge is to “equivalently” represent

the N objects in a lower-dimensional space, for example, two-dimensional, for visu-

alization purposes. We can then build a classifier on this new representation. The

classifier model suggested in Ref. [148] is the Nearest Mean. It is impossible to pre-

dict whether or not the classifier built in the new feature space will be better than a

classifier built on the L . c-dimensional binary data inM. There is no immediate gain

in transforming the data set and disregarding in the process any information that

would help discriminating between the classes.21 Merz suggests to augment M by

c more columns encoding the true class label of each object [148], thus taking

into account some discrimination information. For example, assume that the true

label of zj is v3. In a four-class problem, the addition to the row ofM corresponding

to zj will be 0010. If the number of classifiers is large, the additional c columns are

not going to make a significant difference to the representation in the new low-

20 See http://www.statsoft.com/textbook/stcoran.html.
21 Similarly, principal component analysis (PCA) and Karhunen–Loéve expansion used in pattern recog-

nition to capture the relationship between the objects do not necessarily facilitate the ensuing classifi-

cation.
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dimensional space. Besides, when a new object comes for classification, we will

have to guess its label (the additional c columns) before plotting it into the new

space. Merz uses all c label guesses, one at a time, to see with which guessed

label the representation of x is closest to a class prototype in the new space [148].

Below we detail the algorithm for finding the new space with a lower dimension

d � min {N, (L � c)} for our (nonaugmented) binary matrix M.

First, normalize M so that the sum of all of its elements is 1.

M¼
1PN

i¼1

PL�c
j¼1 mi, j

M ¼
1

(N � L)
M (4:75)

Denote by cj the column mass of column j inM; that is,

cj ¼
1

N � L

XN
i¼1

mi, j (4:76)

Let c ¼ ½c1, . . . , cL�c�
T be the vector with column masses, and r ¼ ½(1=N), . . . ,

(1=N)�T be the vector with row masses (of size (N � 1)). Use the two vectors to

form the the following diagonal matrices

Mc ¼ diag
1ffiffiffiffiffi
c1
p , . . . ,

1ffiffiffiffiffiffiffi
cL�c
p

� �
((L�c)�(L�c))

Mr ¼ diag
1ffiffiffiffi
N
p , . . . ,

1ffiffiffiffi
N
p

� �
(N�N)

(4:77)

Calculate the standardized residual matrix

A ¼ Mr(M� rcT )Mc (4:78)

The singular value decomposition (SVD) of A is then found as A ¼ UGVT , and the

principal coordinates of the N rows and the L � c columns are calculated as F and G

respectively

F ¼ Mr � U � G (rows)

G ¼ Mc � V � G
T (columns) (4:79)

At this stage we can plot the data set Z on the plane spanned by the first two com-

ponents of F, and show the class labels by different markers. Figure 4.6 depicts the

results from the run of the above algorithm on the Pima Indian Diabetes data set

from the UCI Machine Learning Repository. Fifteen classifiers were trained on 90

percent of the data set, that is, N ¼ 691, L ¼ 15, c ¼ 2, and so M is of size
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691� 30. The number of dimensions will be at most as the number of nonzero

singular values of A. Not all c columns per class are actually needed because

from the c� 1 binary values, we can always derive the cth one. Then the indepen-

dent columns of M will be at most L� (c� 1), so, in this example, there could be a

maximum of 15 dimensions. The first dimension corresponds to the highest singular

value and “explains” most of the relationship among the objects, and the other

dimensions follow in descending order of importance. Each of the 15 classifiers is

a Multi-Layer Perceptron neural network (MLP NN) with one hidden layer contain-

ing five nodes. Backpropagation applied for 100 epochs was used for training

(Matlab Toolbox).

As Figure 4.6 shows, the new space hardly helps in solving the original classifi-

cation problem. To argue our point that appending the true class label will not make

much difference, Figure 4.7 shows the results of the same experiment but with the

true class labels added as the last two columns of M. Observing Figure 4.7, there is

no evidence that the SVD improves the chances for a better combination when this

more elaborate procedure is employed. The plots can only give us an idea about the

difficulty of the problem at hand, so the true value of the SVD method lies with illus-

tration rather than improved accuracy of the ensemble.

For completeness, we include the second part of the algorithm, which explains

the classification stage. The dimensionality d has to be decided next. The restriction

is that d � n0 � min {N, (L � c)}, where n0 is the total number of positive singular

values of A. Then a classifier is trained on F, with all N rows but with only the

first d columns. The class labels for the N objects are the labels of the zj’s. For

example, if we use a linear discriminant classifier in the new space, there will be

c(dþ 1) parameters needed for the classification of an object represented by its d

values. To convert a label vector s to a representation by d values, we first find

Fig. 4.6 Scatterplot of the 691 points in the Pima training set (a randomly chosen 90 percent of

the data) in the plane spanned by the first two principal axes found through the first SVD method:

only the 15 classifier outputs are concatenated.

142 FUSION OF LABEL OUTPUTS



the concatenated binary representation of s, for example, sb, and then calculate

sTd ¼
1

L
sTb � Gr � Gr (4:80)

where the “r” in Gr and Gr stands for “reduced.” Only the first d columns of G are

taken as Gr, and a diagonal matrix is “cut” from G, of size d� d, containing as its

leading diagonal the d highest singular values of A in descending order. We can fuse

the constant terms, thereby forming a single transformation matrix T ¼ (1=L) � Gr �

Gr of size (L � c)� d.

Example: Singular Value Decomposition Classification of an Unknown x. For

the example shown in Figure 4.6, the number of nonzero singular values of A is

14. Pick d to be 4. Then Gr will have 30 rows and 4 columns, and Gr will be of

size 4� 4:

Gr ¼

0:83 0 0 0

0 0:25 0 0

0 0 0:20 0

0 0 0 0:13

2
664

3
775 (4:81)

The transformation matrix T is calculated as explained above. Assume that all

classifiers gave the same class label v1 for x. Then

sb ¼ ½101010101010101010101010101010�
T

Fig. 4.7 Scatterplot of the 691 points in the Pima training set (a randomly chosen 90 percent of

the data) in the plane spanned by the first two principal axes found through second SVD method:

concatenated are the 15 classifier outputs plus the true labels.
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Next we use Eq. (4.80) to find sd ¼ ½0:40, 0:01, 0:00, 0:00�
T . Similarly, we can

derive the sd for an x labeled by all 15 classifiers as v2. In this case, sd ¼

½�1:05, 0:01, 0:01, 0:00�T . The two prototypes calculated in this way are plotted

in Figure 4.6.

4.8 CONCLUSIONS

This chapter describes various methods for combining class label outputs. Formally

speaking, we transformed the problem to find a mapping

D : Rn
! V (4:82)

into a problem of finding a mapping

F : VL
! V (4:83)

We can call VL an intermediate feature space, which in this case is discrete. The

methods described here varied on the assumptions and also on the complexity of

their implementation. Table 4.11 summarizes the methods in this chapter.

Here we bring the results from a single illustrative experiment. The Pima Indian

Diabetes data set was used again, in a 10-fold cross-validation experiment (rotated

90 percent for training and 10 percent for testing). Figure 4.8 shows the mean accu-

racies from the 10 runs, for training and for testing. The single best classifier in the

ensemble is also displayed to set up a baseline for the ensemble accuracy.

The individual classifiers were MLP NNs, each one with a single hidden layer

containing 25 nodes, trained starting with different random initializations. Nine clas-

sifiers were trained on each training/testing split of the data set. The standard back-

TABLE 4.11 A Summary of the Label Fusion Methods.

Method

Assumptions

(for Optimality)

Memory Requirements

(in Number of Parameters

Needed for Its Operation)

Majority vote None None

Weighted majority vote None L

Naive Bayes Conditional

independence

L � c 2

Behavior knowledge space (BKS) None c L

Wernecke None c L

First-order dependence tree Conditional first-order

dependence

c � [(L 2 1) � c 2 þ L]

SVD combination None [L � c þ (c þ 1)]d

(d � minfN, (L . c)g)

SVD, singular value decomposition.
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propagation was used from the Matlab Neural Network Toolbox. Each network was

trained for 300 epochs. Figure 4.8 reveals that

1. There is hardly any improvement over the single best member of the team.

(The dashed line sets up the standard for the testing accuracy.) The single

best classifier was selected based on the training accuracies of the ensemble

members. This means that there could have been even higher single accuracies

among the testing results. The lack of improvement could be attributed to the

lack of variability (diversity) in the ensemble.22

2. As expected, the training accuracy is higher than the testing accuracy, and has

much smaller variability. A notable overtraining occurs with the BKS and

Wernecke’s method. However, while BKS is the worst in this illustration,

Wernecke’s method is one of the best contestants, despite the overtraining.

Fig. 4.8 Results from a 10-fold cross-validation with the Pima Indian Diabetes database from

UCI. The combination methods discussed in this chapter are contrasted against each other

and also against the single best classifier in the team of nine classifiers. Each individual

classifier is a multi-layer perceptron (MLP) with one hidden layer containing 25 nodes. The

training and testing results for each method are shown next to each other, with the mean value

(W for the training, and * for the testing) and one standard deviation on each side, calculated

from the 10 cross-validation runs.

22Diversity in classifier ensembles will be discussed at length in Chapter 10.
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3. None of the methods shows a clear dominance above the remaining methods,

which again confirms the “no panacea” principle in pattern recognition.

APPENDIX 4A MATAN’S PROOF FOR THE LIMITS ON THE
MAJORITY VOTE ACCURACY

Here we give a sketch of the proof as offered in Ref. [137].

Theorem. Given is a classifier ensemble D ¼ {D1, . . . , DL}. Suppose that clas-

sifiers Di have accuracies pi, i ¼ 1, . . . , L, and are arranged so that p1 �

p2 � � � � pL. Let k ¼ lþ 1 ¼ (Lþ 1)=2. Then

1. The upper bound of the majority vote accuracy of the ensemble is

maxPmaj ¼ min {1, S(k), S(k � 1), . . . ,S(1)}, (A.1)

where

S(m) ¼
1

m

XL�kþm
i¼1

pi, m ¼ 1, . . . , k (A.2)

2. The lower bound of the majority vote accuracy of the ensemble is

minPmaj ¼ max {0, j(k), j(k � 1), . . . , j(1)} (A.3)

where

j(m) ¼
1

m

XL
i¼k�mþ1

pi �
L� k

m
, m ¼ 1, . . . , k (A.4)

Proof. (sketch)

Upper Bound. The accuracy pi is the average accuracy of Di across the whole

feature space R
n, and can be written as

pi ¼

ð
R

n

I i(x)p(x) dx (A.5)

where I i is an indicator function for classifier Di, defined as

I i(x) ¼
1, if Di recognizes correctly x,

0, otherwise,

�
(A.6)
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and p(x) is the probability density function of x. The majority vote accuracy is the

probability of having k or more correct votes, averaged over the feature space R
n.

Pmaj ¼

ð
P
I i(x)�k

p(x) dx (A.7)

First we note that Pmaj � 1, and then derive a series of inequalities for Pmaj. For any

x where the majority vote is correct, at least k of the classifiers are correct. Thus

XL
i¼1

pi ¼
XL
i¼1

ð
R

n

I i(x)p(x) dx ¼

ð
R

n

XL
i¼1

I i(x)p(x) dx

�

ð
P
I i(x)�k

kp(x) dx ¼ kPmaj (A.8)

Then

Pmaj �
1

k

XL
i¼1

pi (A.9)

Let us now remove the most accurate member of the team, DL, and consider the

remaining L� 1 classifiers

XL�1
i¼1

pi ¼
XL�1
i¼1

ð
R

n

I i(x)p(x) dx (A.10)

For each point x [ R
n where the majority vote (using the whole ensemble) has

been correct, that is,
P
I i(x) � k, there are now at least k � 1 correct individual

votes. Thus

XL�1
i¼1

pi ¼

ð
R

n

XL�1
i¼1

I i(x)p(x) dx

�

ð
PL

i¼1
I i(x)�k

(k � 1)p(x) dx ¼ (k � 1)Pmaj (A.11)

Then

Pmaj �
1

k � 1

XL�1
i¼1

pi (A.12)
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Similarly, by dropping from the remaining set the most accurate classifier at a time,

we can derive the series of inequalities (A.1). Note that we can remove any classifier

from the ensemble at a time, not just the most accurate one, and arrive at a similar

inequality. Take for example the step where we remove DL. The choice of the most

accurate classifier is dictated by the fact that the remaining ensemble of L� 1 clas-

sifiers will have the smallest sum of the individual accuracies. So as Pmaj is less than
1

k � 1

XL�1
i¼1

pi, it will be less than any other sum involving L� 1 classifiers that

includes pL and excludes a smaller pi from the summation.

The next step is to show that the upper bound is achievable. Matan suggests to use

induction on both L and k for that [137].

Lower Bound. To calculate the lower bound, Matan proposes to invert the concept,

and look again for the upper bound but of (1� Pmaj).

APPENDIX 4B PROBABILISTIC APPROXIMATION OF THE JOINT
pmf FOR CLASS-LABEL OUTPUTS

The derivation of the algorithm by Chow and Liu [147] is based on two propositions.

First, they show that an approximation P̂Pt of P based on a dependence tree t [ TL is

optimal if and only if t has the maximum weight among the trees in TL.

From Eq. (4.63)

log P̂P(s) ¼
XL
i¼1

logP sijsj(i)
� 	

¼
XL
i¼1

log
P(sijsj(i))P(si)

P(si)

¼
XL
i¼1

log
P(sijsj(i))

P(si)

� �
þ
XL
i¼1

logP(si) (B.1)

For all j(i) ¼ 0, P(sijs0) ¼ P(si), and the respective term in the first summation

becomes log½P(si)=P(si)� ¼ 0: For the remaining terms, replacing P(sijsj(i)) by

P(sijsj(i)) ¼
P(si, sj(i))

P(sj(i))

Eq. (B.1) becomes

log P̂P(s) ¼
XL
i¼1

j(i)=0

log
P(si, sj(i))

P(si)P(sj(i))
þ
XL
i¼1

logP(si) (B.2)
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Then from Eq. (4.64)

f(P, P̂Pt) ¼ �
X

s

P(s) log P̂P(s)þ
X

s

P(s) logP(s)

¼ �
X

s

P(s)
XL

i¼1, j(i)=0

log
P(si, sj(i))

P(si)P(sj(i))

�
X

s

P(s)
XL
i¼1

logP(si)þ
X

s

P(s) logP(s) (B.3)

Since si is a component of s, P(si) is the marginal probability given by

P(si) ¼
X

s1,...,si�1,siþ1,...,sL

P(s1, . . . , sL)

Then, as logP(si) is a constant for all summations except the one on si,X
s

P(s) logP(si) ¼
X

(s1,...,sL)

P(s1, . . . , sL) logP(si)

¼
X
si

logP(si)
X

s1,...,si�1,siþ1,...,sL

P(s1, . . . , sL)

¼
X
si

P(si) logP(si)� H(si), (B.4)

where H(si) is the entropy of the random variable si. Also, the entropy of s is

H(s) ¼ �
X

s

P(s) logP(s) (B.5)

Similarly, we can use the marginal pmf for (si, sj(i)) to arrive at

X
s

P(s)
XL

i¼1, j(i)=0

log
P(si, sj(i))

P(si)P(sj(i))
¼
X
(si ,sj(i))

P(si, sj(i)) log
P(si, sj(i))

P(si)P(sj(i))

¼ I(si, sj(i)) (B.6)

Substituting Eqs. (B.4), (B.5), and (B.6) into Eq. (B.3), the following expression

is obtained:

f(P, P̂Pt) ¼ �
XL
i¼1

I(si, sj(i))þ
XL
i¼1

H(si)� H(s) (B.7)

Since the entropies H(si) and H(s) depend only on the true probability distri-

bution and not on the tree, the minimum of f(P, P̂Pt) (the best approximation) is

obtained by maximizing
PL

i¼1 I(si, sj(i)), that is, the weight of tree t.
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5
Fusion of Continuous-

Valued Outputs

The degrees of support for a given input x can be interpreted in different ways, the

two most common being confidences in the suggested labels and estimates of the

posterior probabilities for the classes.

Let x [ R
n be a feature vector and V ¼ {v1,v2, . . . ,vc} be the set of class

labels. Each classifier Di in the ensemble D ¼ {D1, . . . ,DL} outputs c degrees of

support. Without loss of generality we can assume that all c degrees are in the inter-

val ½0, 1�, that is, Di : R
n
! ½0, 1�c. Denote by di, j(x) the support that classifier Di

gives to the hypothesis that x comes from class vj. The larger the support, the

more likely the class label vj. The L classifier outputs for a particular input x can

be organized in a decision profile (DP(x)) as the matrix

(5.1)
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The methods described in the rest of this chapter use DP(x) to find the overall

support for each class and subsequently label the input x in the class with the largest

support. There are two general approaches to this task. First, we can use the fact that

the values in column j are the individual supports for class vj and derive an overall

support value for that class. Denote by mj(x) the overall degree of support for vj

given by the ensemble. Combination methods that use one column of DP(x) at a

time are called in Ref. [149] “class-conscious.” Examples from this group are the

simple and weighted average, product, and order statistics. Alternatively, we may

ignore the context of DP(x) and treat the values di, j(x) as features in a new feature

space, which we call the intermediate feature space. The final decision is made by

another classifier that takes the intermediate feature space as input and outputs a

class label. In Ref. [149] this class of methods is named “class-indifferent.” Of

course we can build layer upon layer of classifiers in such a manner. The important

question is how we train such architectures to make sure that the increased complex-

ity is justified by a corresponding gain in accuracy.

5.1 HOW DO WE GET PROBABILITY OUTPUTS?

Some of the base classifiers described in Chapter 2 produce soft labels right away.

Examples of such classifiers are the linear discriminant classifier, quadratic discri-

minant classifier, and Parzen classifier. The values of the discriminant functions

can be used as the degrees of support (in R). It is more convenient though if

these degrees were in the interval ½0, 1�, with 0 meaning “no support” and 1 meaning

“full support.” We can simply normalize the values so that R is mapped to ½0, 1� and

the sum of the supports is one. The standard solution to this problem is the softmax

method [15]. Let g1(x), . . . , gc(x) be the output of classifier D. Then the new support

scores g01(x), . . . , g
0
c(x), g

0
j(x) [ ½0, 1�,

Pc
j¼1 g

0
j(x) ¼ 1, are obtained as

g0j(x) ¼
exp{gj(x)}Pc
k¼1 exp{gk(x)}

(5:2)

It would be better if g0j(x) were credible estimates of the probabilities for the classes

given the input x. This section describes some ways to obtain continuous outputs as

estimates of the posterior probabilities P(vjjx), j ¼ 1, . . . , c.

5.1.1 Probabilities Based on Discriminant Scores

5.1.1.1 Linear and Quadratic Discriminant Classifiers. For these two

classifiers we assumed normal class-conditional densities (a seldom valid but very

practical assumption). The discriminant function for class vj, gj(x), was derived

from logP(vj)p(xjvj) by dropping all the additive terms that did not depend on

the class label. Let C be a constant (possibly depending on x but not on j) absorbing
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all additive terms that were dropped and let A ¼ exp{C}. Then

P(vj)p(xjvj) ¼ A exp{gj(x)} (5:3)

The posterior probability for class vj for the given x is

P(vjjx) ¼
P(vj)p(xjvj)

p(x)
(5:4)

¼
A� exp{gj(x)}Pc
k¼1 A� exp{gk(x)}

¼
exp{gj(x)}Pc
k¼1 exp{gk(x)}

(5:5)

which is the softmax transform (5.2). For the two-class problem, there is only one

discriminant function g(x), which we compare with the threshold 0. Therefore we

may take g1(x) ¼ g(x) and g2(x) ; 0. Applying Eq. (5.2), we obtain

g01(x) ¼
exp{g1(x)}

exp{g1(x)}þ 1
¼

1

1þ exp{�g1(x)}
(5:6)

and g02(x) ¼ 1� g01(x). This is also called the logistic link function [150].

Alternatively, we can think of g(x) as a new feature and estimate in this new one-

dimensional space the two class-conditional pdfs, pðg(x)jv1Þ and pðg(x)jv2Þ. The

posterior probabilities are calculated from the Bayes formula. The same approach

can be extended to a c-class problem by estimating a class-conditional pdf

pðgj(x)jvjÞ on gj(x), j ¼ 1, . . . , c, and calculating subsequently P(vjjx) using all

pðgkðxÞjvkÞ and PðvkÞ; k ¼ 1; . . . ; c.

5.1.1.2 Neural Networks and Kernel Classifiers. Consider a neural net-

work (NN) with c outputs, each corresponding to a class. Denote the output by

(y1, . . . , yc) [ R
c and the target by (t1, . . . , tc) [ {0,1}c. The target for an object

zj from the data set Z is typically a binary vector with 1 at the position of the

class label of zj and zeros elsewhere. It is known that if trained to optimize the

squared error between the NN output and the target, in an ideal asymptotical

case, the NN output yj will be an approximation of the posterior probability

P(vjjx), j ¼ 1, . . . , c [27,29]. Wei et al. [151] argue that the theories about the

approximation are based on several assumptions that might be violated in practice:

(1) that the network is sufficiently complex to model the posterior distribution accu-

rately, (2) that there are sufficient training data, and (3) that the optimization routine

is capable of finding the global minimum of the error function. The typical trans-

formation that forms a probability distribution from (y1, . . . , yL) is the softmax trans-

formation (5.2) [15]. To make this distribution more realistic Wei et al. [151]

suggest a histogram-based remapping function. The parameters of this function

are tuned separately from the NN training. In the operation phase, the NN output

is fed to the remapping function and calibrated to give more adequate posterior

probabilities.
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A similar method called the bin method has been proposed for calibrating the out-

puts from the naive Bayes classifier [152] and has also been applied for support vec-

tor machine classifiers (SVM) [153]. The method considers one discriminant score

at a time, for example, gj(x). The discriminant scores for all the training examples

are sorted and placed into b bins of equal size. Using the true labels of the training

examples we estimate the posterior probability for vj within each bin. Thus the clas-

sifier output is discretized. The assigned posterior probabilities are recovered from

the respective bin for the concrete value of gj(x). This discretized output is less

detailed but hopefully more accurate than a simply rescaled gj(x) using softmax.

For the kernel group of classifiers, an example of which is the Parzen classifier,

we often have the ready-made probability estimates coming from the kernel esti-

mates of the class-conditional pdfs, for example, Eq. (2.35).

5.1.2 Probabilities Based on Counts: Laplace Estimator

Consider finding probability estimates from decision trees. Each leaf of the tree

defines a set of posterior probabilities. These are assigned to any point that reaches

the leaf. The difficulties in obtaining good estimates of the posterior probabilities

have been addressed in several publications [154]. Provost and Domingos [154] ana-

lyze the reasons for the insufficient capability of the standard decision tree classifiers

to provide adequate estimates of the probabilities and conclude that the very heur-

istics that help us build small and accurate trees are responsible for that. Special

amendments were proposed that led to the so-called probability estimating trees

(PETs). These trees still have high classification accuracy, but their main purpose

is to give more accurate estimates of the posterior probabilities.

We calculate estimates of P(vjjx), j ¼ 1, . . . , c, as the class proportions of the

training data points that reached the leaf (the maximum likelihood (ML) estimates).

Let k1, . . . , kc be the number of training points from classes v1, . . . ,vc, respectively,

at some leaf node t, and let K ¼ k1 þ � � � þ kc. The ML estimates are

P̂P(vjjx) ¼
kj

K
, j ¼ 1, . . . , c (5:7)

The problem is that when the total number of points, K, is small, the estimates of

these probabilities are unreliable. Besides, the tree growing strategies try to make

the leaves as pure as possible. Thus most probability estimates will be pushed

towards 1 and 0 [152].

To remedy this, the Laplace estimate or Laplace correction can be applied

[152,154,155]. The idea is to adjust the estimates so that they are less extreme.

For c classes, the Laplace estimate used in Ref. [154] is

P̂P(vjjx) ¼
kj þ 1

K þ c
(5:8)

Zadrozny and Elkan [152] apply a different version of the Laplace estimate using

a parameter m that controls the degree of regularization of the estimate (called
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m-estimation). The idea is to smooth the posterior probability towards the (estimate

of the) prior probability for the class

P̂P(vjjx) ¼
kj þ m� P̂P(vj)

K þ m
(5:9)

If m is large, then the estimate is close to the prior probability. If m ¼ 0, then we

have the ML estimates and no regularization. Zadrozny and Elkan suggest that m

should be chosen so that m� P(vj) � 10 and also point out that practice has

shown that the estimate (5.9) is quite robust with respect to the choice of m.

Suppose that v� is the majority class at node t. Ting and Witten [155] propose the

following version of the Laplace estimator

P̂P(vjjx) ¼

1�

P
l=j kl þ 1

K þ 2
, if vj ¼ v�,

½1� P(v�jx)� �
kjP
l=j kl

, otherwise.

8>>><
>>>:

(5:10)

The general consensus in the PET studies is that for good estimates of the pos-

terior probabilities, the tree should be grown without pruning and a form of Laplace

correction should be used for calculating the probabilities.

The same argument can be applied for smoothing the estimates of the k nearest

neighbor classifier (k-nn) and the histogram classifier both discussed in Chapter 2.

There are many weighted versions of k-nn whereby the posterior probabilities are

calculated using distances. While the distance-weighted versions have been found

to be asymptotically equivalent to the nonweighted versions in terms of classifi-

cation accuracy [72], there is no such argument when class ranking is considered.

It is possible that the estimates of the “soft” k-nn versions are more useful for rank-

ing than for labeling. A simple way to derive P̂P(vjjx) from k-nn is to average the

similarities between x and its nearest neighbors from class vj. Let k be the number

of neighbors, x(i) be the ith nearest neighbor of x, and d(x, x(i)) be the distance

between x and x(i). Then

P̂P(vjjx) ¼

P
x( j)[vj

1

d(x, x( j))Pk
i¼1

1

d(x, x(i))

: (5:11)

Albeit intuitive, these estimates are not guaranteed to be good approximations of the

posterior probabilities.

Example: Laplace Corrections and Distance-Based k-nn Probability

Estimates. Figure 5.1 shows a point in a two-dimensional feature space (the

cross, �) and its seven nearest neighbors from v1 (open circles), v2 (bullets), and

v3 (triangle).
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The Euclidean distances between x and its neighbors are as follows:

x 1 2 3 4 5 6 7

Distance 1 1
ffiffiffi
2
p

2 2
ffiffiffi
2
p

2
ffiffiffi
2
p ffiffiffiffiffi

13
p

Label v2 v1 v1 v3 v1 v1 v2

The probability estimates mj(x), j ¼ 1, 2, 3, using the Laplace corrections and the

distance-based formula are as follows:

Method m1(x) m2(x) m3(x)

ML 4
7

2
7

1
7

Standard Laplace [154] 5
10

3
10

2
10

m-estimation [152] (m ¼ 12,

equiprobable classes)

8
19

6
19

5
19

Ting and Witten [155] 12
27

10
27

5
27

Distance-based 0.58 0.30 0.12

Fig. 5.1 A point in a two-dimensional feature space and its seven nearest neighbors from v1

(open circles), v2 (bullets), and v3 (triangle).
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As seen in the table, all the corrective modifications of the estimates bring them

closer to one another compared to the standard ML estimates, that is, the modifi-

cations smooth the estimates away from the 0/1 bounds.

Accurate estimates are a sufficient but not a necessary condition for a high classi-

fication accuracy. The final class label will be correctly assigned as long as the

degree of support for the correct class label exceeds the degrees for the other classes.

Investing effort into refining the probability estimates will be justified in problems

with a large number of classes c where the ranking of the classes by their likelihood

is more important than identifying just one winning label. There is an increasing

stream of such applications, for example, person identification, text categorization,

fraud detection, and so on.

5.2 CLASS-CONSCIOUS COMBINERS

5.2.1 Nontrainable Combiners

“Nontrainable” means that the combiner has no extra parameters that need to be

trained; that is, the ensemble is ready for operation as soon as the base classifiers

are trained. Simple nontrainable combiners calculate the support for class vj

using only the jth column of DP(x) by

mj(x) ¼ F½d1, j(x), . . . dL, j(x)� (5:12)

where F is a combination function. The class label of x is found as the index of the

maximum mj(x). The combination functionF can be chosen in many different ways.

The most popular choices are:

. Simple mean (average) (F ¼ average).

mj(x) ¼
1

L

XL
i¼1

di, j(x) (5:13)

. Minimum/maximum/median (F ¼ minimum/maximum/median). For example,

mj(x) ¼ max
i

{di, j(x)} (5:14)

. Trimmed mean (competition jury). For a K percent trimmed mean the L

degrees of support are sorted and K percent of the values are dropped on

each side. The overall support mj(x) is found as the mean of the remaining

degrees of support.

. Product (F ¼ product):

mj(x) ¼
YL
i¼1

di, j(x) (5:15)
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. Generalized mean [156]

mj(x, a) ¼
1

L

XL
i¼1

di, j(x)
a

 !1=a

(5:16)

with the following special cases:

a!�1) mj(x, a) ¼ mini {di, j(x)} (minimum)

a ¼ �1) mj(x, a) ¼
1

L

XL
i¼1

1

di, j(x)

 !�1
(harmonic mean)

a ¼ 0) mj(x, a) ¼
YL
i¼1

di, j(x)

 !1=L

(geometric mean)

a ¼ 1) mj(x, a) ¼
1

L

XL
i¼1

di, j(x) (arithmetic mean)

a! 1) mj(x, a) ¼ maxi{di, j(x)} (maximum)

The operation of simple combiners is illustrated diagrammatically in Figure 5.2.

Note that the geometric mean is equivalent to the product combiner as raising to

the power of 1=L is a monotone transformation that does not depend on the class

label j and therefore will not change the order of mj(x); the “winning” label obtained

from the product combiner will be the same as the winning label from the geometric

mean combiner.

Example: Simple Nontrainable Combiners. The following example helps to

clarify simple combiners. Let c ¼ 3 and L ¼ 5. Assume that for a certain x

DP(x) ¼

0:1 0:5 0:4
0:0 0:0 1:0
0:4 0:3 0:4
0:2 0:7 0:1
0:1 0:8 0:2

2
66664

3
77775 (5:17)

Applying the simple combiners columnwise, we obtain as (m1(x), m2(x), m3(x))

Average ¼ (0:16, 0:46, 0:42);
Minimum ¼ (0:0, 0:0, 0:1);
Maximum ¼ (0:4, 0:8, 1:0);
Median ¼ (0:1, 0:5, 0:4);
20% trimmed mean ¼ (0:13, 0:50, 0:33);
Product ¼ (0:0, 0:0, 0:0032):

(5:18)
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Note that we do not require that di, j(x) for classifier Di sum to one. We only assume

that they are measures in the same units. If we take the class with the maximum sup-

port to be the class label of x, the minimum, maximum, and product will label x in

class v3, whereas the average, the median, and the trimmed mean will put x in

class v2.

The generalized mean does have an extra parameter a. As we are considering

nontrainable combiners here, we assume that the system designer chooses a before-

hand. This parameter can be thought of as the “level of optimism” of the combiner.

The minimum combiner (a!�1) is the most pessimistic choice, that is, we know

that vj is supported by allmembers of the ensemble at least as much as mj(x). At the

other extreme, if we choose the maximum combiner, then we are most optimistic,

that is, we are happy to accept an ensemble degree of support mj(x) on the ground

that at least one member of the team supports vj with this degree. Therefore a con-

trols the level of optimism. If we choose to tune a with respect to the ensemble per-

formance, then we should regard the generalized mean combiner as a trainable

combiner as discussed in the next subsection.

Example: Illustration of the Effect of the Level of Optimism a. To illustrate the

effect of the level of optimism a we used the two-dimensional rotated check-board

Fig. 5.2 Operation of simple nontrainable (class-conscious) combiners.
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data set. The training and testing data sets are shown in Figure 5.3a and b,

respectively.

One hundred training/testing sets were generated from a uniform distribution

within the unit square. The labels to the points were assigned as in the rotated

check-board example in Section 1.5.4. In each experiment, the training set consisted

of 200 examples and the testing set consisted of 1000 examples. Each ensemble was

formed by taking 10 bootstrap samples of size 200 from the training data (uniform

sampling with replacement) and training a classifier on each sample. The Parzen

classifier was used from the PRTOOLS toolbox for Matlab.23 The generalized

mean formula (5.16) was used where the level of optimism a was varied from

�50 to 50 with finer discretization from �1 to 1. The ensemble error averaged

across the 100 runs is plotted against a in Figure 5.4.

A zoom window of the ensemble error for a [ ½�2, 5� is shown in Figure 5.5.

The simple mean, product, and harmonic mean combiners are identified on the

curve. For this example the simple mean combiner gave the best result.

The results from the illustration above should not be taken as evidence that the

mean combiner is always the best. The shape of the curve will depend heavily on

the problem and on the base classifier used. The average and the product are the

two most intensively studied combiners. Yet, there is no guideline as to which

one is better for a specific problem. The current understanding is that the average,

in general, might be less accurate than the product for some problems but is the

more stable of the two [11,157–160].

23 The smoothing parameter of the Gaussian kernel does not have to be specified in the Parzen classifier

version in PRTOOLS. This parameter is tuned within the classification routine using the training data.

Fig. 5.3 An example of a training (a) and testing (b) set for the rotated check-board data. One

hundred randomly sampled training/testing sets were used in the experiment.
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Fig. 5.4 Ensemble error for the generalized mean combiner for a [ ½�50, 50�.

Fig. 5.5 A zoom on the ensemble error for the generalized mean combiner for a [ ½�2, 5�.
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The ordered weighted averaging (OWA) is another generalized model from the

nontrainable group [161]. We use a set of L coefficients, one for each classifier in the

ensemble. Ordered weighted averaging does not attach a specific coefficient to a

classifier. First the classifier outputs for vj ( jth column of DP(x)) are arranged in

a descending order and then a weighted sum is calculated using the coefficient

associated with the place in this ordering.

Let b ¼ ½b1, . . . , bL�
T be a vector with coefficients such that

XL
k¼1

bk ¼ 1, 0 � bk � 1, k ¼ 1, . . . , L

The support for vj is calculated as the dot product of b and the vector

½di1, j(x), . . . , diL, j(x)�
T

where i1, . . . , iL is a permutation of the indices 1, . . . ,L, such that

di1, j(x) � di2, j(x) � � � � � diL , j(x)

Thus the support for vj is

mj(x) ¼
XL
k¼1

bk � dik , j(x) (5:19)

Example: Ordered Weighted Averaging Combiners. When a jury has to assess a

sport performance (e.g., in gymnastics, acrobatics, ice-skating), to avoid, or at least

reduce, subjective bias, usually the highest and the lowest marks are dropped, and

the remaining L� 2 marks are averaged (the trimmed mean/competition jury com-

biner). Let the support for class vj be ½0:6, 0:7, 0:2, 0:6, 0:6�
T . To implement the

competition jury combiner using OWA aggregation we assign coefficients b ¼

½0, 1=3, 1=3, 1=3, 0�T . This yields

m1(u) ¼ 0,
1

3
,
1

3
,
1

3
, 0

� �
½0:7, 0:6, 0:6, 0:6, 0:2�T ¼ 0:6 (5:20)

By selecting b, a number of operations can be modeled, and further operations

can be created

. Minimum: b ¼ ½0, 0, . . . , 0, 1�T .

. Maximum: b ¼ ½1, 0, . . . , 0, 0�T .

. Average: b ¼ ½1=L, 1=L, . . . , 1=L�T .

. Competition jury (trimmed mean): b ¼ ½0, 1=(L� 2), . . . , 1=(L� 2), 0�T .
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The coefficient vector b can be either designed in advance or found from data.

Yager and Filev [162] show how b can be designed to model linguistic quantifiers

such as almost all, few, many, most, nearly half, and so on.

Various other aggregation connectives from fuzzy set theory can be used as the

combiner [156,163,164]. The main question is when we should use one formula or

another. It seems that we are so busy developing new aggregation connectives that a

deeper analysis of the already rich toolbox is being pushed to the side.

5.2.2 Trainable Combiners

5.2.2.1 The Weighted Average. Various weighted average combiners have

been proposed in the literature. Three groups can be distinguished based on the num-

ber of weights:

. L weights. In this model there is one weight per classifier. The support for

class vj is calculated as

mj(x) ¼
XL
i¼1

wi di, j(x) (5:21)

The weight for classifier Di is usually based on its estimated error rate [165].

. c� L weights. The support for class vj is calculated as

mj(x) ¼
XL
i¼1

wij di, j(x) (5:22)

Here the weights are specific for each class. Only the jth column of the decision

profile is used in the calculation, that is, the support for class vj is obtained

from the individual supports for vj (class-conscious combiners). Linear

regression is the commonly used procedure to derive the weights for this

model [155,166–169].

. c� c� L weights. The support for each class is obtained by a linear combi-

nation of all of the decision profile DP(x)

mj(x) ¼
XL
i¼1

Xc
k¼1

wikj di,k(x) (5:23)

where wikj is the (i, k)th weight for class vj. The whole of the decision profile is

used as the intermediate feature space (class-indifferent combiners).

In this section we will consider the class-conscious combiner (5.22). We look at

di, j(x), i ¼ 1, . . . , L, as L point estimates of the same uncertain quantity P(vjjx). If
the estimates are unbiased, then we can form a nonbiased, minimum variance esti-
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mate mj(x) of P(vjjx) by taking the weighted average (5.22) and restricting the coef-

ficients wi to sum up to one [169]

XL
i¼1

wi ¼ 1 (5:24)

Note that we may or may not require that the coefficients are nonnegative. The

weights are derived so that they minimize the variance of mj(x). Using these weights,

the aggregated estimate is guaranteed to have variance at most as large as the var-

iance of any of the classifiers in the ensemble. Since we assumed that the estimators

are unbiased, the variance of each of the estimates di, j(x), i ¼ 1, . . . , L, is equivalent
to its expected squared error. Hence the weighted average (5.22) with coefficients

found by minimizing the variance will be a better estimate of the posterior prob-

ability P(vjjx) than any of the ensemble members. This is a highly desirable prop-

erty, but, as discussed before, poorer estimates might lead to better classification

than more accurate estimates as long as the class with the highest true probability

has the top rank. High accuracy of the estimates is a sufficient but not a necessary

condition for high classification accuracy. Therefore the regression methods dis-

cussed here might not be the most appropriate training scenario for combining

classifier outputs.

Example: Variance of the Estimate of P(vjjx). For regression problems we seek

to approximate a continuous-valued output. For classification problems the target

output is given only in the form of a class label. So the target values for P(vjjx)

provided with the data set are either 1 (in vj) or 0 (not in vj). If we accept a

model without noise then we trust the 0/1 values to be the true posterior probabilities
at the data points in the given data set Z. Table 5.1 shows a hypothetical output for

class v1 of a classifier ensembleD ¼ {D1, D2} for a data set Z ¼ {z1, . . . , z10}. The
first three points in the data set have labels v1 and the remaining seven have a differ-

ent class label. To form the table, the first columns of the 10 decision profiles,

DP(z1), . . . ,DP(z10), are taken so that only the support for v1 is shown.

The variance of the error of Di considered here is the variance of the approxi-

mation error, not the classification error. The approximation error of D1 has the

following 10 values

ð1� 0:71Þ ð1� 0:76Þ ð1� 0:15Þ � 0:09 � 0:15 � 0:62 � 0:98 � 0:56 � 0:44 � 0:79

TABLE 5.1 Hypothetical Output for v1 from Two Classifiers for a Data Set

Z ¼ fz1, . . . , z10g.

Data Point z1 z2 z3 z4 z5 z6 z7 z8 z9 z10

d1;1ðzk Þ 0.71 0.76 0.15 0.09 0.15 0.62 0.98 0.56 0.44 0.79

d2,1ðzk Þ 0.41 0.27 0.91 0.15 0.64 0.90 0.68 0.95 0.22 0.14

Target ðv1Þ 1 1 1 0 0 0 0 0 0 0
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The mean of the error of D1 is �0:225 and the variance of the error of D1 is

s2
1 ¼

1

10� 1
ðð1� 0:71þ 0:225Þ2 þ ð1� 0:76þ 0:225Þ2 þ � � �

þ ð�0:79þ 0:225Þ2Þ � 0:32 ð5:25Þ

The covariance matrix of the approximation errors of the two classifiers is

S ¼
0:32 0:22
0:22 0:34

� �
(5:26)

Assume that we round the prediction so as to count the classification errors with

respect to v1. From the number of misclassified elements of Z, the classification

error of D1 is 50 percent and the classification error of D2 is 60 percent.

One version of constrained regression for finding the weights that minimize the

variance of Eq. (5.22) is derived by assuming that the expert’s errors in approximat-

ing the posterior probability, P(vjjx)� di, j(x), are normally distributed with zero

mean [169]. Denote by sik the covariance between the approximation errors by clas-

sifiers Di and Dk. The weights are found by minimizing the following objective

function which includes a Lagrangean term for enforcing the constraint (5.24)

J ¼
XL
i¼1

XL
k¼1

wiwksik � l
XL
i¼1

wi � 1

 !
(5:27)

The solution minimizing J is

w ¼ S
�1
I(ITS

�1
I)�1 (5:28)

where w ¼ ½w1, . . . ,wL�
T is the vector of weights, S is the covariance matrix for the

classifiers’ approximation errors and I is an L-element vector with ones.

For the above example,

w ¼
5:6 �3:6

�3:6 5:3

� �
1

1

� �
1 1
� � 5:6 �3:6

�3:6 5:3

� �
1

1

� �� ��1

¼
0:54

0:46

� �
(5:29)

We should keep in mind that all the weights and covariances have to be labeled

additionally by another index, say j, to specify which of the c posterior probabilities

we are approximating. To simplify notation this index is not shown here. The con-

strained regression method for combining the outputs of the ensemble will produce

an L� cmatrix with weightsW ¼ {wij}, where wij will be the weight of classifierDi

for approximating probability P(vjjx). Owing to the weight constraint each column

of W will sum to 1.

Example: Constrained Regression for Calculating Classifier’s Weights. The

example below shows the results from an experiment with the banana data. The
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ensemble size was varied from L ¼ 2 to L ¼ 30. For each ensemble size, one hun-

dred data sets have been generated with 100 data points for training (50 on each

banana) and additional 1000 point for testing (500 on each banana). Linear classi-

fiers have been trained on L bootstrap samples of the training data and combined

using the weighted average whereby the weights have been calculated through the

solution of the constrained regression problem (5.28). For comparison, the simple

average combiner was applied as well.

Plotted in Figure 5.6 are the testing errors for the two combiners versus the

ensemble size L, averaged across 100 runs. The error bars show the 95 percent con-

fidence intervals for the error. The figure shows a remarkable difference between the

two combiners. While the simple average hardly improves upon the error with

increasing L, the weighted average drives the testing error to less than 1 percent.

The tendency for overtraining is seen for values of L greater than 20. The large

spikes for L . 25 indicate that the covariance matrix S has been close to singular

and the inverse has been calculated with poor precision. Indeed, for 25 classifiers

in the ensemble, there are (25� 26)=2 ¼ 325 elements of S to be estimated. The

training data set consists of 100 data points, so spurious results can be expected.

Bootstrap sampling is commonly known as bagging. However, bagging has been

devised for label outputs and the combination is done by taking the majority vote. It

has been found that traditional bagging does not work well with linear classifiers as

the base classifiers. In this example, the bagging strategy coupled with the con-

strained regression combiner outperformed the simple average by a large margin

Fig. 5.6 Weighted average (constrained regressions) and simple average on the banana data.

The error bars mark the 95 percent confidence interval for the classification error calculated on the

basis of 100 runs.
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before taking a turn for overfitting. Curiously, the training error pattern matches the

testing error pattern shown in Figure 5.6 very closely. As soon as the problems with

the inverse of S start occurring, the training should be stopped and the best ensemble

should be selected on the basis of its training success. This illustration comes to

show that there are possibilities for improvement in the “classical” methods that

are worthy of further exploration.

Suppose that the classifier outputs for class vj were independent. Then S in

Eq. (5.28) is diagonal with the variances of D1, . . . ,DL along the diagonal. In this

case the weights are proportional to the inverse of the variances wi / (1=s2
i ), and

Eq. (5.28) reduces to

wi ¼

1

s2
iPL

k¼1

1

s2
k

(5:30)

For classification purposes, the value of mj(x) does not have to be an unbiased

estimate of the posterior probability, therefore the weights do not have to be con-

strained by Eq. (5.24). Also, an intercept term can be added. It has been found

that there is not much difference between the performance of the combiner with

or without an intercept term [155,169]. Restricting the weights to be nonnegative

has not been found to either improve or degrade the performance of the combiner.

Hence Ting and Witten suggest that nonnegative weights are preferable for

interpretation purposes [155]. The larger the weight, the more important the

classifier.

Minimum squared error is the traditional criterion for regression [166–168,170].

Minimizing the squared error leads to improved classification in an indirect way:

through approximation of the posterior probabilities. It is more natural to try and

minimize directly the classification error. The trouble is that there is no easy analyti-

cal solution for finding the weights. One possibility is to treat the combination of the

classifier outputs as a standard pattern recognition problem and apply linear discri-

minant analysis to it [171]. If we use the whole decision profile as the input features,

then we have a class-indifferent combiner. However, if we only want to use the jth

column of DP(x), containing the support for vj, then each discriminant function will

be based on its own set of (intermediate) features. The discriminant score for class

vj, gj(x), is calibrated so as to estimate P(vjj jth column of DP(x)). The maximum

posterior probability will give the label of x. Linear discriminant analysis is only one

of many possible classifiers that can be built on the intermediate feature space. Any

standard pattern classifier can be attempted. Ueda [171] uses a probabilistic descent

method to derive the weights for combining neural networks as the base classifiers.

Some authors consider using genetic algorithms for finding the weights [172,173].

5.2.2.2 Fuzzy Integral. Fuzzy integral (FI) has been reported to give excellent

results as a classifier combiner [163,164,174–178]. Here we will only present the

algorithm without taking a detour into fuzzy set theory.
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The philosophy of the fuzzy integral combiner is to measure the “strength” not

only for each classifier alone but also for all the subsets of classifiers. Every subset

of classifiers has a measure of strength that expresses how good this group of experts

is for the given input x. The ensemble support for vj, mj(x), is obtained from the sup-

port values di, j(x), i ¼ 1, . . . ,L, by taking into account the competences of the

groups of the various subsets of experts. The measure of strength of the subsets is

called a fuzzy measure. The concept of fuzzy measure and the operation of fuzzy

integral is explained alongside the example below.

Example: Fuzzy Measure. Let D ¼ {D1, D2, D3}, and let the fuzzy measure g be

defined as below:

Subset D1 D2 D3 D1,D2 D1,D3 D2,D3 D1,D2,D3

g 0.3 0.1 0.4 0.4 0.5 0.8 1

Suppose that the jth column of the decision profile of the current x is

½0:1, 0:7, 0:5�T . These are the values of support given by the three classifiers to

the hypothesis that x comes from vj. To calculate the overall support mj(x) we

first sort the degrees of support in ascending order. For illustration purposes we

append 0 at the beginning and 1 at the end of the list if these values are not already

present there. For each different value a in the list we identify which classifiers in

the ensemble have given support for vj that is greater than or equal to a. The subset

of such classifiers is called and a-cut in fuzzy set terminology, denoted here Ha.

Below we show the list of as with the appended 0 and 1, the subsets of classifiers

Ha (the a-cuts) and the fuzzy measure of each subset Ha:

a ¼ 0, H0 ¼ {D1, D2, D3}; g(H0) ¼ 1

a ¼ 0:1, H0:1 ¼ {D1, D2, D3}; g(H0:1) ¼ 1

a ¼ 0:5, H0:5 ¼ {D2, D3}; g(H0:5) ¼ 0:8

a ¼ 0:7, H0:7 ¼ {D2}; g(H0:7) ¼ 0:1

a ¼ 1, H1 ¼ ;: g(H1) ¼ 0

To get mj(x) we “fuse” the values of a (support) and g (strength or competence).

For example, the competence of the whole set of classifiers is 1 and all the experts

agree that the support for vj should be 0.1 or more. However, only D2 and D3

“think” that the support should be higher. We have to take into account their com-

bined competence and weigh it against the highest support value that they agree

upon. The ensemble support for vj calculated through Sugeno fuzzy integral is

mj(x) ¼ max
a

{minða, g(Ha)Þ} (5:31)

¼ max {min (0, 1), min (0:1, 1), min (0:5, 0:8),

min (0:7, 0:1), min (1, 0)}

¼ max {0, 0:1, 0:5, 0:1, 0} ¼ 0:5: (5:32)
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The fundamental problem with using the fuzzy integral combiner is that we

usually do not have a look-up table for the fuzzy measure g. The traditional solution

to this problem is to calculate the so-called l-fuzzy measure using the data. The cal-

culation starts with selecting a set of L values gi, representing the individual import-

ance of classifierDi, i ¼ 1, . . . ,L. The value of l needed for calculating g is obtained

as the unique real root greater than �1 of the polynomial

lþ 1 ¼
YL
i¼1

(1þ lgi), l = 0 (5:33)

Appendix 5A shows a piece of Matlab code for calculating l for given g1, . . . , gL.
Once g1, . . . , gL are selected and l is found, the operation of the fuzzy integral as

a classifier combiner is shown in Figures 5.7 and 5.8. Instead of g(Ha), the value of

the fuzzy measure g for the subset of classifiers Ha at a is denoted as g(k). The index

k varies from 1 to L. k ¼ 1 corresponds to the largest support a found among the L

degrees. For our example, g(H0:7) ¼ g(1), g(H0:5) ¼ g(2), and g(H0:1) ¼ g(3). The

values of g are not taken from a table but calculated as shown in Figure 5.7.

The support for vk, mk(x), can be thought of as a compromise between the com-

petence (represented by the fuzzy measure g) and the evidence (represented by the

kth column of the decision profile DP(x)). Notice that the fuzzy measure vector

½g(1), . . . , g(L)�T might be different for each class, and is also specific for the current

x. The fuzzy measure vectors for two classes will be the same only if the ordering of

the classifier support for both classes is the same. The algorithm in Figure 5.7

Fig. 5.7 Fuzzy integral for classifier fusion.

Fuzzy integral for classifier fusion

1. For a given x sort the kth column of DPðxÞ to obtain ½di1;kðxÞ;
di2;kðxÞ; . . . ; diL;kðxÞ�

T ; di1;kðxÞ being the highest degree of support, and

diL;kðxÞ; the lowest.

2. Arrange the fuzzy densities correspondingly, i.e., gi1 ; . . . ; giL and set

gð1Þ ¼ gi1 .

3. For t ¼ 2 to L, calculate recursively

gðtÞ ¼ git þ gðt � 1Þ þ lgit gðt � 1Þ:

4. Calculate the final degree of support for class vk by

mkðxÞ ¼ max
L

t¼1
fminfdit;kðxÞ; gðtÞgg:
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calculates the so-called Sugeno fuzzy integral. The second most popular type of

fuzzy integral is the Choquet fuzzy integral [179,180]. The calculations use the

same l-fuzzy measure; the only difference is in the final equation, which should

be replaced by

mj(x) ¼ di1,k(x)þ
XL
k¼2

½dik�1, j(x)� dik , j(x)�g(k � 1)

5.3 CLASS-INDIFFERENT COMBINERS

The combiners in this group derive mj(x) using all L� c degrees of support inDP(x).

Each vector in the intermediate feature space is an expanded version of DP(x)

obtained by concatenating its L rows. Any classifier can be applied at this point,

from a simple linear regression [155,171] to a neural network [181].

5.3.1 Decision Templates

The idea of the decision templates (DT) combiner is to remember the most typical

decision profile for each class vj, called the decision template, DTj, and then com-

Fig. 5.8 Operation of the fuzzy integral combiner.
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pare it with the current decision profile DP(x) using some similarity measure S. The

closest match will label x. Figures 5.9 and 5.10 describe the training and the oper-

ation of the decision templates’ combiner.

Two measures of similarity are based upon:

. The squared Euclidean distance (DT(E)). The ensemble support for vj is

mj(x) ¼ 1�
1

L� c

XL
i¼1

Xc
k¼1

½DTj(i, k)� di,k(x)�
2 (5:35)

whereDTj(i, k) is the (i, k)th entry in decision template DTj. The outputs mj are

scaled to span the interval ½0, 1�, but this scaling is not necessary for classifi-

cation purposes. We can drop the scaling coefficient 1=ðL� cÞ and the

constant 1. The class with the maximal support would be the same.

If we regard DP(x) and DTj as vectors in the L� c-dimensional intermedi-

ate feature space, the degree of support is the negative squared Euclidean dis-

tance between the two vectors. This calculation is equivalent to applying the

nearest mean classifier in the intermediate feature space. While we use only

the Euclidean distance in Eq. (5.35), there is no reason to stop at this choice.

Any distance could be used, for example, the Minkowski, Mahalanobis, and

so on.

Fig. 5.9 Training and operation of the decision templates combiner.

1. Decision templates (training) For j ¼ 1; . . . ; c; calculate the mean of

the decision profiles DPðzkÞ of all members of vj from the data set Z.

Call the mean a decision template DTj

DTj ¼
1

Nj

X
zk[vj

zk[Z

DPðzkÞ;

where Nj in the number of elements of Z from vj.

2. Decision templates (operation) Given the input x [ R
n, construct

DPðxÞ: Calculate the similarity S between DPðxÞ and each DTj;

mjðxÞ ¼ SðDPðxÞ;DTjÞ j ¼ 1; . . . ; c:

CLASS-INDIFFERENT COMBINERS 171



. A symmetric difference (DT(S)). Symmetric difference comes from fuzzy set

theory [163,182]. The support for vj is

mj(x) ¼ 1�
1

L� c

XL
i¼1

Xc
k¼1

max {min {DTj(i, k), (1� di,k(x))},

min {(1� DTj(i, k)), di,k(x)}} (5:36)

Example: Illustration of the Decision Templates (DT) Combiner. Let c ¼ 3,

L ¼ 2, and the decision templates for v1 and v2 be respectively

DT1 ¼

0:6 0:4
0:8 0:2
0:5 0:5

2
4

3
5 and DT2 ¼

0:3 0:7
0:4 0:6
0:1 0:9

2
4

3
5

Assume that for an input x, the following decision profile has been obtained:

DP(x) ¼
0:3 0:7
0:6 0:4
0:5 0:5

2
4

3
5

Fig. 5.10 Operation of the decision templates combiner.
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The similarities and the class labels using DT(E) and DT(S) are:

DT version m1(x) m2(x) Label

DT(E) 0.9567 0.9333 v1

DT(S) 0.5000 0.5333 v2

The difference in the opinions of the two DT versions with respect to the class

label is an indication of the flexibility of the combiner.

Below we try to give more insight into why DTs are expected to work differently

from other widely used combiners.

Decision templates are a class-indifferent approach because they treat the classi-

fier outputs as a context-free set of features. All class-conscious combiners are idem-

potent by design, that is, if the ensemble consists of L copies of a classifier D, the

ensemble decision will be no different from the decision of D. Decision templates,

however, will not be necessarily identical to D; they might be better or worse.

To illustrate this point, we consider a classifier D for a two-class data set. Denote

the outputs for the two classes as d1 ¼ P(v1jx, D) and d2 ¼ 1� d1 ¼ P(v2jx, D).

Taking L copies of D to form an ensemble, the decision profile for x contains L

rows of ½d1, d2�. It is not difficult to verify that all class-conscious combination

methods will copy the decision of D as their final decision. However, this is not

the case with DTs. Assume that we have obtained the following DTs:

DT1 ¼

0:55 0:45
� � �

0:55 0:45

2
4

3
5 and DT2 ¼

0:2 0:8
� � �

0:2 0:8

2
4

3
5

and the decision of D for x is d1 ¼ 0:4 and d2 ¼ 0:6. All class-conscious methods

except DTs will assign x to class v2. Using, say DT(E), we have the two Euclidean

distances

E1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L� ½(0:55� 0:40)2 þ (0:45� 0:60)2�

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:045 L
p

(5:37)

E2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L� ½(0:2� 0:40)2 þ (0:8� 0:60)2�

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:080 L
p

(5:38)

Since E1 , E2, x will be classed in v1. Is this good or bad? The fact that a different

classification is possible shows that DTs are not an idempotent combiner. Hence it is

possible that the true label of xwas v1, in which case DTs are correct where all other

combiners, including D itself, are wrong. The question is in what experimental

scenario should we expect DTs to be more accurate than other methods?
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We ran a linear classifier on the Cleveland data set from the UCI Machine Learn-

ing Repository, using a randomly selected half of the data for training and the

remaining half for testing. Every point x [ R
n can be characterized by its output

values (d1, d2), which can be plotted as a point on the diagonal line joining points

(0, 1) and (1, 0) of the unit square with axes m1 and m2.

In this illustration we abandon D and consider a distorted copy of it, denoted ~DD,
whereby the output for v1, v2 is ((d1)

3, d2) ¼ ((d1)
3, 1� d1). Let us construct an

ensemble by taking L copies of ~DD. Since the support for the two classes does not

sum to one, the soft labels of the data assigned by ~DD are off the diagonal line, form-

ing an arc as shown in Figure 5.11. The data points whose labels fall in the shaded

area will be labeled by ~DD in v2 because for these points d2 . (d1)
3. An ensemble

consisting of L copies of ~DD will also label the points according to the bisecting

line for any class-conscious combiner.

Next we apply DT(E). The two decision templates will consist of L identical

rows, therefore they also can be depicted by points in the unit square (the two crosses

in Figure 5.11). Since the support for the classes is now calculated by the distance to

Fig. 5.11 Illustration of the decision templates operating on an ensemble of identical distorted

linear classifiers ~DD using the Cleveland data set. A typical run is presented. The shaded area

is the decision region for classes v2 using ~DD and any class-conscious combination method.

The points in the training set are depicted using their labels from ~DD (the arc). The two decision

templates are shown with crosses and the respective new classification boundary is shown by

the thick dashed line. Previously mislabeled points that are correctly labeled by the DT(E) are

encircled.
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the template, a new decision boundary is found, shown by the thick dashed line. In

the example shown, four points from the original training set, previously mislabeled

as v2 are now correctly labeled as v1 (encircled in the figure).

This experiment was run 10,000 times with different random splits into training

and testing. The training accuracy of ~DD was found to be 85.05 percent (with a 95

percent confidence interval (CI) [85.00 percent, 85.09 percent] calculated using

Eq. (1.10)), the same as the training accuracy of any ensemble of L identical classi-

fiers combined by any class-conscious combiner. The training accuracy of DT(E)

was 86.30 percent

(95 percent CI [86.30 percent, 86.34 percent]), which is a statistically significant

improvement over ~DD and the class-conscious combiners. The testing accuracies

were, respectively:

~DD and class-conscious combiners: 80.99 percent (CI ¼ [80.94, 81.04])

DT(E): 82.96 percent (CI ¼ [82.92, 83.01])

A statistically significant difference is observed in favor of DT(E).

This illustration was given to demonstrate that DTs are a richer combiner than the

class-conscious combiners and can work even for ensembles consisting of identical

classifiers. The appeal of the decision template combiner is in its simplicity. DT(E)

is the equivalent to the nearest mean classifier in the intermediate feature space.

Thus the DT combiner is the simplest choice from the class of class-indifferent com-

biners. Several studies have looked into possible applications of DTs [115,183–

185].

5.3.2 Dempster–Shafer Combination

Two combination methods, which take their inspiration from the evidence combi-

nation of Dempster–Shafer (DS) theory, are proposed in Refs. [186,187]. The

method proposed in Ref. [187] is commonly known as the Dempster–Shafer com-

biner. Here we will explain the algorithm and omit the details of how it originated

from D–S theory.

As with the decision templates method, the c decision templates, DT1, . . . ,DTc
are found from the data. Instead of calculating the similarity between the decision

template DTi and the decision profile DP(x), the following steps are carried out:

1. Let DTi
j denote the ith row of decision template DTj. Denote by Di(x) the (soft

label) output of Di, that is, Di(x) ¼ ½di,1(x), . . . , di,c(x)�
T : the ith row of the

decision profile DP(x). We calculate the “proximity” F between DTi
j and

the output of classifier Di for the input x.

Fj,i(x) ¼
(1þ jjDTi

j � Di(x)jj
2)�1Pc

k¼1 (1þ jjDT
i
k � Di(x)jj

2)�1
(5:39)
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where k � k is any matrix norm. For example, we can use the Euclidean dis-

tance between the two vectors. Thus for each decision template we have L

proximities.

2. Using Eq. (5.39), we calculate for every class, j ¼ 1, . . . , c; and for every

classifier, i ¼ 1, . . . ,L, the following belief degrees

bj(Di(x)) ¼
Fj,i(x)

Q
k=j (1�Fk,i(x))

1�Fj,i(x)½1�
Q

k=j (1�Fk,i(x))�
(5:40)

3. The final degrees of support are

mj(x) ¼ K
YL
i¼1

bj(Di(x)), j ¼ 1, . . . , c (5:41)

where K is a normalizing constant.

Example: Illustration of the Dempster–Shafer Method. We use the example in

Section 5.3.1. The two decision templates and the decision profile are

DT1 ¼

0:6 0:4
0:8 0:2
0:5 0:5

2
4

3
5 DT2 ¼

0:3 0:7
0:4 0:6
0:1 0:9

2
4

3
5 DP(x) ¼

0:3 0:7
0:6 0:4
0:5 0:5

2
4

3
5

Using the Euclidean distance in Eq. (5.39), we calculate the three proximities for

each decision template:

Class Fj,1(x) Fj,2(x) Fj,3(x)

v1 0.4587 0.5000 0.5690

v2 0.5413 0.5000 0.4310

For c ¼ 2 classes, taking into account the normalization so that F1,i(x)þ
F2,i(x) ¼ 1, the belief formula (5.40) for v1 reduces to

b1(Di(x)) ¼
F1,i(x)(1�F2,i(x))

1�F1,i(x)½1� (1�F2,i(x))�
(5:42)

¼
F1,i(x)

2

1�F1,i(x)(1�F1,i(x))
(5:43)

The value of b2(Di(x)) is obtained correspondingly. The final degree of belief for

class vj is obtained as the product of the values of bj, j ¼ 1, 2. For our example,
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Class bj(D1(x)) bj(D2(x)) bj(D3(x)) mj(x)

v1 0.2799 0.3333 0.4289 0.5558

v2 0.3898 0.3333 0.2462 0.4442

The DS combiner gives a slight preference to class v1.

5.4 WHERE DO THE SIMPLE COMBINERS COME FROM?

We can regard di, j(x) as an estimate of the posterior probability P(vjjx) produced by

classifier Di. Finding an optimal (in Bayesian sense) combination of these estimates

is not straightforward. Here we give a brief account of some of the theories under-

pinning the most common simple combiners.

5.4.1 Conditionally Independent Representations

An interesting derivation of the sum combiner (the same as the mean or average

combiner) is offered in Ref. [11]. We consider L different conditionally independent

feature subsets. Each subset generates a part of the feature vector, x(i), so that

x ¼ ½x(1), . . . , x(L)�T , x [ R
n. For example, suppose that there are n ¼ 10 features

altogether and these are grouped in the following L ¼ 3 conditionally independent

subsets (1,4,8), (2,3,5,6,10), and (7,9). Then

x(1) ¼ ½x1, x4, x8�
T , x(2) ¼ ½x2, x3, x4, x6, x10�

T , x(3) ¼ ½x7, x9�
T

From the assumed independence, the class-conditional pdf for class vj is a product

of the class-conditional pdfs on each feature subset (representation)

p(xjvj) ¼
YL
i¼1

p(x(i)jvj) (5:44)

Deriving the product rule weighted by the prior probabilities as the optimal com-

biner for this case is straightforward [188–190]. The jth output of classifier Di is an

estimate of the probability

P(vjjx
(i), Di) ¼

P(vj)p(x
(i)jvj)

p(x(i))
(5:45)

hence

p(x(i)jvj) ¼
P(vjjx

(i))p(x(i))

P(vj)
(5:46)
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The posterior probability using the whole of x is

P(vjjx) ¼
P(vj)p(xjvj)

p(x)
(5:47)

¼
P(vj)

p(x)

YL
i¼1

p(x(i)jvj) (5:48)

Substituting Eq. (5.46) into Eq. (5.48),

P(vjjx) ¼ P(vj)
(L�1)

YL
i¼1

P(vjjx
(i))�

QL
i¼1 p(x

(i))

p(x)
(5:49)

The fraction at the end does not depend on the class label k, therefore we can ignore

it when calculating the support mj(x) for class vj. Taking the classifier output

di,k(x
(i)) as the estimate of P(vjjx

(i)) and estimating the prior probabilities for the

classes from the data, the support for vj is calculated as the (weighted or probabil-

istic) product combination rule

P(vjjx)/ P(vj)
(L�1)

YL
i¼1

P(vjjx
(i)) (5:50)

¼ P̂P(vj)
(L�1)

YL
i¼1

di,k(x
(i)) ¼ mj(x) (5:51)

Kittler et al. [11] take this formula further to derive the sum combiner. Suppose

that we have only the prior probabilities for the classes, P(vj), and no knowledge of

x. We can make a classification decision assigning always the most probable class,

which we shall call a blind decision. Suppose that classifiers Di, i ¼ 1, . . . ,L, only
slightly improve on the accuracy of the blind decision. In other words, the posterior

probabilities differ only by a small fraction dj,i from the prior probabilities P(vj),

j ¼ 1, . . . , c, where jdj,ij 	 1, that is,

P(vjjx
(i)) ¼ P(vj)(1þ dj,i) (5:52)

Substituting in Eq. (5.50),

P(vjjx)/ P(vj)
YL
i¼1

(1þ dj,i) (5:53)

178 FUSION OF CONTINUOUS-VALUED OUTPUTS



Expanding the product and ignoring all terms of order two and higher with respect to

dj;i; we obtain

P(vjjx)/ P(vj)(1� L)þ
XL
i¼1

P(vjjx
(i)) (5:54)

The example below illustrates the derivation of Eq. (5.54) from Eq. (5.53).

Example: Illustration of the Derivation of the Sum Rule. Consider an ensemble

of L ¼ 3 classifiers. Denote by P the prior probability for class vj and by d1, d2, d3
the small deviations from P for the three classifiers, respectively. Processing the

right-hand side of Eq. (5.53) by expanding the product and ignoring the terms of

order two and higher, we obtain

P(vj)
YL
i¼1

(1þ dj,i) (5:55)

¼ P(1þ d1)(1þ d2)(1þ d3) (5:56)

¼ P(1þ d1 þ d2 þ d3 þ d1d2 þ d1d3 þ d2d3 þ d1d2d3) (5:57)

� P½(1þ d1)þ (1þ d2)þ (1þ d3)� 2� (5:58)

¼ P(1þ d1)þ P(1þ d2)þ P(1þ d3)� 2P (5:59)

/
1

L
P(vjjx

(1))þ P(vjjx
(2))þ P(vjjx

(3))
� �

þ
(1� L)

L
P(vj) (5:60)

�
1

L

XL
i¼1

di,k(x
(i))þ

(1� L)

L
P(vj) (5:61)

which gives the average rule with a correction for the prior probability.

For equal prior probabilities Eqs. (5.51) and (5.54) reduce respectively to the

most widely used variants of product (5.15) and mean (5.13). Kittler et al. investi-

gate the error sensitivity of the product and sum combiners [11]. Their results

show that the sum combiner is much more resilient to estimation errors of the pos-

terior probabilities P(vjjx
(i)) than the product combiner. The product combiner is

oversensitive to estimates close to zero. Presence of such estimates has the effect

of veto on that particular class regardless of how large some of the estimates of

other classifiers might be.

The authors find the good behavior of the average combiner surprising as this

combiner has been derived under the strongest assumptions. Other studies derive

the average combiner from different perspectives, which may explain its accuracy

and robustness.

5.4.2 A Bayesian Perspective

Suppose there is one right classifier for the problem at hand, and by building an

ensemble we are trying to approximate that classifier. This is called the veridical
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assumption [169]. We sample from the set of possible models (called hypotheses in

the machine learning literature) and estimate the predictions of these models. Let

P̂P(vijx, D, Z) be the estimate of the posterior probability of class vi given x, classi-

fier D, and the labeled training set Z. Denote by P(DjZ) the probability that D is the

right classifier for this problem, after having seen the data Z. Given x [ R
n, we can

take the predicted probability to be the expected probability P̂P(vijx, D, Z) across all

models D

P̂P(vijx, Z) ¼
X
D

P̂P(vijx, D, Z)P(DjZ) (5:62)

If we take the expectation to be the average of the estimates given by the classi-

fiers in the team (P(DjZ) ¼ 1=L), we arrive at the average combiner (the same as the

mean and the sum combiner) (5.13).

We may argue that the probability of Di being the right classifier for the problem,

given the data set Z, is measured by the estimated accuracy of Di on Z. Suppose that

the set of possible classifiers is our ensembleD and we have an estimate of the prob-

ability that Di is the correct classifier for the problem in terms of its performance on

Z. The probability P(DijZ) will be the estimated accuracy of Di normalized by

dividing by the sum of all the L accuracies so that P(DijZ), i ¼ 1, . . . ,L, form a prob-

ability mass function of the population of classifiers D1, . . . ,DL.

Using the estimated accuracies as weights gives rise to the following version of

the weighted average combiner:

mj(x) ¼ P̂P(vjjx, Z)/
XL
i¼1

½P̂P(DijZ)� di, j(x) (5:63)

A more precise but also more difficult to implement scenario is to assume that the

probability for Di being the right classifier depends on x [170]. Then P̂P(DijZ)

becomes P̂P(Dijx, Z). Assigning data-specific weights underlies the mixture-of-

experts (ME) model [169,191].

Another way to devise the coefficients in the weighted average is to follow the

Bayesian approach a step further expanding P(DijZ) as

P(DijZ) ¼
P(Di)P(ZjDi)

P(Z)
(5:64)

where P(Di) expresses our belief that Di is the right classifier for the problem, prior

to seeing the data. The probability P(ZjDi) can be interpreted as the likelihood of Z

given that Di is the right classifier for the problem. Since Z consists of independent

identically distributed elements (iid) zj with labels l(zk), the likelihood of Z can be

expressed as the product of the individual likelihoods

P(ZjDi) ¼
YN
k¼1

P(zk, l(zk)jDi) (5:65)
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The pair (zk, l(zk)) depends on Di only through the class label l(zk), which implies

P(zkjDi) ¼ P(zk). Therefore

P(zk, l(zk)jDi) ¼ P(l(zk)jzk, Di)P(zkjDi) (5:66)

¼ P(l(zk)jzk, Di)P(zk) (5:67)

and

P(ZjDi) ¼
YN
k¼1

P(l(zk)jzk, Di)P(zk) ¼
YN
k¼1

P(l(zk)jzk, Di)
YN
k¼1

P(zk) (5:68)

Suppose that Di has the same chance Ei to assign the wrong class label to any

x [ R
n. (Domingos calls this the uniform class noise model [192].) Then

P(l(zk)jzk, Di) ¼
1� Ei, if Di guesses correctly the label of zk,

Ei, otherwise.

�
(5:69)

Then, substituting in Eq. (5.64),

P(DijZ) ¼ P(Di)E
NE

i (1� Ei)
(N�NE)

QN
j¼1 P(zj)

P(Z)
(5:70)

/ P(Di)E
NE

i (1� Ei)
(N�NE) (5:71)

where NE is the number of points in Z misclassified by Di. Assuming equal prior

probabilities (P(Di) ¼ 1=L, i ¼ 1, . . . ,L) and raising Eq. (5.71) to the power of

1=N, we obtain

P(DijZ)/
1

L
E
NE=N
i (1� Ei)

1�NE=Nð Þ (5:72)

¼
1

L
EEi

i (1� Ei)
(1�Ei) (5:73)

Here we assumed that Ei is approximated by NE=N. Ignoring the constant 1=L,
which does not depend on the class label, and substituting in Eq. (5.63) leads to a

new weighted average combiner

mj(x) ¼ P̂P(vjjx, Z)/
XL
i¼1

EEi

i (1� Ei)
(1�Ei)di, j(x) (5:74)

Finally, we may decide to use the maximum likelihood method, and instead of

averaging across Di, pick the classifier with the lowest error rate Ei. Thus we dismiss
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the ensemble and take the single best classifier. By doing so we risk to pick the clas-

sifier that only appears to be the best. The accuracy of this choice will depend on the

accuracy of the estimates of Ei.

The above considerations show that there is no single theory underpinning clas-

sifier combination but a variety of explanations arising from different assumptions

being made and different criteria being optimized. A summary of the simple and

weighted combiners is given in Table 5.2.

Example: An Experiment with Weighted Averages on the Rotated Check-

Board Data. The example in Section 5.2.1 is used again with the same experimen-

tal protocol. Previously we varied a in the generalized mean formula, achieving at

best between 22 and 23 percent error. One hundred ensembles were generated again.

The formulas from Table 5.2 were applied to each ensemble and the single best clas-

sifier was identified as the one with the lowest training error Ei. The results are

shown in Figure 5.12.

The only prominent difference is between the single best classifier and the ensem-

ble. The errors of the weighted averages are very similar, all in the range 22 to 23

percent. The simple (nonweighted) average was among the best competitors. We

tried also the weighted average based on constrained regression (5.28) whose results

on the previous example with the banana data were dramatically better than the

simple average. For this problem though the differences were insignificant. This

result reinforces the message that conclusions from a single experiment should

not be taken as generally valid guidelines and recommendations for the choice of

a combiner.

We can consider in the same framework the weighted average combiner with

c� L weights (5.22), that is, where each class has a specific set of L weights.

TABLE 5.2 A Summary of Simple and Weighted Average Combiners with L Weights.

Name Weights wi Comment

mj (xxxxx) ¼
XL
i¼1

widi;j (xxxxx)

Simple average

(mean, sum rule)

1 The weights could be 1/L. The
constant does not affect the

ordering of mj (x).

Weighted average 1 1 2 Ei Bayesian model: assume that P(Di jZ)

is the accuracy if Di.

Weighted average 2 Ei
Ei(1 2 Ei)

(12Ei ) Bayesian model: uniform class noise

model.

Weighted average 3 1/Ei Derived from minimizing the

ensemble error (Fumera and Roli

[165], discussed in Chapter 9).
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5.4.3 The Supra Bayesian Approach

Jacobs [169] reviews methods for combining experts’ probability assessments.

Supra Bayesian methods consider the experts’ estimates as “data” as many of the

combiners do. The problem of estimating mj(x) becomes a problem of Bayesian

learning in the intermediate feature space where the decision profile DP(x) provides

the L� c features. Loosely speaking, in the supra Bayesian approach for our task,

we estimate the probabilities mj(x) ¼ P(vjjx), j ¼ 1, . . . , c, using the L distributions

provided by the ensemble members. Since these distributions are organized in a

decision profile DP(x), we have

mj(x) ¼ P(vjjx)/ pðDP(x)jvjÞP(vj), j ¼ 1, . . . , c (5:75)

where pðDP(x)jvjÞ is the joint class-conditional likelihood of the L classifier outputs,

given x and vj (joint pdf). We assume that the only prior knowledge that we have is

(some estimates of) the c prior probabilities P(vj).

Fig. 5.12 Results from simple and weighted average combinations averaged across 100

ensembles (of 10 Parzen classifiers each) on the rotated check-board data. The error bars

mark the 95 percent CI for each result. The result for the single best classifier is also shown.
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When the classifier outputs are class labels, the supra Bayesian approach is equi-

valent to the multinomial combination method, called also BKS (Chapter 4). For

continuous-valued outputs, this approach, albeit theoretically well motivated, is

impractical [169]. The reason is that the pdf pðDP(x)jvjÞ is difficult to estimate.

In principle, the supra Bayesian approach means that we use the intermediate feature

space to build a classifier that is as close as possible to the Bayes classifier thereby

guaranteeing the minimum possible classification error rate. Viewed in this light, all

combiners that treat the classifier outputs in DP(x) as new features are approxi-

mations within the supra Bayesian framework.

5.4.4 Kullback–Leibler Divergence

Miller and Yan [158] offer a theoretical framework for the average and product com-

biners based on the Kullback–Leibler (K-L) divergence. Kullback–Leibler diver-

gence measures the distance between two probability distributions, p (prior

distribution) and q (posterior distribution). It is also called “relative entropy” or

“cross-entropy,” denoted by KL( p k q). It can be interpreted as the amount of

information necessary to change the prior probability distribution p into posterior

probability distribution q. For a discrete x,

KL( p k q) ¼
X
x

q(x) log2
q(x)

p(x)

� �
(5:76)

It is assumed that for any x, if p(x) ¼ 0 then q(x) ¼ 0, and also 0� log(0=p) ¼ 0

[193].

We regard each row of DP(x) as a prior probability distribution on the set of class

labels V and use di, j(x) to denote the estimate of the probability P(vjjx, Di). Denote

by P(i) the probability distribution on V provided by classifier Di, that is, P(i) ¼

(di,1(x), . . . , di,c(x)) . For example, let DP(x) be

DP(x) ¼

0:3 0:7
0:6 0:4
0:5 0:5

2
4

3
5

Then P(1) ¼ (0:3, 0:7) is the pmf on V ¼ {v1, v2} due to classifier D1.

Given the L sets of probability estimates, our first hypothesis is that the true

values of P(vijx) (posterior probabilities) are the ones most agreed upon by the

ensemble D ¼ {D1, . . . ,DL}. Denote by Pens ¼ (m1(x), . . . ,mc(x)) the probability

mass function (pmf) over V with the guessed probabilities mj(x) ¼ P(vjjx, D).

Then the averaged K-L divergence across the L ensemble members is

KLav ¼
1

L

XL
i¼1

KL(Pens k P(i)) (5:77)
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We seek Pens that minimizes Eq. (5.77). To simplify notation we shall drop the (x)

from mj(x) and di, j(x) keeping in mind that we are operating on a specific point x in

the feature space Rn. Take @KLav=@mj, include the term with the Lagrange multiplier

to ensure that Pens is a pmf, and set to zero

@

@mj

KLav þ l 1�
Xc
k¼1

mk

 !" #
¼

1

L

XL
i¼1

@

@mj

Xc
k¼1

mk log2
mk

di,k

� �" #
� l (5:78)

¼
1

L

XL
i¼1

log2
mj

di, j

� �
þ C

� �
� l ¼ 0 (5:79)

where C ¼ 1= ln(2): Solving for mj, we obtain

mj ¼ 2(l�C)
YL
i¼1

(di, j)
1=L (5:80)

Substituting Eq. (5.80) in
Pc

k¼1 mj ¼ 1 and solving for l gives

l ¼ C � log2

Xc
k¼1

YL
i¼1

(di, k)
1=L

 !
(5:81)

which back in Eq. (5.80) yields the final expression for the ensemble probability for

class vj given the input x as the normalized geometric mean

mj ¼

QL
i¼1 (di, j)

1=LPc
k¼1

QL
i¼1 (di, k)

1=L
(5:82)

Notice that the denominator of mj does not depend on j. Also, the power 1=L in

the numerator is only a monotone transformation of the product and will not change

the ordering of the discriminant functions obtained through product. Therefore, the

ensemble degree of support for class vj, mj(x) reduces to the product combination

rule

mj ¼
YL
i¼1

di, j (5:83)

If we swap the places of the prior and posterior probabilities in Eq. (5.77) and

again look for a minimum with respect to mj, we obtain

@

@mj

KLav þ l 1�
Xc
k¼1

mk

 !" #
¼

1

L

XL
i¼1

@

@mj

Xc
k¼1

di,k log2
di,k

mk

� �" #
� l (5:84)

¼ �
1

CLmj

XL
i¼1

di, j � l ¼ 0 (5:85)
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where C is again 1= ln (2). Solving for mj, we obtain

mj ¼ �
1

lCL

XL
i¼1

di, j (5:86)

Substituting Eq. (5.86) in
Pc

k¼1 mk ¼ 1 and solving for l gives

l ¼ �
1

CL

Xc
k¼1

XL
i¼1

di,k ¼ �
L

CL
¼ �

1

C
(5:87)

The final expression for the ensemble probability for class vj given the input x as the

normalized arithmetic mean

mj ¼
1

L

XL
i¼1

di, j (5:88)

which is the mean combination rule (the same as average or sum combiner).

The sum combiner was derived in the same way as the product combiner under a

slightly different initial assumption. We assumed that Pens is some unknown prior

pmf that needs to be transformed into the L posterior pmfs suggested by the L ensem-

ble members. Thus, to derive the average rule, we minimized the average infor-

mation necessary to transform Pens to the individual pmfs.

Miller and Yan go further and propose weights that depend on the “critic” for

each classifier and each x [158]. The critic estimates the probability that the classifier

is correct in labeling x. Miller and Yan derive the product rule with the critic prob-

ability as the power of di, j and the sum rule with the critic probabilities as weights.

Their analysis and experimental results demonstrate the advantages of the weighted

rules. The authors admit though that there is no reason why one of the set-ups should

be preferred to the other.

5.4.5 Consensus Theory

Berenstein et al. [194] bring to the attention of the Artificial Intelligence community

the so-called consensus theory, which has enjoyed a considerable interest in social

and management sciences but remained not well known elsewhere. The theory looks

into combining expert opinions and in particular combining L probability distri-

butions on V (the decision profile DP(x) in our case) into a single distribution

((m1(x), . . . ,mc(x)) in our case). A consensus rule defines the way this combination

is carried out. Consensus rules are derived so as to satisfy a set of desirable theor-

etical properties [188,195,196].

Based on an experimental study, Ng and Abramson [196] advocate using simple

consensus rules such as the weighted average, called the linear opinion pool (5.21),
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and the weighted product

mj(x) ¼
YL
i¼1

(di, j(x))
wi (5:89)

called the logarithmic opinion pool. The approach taken to the weights assignment

in consensus theory is based on the decision maker’s knowledge of the importance

of the experts (classifiers). In some weight assignment schemes the experts are

assumed capable of assessing their own importance and also the importance of

the other experts [194].

5.5 COMMENTS

1. The weighted average class of rules have been most widely used due to their

simplicity and consistently good performance.

2. For some problems the simple average appears to be a surprisingly good rival

to the weighted average combiners [157,159,160,196]. It is stable, although

not always the most accurate combiner. An error-optimal weighted average

with Lweights has been found to be only marginally better than single average

[165] (discussed in more detail in Chapter 9).

3. There has been a debate in the literature concerning weighted averages. The

questions are whether

. the weights should be positive;

. the weights should be constrained to sum to one;

. there should be an intercept term.

The consensus at present is that neither of these options will make a significant

difference to the final outcome [155,169]. Ting and Witten [155] advocate a

model without an intercept and with nonnegative weights due to their

interpretation potential.

4. The class-indifferent and class-conscious weighted average combiners, Eqs.

(5.22) and (5.23), have been found to be approximately equivalent

[155,171], therefore the simpler model with c� L weights is preferred

(class-conscious).

5. Decision templates are perhaps the simplest class-indifferent combiner.

“Decision templates” is a different name for the nearest mean classifier in

the intermediate feature space. Using the whole DP(x) gives a richer platform

for building the combiner than using the L supports for each class separately.

However, the issue of training of the combiner comes center stage. Stacked

generalization is one possible solution where the combiner is trained on

unseen data constructed by a cross-validation procedure. In modern appli-

cations the problem sometimes is the excessive amount of data rather than

COMMENTS 187



the shortage of data. In such cases the system designer can afford to train the

combiner on a separate validation set.

6. Based exclusively on empirical evidence, fuzzy integral has been advocated in

several studies as a very successful combiner.

7. As always, there is no unique best combiner for all problems.

APPENDIX 5A CALCULATION OF l FOR THE FUZZY INTEGRAL
COMBINER

In the code below we assume that g is a vector (could be a row or a column vector)

with the individual strengths of the L classifiers. First we transform Eq. (5.33) into

p(l) ¼ 0 where

p(l) ;
YL
i¼1

gi
YL
i¼1

l� �
1

gi

� �� �
� l� 1

To find the coefficients we use the Matlab function poly to convert the roots

�(1=gi) into a polynomial. The coefficients are multiplied by the product of the gi

terms. The last two coefficients are identified and decremented by 1 in order to

take into account the terms “�l” and “�1”. The function roots finds all the

roots of p(l) ¼ 0. The next line in the code identifies the index of l and the value

of l is stored in lambda.

function lambda=lambda_fi(g)
gb=prod(g)*poly(-1./g); % find the coefficients of p(lambda)
gb(end-1:end)=gb(end-1:end)-1; % correct the last two
gc=roots(gb); % find the roots of p(lambda)=0
ii=(imag(gc)==0)&(gc>=-1)...

&(abs(gc)>0.001); % identify lambda’s index
lambda=(gc(ii)); % find lambda
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6
Classifier Selection

6.1 PRELIMINARIES

The presumption in classifier selection is that there is an “oracle” that can identify

the best expert for a particular input x. This expert’s decision is accepted as the

decision of the ensemble for x.

The idea of using different classifiers for different inputs was suggested by Dasar-

athy and Sheela back in 1978 [118]. They combine a linear classifier and a k-nearest

neighbor (k-nn) classifier. The composite classifier identifies a conflict domain in the

feature space and uses k-nn in that domain while the linear classifier is used else-

where. In 1981 Rastrigin and Erenstein [119] gave a methodology for classifier

selection almost in the form it is used now.

We may assume that the classifier “realizes” its competence for labeling x. For

example, if 10-nn is used and 9 of the 10 neighbors suggest the same class label,

then the confidence in the decision is high. If the classifier outputs are reasonably

well-calibrated estimates of the posterior probabilities, that is, di, j ¼ P̂P(vjjx, Di),

then the confidence of classifier Di [ D for object x can be measured as

C(Dijx) ¼ max
c

j¼1
P̂P(vjjx, Di) (6:1)

where c is the number of classes.

Consider a cascade structure of classifiers. When the first classifier’s confidence

is high (above some predefined threshold) we take the class suggested by Di as the
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label for x. If C(Dijx) is low, x is passed on to another classifier in the

cascade which processes it in the same fashion. Finally, if the last classifier in the

system is also uncertain, the system might refrain from making a decision or may

select the most likely class anyway. Such cascade models are extremely useful

for real-time systems where the majority of the inputs will only need to be processed

by a few classifiers [111,197–201].

The recent interest in classifier selection was triggered by a publication by

Woods et al. [120]. They introduced the term dynamic classifier selection to denote

the process of choosing a member of the ensemble to make the decision based on the

input x.

To construct a classifier selection ensemble, the following questions need to be

answered:

. How do we build the individual classifiers?

. How do we evaluate the competence of the classifiers for a given x? If several

classifiers tie as the most competent candidates, how do we break the tie?

. Once the competences are found, what selection strategy shall we use? The

standard strategy is to select one most competent classifier and take its

decision. However, if there are several classifiers of equally high competence,

do we take one decision or shall we fuse the decisions of the most competent

classifiers? When is it beneficial to select one classifier to label x and when

should we be looking for a fused decision?

6.2 WHY CLASSIFIER SELECTION WORKS

We consider an ensemble D ¼ {D1, . . . , DL} of classifiers which have been already

trained. Let Rn be divided into K selection regions (called also regions of compe-

tence), K . 1. Denote the regions by R1, . . . , RK . These regions are not associated

with specific classes, nor do they need to be of a certain shape or size.

Example: Selection Regions. An example of partitioning into regions is shown in

Figure 6.1. Depicted is a banana data set with 2000 data points. There are two classes

and therefore two classification regions. Suppose that we have three classifiers: D1,

which always predicts v1; D2, which always predicts v2; and a linear classifier D3,

whose discriminant function is shown as the thick dashed line in Figure 6.1. The

individual accuracy of each of the three classifiers is approximately 0.5. A majority

vote between them is also useless as it will always match the decision of D3 and lead

to 50 percent error as well. However, if we use the three selection regions and nomi-

nate one classifier for each region, the error of the ensemble will be negligible.

This example only shows the potential of the classifier selection approach. In

practice we will hardly be so fortunate to find regions that will have such a dramatic

effect on the ensemble performance. The main problem in classifier selection is

exactly the training of the ensemble: finding the regions of competence, estimating
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the competence, and choosing a selection mode (e.g., whether to nominate one

single classifier or the best three, or weight the decisions by the competences, and

so on).

Let D� be the classifier with the highest average accuracy among the elements of

D over the whole feature space R
n. Denote by P(DijRj) the probability of correct

classification by Di in region Rj. Let Di( j) [ D be the classifier responsible for

region Rj, j ¼ 1, . . . , K. The overall probability of correct classification of our clas-

sifier selection system is

P(correct) ¼
XK
j¼1

P(Rj)P(Di( j)jRj) (6:2)

where P(Rj) is the probability that an input x drawn from the distribution of the

problem falls in Rj. To maximize P(correct), we assign Di( j) so that

P(Di( j)jRj) � P(DtjRj), 8 t ¼ 1, . . . , L (6:3)

Ties are broken randomly. From Eqs. (6.2) and (6.3),

P(correct) �
XK
j¼1

P(Rj)P(D
�jRj) ¼ P(D�) (6:4)

Fig. 6.1 An example of partitioning the feature space with two classes into three selection

regions.
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The above equation shows that the combined scheme is at least as good as the

best classifier D� in the pool D, regardless of the way the feature space has been

partitioned into selection regions. The only condition (and, of course, the trickiest

one) is to ensure that Di( j) is indeed the best among the L classifiers from D for

region Rj. The extent to which this is satisfied determines the success of the classifier

selection model.

6.3 ESTIMATING LOCAL COMPETENCE DYNAMICALLY

In this approach the classifier chosen to label an input x is selected by estimating the

local accuracy of the competitor classifiers during the operational phase.

6.3.1 Decision-Independent Estimates

In Ref. [202] this approach is called the a priori approach because the competence is

determined based only on the location of x, prior to finding out what labels the clas-

sifiers suggest for x.

6.3.1.1 Direct k-nn Estimate. One way to estimate the competence is to ident-

ify the K nearest neighbors of x from either the training set or a validation set and

find out how accurate the classifiers are on these K objects [119,120]. K is a par-

ameter of the algorithm, which needs to be tuned prior to the operational phase.

6.3.1.2 Distance-Based k-nn Estimate. If the classifiers produce soft out-

puts, these can be used in the estimate. Giacinto and Rol [202] propose to estimate

the competence of classifierDi as the weighted average of the classifier’s predictions

for the correct labels of the K neighbors of x. Denote by Pi(l(zj)jzj) the estimate

given by Di of the probability for the true class label of zj. For example, suppose

that the output of Di for zj in a five-class problem is [0.1, 0.4, 0.1, 0.1, 0.3]. Let

the true class label of zj be l(zj) ¼ v5. Although the decision of Di would be for

class v2, the suggested probability for the correct class label is Pi(l(zj)jzj) ¼ 0:3.
The probabilities are weighted by the distances to the K neighbors. Let Nx denote

the set of the K nearest neighbors of x. The competence of classifier Di for x is

C(Dijx) ¼

P
zj[Nx

Pi(l(zj)jzj)(1=d(x, zj)P
zj[Nx

(1=d(x, zj)
, (6:5)

where d(x, zj) is the distance between x and its nearest neighbor zj [ Nx according

to an appropriate distance measure chosen in advance.

6.3.1.3 Potential Functions Estimate. Rastrigin and Erenstein [119] also

consider a distance-based competence coming from the so-called potential functions

model. We regard the feature space as a field and assume that each point in the data
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set contributes to the “potential” in x. The potential for classifier Di at x corresponds

to its competence. The higher the potential, the higher the competence. The individ-

ual contribution of zj [ Z to C(Dijx) is

f(x, zj) ¼
gij

1þ aij(d(x, zj))
2

(6:6)

where

gij ¼
1, if Di recognizes correctly zj [ Nx,

�1, otherwise,

�
(6:7)

and aij is a parameter that weights the contribution of zj. In the simplest case, aij ¼

a for all i ¼ 1, . . . , L, and j ¼ 1, . . . ,N.24 The competence is calculated as

C(Dijx) ¼
X
zj[Z

f(x, zj) (6:8)

The direct k-nn estimate is a variant of the potential function approach with the

following distance function

d(x, zj) ¼
1 (or any positive constant), if zj [ Nx,

0, otherwise.

�
(6:9)

It is not clear whether the distance-based versions are better than the direct k-nn

estimate of the competence. One advantage though is that ties are less likely to occur

for the distance-based estimates.

6.3.2 Decision-Dependent Estimates

This approach is termed a posteriori in Ref. [202]. The class predictions for x by all
the classifiers are known.

6.3.2.1 Direct k-nn Estimate. Let si [ V be the class label assigned to x by

classifier Di. Denote by N(si)
x the set of K nearest neighbors of x from Z, which clas-

sifier Di labeled as si. The competence of classifier Di for the given x, C(Dijx), is

calculated as the proportion of elements of N(si)
x whose true class label was si.

This estimate is called in Ref. [120] the local class accuracy.

6.3.2.2 Distance-Based k-nn Estimate. Denote by Pi(sijzj) the estimate

given by Di of the probability that the true class label of zj is si. The competence

of Di can be measured by Pi(sijzj) averaged across the data points in the vicinity

of x whose true label was si. Using the distances to x as weights, we calculate the

24Recall that yij was defined as the oracle output of classifier Di for data point zj (4.1). yij is 1 if Di assigns

the correct label and 0 otherwise. Note that gij ¼ 2� yij � 1.
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competence of Di as

C(Dijx) ¼

P
zj
Pi(sijzj)1=d(x, zj)P

zj
1=d(x, zj)

(6:10)

where the summation is on zj [ Nx such that l(zj) ¼ si. A different number of

neighbors K can be considered for Nx and N(si)
x . Woods et al. [120] found the direct

decision-dependent k-nn estimate of competence superior to that provided by the

decision-independent estimate. They recommendK ¼ 10 for determining the set N(si)
x .

Example: Estimation of Local Competence of Classifiers. The table below gives

the true class labels and the guessed class labels using classifier Di for a hypothetical

set of 15 nearest neighbors of x, Nx. (To save space, only the indices of the objects

and the classes are given.)

Object (z j) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

True label (l(zj)) 2 1 2 2 3 1 2 1 3 3 2 1 2 2 1

Guessed label (si) 2 3 2 2 1 1 2 2 3 3 1 2 2 2 1

The decision-independent direct k-nn estimate of competence of Di is the accu-

racy of Di calculated on Nx, that is, C(Dijx) ¼
2
3
. Suppose that the output suggested

by Di for x is v2. The decision-dependent direct k-nn estimate of competence of Di

for K ¼ 5 is the accuracy of Di calculated on N
v2
x where only the five nearest neigh-

bors labeled in v2 are considered. Then Nv2
x consists of objects {1, 3, 4, 7, 8}. As

four of the elements of Nv2
x have true labels v2, the local competence of Di is

C(Dijx) ¼
4
5
.

To illustrate the calculation of the distance-based estimates, we will assume the

following:

. The indices of zj in the first row in the table are the actual values of zj [ R and

x [ R is located at 0.

. Euclidean distance is used, for example, d(x, z3) ¼ 3.

. Di provides only the label outputs. We associate probabilities Pi(sijzj) ¼ 1 (the

probability for the chosen output) and Pi(sjzj) ¼ 0 for any other s [ V, s = si.

Thus, if the suggested class label is v2, then the “soft” vector with the

suggested probabilities will be [0, 1, 0].

The decision-independent distance-based k-nn estimate of the competence of Di

(using the whole of Nx) will be

C(Dijx) ¼
1þ 1

3
þ 1

4
þ 1

6
þ 1

7
þ 1

9
þ 1

10
þ 1

13
þ 1

14
þ 1

15

1þ 1
2
þ 1

3
þ � � � þ 1

15

� 0:70

The potential function estimate is calculated in a similar way.
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Let again the output suggested by Di for x be v2. For the decision-dependent

estimate, using the whole of Nx and taking only the elements whose true label

was v2,

C(Dijx) ¼
1þ 1

3
þ 1

4
þ 1

7
þ 1

13
þ 1

14

1þ 1
3
þ 1

4
þ 1

7
þ 1

11
þ 1

13
þ 1

14

� 0:95

6.3.3 Tie-Break for Classifiers with Equal Competences

The tie-break within the dynamic classifier selection model [120] is carried out as

follows:

1. Upon obtaining an input x, label it by D1, . . . , DL. If all classifiers agree on the

label, then assign this label to x and return.

2. If there is a disagreement, then estimate the local accuracy, C(Dijx), for each

Di, i ¼ 1, . . . , L. To do this, take the class label si offered for x by Di and find

the K points closest to x for which Di has issued the same label. Calculate the

proportion of the points whose true labels were si to be an estimate of the local

accuracy of Di with respect to class si (decision-based direct k-nn estimate).

3. If there is a unique winner of the local accuracy contest, let it label x and

return. Otherwise, check if the tied winners have the same labels for x. If
so, accept the label and return. If a unique class label could be selected by

plurality among the tied classifiers, then assign this label to x and return.

4. Otherwise, there is a class label tie between the most locally competent clas-

sifiers. The classifier with the next highest local competence is identified to

break the tie. If all classifiers are tied (there is no classifier left to break the

tie), then pick a random class label among the tied labels and return. If

there is a unique winner of the (second) local competence contest, and it

can resolve the tie, then use the winning label for x and return.

5. If none of the clauses in the previous point applies, break the class label tie

randomly and return a label for x.

The last item in the list did not exist in the original tie-break procedure; we added

it to break the recursion. Further analysis of the ties would have produced an over-

complicated code because there could be another tie on the second highest compe-

tence, where the tied classifiers disagree on the class label, and so on. Table 6.1

shows examples of cases of tie-breaks and the respective output labels.

The last case seems counterintuitive. There are many relatively competent clas-

sifiers which suggest label 2, yet we have chosen randomly between labels 1 and 2

proposed by the two most competent classifiers. The random choice was made

because there was no single second-most-competent classifier. We could have

gone further and take the majority vote between the four second-most-competent

classifiers thereby supporting the vote for class 2. However, if there is a tie again,

the analysis would become unnecessarily complicated and time-consuming. This

is why item 5 above was introduced.
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6.4 PREESTIMATION OF THE COMPETENCE REGIONS

Estimating the competence dynamically might be too computationally demanding.

First, the K nearest neighbors of x have to be found. For the decision-dependent esti-

mates of competence, L � K neighbors might be needed. Secondly, the estimates of

the competence have to be calculated. To decrease the computational complexity,

competences can be precalculated across regions of competence. When x is sub-

mitted for classification, the region of competence in which x falls is identified

and x is labeled by the classifier responsible for that region. The problem becomes

one of identifying the regions of competence and the corresponding classifiers.

The regions of competence can be chosen arbitrary as long as we have reliable

estimates of the competences within these regions. Denote by K the number of

regions of competence. The number of classifiers L is not necessarily equal to the

number of regions K. Next we decide which classifier from D ¼ {D1, . . . ,DL}

should be picked for each region Rj, j ¼ 1, . . . ,K. Some classifiers might never

be nominated and therefore they are not needed in the operation of the combination

scheme. Even the classifier with the highest accuracy over the whole feature space

might be dropped from the final set of classifiers. On the other hand, one classifier

might be nominated for more than one region.

The feature space can be split into regular regions but in this case some of the

regions might contain only a small amount of data points and lead to spurious esti-

mates of the competences. To ensure that the regions contain a sufficient amount of

points we can use clustering and relate to each cluster a region of competence.

The classifier whose accuracy is estimated to be the highest within a region R

will be assigned to make the decisions for any future x [ R.

TABLE 6.1 Tie-Break Examples for the Dynamic Classifier Selection Model for an

Ensemble of Nine Classifiers.

D1 D2 D3 D4 D5 D6 D7 D8 D9

Class labels 1 2 1 2 3 2 3 1 2

Competences 0.8 0.7 0.7 0.6 0.6 0.6 0.4 0.3 0.2

Final label: 1 (single most competent classifier)

Class labels 1 2 2 2 3 2 3 1 2

Competences 0.7 0.7 0.7 0.6 0.6 0.6 0.4 0.3 0.2

Final label: 2 (majority of the competence-tied classifiers)

Class labels 1 2 2 2 3 2 3 1 2

Competences 0.7 0.7 0.6 0.5 0.5 0.5 0.4 0.3 0.2

Final label: 2 (competence-tie resolved by the second most competent classifier)

Class labels 1 2 1 1 2 2 3 1 2

Competences 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7

Final label: 1 (random selection between competence-tied labels)

Class labels 1 2 2 2 3 2 3 1 2

Competences 0.7 0.7 0.6 0.6 0.6 0.6 0.4 0.3 0.2

Final label: 1 (random selection between competence tied-labels (item 5))
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6.4.1 Clustering

A classifier selection method called clustering and selection is proposed in Refs.

[203, 204]. Figure 6.2 shows the training, and Figure 6.3 the operation of clustering

and selection.

The regions R1, . . . , RK can be estimated prior to training any classifier. A clas-

sifier can be trained on the data for each region Rj to become the expert Di( j). The

operational phase will be the same as shown in Figure 6.3. The performance of

such a strategy will depend more strongly on the way the regions are assigned com-

pared to the strategy whereby the competences are estimated across the regions.

6.4.2 Selective Clustering

Liu and Yuan propose a more selective clustering approach [205]. Instead of a single

partition of the feature space, they consider one partition per classifier. Consider

classifier Di trained on the data set Z.25

25 As usual, a separate validation set for estimating regions and competences is recommended. To keep the

notation simple, we shall use only one data set, Z.

Fig. 6.2 Training of the clustering and selection method.

Fig. 6.3 Operation of the clustering and selection method.

Clustering and selection (training)

1. Design the individual classifiersD1; . . . ;DL using the labeled data set Z.

Pick the number of regions K:

2. Disregarding the class labels, cluster Z into K clusters, C1; . . . ;CK;
using, e.g., the K-means clustering procedure [2]. Find the cluster cen-

troids v1; . . . ; vK as the arithmetic means of the points in the respective

clusters.

3. For each cluster Cj; (defining region Rj), estimate the classification

accuracy of D1; . . . ;DL: Pick the most competent classifier for Rj and

denote it by Dið jÞ:

4. Return v1; . . . ; vK and Dið1Þ; . . . ;DiðKÞ:

Clustering and selection (operation)

1. Given the input x [ R
n, find the nearest cluster center from v1; . . . ; vK;

say, vj:

2. Use Dið jÞ to label x.
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In the training phase, the data is separated into Zþ and Z2, such that Zþ contains

only the objects correctly classified by Di and Z� contains the objects misclassified

by Di(Z
þ < Z� ¼ Z). It is assumed that there are c hyper-elliptical clusters in Zþ,

each cluster corresponding to a class. The means and the covariance matrices of the

clusters are estimated from the respective points that were correctly classified by Di.

In Z�, the number of clusters, Ki, is evaluated during the clustering procedure. The

means and the covariance matrices of the new clusters are estimated from the

respective data points. Thus each classifier in the ensemble suggests a partition of

the feature space into cþ Ki clusters and produces the means and the covariance

matrices of the suggested clusters. To complete the training, we estimate the com-

petence of Di in each of the cþ Ki regions suggested by it.

In the operational phase, the input to be classified, x, is considered separately by

each classifier, for example, Di. The region of competence where x belongs is

identified among the cþ Ki regions for Di using the Mahalanobis distance from x

to the cluster centers. x is placed in the region with the closest center. The compe-

tence of Di for the region of x is retrieved. The competences of all L classifiers for

the given x are calculated in this way and compared. The classifier with the highest

competence gives the label of x.

Liu and Yuan report superior results to these of the simple clustering and

selection. Indeed, if we split the feature space into smaller regions, we have a

more flexible model for labeling x but the estimates of the competences have to

be reliable enough.

6.5 SELECTION OR FUSION?

Selection is guaranteed by design to give at least the same training accuracy as the

best individual classifier D�. However, the model might overtrain, giving a decep-

tively low training error. To guard against overtraining we may use confidence inter-

vals and nominate a classifier only when it is significantly better than the others. A

statistical test is performed for determining whether the best classifier in Rj, Di( j), is

significantly different from the remaining lot. Since we are interested only in a

difference between the best classifier and the rest, we can perform a pairwise test.

It is enough to eliminate the second best classifier. If Di( j) is significantly better

than the second best, then Di( j) can be nominated as the classifier responsible for

region Rj. Otherwise, a scheme involving more than one classifier might pay off.

As an example, assume that five classifiers have been designed on a data set with

100 elements. Define

yi ¼ ½yi,1, . . . , yi,100�
T (6:11)

to be a vector with classification outcome of classifier Di on the data set, such that

yij ¼ 1, if Di recognizes correctly the jth element of the data set, and 0, otherwise.

Table 6.2 shows the distribution of {y1, . . . , y5} for the 100 elements. The total num-

ber of correctly recognized objects is shown in the bottom row for each classifier.

We could be tempted to nominate D1 for region Rj as its classification accuracy is
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76 percent, higher by 5 percent than the second best. However, the paired t-test ana-

lysis suggests that D1 is not significantly different from D4( p ¼ 0.438), not even

from D5 ( p ¼ 0.191). Therefore, it is probably better to consider a fusion scheme

of the decisions of more than one classifier in Rj.

Figure 6.4 shows the 95 percent confidence intervals (CIs) of the classification

accuracies of the five classifiers. The intervals have been calculated through the stan-

dard formula

P̂PD � t(0:05,N�1)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P̂PD(1� P̂PD)

N

s
, P̂PD þ t(0:05,N�1)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P̂PD(1� P̂PD)

N

s2
4

3
5 (6:12)

where N is the sample size, t(0:05,N�1) is the t value for 95 percent significance level

(a ¼ 0:05) and N � 1 degrees of freedom, and P̂PD is the estimate of the classification

accuracy of the respective Di in region Rj. For N � 30 we can use t(0:05,N�1) ¼ 1:96.

TABLE 6.2 Distribution of Correct/Incorrect Classification

Decisions for Five Classifiers for a Data Set with 100 Elements

(Note that Not All Possible Combinations Have Occurred). The

Bottom Row Contains the Total Number of Correctly

Recognized Objects for Each Classifier.

y1 y2 y3 y4 y5 Number

1 1 1 1 1 42

0 0 0 1 1 18

1 1 0 0 0 13

1 0 0 1 0 11

1 0 1 0 0 10

0 0 0 0 1 6

76 55 52 71 66 –

Fig. 6.4 95 percent confidence intervals (CI ) for the five classifiers.
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The above calculations are based on the assumption that P(DijRj) is the same for

all x [ Rj and has therefore a Binomial distribution. We can derive an equation for

calculating the “gap” needed so that the 95 percent CI of the best and the second best

classifiers do not overlap. In this case the best classifier can be nominated as Di( j).

Let D ¼ P1 � P2, D . 0, where P1 is the highest accuracy and P2 is the second

highest in Rj. The critical value for the gap D is derived from the equation

1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P1(1� P1)

N

r
þ 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2(1� P2)

N

r
¼ D (6:13)

Substituting P2 ¼ P1 � D and solving for D, we obtain

D ¼
7:6832 P1 � 3:8416þ 3:92

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NP1(1� P1)
p

N þ 3:8416
(6:14)

Figure 6.5 plots D against P1 for three values of N: 100, 1000, and 10,000. For

larger N the required gap for the best and the second best classifiers to be

significantly different is smaller. In other words, even a 2 percent difference in

the classification accuracy will suffice to nominate Di( j) as the classifier responsible

for region Rj.

6.6 BASE CLASSIFIERS AND MIXTURE OF EXPERTS

Any set of classifiers might be suitable for the classifier selection model. Curiously,

the experimental results with the dynamic classifier selection model reported by

Fig. 6.5 The difference D between the best and the second best classification accuracies in

region Rj guaranteeing that the 95 percent CI of the two do not overlap.
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Woods et al. [120] hardly improved upon the best classifier in the ensemble, which

was often the nearest neighbor classifier. Nonetheless, the proposed dynamic classi-

fier selection method was found by other authors believable and appealing even

without convincing empirical support. Some authors suggest using bagging or boost-

ing to develop the ensemble and use a selection strategy for combining [206,207].

An interesting ensemble method which belongs in the classifier selection group is

the so calledmixture of experts (ME) [191,200,209,210]. As illustrated in Figure 6.6,

in this model the selector makes use of a separate classifier, which determines the

participation of the experts in the final decision for an input x. The ME architecture

has been proposed for neural networks. The experts are neural networks, which are

trained so that each NN is responsible for a part of the feature space. The selector

uses the output of another neural network called the gating network. The input to

the gating network is x and the output is a set of coefficients p1(x), . . . , pL(x). Typi-
cally,

PL
i¼1 pi(x) ¼ 1, and pi(x) is interpreted as the probability that expert Di is the

most competent expert to label the particular input x. The probabilities are used

together with the classifier outputs in one of the following ways:

. Stochastic selection. The classifier to label x is chosen by sampling from

D ¼ {D1, . . . , DL} according to the distribution p1(x), . . . , pL(x).

. Winner-takes-all. The classifier to label x is chosen by the maximum of pi(x).

Fig. 6.6 Mixture of experts.
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. Weights. The probabilities are used as the weighting coefficients to the clas-

sifier outputs. For example, suppose that the classifiers produce soft outputs for

the c classes, di, j(x) [ ½0, 1�, i ¼ 1, . . . , L, j ¼ 1, . . . , c. Then the final (soft)

output for class vj is

mj(x) ¼
XL
i¼1

pi(x)di, j(x) (6:15)

We note that the calculation of the final degree of support is the weighted average

but in the ME model the coefficients depend on the input x. If di, j(x) are interpreted

as probabilities, then pi(x) can be thought of as mixing proportions in estimating

mj(x) by a mixture of distributions.

The most important question is how to train the ME model. Two training pro-

cedures are suggested in the literature. The first procedure is the standard error back-

propagation implementing a gradient descent. According to this procedure, the

training of an ME is no different in principle to training a single neural network

with a complicated structure. The second training approach is based on the expec-

tation maximization method, which appears to be faster than the gradient descent

[209]. The mixture of experts method has been designed mainly for function

approximation rather than classification. Its key importance for multiple classifier

systems is the idea of training the gating network (therefore the selector) together

with the individual classifiers through a standardized training protocol.
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7
Bagging and Boosting

7.1 BAGGING

7.1.1 Origins: Bagging Predictors

Breiman introduced the term bagging as an acronym for Bootstrap AGGregatING

[210]. The idea of bagging is simple and appealing: the ensemble is made of classi-

fiers built on bootstrap replicates of the training set. The classifier outputs are com-

bined by the plurality vote [18].

The diversity necessary to make the ensemble work is created by using different

training sets. Ideally, the training sets should be generated randomly from the distri-

bution of the problem. In practice, we can only afford one labelled training set,

Z ¼ {z1, . . . , zN}, and have to imitate the process or random generation of L train-

ing sets. We sample with replacement from the original training set (bootstrap

sampling [212]) to create a new training set of length N. To make use of the vari-

ations of the training set, the base classifier should be unstable, that is, small changes

in the training set should lead to large changes in the classifier output. Otherwise, the

resultant ensemble will be a collection of almost identical classifiers, therefore unli-

kely to improve on a single classifier’s performance. Examples of unstable classi-

fiers are neural networks and decision trees while k-nearest neighbour is an

example of a stable classifier. Figure 7.1 shows the training and operation of

bagging.

Bagging is a parallel algorithm in both its training and operational phases. The L

ensemble members can be trained on different processors if needed.
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7.1.2 Why Does Bagging Work?

If classifier outputs were independent and classifiers had the same individual accu-

racy p, then the majority vote is guaranteed to improve on the individual perform-

ance [131]. Bagging aims at developing independent classifiers by taking

bootstrap replicates as the training sets. The samples are pseudo-independent

because they are taken from the same Z. However, even if they were drawn indepen-

dently from the distribution of the problem, the classifiers built on these training sets

might not give independent outputs.

Example: Independent Samples, Bootstrap Samples, and Bagging. The data for

this example was the rotated check-board data set shown in Figure 1.10 in Chapter

1. A training set of 100 points and a testing set of 1000 points were generated 100

times. Bagging was run with decision tree as the base classifier. The trees were pre-

pruned using a fixed threshold u ¼ 3. To evaluate the effect of bootstrap sampling

we ran the same experiment but instead of bootstrap samples of the training set,

we generated a new training set of 100 objects for each new member of the

ensemble.

Fig. 7.1 The bagging algorithm.

BAGGING

Training phase

1. Initialize the parameters

� D ¼ ;; the ensemble.

� L, the number of classifiers to train.

2. For k ¼ 1; . . . ; L

� Take a bootstrap sample Sk from Z.

� Build a classifier Dk using Sk as the training set.

� Add the classifier to the current ensemble, D ¼ D< Dk:

3. Return D:

Classification phase

4. Run D1; . . . ;DL on the input x.

5. The class with the maximum number of votes is chosen as the label

for x.
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Since there are only two classes, we represent one of the classes by 0 and the

other by 1, and calculate the correlation between the outputs of classifiers Di and

Dj as

ri, j ¼
N11N00 � N01N10ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(N11 þ N10)(N01 þ N00)(N11 þ N01)(N10 þ N00)
p (7:1)

where Nab is the number of objects in the testing set for which classifier Di

gives output a and classifier Dj gives output b, where a, b [ {0, 1}. To obtain

a single value measuring the correlation for the whole ensemble, the pairwise

correlations were averaged.

Figure 7.2a shows the average correlation between the ensemble members versus

the ensemble size. When bagging is applied, the correlation is higher than when the

training sets for the ensemble members are sampled directly from the distribution

of the problem. The testing error rates versus the ensemble size are shown in

Figure 7.2b.

The plots show that, as expected, the correlation between classifiers built

on true independent samples is lower than that produced by boosting. Note, how-

ever, that the correlation for the true independent samples is not zero, which

demonstrates that the outputs of classifiers built on independent samples might be

dependent.

We can think of the ensembles with lower correlation as more diverse than those

with higher correlation. Figure 7.2b shows the benefit of having more diverse

ensembles. The base classifiers are the same, the pruning method is the same, the

combiner is the same (majority vote) but the error rates are different. The improved

error rate can therefore be attributed to higher diversity in the ensemble that uses

independently generated training sets. We shall see later that the concept of diversity

is not as simple and straightforward as it looks here.

Note that even though ensemble diversity does not increase with the ensemble

size L, bagging keeps driving the error down. The individual accuracy of the ensem-

ble members is not likely to change with L either, because all classifiers solve

approximately the same problem. Therefore, the logical explanation of the success

of bagging is the effect of the majority vote combiner. The bias-variance decompo-

sition of the classification error, explained later, provides a (somewhat controver-

sial) tool for analysis of this effect.

Domingos [192] examines two hypotheses about bagging in the framework of

Bayesian learning theory. The first hypothesis is that bagging manages to estimate

the posterior probabilities for the classes P̂P(vijx) by conforming very well with

the Bayesian model given by Eq. (5.62) as explained in Chapter 5. According to

this model, the estimated posterior probability that the class label for the given x

is vi, given the training set Z, is averaged across all classifiers. Using dj,i(x) to
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denote the estimate of P(vijx) given by classifier Dj, we have

P̂P(vijx,Z) ¼
XL
j¼1

P̂P(vijx, Dj, Z)P̂P(DjjZ) ¼
XL
j¼1

dj,i(x)P̂P(DjjZ) (7:2)

Take dj,i(x) to be the zero–one output indicating a (hard) class label. For

example, in a four-class problem, a classifier output v3 corresponds to dj,3(x) ¼ 1

Fig. 7.2 Bagging for the rotated check-board data using bootstrap samples and independent

samples: (a) averaged pairwise correlation versus the ensemble size; (b) testing error rate

versus the ensemble size.

206 BAGGING AND BOOSTING



and dj,1(x) ¼ dj,2(x) ¼ dj,4(x) ¼ 0. If we set all the model (posterior) probabilities

P(DjZ) to 1=L, we obtain the plurality voting combination, which is the traditional

combiner for bagging. Domingos also looks at soft class labels and chooses P̂P(DjjZ)

so that the combiner is equivalent to simple averaging and weighted averaging. The

hypothesis that bagging develops a better estimate of the posterior probabilities

within this Bayesian context was not supported by Domingos’ experiments [192].

The second hypothesis obtained better empirical support. According to it, bag-

ging shifts the prior distribution of the classifier models towards models that have

higher complexity (as the ensemble itself). Such models are assigned a larger like-

lihood of being the right model for the problem. The ensemble is in fact a single

(complex) classifier picked from the new distribution.

Domingos’ conclusions are matched by an argument in Ref. [213] where the

authors challenge the common intuition that voting methods work because they

smooth out the estimates. They advocate the thesis that voting in fact increases

the complexity of the system.

7.1.3 Variants of Bagging

7.1.3.1 Random Forests. In Ref. [214] Breiman proposes a variant of bagging

which he calls a random forest. Random forest is a general class of ensemble build-

ing methods using a decision tree as the base classifier. To be labeled a “random

forest” an ensemble of decision trees should be built by generating independent

identically distributed random vectors Qk, k ¼ 1, . . . ,L, and use each vector to

grow a decision tree. The formal definition in Ref. [214] is

Definition. A random forest is a classifier consisting of a collection of tree-struc-

tured classifiers, each tree grown with respect to a random vector Qk, where Qk,

k ¼ 1, . . . , L, are independent and identically distributed. Each tree casts a unit

vote for the most popular class at input x.

Thus a random forest could be built by sampling from the feature set, from the

data set, or just varying randomly some of the parameters of the tree.26 Any combi-

nation of these sources of diversity will also lead to a random forest. For example,

we may sample from the feature set and from the data set as well [21]. In this way

the random vector Qk will be a concatenation of two bootstrap samples, one from

the training set of data points and one from the set of features, containing N þ n

elements altogether.

One of the most successful heuristics within the random forest family is the ran-

dom input selection. Along with selecting bootstrap samples from the training data,

random feature selection is carried out at each node of the tree. We choose randomly

a subset S with M features from the original set of n features and seek within S

the best feature to split the node. A feature subset is selected anew for each node.

26A feature-selection random forest is discussed next in Chapter 8.
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Breiman suggests to grow in this way a full CART tree (no pruning). The recom-

mended value of M is blog2 nþ 1c [214], where n is the total number of features.

7.1.3.2 Pasting Small Votes. Massive data sets are more common now than

they were in the early days of pattern recognition in the 1960s and 1970s. Avail-

ability of excessive and continuously growing computing resources allowed huge

amounts of data to be stored, for example, in retail, e-commerce, financial markets,

bio-informatics, industry, communications, and so on. The focus is being shifted

from “how to re-use the available data set so that the conclusions be valid?” towards

“how to handle the data set if it does not fit into the computer’s memory?”

Breiman [215] suggests using the so-called small votes whereby the individual

classifiers are trained on relatively small subsets of the training set called “bites”

[216]. The training sets are sampled from the large data set either randomly, called

Rvotes (similar to bagging), or based on importance, called Ivotes (similar to boosting

which wewill see later in this chapter). Pasting small votes is suitable for on-line learn-

ing as the ensemble can be updated by adding a new classifier each time a sufficient

amount of new incoming training data has been accumulated.

Let Z ¼ {z1, . . . , zN} be the available labeled data set (suppose N is about one

hundred thousand), and M be the size of the “bite” (for example, 200).

One possible scenario for building the ensembleD is to fix in advance the number

of classifiers, L. Take L random samples of size M from Z, with replacement

(Rvotes), and build a classifier on each sample. Use majority vote to infer the

class label. We can use a validation set to estimate the accuracy of D and optimize

the ensemble with respect to L and M. Pasting Rvotes is simple but has been found

disappointingly inaccurate compared to pasting Ivotes [215,216].

Pasting Ivotes requires an estimate of the generalization accuracy at each build-

ing step. The new training set is sampled from Z (with replacement) according to the

current accuracy. The idea is that approximately half of the elements of the new

“bite” should be “easy” and half should be “difficult.” Suppose that l classifiers

have been built, so the current ensemble is Dl ¼ {D1, . . . ,Dl} and the estimate of

the generalization error of Dl is el (assume el , 0:5). The training set for the new

classifier Dlþ1 is sampled from Z according to the following procedure.

1. Take randomly an element zj of Z (use uniform distribution).

2. Identify the classifiers in Dl that did not have zj in their training sets, called

out-of-bag classifiers. If zj was in all training sets, then ignore it and pick

another element of Z.

3. Run zj through the out-of-bag classifiers and take the majority vote between

them to find a guessed label for zj.

4. If the guessed label is incorrect, then add zj to the training set for classifier

Dlþ1. Otherwise, add it to the training set with probability

el

1� el
(7:3)
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5. Repeat steps (1) to (4) untilM elements from Z are selected as the training set

for classifier Dlþ1.

A similar cascade procedure for filtering the training sets for an ensemble of three

neural networks is proposed by Drucker et al. [217].

The next step is to train classifier Dlþ1 on the selected training set. The estimate

elþ1 needed for selecting the next training set can be calculated in different ways.

Breiman suggests to use the out-of-bag estimate whereby el is estimated during

the selection of the training set for classifier Dlþ1.
27 Denote by ~ee the ratio of mis-

classifications to the total number of tested elements zj (i.e., the nonignored

ones). The error el is calculated as a smoothed estimate

el ¼ ael�1 þ (1� a)~ee (7:4)

where a [ (0, 1) is a parameter (recommended value 0.75 [215]).

To construct a bite of size M containing approximately half “easy” and half

“difficult” objects selected through the above procedure, we must test on

average about M=2el�1 randomly selected objects. If el�1 is large, then the number

of tested objects will not be too large, therefore the estimate ~ee might have high

variance.

To start the algorithm we first build a classifier on a randomly sampled training

set of sizeM and evaluate e0 on an out-of-bag testing set. Using e0 we select a train-

ing set for D1 and simultaneously calculate e1: With e1; we select a training set for

D2 and so on.

It has been found in Ref. [215] that el is a noisy estimate and sometimes has a

systematic bias either above or below the true generalization error for Dl. However,

it was also noticed that el tracks the generalization error well, so if we stop the train-

ing when el levels off or starts increasing, the corresponding generalization error

should be close to the best possible value too. In the experiments carried out by Brei-

man N had values from 2000 to 43,000 andM was varied from 100 to 800. Unpruned

decision trees were used as the base classifiers.

An alternative, which avoids out-of-bag estimates altogether is to use a separate

validation set to evaluate el. Taking into account that the proposed method is aimed

at massive data sets, leaving aside a validation set of a chosen size without dimin-

ishing substantially the size of the training set should not be a problem. All the

objects in this validation set will be out-of-bag throughout building the ensemble.

This will avoid the variability and the systematic bias of the out-of-bag estimate.

The smoothing of Eq. (7.4) becomes unnecessary too.

Chawla et al. [216] suggest using a distributed version of pasting small votes. The

data set Z is partitioned into disjoint subsets, and an ensemble of Ivotes is grown on

each subset. Then D is formed by pooling all classifiers designed throughout the

training. The rationale for this distributed version is mainly a substantial gain in

27 Thus el�1 must be used at step (4) because el is being currently evaluated.
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computation time compared to Ivote on the whole of Z, which is itself advantageous

compared to AdaBoost on Z. The individual Ivote procedures can be run on separate

processors, which do not need to communicate during training. The accuracy of the

final ensemble has been found in Ref. [216] to be comparable to that of Ivote or Ada-

Boost on the whole of Z. This result is not unexpected as using different partitions

induces additional diversity in the final ensemble.

Finally, to exploit the computational advantage of distributed Ivotes to the full,

we need the appropriate distributed computing resource, for example, a computer

cluster.

Example: Pasting Small Votes. To examine the effect of the out-of-bag estimate,

we generated a banana data set of N ¼ 10,000 objects and set the bite size at

M ¼ 150. Separate validation and testing sets were generated, each containing

200 objects. Effectively, the training set size is 10,200 because the validation set

belongs there too. Ensembles of 50 classifiers were evolved. Two experiments

were carried out. In the first experiment the error el was calculated using the vali-

dation set. This estimate was used for selecting the training sets in step (4). The

ensemble error was estimated also through the out-of-bag method in order to see

whether its shape differs from that of el. Figure 7.3 plots the validation el, the

out-of-bag error el and the testing error. In the second experiment, the training

sets were generated according to the out-of-bag approximation of el and the vali-

Fig. 7.3 Error rates for the banana data for the Ivotes algorithm. The estimate of the ensemble

error, el , needed for filtering the consecutive training sets has been calculated on a validation set.
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dation set estimate was calculated for completeness. The results are plotted in

Figure 7.4.

Each graph is the average of 10 runs. Independent training/validation/testing
data sets were generated for each run from the distribution of the banana problem.

The similarity of the testing error curves suggests that the two estimates of el lead to

practically equivalent ensembles regardless of the differences in the estimated

values. As expected, the out-of-bag error was not a very close predictor of the testing

error but it picked up its trend and managed to bring it down to the same level as the

validation set method.

Skurichina [218] proposes a variant of bagging which she calls “nice” bagging.

Instead of taking all L classifiers, we only accept classifiers whose training error

is smaller than the error made by an individual classifier built on the whole data

set. In fact, we may again consider an ensemble of L classifiers by dismissing in

the training process the classifiers whose training error is above the threshold and

continuing until the ensemble size reaches L. The linear discriminant classifier

(LDC) is stable, hence not the best candidate for bagging. However, for data sets

where the number of cases is small and the number of features is large, LDC is

no longer stable because small changes in the training set might lead to large

changes of the classifier. Bagging and “nice bagging” have been found to work

for unstable LDC [218].

Fig. 7.4 Error rates for the banana data for the Ivotes algorithm. The estimate of the ensemble

error, el , needed for filtering the consecutive training sets has been calculated by the smoothed

out-of-bag method as in Eq. (7.4).
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7.2 BOOSTING

7.2.1 Origins: Algorithm Hedge(b)

Boosting was inspired by an on-line learning algorithm called Hedge(b) [219]. This

algorithm allocates weights to a set of strategies used to predict the outcome of a

certain event. The weight of strategy si, if properly scaled, can be interpreted as

the probability that si is the best (most accurate) predicting strategy in the group.

The distribution is updated on-line after each new outcome. Strategies with the cor-

rect prediction receive more weight while the weights of the strategies with incorrect

predictions are reduced.

At this point we shall relate Hedge(b) to our classifier combination set-up,

although somewhat differently to the correspondence suggested in Ref. [219].

Here the strategies will correspond to the classifiers in the ensemble and the

event will correspond to labeling of a randomly drawn zj from Z. Suppose that a

classifier ensemble D ¼ {D1, . . . ,DL} is available but we do not know how well

each classifier works on the problem in question. A point is sampled from Z and

each classifier gives a prediction for its label. Whose prediction shall we choose?

At first we have no reason to prefer one classifier or another, so we pick at

random a classifier from D and take its decision. Define the loss to be 1 if the

class label is wrong and 0 if it is correct. The expected loss from our random

choice of a classifier will be the average number of classifiers in D labeling the

selected point incorrectly. Since we want to improve the prediction for the next

point we draw, it is reasonable to increase the probability of selecting one of the

classifiers with the most correct predictions on the points previously seen. Thus

we alter the distribution on D as more examples are classified. If we knew in

advance which is the best classifier in the team and always went along with its

decision, then the incurred loss (the error across all tested examples) will be the

smallest one possible. However, we assume no such knowledge, and therefore

apply the Hedge(b) algorithm.

Suppose we make a prediction by randomly selecting a classifier from D

according to a probability distribution on D. The algorithm Hedge(b) evolves

such a distribution on D in order to minimize the cumulative loss of the predic-

tion. The distribution is calculated by normalizing a set of weights that are updated

after a presentation of zj from the data set Z. The weights for the classifiers that mis-

classify zj (incur loss 1) are diminished by a prespecified multiplier bwhile the other

weights will stay the same (loss 0). When the distribution is recalculated through Eq.

(7.5), the probabilities for the successful classifiers will increase correspondingly.

The larger the number of trials, N (data points in Z), the sharper the peak of

pNþ1i will be about the most accurate classifier. The Hedge(b) algorithm is

described in Figure 7.5. Freund and Schapire prove an upper bound on the loss,

which is not much worse than the loss of the best classifier in the ensemble

[219].

More generally we can assume that the loss l
j
i is a number within the interval

½0, 1� rather than just 0 or 1. Consequently, we have continuous-valued li [
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Fig. 7.5 Algorithm Hedge(b).

HEDGE (b)

Given:

� D ¼ fD1; . . . ;DLg: the classifier ensemble (L strategies)

� Z ¼ fz1; . . . ; zNg: the data set (N trials).

1. Initialize the parameters

� Pick b [ ½0; 1�:

� Set the weights w1 ¼ ½w1; . . . ;wL�;w
1
i [ ½0; 1�;

PL
i¼1 w

1
i ¼ 1:�

Usually w1
i ¼

1
L

�
:

� Set L ¼ 0 (the cumulative loss).

� Set li ¼ 0; i ¼ 1; . . . ; L (the individual losses).

2. For every zj; j ¼ 1; . . . ;N;

� Calculate the distribution by

p
j
i ¼

w
j
iPL

k¼1 w
j
k

; i ¼ 1; . . . ; L: ð7:5Þ

� Find the L individual losses.

(l
j
i ¼ 1 if Di misclassifies zj and l

j
i ¼ 0 if Di classifies zj correctly, i ¼

1; . . . ; LÞ:

� Update the cumulative loss

L Lþ
XL
i¼1

p
j
i l

j
i ð7:6Þ

� Update the individual losses

li li þ l
j
i: ð7:7Þ

� Update the weights

w
jþ1
i ¼ w

j
i b

l
j
i : ð7:8Þ

3. Calculate the return L, li; and pNþ1i ; i ¼ 1; . . . ; L:
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½0, N� and L [ ½0, L� N�. Freund and Schapire show that if we pick

b ¼ g( ~ll= ln L), where g(z ) ¼
1

1þ

ffiffiffi
2

z

s (7:9)

and ~ll is a guess for an upper bound of the loss of the best classifier, then the total loss

is bounded from above as follows

L � min
L

i¼1
li þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ~ll ln L

p
þ ln L (7:10)

Example: Bounds on the Loss for Hedge(b). An ensemble of three classifiers is

considered for the banana data: a linear discriminant classifier (LDC), a Parzen clas-

sifier, and a prepruned decision tree. One hundred data points were generated for

training and 10,000 more points for testing. The classifiers trained on the 100 train-

ing points gave the following testing error: LDC 19.00 percent, Parzen 10.09

percent, and the tree classifier 19.82 percent.28 Then we “guessed” correctly the

minimum value of the error, ~ll ¼ 10,000� 0:1009 ¼ 1009, and substituted it into

Eq. (7.10). The upper bound obtained for the total loss L was 1088. Using ~ll we

also calculated b ¼ 0:9554 using Eq. (7.9). Applying the Hedge(b) algorithm on

the testing data, the observed loss L was 1034 (1009 � 1034 � 1088). Figure 7.6

28A CART tree classifier was constructed (see Chapter 2) using a prepruning option (early stopping) with

a threshold value of 4.

Fig. 7.6 Change of the distribution on the set of three classifiers (LDC, Parzen, and a decision

tree) on the banana data by the Hedge(b) algorithm.
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shows how the probabilities p1, p2, and p3 changed along with the new examples

(data points from the testing set) being presented.

The probability corresponding to the least accurate classifier, D3, dropped to zero

first, next was the probability for D1, and after the 2000th object the ensemble

practically consisted of the best classifierD2. The further we run the experiment (lar-

ger N), the closer the total loss will be to that of the best classifier in the ensemble.

7.2.2 AdaBoost Algorithm

Boosting is defined in Ref. [219] as related to the “general problem of producing a

very accurate prediction rule by combining rough and moderately inaccurate rules-

of-thumb.” The general boosting idea is to develop the classifier team D incremen-

tally, adding one classifier at a time. The classifier that joins the ensemble at step k is

trained on a data set selectively sampled from the training data set Z. The sampling

distribution starts from uniform, and progresses towards increasing the likelihood of

“difficult” data points. Thus the distribution is updated at each step, increasing the

likelihood of the objects misclassified at step k � 1. Here the correspondence with

Hedge(b) is transposed. The classifiers in D are the trials or events, and the data

points in Z are the strategies whose probability distribution we update at each

step. The algorithm is called AdaBoost in Ref. [219] which comes from ADAptive

BOOSTing. There are two implementations of AdaBoost: with reweighting and with

resampling. The description above refers to the resampling implementation. For the

reweighting implementation we assume that the base classifiers can directly use the

probabilities on Z as weights. No sampling is needed in this case, so the algorithm

becomes completely deterministic.

AdaBoost was proposed initially for two classes and then extended for multiple

classes. Figure 7.7 shows AdaBoost.M1, which is the most straightforward multi-

class extension of AdaBoost [219]. The resampling implementation is shown.

Example: Illustration of AdaBoost. The performance of the AdaBoost algorithm

is illustrated on the forensic glass data from UCI. The experimental set-up was

chosen as in Ref. [214]: 100 runs with a split of the data into 90 percent training

and 10 percent testing. Fifty CART trees were constructed as the ensemble mem-

bers, each tree grown in full (no pruning). The testing accuracy averaged across

the 100 runs is shown in Figure 7.8. The graph demonstrates the remarkable ability

of AdaBoost to reduce the error without overfitting in spite of the progressively

increasing complexity of the ensemble.

7.2.3 arc-x4 Algorithm

Breiman studies bagging and boosting from various curious angles in Ref. [116]. He

calls the class of boosting algorithms arcing algorithms as an acronym for “adaptive

resample and combining.” His arc-fs algorithm is AdaBoost (named “fs” after its

authors Freund and Schapire [219]). Breiman proposes a boosting algorithm called

arc-x4 to investigate whether the success of AdaBoost roots in its technical details or
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Fig. 7.7 The AdaBoost.M1 algorithm with resampling.

ADABOOST.M1

Training phase

1. Initialize the parameters

� Set the weights w1 ¼ ½w1; . . . ;wN �;w
1
j [ ½0; 1�;

PN
j¼1 w

1
j ¼ 1:�

Usually w1
j ¼

1
N

�
:

� Initialize the ensemble D ¼ ;:

� Pick L, the number of classifiers to train.

2. For k ¼ 1; . . . ; L

� Take a sample Sk from Z using distribution wk:

� Build a classifier Dk using Sk as the training set.

� Calculate the weighted ensemble error at step k by

ek ¼
XN
j¼1

wk
j l

j
k; ð7:11Þ

(l
j
k ¼ 1 if Dk misclassifies zj and l

j
k ¼ 0 otherwise.)

� If ek ¼ 0 or ek � 0:5; ignore Dk; reinitialize the weights w
k
j to

1
N
and

continue.

� Else, calculate
bk ¼

ek

1� ek
; where ek [ ð0; 0:5Þ; ð7:12Þ

� Update the individual weights

wkþ1
j ¼

wk
j b
ð1�l

j

k
Þ

kPN
i¼1 w

k
ib
ð1�li

k
Þ

k

; j ¼ 1; . . . ;N: ð7:13Þ

3. Return D and b1; . . . ;bL:

Classification phase

4. Calculate the support for class vt by

mtðxÞ ¼
X

DkðxÞ¼vt

ln
1

bk

� �
: ð7:14Þ

5. The class with the maximum support is chosen as the label for x.
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in the resampling scheme it uses. The difference between AdaBoost and arc-x4 is

twofold. First, the weight for object zj at step k is calculated as the proportion of

times zj has been misclassified by the k � 1 classifiers built so far. Second, the

final decision is made by plurality voting rather than weighted majority voting.

The arc-x4 algorithm is described in Figure 7.9.

Breiman admits that while AdaBoost originates from a theory, arc-x4 is an ad hoc

algorithm [116]. The parameter of the algorithm, the power of the number mj, has

been fixed to the constant 4 (hence the name) by a small experiment. Yet arc-x4

has been found to be as good as AdaBoost. Breiman compares the behaviors of Ada-

Boost and arc-x4 and finds that AdaBoost makes more abrupt moves while arc-x4

has a more gradual behavior. This is reflected, for example, by the standard devi-

ations of the weights assigned to a single data point. This standard deviation was

found to be much larger for AdaBoost than for arc-x4.

7.2.4 Why Does AdaBoost Work?

One of the explanations of the success of AdaBoost comes from the algorithm’s

property to drive the ensemble training error to zero very quickly, practically in

the first few iterations.

7.2.4.1 The Upper Bound on the Training Error. Freund and Schapire

prove an upper bound on the training error of AdaBoost [219] for the case of two

classes. The following theorem gives their result

Fig. 7.8 Testing error of AdaBoost versus the ensemble size for the forensic glass data set.
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Theorem 7.1. Let V ¼ {v1, v2}. Let 1 be the ensemble training error and let

1i, i ¼ 1, . . . , L, be the weighted training errors of the classifiers in D as in Eq.

(7.11). Then

1 , 2L
YL
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1i(1� 1i)

p
(7:16)

The proof is reproduced in Appendix 7A with small changes so that it can be used

directly for multiple classes. The result of Theorem 7.1 indicates that by adding

more classifiers the training error of the ensemble approaches zero.

The error bound for the multiple class case is the same as for the two-class case as

long as the classifiers have individual errors smaller than 1
2
. AdaBoost.M1 takes this

Fig. 7.9 The arc-x4 algorithm.

ARC-X4

Training phase

1. Initialize the parameters

� Set the weights w1 ¼ ½w1; . . . ;wN �;w
1
j [ ½0; 1�;

PN
j¼1 w

1
j ¼ 1:�

Usually w1
j ¼

1
N

�
:

� Initialize the ensemble D ¼ ;:

� Pick L, the number of classifiers to train.

2. For k ¼ 1; . . . ; L

� Take a sample Sk from Z using distribution wk:

� Build a classifier Dk using Sk as the training set.

� Find mj as the proportion of classifiers currently in the ensemble

which misclassify zj. Update the individual weights

wkþ1
j ¼

1þ m4
jPN

i¼1 1þ m4
i

; j ¼ 1; . . . ;N: ð7:15Þ

3. Return D:

Classification phase

4. Run D1; . . . ;DL on the input x.

5. The class with the maximum number of votes is chosen as the label

for x.
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into account by the clause in step 2, which reinitializes the weights in case 1i � 0:5.
The following Theorem 7.2 holds for the general case of c classes.

Theorem 7.2. Let V ¼ {v1, . . . ,vc}. Let 1 be the ensemble training error and let

1i, i ¼ 1, . . . , L be the weighted training errors of the classifiers inD as in Eq. (7.11)

and 1i ,
1
2
. Then

1 , 2L
YL
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1i(1� 1i)

p
(7:17)

The proof is given in Appendix 7B.

Freund and Schapire argue that having an error greater than half is too strict a

demand for a multiple-class weak learner. They proceed to propose another version

of AdaBoost, called AdaBoost.M2, which does not require 1i , 0:5 [219]. Note that
1i is not the error of classifier Di. It is a weighted error. This means that if we applied

Di on a data set drawn from the problem in question, its (conventional) error could

be different from 1i; it could be larger or smaller.

7.2.4.2 The Margin Theory. Experiments with AdaBoost showed an unex-

pected phenomenon: the testing error continues to decrease with adding more clas-

sifiers even after the training error reaches zero. This prompted another look into the

possible explanations and brought forward the margin theory [213,220].

The concept of margins comes from statistical learning theory [221] in relation to

the Vapnik–Chervonenkis dimension (VC-dimension). In layman terms, the VC-

dimension gives an upper bound on the classification ability of classifier models.

Although the bound is loose, it has proven to be an important theoretical accessory

in pattern recognition and machine learning. The support vector machine (SVM)

classifier is underpinned by the statistical learning theory and in particular by the

idea of maximizing the margins. Intuitively, the margin for an object is related to

the certainty of its classification. Objects for which the assigned label is correct

and highly certain will have large margins. Negative margins signify incorrect

classification. Objects with uncertain classification are likely to have small margins.

A small margin will cause instability of the classification label, that is, the object

might be assigned to different classes by two similar classifiers.

For c classes, the margin of object x is calculated using the degree of support

mj(x), j ¼ 1, . . . , c, as

m(x) ¼ mk(x)�max
j=k

{mj(x)} (7:18)

where vk is the (known) class label of x and
Pc

j¼1 mj(x) ¼ 1.

Thus all objects that are misclassified will have negative margins, and those

correctly classified will have positivemargins. Trying to maximize the margins (called
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“boosting the margins”) will intuitively lead to “more confident” classifiers. Schapire

et al. [213] prove upper bounds on the testing error that depend on the margin. The

main theoretical result for c ¼ 2 classes is given in the following theorem.

Theorem 7.3. LetH be a finite space of base classifiers.29 For any d . 0 and u . 0,

with probability at least 1� d over the random choice of the training set Z, any clas-

sifier ensembleD ¼ {D1, . . . ,DL} # H combined by the weighted average satisfies

P(error) � P(training margin � u) (7:19)

þ O
1ffiffiffiffi
N
p

logN log jHj

u2
þ log(1=d)

� �1=2
 !

(7:20)

where P(error) is the probability that the ensemble will make an error in labeling

x [ R
n, drawn randomly from the distribution of the problem and

P(training margin � u) is the probability that the margin for a randomly drawn

data point from a randomly drawn training set does not exceed u. jHj is the cardin-

ality of H.

For the more general case of finite or infiniteHwith VC dimension d, the follow-

ing bound holds, assuming that N � d � 1

P(error) � P(training margin � u) (7:21)

þ O
1ffiffiffiffi
N
p

d log2(N=d)

u2
þ log(1=d)

� �1=2
 !

(7:22)

Neither bound depends on the number of classifiers in the ensemble. Although the

bounds are quite loose, they show the tendency that larger margins lead to a smaller

upper bound on the testing error.

Example: Classification Margins. To illustrate the effect of bagging and Ada-

Boost on the margins, we ran both algorithms for the rotated check-board data

(Figure 1.10) as in the earlier example. The margins were calculated according to

Eq. (7.18). For visualization purposes Schapire et al. propose margin distribution

graphs showing the cumulative distribution of the margins for a given data set.

The x-axis is the margin, m, and the y-axis is the number of points whose margin

is less than or equal to m. If all training points are classified correctly, there will

be only positive margins. Ideally, all points should be classified correctly so that

29A finite space of base classifiers is, for example, the set of all decision trees of a given size over a set of

discrete features. For example, the set of all decision stumps over a set of n binary features contains n

elements (classifiers), one for each feature.
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all margins are positive. If all points are classified correctly and with the maximum

possible certainty, the cumulative graph will be a single vertical line at m ¼ 1.

Figure 7.10 shows the margin distribution graphs for bagging and AdaBoost.30

The training and testing error rates for bagging and AdaBoost are shown in

Figure 7.11. The dominance of AdaBoost over bagging shows that larger margins

are associated with lower testing error.

7.2.5 Variants of Boosting

There is a great variety of methods drawn upon the basic idea of boosting. Owing to

its success, boosting is probably the most rapidly growing subarea of classifier com-

bination. Versions of AdaBoost for real-valued classifier outputs, multiclass pro-

blems, and ECOC ensembles31 are proposed [219,222,223]. Explanations for the

remarkably good performance of boosting have been sought in its relationship

with logistic regression [224–226]. This relationship gave rise to variants such as

LogitBoost and a parametarized family of iterative algorithms developed in

Ref. [224]. A procedure called DOOM (direct optimization of margins) is proposed

Ref. [227]. There are also many ad hoc variants supported by empirical evidence

including MultiBoosting [228], AveBoost [229], AdaBoost-VC [230] and arc-x4

[116].

30 In bagging, the support for class vj, mj(x), was calculated as the proportion of votes for that class.
31 ECOC stands for “error correcting output code.” This concept is detailed in Chapter 8.

Fig. 7.10 Margin distribution graphs for bagging and AdaBoost for the rotated check-board

example.
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7.3 BIAS-VARIANCE DECOMPOSITION

One of the explanations for the success of bagging and boosting roots is the bias-

variance decomposition of the classification error.

Fig. 7.11 Training and testing error of bagging and AdaBoost for the rotated check-board

example.
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7.3.1 Bias, Variance, and Noise of the Classification Error

Let D be a classifier randomly chosen from a population of classifiers. Consider a

single point x in the feature space <
n
. The state of the nature at x is a random vari-

able v [ V (the class label of x). The classifier tries to guess the state of the nature

by picking one label from V. Suppose that the true values of the posterior probabil-

ities for the c classes, given x, are P(vijx), and the probabilities across all possible

D are PD(vijx) (the guessed state of the nature), i ¼ 1, . . . , c. PDðvijxÞ is the

probability that a randomly chosen classifier D will assign vi for the given x. By

definition
P

i P(vijx) ¼ 1 and
P

i PD(vijx) ¼ 1.

7.3.1.1 Kohavi–Wolpert Definitions. Kohavi and Wolpert [231] suggest the

following definitions for bias, variance, and noise at a given x

bias ¼
1

2

X
vi

(P(vijx)� PD(vijx))
2 (7:23)

variance ¼
1

2

X
vi

1� PD(vijx)
2

 !
(7:24)

noise ¼
1

2

X
vi

1� P(vijx)
2

 !
(7:25)

The general concept of bias of an estimate is the averaged difference between the

true and the predicted values. In our case the bias can be regarded as some measure

of the difference between the true distribution P(vijx) and the guessed distribution

PD(vijx), i ¼ 1, . . . , c.
The variance term expresses the variability of the classifier’s guess regardless of

the true state of the nature. A conventional measure of variability of a random vari-

able is its variance. However, there is no clear definition of variance for nominal

variables such as the class label. To measure variability we can use the entropy of

the distribution

H ¼ �
X
vi

PD(vijx) logPD(vijx) (7:26)

H ¼ 0 will signify no variability whereas H ¼ log c will correspond to the high-

est variability where each label has the same probability of 1=c. Kohavi and Wolpert

use the Gini index (2.65) introduced in Chapter 2 as the variance; that is,

G ¼
X
vi

1� PD(vijx)
2 (7:27)

The term noisemeasures the variability of the state of the nature regardless of the

guess of the classifier. Again, we can use for that H or G.
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The scaling constant of 1
2
is needed so that the sum of the three components gives

exactly the classifier error as discussed later.

7.3.1.2 Breiman’s Definitions. Breiman [232] gives a different definition of

variance, noise, and bias. Suppose v� is the class label with the highest true prob-

ability (given x). The noise term is equivalent to the Bayes error for that x; that is,

noise ; 1� P(v�jx) (7:28)

This term gives the error for x if the most probable class v� is always chosen as its

label. Note the difference with the Kohavi–Wolpert noise, which is the error for x in

case we pick a random class label from the true distribution P(vijx).

Let v�̂� be the class label with the largest PD(vijx), that is, the most likely output

for x of a random classifier D. The bias of D is defined as the additional amount of

error incurred when v�̂� is assigned to x weighted by the probability of this class

assignment, PD(v
�̂�jx)

bias ; (P(v�jx)� P(v�̂�jx))PD(v
�̂�jx) (7:29)

Note that the bias is always nonnegative because v� maximizes P(vijx).

Breiman calls the term corresponding to variance “spread.” The spread shows

how much the guessed distribution varies across class labels other than v�̂� and v�

spread ;
X

vi=v�̂�

(P(v�jx)� P(vijx))PD(vijx) (7:30)

7.3.1.3 Domingos’ Definitions. Domingos [233–235] proposes a unified defi-

nition of bias, variance, and noise, which encompasses both previously introduced

definitions. Let l(T(x), D(x)) be the loss for x incurred by a randomly picked classi-

fier D where T(x) is the true label of x and D(x) is the guessed label. Domingos

defines the bias for x to be

bias ; l(v�, v�̂�) (7:31)

Thus the bias does not depend on the particular realization of the (random) clas-

sifier D. The bias only depends on the most probable guessed label (majority label)

v�̂� and the optimal class label for x, v�. For a 0/1 loss function the bias is either 0

(matched labels) or 1 (mismatched labels). The variance is defined as

variance ; ED l(v�̂�, D(x))
� �

(7:32)

where ED stands for the expectation on all possible realizations of D. The variance is

thus a measure of the variation of the guessed label about the majority prediction. If
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the same label is always assigned to x, then the loss l(v�̂�, D(x)) will be zero because

no classifier deviates from the majority prediction (assuming 0/1 loss). Alterna-

tively, if the most probable guessed label is completely random, that is, with prob-

ability 1=c, the loss will take its maximum value of 1� ð1=cÞ ¼ ðc� 1Þ=c. The
formula for the variance for 0/1 loss is

variance ;
X

vi=v�̂�

PD(vijx) ¼ 1� PD(v
�̂�jx) (7:33)

The noise is defined to be

noise ; ET (l(T(x), v�)) (7:34)

Thus the noise is only dependent on the problem in question and not on any classi-

fier. For 0/1 loss,

noise ; 1� P(v�jx) (7:35)

We can think of classifierD as a model. The optimalmodel will always output the

label with the highest P(vijx), that is, v
�. Then the bias measures how far the

majority prediction is from the optimal prediction, the variance shows the variability

of the predicted label about the majority prediction, and the noise tells us how far the

optimal prediction is from the truth (Bayes error).

Example: Illustration of Bias, Variance (Spread), and Noise. Table 7.1 shows

two distributions on V ¼ {v1, . . . ,v5} for a fixed x. For this example v� ¼ v5

and v�̂� ¼ v4.

Table 7.2 shows the bias, variance/spread, and noise calculated according to the

three definitions. For example, Breiman’s bias is calculated as

bias ¼ (P(v�jx)� P(v�̂�jx))PD(v
�̂�jx)

¼ (0:4� 0:2)� 0:6 ¼ 0:12

TABLE 7.1 True and Guessed Distributions of the Class

Labels for the State of the Nature for a Particular (Fixed) x.

v1 v2 v3 v4 v5

True 0.3 0.1 0.0 0.2 0.4

Guessed 0.0 0.1 0.1 0.6 0.2
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Note that the three components for both Kohavi–Wolpert definition and

Breiman’s definition sum to 0.79, which is the probability of error, given x

P(errorjx) ¼ 1�
X
vi

P(vijx)PD(vijx)

¼ 1� (0:3� 0:0þ 0:1� 0:1þ 0:0� 0:1þ 0:2� 0:6þ 0:4� 0:2)

¼ 0:79:

Domingos’ bias, variance, and noise do not sum to the probability of error. The

only case where they do is when we use a square loss function, that is,

l(a, b) ¼ (a� b)2. This function is not suitable in classification problems because

the output variables are nominal, and difference is not straightforward to define in

this case.

7.3.2 Decomposition of the Error

The probability of error for a given x is the probability of disagreement between the

decision by a randomly picked classifier D and the true class label of x

P(errorjx) ¼ 1�
X
vi

P(vijx)PD(vijx) (7:36)

The total error can be then calculated across the whole feature space R
n as

P(error) ¼

ð
R

n

P(errorjx)p(x) dx (7:37)

7.3.2.1 Kohavi–Wolpert’s Decomposition. Below we develop Eq. (7.36) to

show that it is equal to the sum of bias, variance, and noise. To reach the decompo-

sition form we add and subtract the halved sum of squares of the true and the guessed

TABLE 7.2 Bias, Variance (Spread), and Noise for x.

Bias Variance (spread) Noise

Kohavi–Wolpert [230] 0.15 0.29 0.35

Breiman [18] 0.12 0.07 0.60

Domingos [234] 1.00 0.40 0.60
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distributions and rearrange the terms,

P(errorjx) ¼ 1�
X
vi

P(vijx)PD(vijx)þ
1

2

X
vi

P(vijx)
2 þ

1

2

X
vi

PD(vijx)
2

�
1

2

X
vi

P(vijx)
2 �

1

2

X
vi

PD(vijx)
2 (7:38)

¼
1

2

X
vi

(P(vijx)� P(vijx))
2

 !
þ
1

2
1�

X
vi

PD(vijx)
2

 !

þ
1

2
1�

X
vi

P(vijx)
2

 !
(7:39)

¼ biasþ varianceþ noise (7:40)

7.3.2.2 Breiman’s Decomposition. We start again from the conditional

probability of error and add and subtract P(v�jx). Then we use
P

i PD(�) ¼ 1 as a

multiplier to P(v�jx).

P(errorjx) ¼ 1�
X
vi

P(vijx)PD(vijx) (7:41)

¼ 1� P(v�jx)þ P(v�jx)
X
vi

PD(vijx)

�
X
vi

P(vijx)PD(vijx) (7:42)

¼ 1� P(v�jx)þ
X
vi

(P(v�jx)� P(vijx))PD(vijx) (7:43)

¼ 1� P(v�jx)þ (P(v�jx)� P(v�̂�jx))PD(v
�̂�jx)

þ
X

vi=v�̂�

(P(v�jx)� P(vijx))PD(vijx) (7:44)

¼ noiseþ biasþ spread (7:45)

7.3.2.3 Domingos’ Decomposition. Domingos suggests the following

decomposition of the conditional error [235]

P(errorjx) ¼ c1 � noiseþ biasþ c2 � variance (7:46)

where c1 and c2 are constants or expressions depending on which loss function we

use. For the 0/1 loss, both are expressions including the probabilities that participate
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in the bias, variance, and noise themselves, which makes the relationship between

the three components and the conditional probability nonlinear. Here we develop

the decomposition for 0/1 loss and two classes, v1 and v2. The conditional prob-

ability of error is

P(errorjx) ¼ P(v1jx)PD(v2jx)þ P(v2jx)PD(v1jx) (7:47)

First consider the case of bias ¼ 0. This means that either v� ¼ v�̂� ¼ v1 or

v� ¼ v�̂� ¼ v2. In both cases Eq. (7.47) becomes

P(errorjx) ¼ P(v�jx)(1� PD(v
�̂�jx)) (7:48)

þ (1� P(v�jx))PD(v
�̂�jx) (7:49)

¼ (1� (1� P(v�jx)))(1� PD(v
�̂�jx))

þ (1� P(v�jx))(1� (1� PD(v
�̂�jx))) (7:50)

¼ (1� noise)� varianceþ noise� (1� variance) (7:51)

¼ (1� 2� noise)� varianceþ noise (7:52)

We note that the coefficient in front of the variance is nonnegative. This comes from

the fact that the noise (Bayes error) is always less than a half. Indeed, the noise in

this case is equal to the smallest of the two probabilities that sum to 1. Therefore,

for unbiased x the error P(errorjx) decreases when the variance decreases. We

can add a fictional bias term (zero in this case) to get the general form of the

decomposition of the conditional error for unbiased examples

P(errorjx) ¼ biasþ (1� 2� noise)� varianceþ noise (7:53)

Now consider the case of biased examples, that is, bias ¼ 1. This means that if

v� ¼ v1 then v�̂� ¼ v2 and vice versa. Then

P(errorjx) ¼ P(v�jx)PD(v
�̂�jx)þ (1� P(v�jx))(1� PD(v

�̂�jx)) (7:54)

¼ (1� noise)� (1� variance)þ noise� variance (7:55)

¼ 1þ (2� noise� 1)� variance� noise (7:56)

¼ biasþ (2� noise� 1)� variance� noise (7:57)

The interesting fact here is that the coefficient in front of the variance is negative.

This means that for biased examples, increasing the variance will bring the error

down!

All decompositions of the error are aimed at studying the structure of the error for

different classifier models and ensembles of classifiers. Suppose that we build our

random classifier D using different data sets drawn from the distribution of the pro-
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blem. It is natural to expect that simple classifiers such as the linear discriminant

classifier will have high bias (deviation from the optimal model) and low variance.

Conversely, flexible classifiers such as neural networks and decision trees will vary

significantly from data set to data set because they will try to fit the particular realiz-

ation of the data as close as possible. This means that they will have high variance

but their bias will be low. If the classifier has a parameter that we can tune, then mak-

ing the classifier more coarse and robust will diminish its sensitivity, therefore

will decrease the variance but might increase the bias. This is referred to as the

bias-variance dilemma. Different trends have been found in the literature. Some-

times varying a classifier parameter reduces both bias and variance, thereby giving

a smaller error altogether. For example, increasing k in the k-nearest neighbor clas-

sifier is supposed to increase the bias and reduce the variance. Domingos found that

for different data sets, one of the trends dominates the other and the total error might

be steadily increasing with k or steadily decreasing with k [234]. For tree classifiers,

the control parameter may be the depth of the tree or the constant used in prepruning.

Typically, heavily pruned trees will have smaller variance and larger bias than trees

fully grown to classify correctly all training samples.

In summary, bias is associated with underfitting the data, that is, the classifier

cannot match well the optimal model; variance is associated with overfitting, that

is, different optimal models are fitted on different data sets drawn from the distri-

bution of the problem [233].

7.3.3 How Do Bagging and Boosting Affect Bias and Variance?

There is no general theory about the effects of bagging and boosting on bias and var-

iance. The results of extensive experimental studies published recently can be sum-

marized as follows. Bagging is assumed to reduce variance without changing the

bias. However, it has been found to reduce the bias as well, for example, for

high-bias classifiers. Boosting has different effects at its different stages. At its

early iterations boosting primarily reduces bias while at the later iterations it has

been found to reduce mainly variance [116,213,220,233,234,236,237].

Freund and Schapire [220] argue that bias-variance decomposition is not the

appropriate analysis tool for boosting, especially boosting with reweighting. Their

explanation of the success of AdaBoost is based on the margin theory. They

acknowledge though that giving a theory about the randomization effects of bagging

and boosting with resampling is an interesting open problem. Schapire et al. [213]

state that it is unlikely that a “perfect” theory about voting methods exists, that is,

a theory applicable to any base classifier and any source of independent identically

distributed labeled data.

7.4 WHICH IS BETTER: BAGGING OR BOOSTING?

In principle, this is an ill-posed question. The old pattern recognition refrain springs

to mind again: there is no “best” method for all problems. Many authors have
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compared the two approaches including some large-scale experiments [106,116,

236,238,239]. The general consensus is that boosting reaches lower testing error.

Boosting algorithms have been crowned as the “most accurate available off-the-

shelf classifiers on a wide variety of data sets” [116]. However, it seems that they

are sensitive to noise and outliers, especially for small data sets [116,236,239]. Var-

iants of bagging, for example, random forests, have been found to be comparable to

AdaBoost.

AdaBoost appears in two versions in the literature: with resampling and

reweighting. In the resampling version the data set Sk for step k is obtained by sub-

sampling with replacement from Z. In the reweighting version, the classifier Dk

takes into account the weights of the data points in some way. There is no strong

evidence favoring one of the versions over the other [116,219,220].

APPENDIX 7A PROOF OF THE ERROR BOUND ON THE TRAINING
SET FOR AdaBoost (TWO CLASSES)

Below we reproduce the proof of the upper bound on the training error of AdaBoost

[219]. Our version differs from the original proof by the fact that we do not have

separate steps for updating the weights and then updating the distribution. The

proof is modified accordingly. The following Lemma is needed within the proof.

Lemma A.1. Let a � 0 and r [ ½0, 1�. Then

ar � 1� (1� a)r (A:1)

Proof. The result of this lemma follows from the convexity property of functions.

Let p, q [ R and let f (x) be a convex function f : R! R. Then for any t [ ½0, 1�,

f (tpþ (1� t)q) � tf ( p)þ (1� t)f (q) (A:2)

Geometrically, convexity means that for any point (x, y) on the line segment con-

necting two points, ( p, f ( p)) and (q, f (q)), on the graph of the function, f (x) � y.

A function f is convex if its second derivative is positive. Take ar to be a function

of r for a fixed a � 0. The second derivative

@2(ar)

@r2
¼ ar( ln a)2 (A:3)

is always nonnegative, therefore ar is a convex function. The right-hand side of

inequality (A.1) represents a point (t ¼ 1� r) on the line through points (0, 1)

and (1, a), both lying on the function graph (check by substitution). Therefore

Eq. (A.1) holds for any r [ ½0, 1�. B

Figure 7A.1 shows two examples of ar for a ¼ 15 and a ¼ 0:02.
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Theorem 7.1. Let V ¼ {v1, v2}. Let 1 be the ensemble training error and let 1i,

i ¼ 1, . . . ,L, be the weighted training errors of the classifiers in D as in Eq.

(7.11). Then

1 , 2L
YL
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1i(1� 1i)

p
(A:4)

Proof. The proof consists of two parts. In Part 1, we prove a relationship between 1

and bi values calculated within the AdaBoost algorithm, and in Part 2, the upper

bound is minimized by finding appropriate values of bi. When substituting the opti-

mal bi in the bound found in Part 1, the thesis of the theorem (A.4) is proven.

Proof, Part 1. According to Eq. (7.11), the weighted training error of the first

classifier is

11 ¼
XN
j¼1

w1
j l
1
j (A:5)

where l1j is the loss for object zj in the training set Z due to classifierD1. l
1
j ¼ 1 if zj is

misclassified and 0 otherwise. Subsequently we calculate b1 from 11. Here we do not

assume any particular expression for this relationship because our purpose is to

derive bi as a function of 1i so as to minimize the ensemble error. The weights

are updated to

w2
j ¼

w1
j b

(1�l1j )

1PN
k¼1 w

1
kb

(1�l1
k
)

1

(A:6)

Denote the normalizing coefficient at step i by

Ci ¼
XN
k¼1

wi
kb

(1�li
k
)

i (A:7)

Fig. 7A.1 Illustration of the convexity property of ar for two values of a.
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After we build and test the second classifier, we have

12 ¼
XN
j¼1

w2
j l
2
j (A:8)

b2 is calculated and the new weights are

w3
j ¼

w2
j b

(1�l2j )

2PN
k¼1 w

2
kb

(1�l2
k
)

2

¼
w1
j b

(1�l1j )

1 b
(1�l2j )

2

C1C2

(A:9)

The general formula for the weights is then

wtþ1
j ¼ w1

j

Yt
i¼1

b
(1�lij)

i

Ci

(A:10)

Denote by Z(�) the subset of elements of Z that are misclassified by the ensemble.

The ensemble error, weighted by the initial data weights w1
j is

1 ¼
X

zj[Z(�)

w1
j (A:11)

If we assign equal initial weights of 1=N to the objects, 1 is the proportion of mis-

classifications on Z made by the ensemble.

Since at each step, the sum of the weights in our algorithm equals one,

1 ¼
XN
j¼1

wLþ1
j �

X
zj[Z(�)

wLþ1
j ¼

X
zj[Z(�)

w1
j

YL
i¼1

b
(1�lij)

i

Ci

(A:12)

For the ensemble to commit an error in the labeling of some zj, the sum of the

weighted votes for the wrong class label in Eq. (7.14) must be larger than the

sum for the correct label. Recall that lij is 1 if Di misclassifies zj. Then

XL
i¼1

lij ln
1

bi

� �
�
XL
i¼1

(1� lij) ln
1

bi

� �
(A:13)

Taking exponent on both sides,

YL
i¼1

b
�lij
i �

YL
i¼1

b
�(1�lij)

i (A:14)

232 BAGGING AND BOOSTING



Multiplying by
Q

i bi on both sides (
Q

i bi . 0),

YL
i¼1

b
1�lij
i �

YL
i¼1

bi

YL
i¼1

b
�(1�lij)

i (A:15)

Since bi is always positive,

YL
i¼1

b
2(1�lij)

i �
YL
i¼1

bi (A:16)

Taking square root on both sides,

YL
i¼1

b
(1�lij)

i �
YL
i¼1

b
1=2
i (A:17)

Taking Eqs. (A.12), (A.17), and (A.11) together,

1 �
X

zj[Z(�)

w1
j

YL
i¼1

b
(1�lij)

i

Ci

(A:18)

�
X

zj[Z(�)

w1
j

0
@

1
AYL

i¼1

b
1
2

i

Ci

¼ 1 �
YL
i¼1

b
1=2
i

Ci

(A:19)

Solving for 1,

1 �
YL
i¼1

Ci

b
1=2
i

(A:20)

From the Lemma,

Ci ¼
XN
k¼1

wi
kb

(1�li
k
)

i �
XN
k¼1

wi
k(1� (1� bi)(1� lik)) (A:21)

¼
XN
k¼1

wi
k(bi þ lik � bil

i
k) (A:22)

¼ bi

XN
k¼1

wi
k þ

XN
k¼1

wi
kl
i
k � bi

XN
k¼1

wi
kl
i
k (A:23)

¼ bi þ 1i � bi1i ¼ 1� (1� bi)(1� 1i) (A:24)
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Combining Eqs. (A.20) and (A.24)

1 �
YL
i¼1

1� (1� bi)(1� 1i)ffiffiffiffiffi
bi

p (A:25)

Proof, Part 2. The next step is to find bi values that minimize the bound of 1 in Eq.

(A.25).

Denote the right-hand side of Eq. (A.25) by 1max. The first derivative with respect

to bi is

@1max

@bi

¼
bi(1� 1i)� 1i

2bi

ffiffiffiffiffi
bi

p � (a constant) (A:26)

Setting @1max=@bi ¼ 0 and solving for bi, we obtain

bi ¼
1i

1� 1i
(A:27)

The second derivative of 1max at bi ¼ 1i=1� 1i is

@21max

@b2
i

¼ (1� 1i)
1� 1i

1i

� �3=2

� (a constant) . 0 (A:28)

It is straightforward to verify that the constant is positive at bi ¼ 1i=1� 1i,

i ¼ 1, . . . , L. Thus the solution for bi is a minimum of 1max.

Substituting Eq. (A.27) into Eq. (A.25) leads to the thesis of the theorem

1 , 2L
YL
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1i(1� 1i)

p
(A:29)

B

APPENDIX 7B PROOF OF THE ERROR BOUND ON THE TRAINING
SET FOR AdaBoost (C CLASSES)

Theorem 7.2. Let V ¼ {v1, . . . ,vc}. Let 1 be the ensemble training error and let

1i, i ¼ 1, . . . , L, be the weighted training errors of the classifiers in D as in Eq.

(7.11) and 1i ,
1
2
. Then

1 , 2L
YL
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1i(1� 1i)

p
(B:1)
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Proof. The difference between the proof of this theorem and the proof of Theorem

7.1 will appear in the inequality for bi (A.13). Making a classification error with

more than two classes means that the score for the wrong label is higher than any

other score, including that of the right class label. Let us split the set of L classifiers

into three subsets according to their outputs for a particular zj [ Z:

Dw , D, the set of classifiers whose output is the winning (wrong) label;

Dþ , D, the set of classifiers whose output is the true label;

D� , D, the set of classifiers whose output is another (wrong) label.

The support for the winning class isX
Di[D

w

ln
1

bi

� �
�

X
Di[D

þ

ln
1

bi

� �
(B:2)

Add on both sides
P

Di[D
w (�)þ

P
Di[D

� (�) to obtain

2
X

Di[D
w

ln
1

bi

� �
þ

X
Di[D

�

ln
1

bi

� �
�
XL
i¼1

ln
1

bi

� �
(B:3)

To arrive at Eq. (A.17), we need to add
P

Di[D
� (�) on the left side of the inequal-

ity. This is only possible if the added quantity is positive. To guarantee this, we

require that all the terms in the summation are positive, that is, ln (1=bi) � 0,

which is equivalent to

bi � 1 (B:4)

This requirement has to be enforced for all bi values because different classifiers

might be in D� for different zj [ Z, and Eq. (B.3) must hold for any x drawn

from the distribution of the problem.

Then the left-hand side of Eq. (B.3) is twice the sum of all weights for the wrong

classes; that is,

2
XL
i¼1

lij ln
1

bi

� �
�
XL
i¼1

ln
1

bi

� �
(B:5)

whereby Eq. (A.17) is derived.

The rest of the proof is exactly as in Theorem 1. B

Taking the expression for the optimal bi (A.27), and solving for bi , 1 leads to

1i � 0:5

AdaBoost.M1 in Figure 7.7 satisfies this requirement by ignoring all classifiers

whose weighted error is greater than 0.5.
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8
Miscellanea

8.1 FEATURE SELECTION

The classifiers in the ensemble can be built on different subsets of features, either

disjoint or overlapping. Feature selection aims at a more efficient computation

and a higher accuracy of the ensemble.

8.1.1 Natural Grouping

In some problems the features are naturally grouped. For example, in text-indepen-

dent speaker identification, different groups of features are related to the pitch of the

signal, and the speech spectrum. The speech spectrum can be further characterized

by the linear predictive coefficients, the cepstrum, and so on [240]. In handwritten

digit recognition, an image can be viewed from different perspectives, for example,

pixels, morphological features, Fourier coefficients of the character shapes, and so

on [157,241]. Sometimes the groups of features are measured at different geographi-

cal locations, for example, radar images of a flying object. Instead of transmitting all

the features and making a decision centrally, individual classifiers can be built and

only their decisions will have to be transmitted.

8.1.2 Random Selection

Choosing random subsets of features is termed the random subspace method

[218,242,243]. Each classifier in the ensemble is built upon a randomly chosen sub-

set of features of predefined size d. Ho [243] suggests that good results are obtained
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for tree classifiers built upon d � n/2 features, where n is the total number of

features. The random subspace method has been found to work well when there

is redundant information which is “dispersed” across all the features rather than con-

centrated in a subset of them [218,243].

Pȩkalska et al. [244] consider a dissimilarity representation of the objects. Each

of the N objects is described by N features, which are the distances to all the objects

(including itself). Such representation is useful when the data originally contains a

prohibitive number of features or when a similarity measure between objects is

easily available. Pȩkalska et al. proposed using a linear discriminant classifier on

randomly selected feature subsets and recommend d between 4 and 30 percent of

the (similarity) features.

Latinne et al. [21] propose combining bagging with random selection. B boot-

strap replicates are sampled from the training set Z and for each replicate R subsets

of features are chosen. The proportion of features, K, is the third parameter of the

algorithm. The ensemble consists of L ¼ B � R classifiers. The combination

between bagging and feature selection aims at making the ensemble more diverse

than when using either of the methods alone. Latinne et al. show that the combined

technology outperforms each of the single ones.

We can apply various heuristic search techniques such as genetic algorithms, tabu

search, and simulated annealing for subset selection [245,246]. The feature subsets

can be selected one at a time or all at the same time. When one subset is selected for

each run of the algorithm, we must ensure that the next run takes into account all the

subsets selected hitherto. Alternatively, all feature subsets can be derived in one run

of the algorithm by optimizing some ensemble performance criterion function.

8.1.3 Nonrandom Selection

8.1.3.1 The “Favourite Class” Model. Oza and Tumer [247] suggest a simple

algorithm for selecting feature subsets that they call input decimation. The ensemble

consists of L ¼ c classifiers where c is the number of classes. Each classifier has a

“favorite” class. To find the feature subset for the classifier Di with favorite class vi,

we calculate the correlation between each feature and the class label variable. The

class label variable has value 0 for all objects that are not in class vi and 1 for all

objects that are in class vi.

Example: Correlation Between a Feature and a Class Label Variable. Suppose

the data set consists of nine objects labeled in three classes. The values of feature x1
and the class labels for the objects are as follows:

Object z1 z2 z3 z4 z5 z6 z7 z8 z9

x1 2 1 0 5 4 8 4 9 3

Class v1 v1 v1 v2 v2 v2 v3 v3 v3

The class label variable for v1 has values [1, 1, 1, 0, 0, 0, 0, 0, 0] for the nine objects.

Its correlation with x1 is 20.75.

238 MISCELLANEA



The n correlations are sorted by absolute value and the features corresponding to

the ni largest correlations are chosen as the subset for classifier Di. Note that vi is

only a favorite class to Di but Di is trained to recognize all the c classes. Selecting

the subsets in this way creates diversity within the ensemble. Even with this simple

selection procedure, the ensemble demonstrated better performance than the random

subset selection method [247].

There are numerous feature selection methods and techniques that can be used

instead of the sorted correlations. Such are the methods from the sequential group

(forward and backward selection) [1,248], the floating selection methods [249],

and so on. Given that the number of subsets needed is the same as the number of

classes, using a more sophisticated feature selection technique will not be too com-

putationally expensive and will ensure higher quality of the selected feature subset.

8.1.3.2 The Iterative Model. Another “favorite class” feature selection method

is proposed by Puuronen et al. [250]. They devise various criteria instead of the simple

correlation with the class variable and suggest an iterative procedure by which the

selected subsets are updated. The procedure consists of the following general steps:

1. Generate an initial ensemble of c classifiers according to the “favorite class”

procedure based on simple correlation.

2. Identify the classifier whose output differs the least from the outputs of the

other classifiers. We shall call this the median classifier. The median classifier

is identified using some pairwise measure of diversity, which we will denote

by D(Di, Dj). High values of D will denote large disagreement between the

outputs of classifiers Di and Dj. D(Di, Dj) ¼ 0 means that Di and Dj produce

identical outputs.32 The median classifier Dk is found as

Dk ¼ argmin
i

XL
j¼1

D(Di, Dj) (8:1)

3. Take the feature subset used to create Dk: Altering the present/absent status
of each feature, one at a time, produce n classifier-candidates to replace

the median classifier. For example, let n ¼ 4 and let Dk be built on features

x1 and x3. We can represent this set as the binary mask ½1; 0; 1; 0�. The classi-
fier-candidates to replace Dk will use the following subsets of fea-

tures: ½0; 0; 1; 0� ðx3Þ; ½1; 1; 1; 0� ðx1; x2; x3Þ; ½1; 0; 0; 0� ðx1Þ and ½1; 0; 1; 1�
ðx1; x3; x4Þ: Calculate the ensemble accuracy with each replacement. If there

is an improvement, then keep the replacement with the highest improvement,

dismiss the other candidate classifiers, and continue from step 2.

4. If no improvement is found at step 3, then stop and return the current

ensemble.

32Diversity will be discussed in detail in Chapter 10. For now, we can think of D as the proportion of all

objects for which one of the two classifiers is correct and the other one is wrong.
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This greedy algorithm has been shown experimentally to converge quickly and to

improve upon the initial ensemble. Numerous variants of this simple iterative pro-

cedure can be designed. First, there is no need to select the initial ensemble accord-

ing to the “favorite class” procedure. Any ensemble size and any initial subset of

features might be used. In the iterative algorithm in Ref. [251], the initial ensemble

is generated through the random subspace method introduced above. Another poss-

ible variation of the procedure, as suggested in Ref. [251] is to check all the ensem-

ble members, not only the median classifier. In this case, the task of calculating the

ensemble accuracy for each classifier candidate for replacement might become com-

putationally prohibitive. Therefore, the authors suggest that the criterion for accept-

ing the replacement should be the individual accuracy of the classifier plus the

classifier’s diversity weighted by a coefficient a. The (individual) diversity of clas-

sifier Di is
P

j D(Di, Dj). Thus diversity is enforced in the ensemble. The authors

note that using only accuracy is insufficient for improvement on the initial ensemble.

If the ensemble accuracy was used again as the criterion for accepting the replace-

ment, then diversity would not be needed as we optimize directly our target function.

Another detail of the iterative method that can be varied is whether we accept the

changes gradually as they occur during generation of the candidate classifiers, or we

keep track of the improvement and accept only one replacement classifier after a

whole cycle through possible candidates. There is no evidence that favors either

of the two strategies for selecting a replacement classifier.

8.1.3.3 The Incremental Model. Günter and Bunke [252] propose a method

for creating classifier ensembles based on feature subsets. Their ensemble is built

gradually, one classifier at a time, so that the feature subsets selected for the previous

classifiers are not allowed for the subsequent classifiers. However, intersection of

the subsets is allowed. The authors suggest that any feature selection method

could be used and advocate the floating search for being both robust and computa-

tionally reasonable. There are various ways in which the ban on the previous subsets

can be implemented. Günter and Bunke use different feature selection algorithms

relying on their suboptimality to produce different feature subsets. To evaluate a

subset of features S, they use the ensemble performance rather than the performance

of the individual classifier built on the subset of features. This performance criterion,

on its own, will stimulate diversity in the ensemble. It is not clear how successful

such heuristics are in the general case but the idea of building the ensemble incre-

mentally by varying the feature subsets is certainly worthy of a deeper look.

In the case of a very large amount of features, we can afford to ban completely the

features already used by the previous classifiers. Thus the classifiers will use disjoint

feature subsets.

8.1.4 Genetic Algorithms

Genetic algorithms (GA) offer a guided random search in the space of all possible

feature subsets. Depending on the encoding, there are two general ways to run a

GA for selecting the L feature subsets.
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8.1.4.1 Approach A. We can try to select the L subsets individually. GAs oper-

ate on a population of individuals. Each subset will then be a member of the popu-

lation. The GA is aiming at finding a single individual of the highest possible quality

measured by its fitness. The aim in creating an ensemble is not finding one best clas-

sifier but finding classifiers that will be jointly better than the single best individual.

To achieve this, the individual members of the population have to be both accurate

and diverse. While accuracy is accounted for by the fitness function, diversity is not.

On the contrary, a GA will converge to a single solution and all the members of the

population will be clones of the same individual. Hence there should be a mechan-

ism for maintaining diversity and stopping the evolution process when a good

ensemble is reached. Diversity of the feature subsets (the genotype) does not guar-

antee diversity of the classifier outputs (the phenotype). Nonetheless, diversity in the

genotype is the easily available option within this approach. The deviation of a fea-

ture subset from the remaining members of the population is a possible measure that

can be used together with the accuracy of the classifier built on this feature subset.

Example: Diversity in a Population of Feature Subsets. The most convenient

way of representing a feature subset is by a binary vector of length n. The ith bit

of the vector is 1 if the ith feature is included in the subset and 0 otherwise. A

GA operates on a set of, say,M such binary vectors, called chromosomes. The popu-

lation of chromosomes is evolved by producing offspring and keeping the fittest M

individuals as the next generation.

Let X ¼ {x1, . . . , x10} be a set of features. A population of six chromosomes

(individuals), S1, . . . , S6, is displayed below

S1 0 1 0 1 0 0 0 1 0 0 {x2, x4, x8}

S2 1 1 1 0 0 0 0 0 0 1 {x1, x2, x3, x10}

S3 0 0 1 1 1 1 0 0 0 0 {x3, x4, x5, x6}

S4 0 0 0 0 0 0 0 1 0 1 {x8, x10}

S5 0 1 1 0 0 0 0 0 0 0 {x2, x2}

S6 1 1 0 1 1 1 0 0 1 1 {x1, x2, x4, x5, x6, x9, x10}

The simplest way of calculating how different subset Si is from the remaining

subsets in the population is to use an average measure, for example, the averaged

Hamming distance between Si and each of the other M � 1 subsets. For the above

example, the five distances for S1 are 5, 5, 3, 3, and 6, respectively. Then the diver-

sity of S1 can be calculated as d1 ¼
5þ5þ3þ3þ6

5
¼ 4:4. Equivalently, di values can be

calculated as the sum of the absolute difference between bit k of chromosome Si and

the averaged chromosome �SS ¼ 1
5

P
Si. The individual diversities of the other subsets

are d2 ¼ 4:4, d3 ¼ 5:2, d4 ¼ 4:8, d5 ¼ 4:0, and d6 ¼ 6:0. Suitably weighted, these

diversity values can be taken together with the respective accuracies as the fitness

value.

The problem with this approach is that the ensemble accuracy does not participate

in the evolution process at any stage. It is not clear whether the ensemble will be any
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better than the fittest chromosome. The advantage of this approach to the second

approach detailed below is the lower computational cost.

Genetic algorithms for feature selection according to approach A are suggested in

Refs. [245] and [253].

8.1.4.2 Approach B. In this approach, each individual in the population rep-

resents the entire ensemble. We can use disjoint subsets (Approach B.1) or allow

for intersection (Approach B.2).

B.1. To represent disjoint subsets, we can keep the length of the vector (the

chromosome) at n and use integers from 0 to L. The value at position i will denote

which classifier uses feature xi; zero will mean that feature xi is not used at all. An

integer-valued GA can be used to evolve a population of ensembles. The fitness of a

chromosome can be directly a measure of the accuracy of the ensemble the chromo-

some represents. For example, let X be a set of ten features. Consider an ensemble of

four classifiers. A chromosome [1, 1, 4, 0, 3, 3, 1, 2, 3, 3] will denote an ensemble

D ¼ {D1, D2, D3, D4} where D1 uses features x1, x2, and x7; D2 uses x8; D3 uses

x5, x6, x9, and x10; and D4 uses x3. Feature x4 is not used by any of the classifiers.

B.2. To allow any subset of features to be picked by any classifier, the ensemble can

be represented by a binary chromosome of length L� n. The first n bits will rep-

resent the feature subset for classifier D1, followed by the n bits for classifier D2,

and so on. A standard binary valued GA can be used with this representation.

Approach B is more computationally demanding than approach A but the accu-

racy of the ensemble can be calculated right away. Approach B.1 is simpler than B.2,

but the requirement that the ensemble members use disjoint feature subsets might be

too restrictive.

In all GA implementations, special care should be taken to make sure that only

viable chromosomes are produced. For example, in approach B.1, it might happen

that not all L classifiers receive subsets of features. Then the ensemble will have

fewer members than intended. If we insist on the number of classifiers, L, we

might wish to kill any chromosome that does not contain all the integers from 1 to

L. Alternatively, the algorithm can be left to pick the number of classifiers (up to L)

itself by guarding only against a chromosome containing only zeros.

Examples of GAs within approaches B.1 and B.2 can be found in Ref. [246].

8.1.5 Ensemble Methods for Feature Selection

Suppose we reverse the problem: instead of selecting features for building an ensem-

ble we use ensemble technologies to select features. A variant of AdaBoost for fea-

ture selection for two-class problems is proposed in Ref. [230]. Decision stumps are

used as the base classifiers so that each tree in the ensemble consists of a root and

two leaves. The split at the root is done on a single feature that is different for

each classifier. The AdaBoost has been modified for this application so as to remove
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a feature from the possible set of candidate features as soon as that feature has been

used. The resultant ensemble uses a collection of features optimized for combined

performance. Long and Vega [230] propose this method for microarray data

where the number of features (genes) is large and the number of cases (tissue

samples) is comparatively small. The classes could be, for example, tumor and nor-

mal tissue. Feature selection for microarray analysis is important for at least two

reasons. First, finding a small subset of important genes might trigger new research

directions and second, the diagnosis of the two classes becomes cheaper as only few

of possibly thousand features have to be measured.

Practically, an ensemble of decision stumps is a simple neural network like archi-

tecture as shown in Figure 8.1. The main asset of the model is that once the ensemble

size L is specified, the training becomes completely automatic. The choice of L is not

crucial anyway. Ensembles of 50 classifiers are usually sufficient. The value of L

might be specified as the desired number of features for the respective application

(genes in microarray analysis).

It is not clear how this method for feature selection compares to the other existing

methods. The fact that it is tied with AdaBoost, the “best classifier off-the-shelf ”

[116], in an automatic training procedure suggests that the method could be a

good competitor.

Fig. 8.1 A classifier ensemble consisting of decision stumps. All the parameters of the ensemble

are tuned by AdaBoost except the number of classifiers, L, which has to be specified in advance.
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8.2 ERROR CORRECTING OUTPUT CODES

The error correcting output codes (ECOC) ensemble strategy is developed for pro-

blems with multiple classes [254–259]. The idea is to avoid solving the multiclass

problem directly and to break it into dichotomies instead. Each classifier in the

ensemble discriminates between two possibly compound classes. For example,

let V ¼ {v1, . . . , v10}. We can break V into V ¼ {V(1), V(2)} where V(1)
¼

{v1, . . . , v5} and V(2)
¼ {v6, . . . , v10}.

8.2.1 Code Designs

8.2.1.1 The Code Matrix. We can represent each split of the set of c classes as a

binary vector of length c with 1s for the classes in V(1) and 0s for the classes in V(2).

The corresponding vector for the above example is [1, 1, 1, 1, 1, 0, 0, 0, 0, 0]T. The

set of all such vectors has 2c elements. However, not all of them correspond to differ-

ent splits. Consider [0, 0, 0, 0, 0, 1, 1, 1, 1, 1]T. Even if the Hamming distance

between the two binary vectors is equal to the maximum possible value 10, the

two subsets are again V(1) and V(2), only with swapped labels. Since there are

two copies of each split within the total of 2c splits, the number of different splits

is 2(c�1). The splits {V, ;} and the corresponding {;, V} are of no use because

they do not represent any discrimination task. Therefore the number of possible

different splits of a set of c class labels into two nonempty disjoint subsets (dichotomies)

is

2(c�1) � 1 (8:2)

We can choose L dichotomies to be the classifier assignments. These can be rep-

resented as a binary code matrix C of size c� L. The (i, j)th entry of C, denoted

C(i, j) is 1 if class vi is in V
(1)
j or 0, if class vi is in V

(2)
j . Thus each row of the

code matrix, called a codeword, corresponds to a class and each column corresponds

to a classifier. Below is a code matrix for c ¼ 4 classes with all possible 2(4�1) � 1 ¼

7 different dichotomies.

D1 D2 D3 D4 D5 D6 D7

v1 0 0 0 1 0 1 1

v2 0 0 1 0 0 0 0

v3 0 1 0 0 1 0 1

v4 1 0 0 0 1 1 0

Suppose that the classifiers in the ensemble output binary labels (s1, . . . , sL) for
a given input x. The Hamming distance between the classifier outputs and

the codewords for the classes is calculated and the class with the shortest Ham-
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ming distance is chosen as the label of x. For the above example, let

(s1, . . . , sL) ¼ (0, 1, 1, 0, 1, 0, 1). The Hamming distances to the class codewords

are 5, 3, 1, and 5, respectively, so label v3 is assigned to x. The support for class

vj can be expressed as

mj(x) ¼ �
XL
i¼1

jsi � C( j, i)j (8:3)

8.2.1.2 Row and Column Separation for Error Correcting Output
Codes. To take the most advantage of an ECOC classifier, the code matrix should

be built according to two main criteria.

Row Separation. In order to avoid misclassifications, the codewords should be as

far apart from one another as possible. We can still recover the correct label for x
even if several classifiers have guessed wrongly. A measure of the quality of an

error correcting code is the minimum Hamming distance between any pair of code-

words. If this distance is denoted by Hc, the number of errors that the code is guar-

anteed to be able to correct is

Hc � 1

2

� �
(8:4)

Column Separation. It is important that the dichotomies given as the assignments

to the ensemble members are as different from each other as possible too. This will

ensure low correlation between the classification errors and will increase the ensem-

ble accuracy [256]. The distance between the columns must be maximized keeping

in mind that the complement of a column gives the same split of the set of classes.

Therefore, the column separation should be sought by maximizing

HL ¼ min
i, j,i=j

min
Xc
k¼1

jC(k, i)� C(k, j)j,
Xc
k¼1

j1� C(k, i)� C(k, j)j

( )
,

i, j [ {1, 2, . . . , L} (8:5)

8.2.1.3 Generation Methods for Error Correcting Output Codes. Below

we explain three simple ECOC generation methods.

One-per-Class. The standard ECOC is the so-called “one-per-class” code, which

is the default target output for training neural network classifiers for multiple classes.

The target function for class vj is a codeword containing 1 at position j and 0s else-

where. Thus the code matrix is the identity matrix of size c and we only build L ¼ c

classifiers. This encoding is of low quality because the Hamming distance between

any two rows is 2, and so the error correcting power is 2�1
2

� �
¼ 0.
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Exhaustive Codes. Dietterich and Bakiri [256] give the following procedure for

generating all possible 2(c�1) � 1 different classifier assignments for c classes.

They suggest that exhaustive codes should be used for 3 � c � 7.

1. Row 1 is all ones.

2. Row 2 consists of 2(c�2) zeros followed by 2(c�2) � 1 ones.

3. Row 3 consists of 2(c�3) zeros, followed by 2(c�3) ones, followed by 2(c�3)

zeros, followed by 2(c�3) � 1 ones.

4. In row i, there are alternating 2(c�i) zeros and ones.

5. The last row is 0, 1, 0, 1, 0, 1, . . . , 0.

The exhaustive code for c ¼ 4 obtained through this procedure is as follows:

D1 D2 D3 D4 D5 D6 D7

v1 1 1 1 1 1 1 1

v2 0 0 0 0 1 1 1

v3 0 0 1 1 0 0 1

v4 0 1 0 1 0 1 0

For 8 � c � 11 Dietterich and Bakiri [256] suggest to select columns from the

exhaustive code by an optimization procedure. Note that for c ¼ 3 the exhaustive

code will be the same as the one-per-class code, which shows that problems with

a small number of classes might not benefit from the ECOC approach. For values

of c larger than 11, random code generation is recommended.

A Matlab code for generating an exhaustive code for a given c is provided in

Appendix 8A.

Random Generation. Authors of studies on ECOC ensembles share the opinion

that random generation of the codewords is a reasonably good method [256,259].

Although these studies admit that more sophisticated procedures might lead to better

codes, they also state that the improvement in the code might have only marginal

effect on the ensemble accuracy. The example below illustrates the random

ECOC generation.

Example: Random Error Correcting Output Code Generation. In this method

each bit in each codeword is set to either 0 or 1 with probability 0.5. The best code

matrix is retained out of T random generations, where T is a prespecified constant.

Denote by Hc the minimum Hamming distance between the codewords of the c

classes and by HL the minimum Hamming distance between the columns of the

code matrix (the L dichotomies for the classifiers). The criterion that we want to

maximize is the sum Hc þ HL.

We ran the ECOC generating procedure for all combinations of number of classes

c ¼ {4, 6, 8, . . . , 16} and L ¼ {5, 10, 15, . . . , 30}. The minimum Hamming
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distances between the codewords, Hc, for all combinations of c and L are given in

Table 8.1a, and the minimum Hamming distances HL are given in Table 8.1b.

Naturally, the largest distance between the codewords is found for the codes with

the largest length. However, for these codes, we cannot arrange for good separability

between columns. For example, with L ¼ 30 classifiers (30 bits in the codeword),

the best code found by the random search for T ¼ 500 had a minimum Hamming

distance between the codewords of Hc ¼ 14 but there are classifiers that must

solve exactly the same dichotomy (HL ¼ 0).

The code for the randomly generated ECOCs is given in Appendix 8B.

8.2.2 Implementation Issues

The standard example of an ECOC classifier is a neural network (NN) trained with

the one-per-class model for which L ¼ c. For example, in a 10-class problem, the

NN target for class v3 would be [0, 0, 1, 0, 0, 0, 0, 0, 0, 0]T. Instead of this vector

we can supply the L-bit codeword for class v3. Thus a single NN will solve the

whole problem.

Figure 8.2 shows three possible implementations of a classifier for a multiclass

problem. Subplot (a) is the standard classifier, called “direct multiclass represen-

tation” [256] whereby the output is a class label. We can place in this group the

NN with one-per-class output and the winner-takes-all principle for inferring the

class label of x. Subplot (b) shows a “monolithic” system as termed in Ref. [260].

Here one classifier, for example, an NN, learns all the bits of the codewords. The

monolithic NN approach has been found to lead to a lower error rate than the direct

multiclass representation [256]. Subplot (c) shows a system called a “parallel dichot-

TABLE 8.1 Minimum Hamming Distances Hc and HL for ECOCs for

Different Values of c and L.

c L! 5 10 15 20 25 30

(a) Hc (minimum distance between codewords)

4 2 5 8 11 14 16

6 2 5 7 9 12 14

8 1 4 6 8 10 12

10 1 3 6 7 10 12

12 1 3 5 7 9 11

14 1 3 5 6 9 11

16 0 2 4 6 8 10

(b) HL (minimum distance between classifier assignments)

4 1 0 0 0 0 0

6 2 1 1 0 0 0

8 4 2 1 1 1 1

10 4 2 2 1 1 1

12 5 3 3 2 2 2

14 6 4 3 3 3 3

16 7 5 4 4 3 3
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omizer” [260]. In this model each dichotomy is learned by a separate classifier. The

parallel dichotomizer has been found to be better than the monolithic system [260].

Even if the training process might take longer and the computation of the class label

might be more time consuming, when accuracy has the highest priority, the parallel

approach should be preferred.

A curious difference between a parallel ECOC system and a standard classifier

ensemble is that each classifier in the ECOC system solves a different two-class pro-

blem whereas in standard classifier ensembles all classifiers solve the same (possibly

multiclass) problem [256].

8.2.3 Error Correcting Ouput Codes, Voting, and
Decision Templates

The combiner of an ECOC ensemble is the minimum Hamming distance. This can

be viewed as majority voting as follows. Suppose that classifier Di solves the dichot-

omy {V(1)
i , V(2)

i }. Let the decision of Di be si ¼ 1, that is, compound class V(1)
i is

chosen. Each individual class within V
(1)
i will obtain one vote from Di. Since

each dichotomy contains all the classes, each class will obtain a vote (for or against)

from each classifier. Selecting the class with the largest sum of votes is equivalent to

making a decision in favor of the class whose codeword has the lowest Hamming

distance to the binary word of the L outputs s1, . . . , sL. If the classifiers are made

to learn very different boundaries, then there is a good chance that their errors

will be unrelated.

Fig. 8.2 Three implementations of a classifier for a multiclass problem.
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Example: Error Correcting Output Codes, Majority Voting, and Decision

Templates. Table 8.2 shows the code matrix for c ¼ 8 classes and codeword length

L ¼ 15 found with the random generation method (Hc ¼ 5, HL ¼ 1).

Suppose that the ensemble D ¼ {D1, . . . , D15} produces the following set of

outcomes for some input x

½1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1� (8:6)

The Hamming distances to the eight codewords are as follows: 8, 6, 9, 8, 6, 11, 9,

8. There is a tie between v2 and v5, so any of the two labels can be assigned.

By giving label s1 ¼ 1, classifier D1 votes for classes v1, v2, v3, v5, v7, and v8.

The Hamming distance between binary vectors is equal to the Euclidean distance

between them. If we regard the codewords as the templates for the classes, then by

labeling x according to the minimal Hamming distance, we implement the decision

template combiner.

8.2.4 Soft Error Correcting Output Code Labels and
Pairwise Classification

Kong and Dietterich [261] use soft labels di, j(x) ¼ P̂P(V
( j)
i jx) instead of the 0/1

labels from the L classifiers in the ensemble j ¼ 1; 2. Since there are only two com-

pound classes, di,2(x) ¼ 1� di,1(x). The Hamming distance between the classifier

outputs and the codeword for class vk is

mk(x) ¼
XL
i¼1

jdi,1(x)� C( k, i)j; k ¼ 1; . . . ; c (8:7)

Note that only di,1(x) is sufficient for the calculation. Suppose that in the eight-class

example above the classifier outputs were

½0:2, 0:7, 0:3, 0:3, 0:9, 0:9, 0:5, 1:0, 0:9, 0:9, 0:4, 0:4, 0:6, 0:2, 0:0� (8:8)

TABLE 8.2 Code Matrix for c 5 8 Classes and L 5 15 Dichotomizers.

v1 1 1 1 1 1 0 0 0 1 1 0 0 0 0 0

v2 1 0 0 1 1 1 0 0 1 1 1 1 0 1 0

v3 1 0 0 0 1 1 0 1 1 0 0 1 0 0 0

v4 0 1 0 0 1 1 0 1 1 0 1 0 1 0 0

v5 1 1 1 0 1 1 0 1 0 1 1 0 0 0 1

v6 0 0 0 0 1 0 0 0 0 1 0 0 1 1 0

v7 1 0 0 1 1 0 0 0 1 0 0 0 0 1 1

v8 1 0 1 1 1 0 1 1 0 0 0 0 1 0 0
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The eight Hamming distances in this case are 6.8, 7.0, 5.6, 4.4, 6.6, 7.0, 9.2, 7.6 and

the ensemble label for the input x is v4.

Pairwise discrimination between classes has been suggested in Refs.

[257,262,263]. In this model there are c� (c� 1)=2 possible dichotomies, one for

each pair of classes. The code word for class vj will contain “don’t care” symbols

to denote the classifiers that are not concerned with this class label. If we use all

pairwise dichotomies, each code vector will have c� 1 informative bits and

(c� 1)� (c� 2)=2 “don’t care” bits. The class label for an input x is inferred

again from the similarity between the codewords and the outputs of the classifiers.

This method is impractical for a large c as the number of classifiers becomes

prohibitive.

Cutzu suggests that we may wish to use only a subset of all possible pairwise clas-

sifiers. Then instead of the for votes, we should count the against votes [262]. There

is a good intuitive reason for that. Let Dk be the classifier discriminating between vi

or vj. Table 8.3 shows the possible scenarios in voting if Dk suggests vi. It is intui-

tively clear that the against vote is the safer option.

Cutzu explains that counting the against votes will be equivalent to counting the

for votes if all pairwise classifiers are used. However, if only part of the possible

pairwise classifiers are used as the ensemble, counting the against votes is the better

method [262].

8.2.5 Comments and Further Directions

Kong and Dietterich study the reason behind the success of ECOC ensembles [261].

They use a decomposition of the error rate into bias and variance components and

show that ECOC ensembles reduce both bias and variance. The variance is reduced

by the very fact that multiple instable classifiers are used. Variance reduction is a

characteristic of any homogeneous voting scheme where the same classifier

model is applied multiple times. Bagging is one such algorithm as discussed in

Chapter 7. Kong and Dietterich also state that bias is not reduced by such homo-

geneous voting schemes. They attribute the reduction in the bias in ECOC ensem-

bles to the diversity in the errors of the classifiers. This diversity is due to the fact

that different boundaries are being learned by the classifiers. They conjecture that

classifiers with “global behavior” will benefit from ECOC (e.g., multilayer percep-

trons and decision trees) whereas classifiers with “local behavior” will not benefit

TABLE 8.3 Possible Scenarios in Voting if Classifier Dk

Suggests Label vi in Solving a Pairwise Dichotomy Between

vi and vj .

True label! vi vj Another

Vote for vi No error Error Error

Vote against vj No error Error No error
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from ECOC in such a degree (e.g., k-nearest neighbor, Parzen and RBF neural net-

works).

Computational complexity of ECOC ensembles has been identified in Ref. [261]

as a problem for future research. The success of ECOC ensembles depends on the

difference between the codewords. For a greater difference the codeword length L

should be large. This means that a large number of decision trees or neural networks

have to be stored and run for each new object submitted for classification. Such

ECOC systems have been applied for cloud classification [254] and electronic

noses [264].

8.3 COMBINING CLUSTERING RESULTS

Recall the clustering task in pattern recognition from Chapter 1. We are looking for

groups (clusters) in the data. The members of one cluster should be similar to one

another and dissimilar to the members of other clusters. A clustering algorithm pro-

duces a partition on an unlabeled data set Z, P ¼ (Z(1), . . . , Z(c)), such that no two

clusters intersect and the union of all clusters is the data set itself.

8.3.1 Measuring Similarity Between Partitions

8.3.1.1 Mutual Information. The difficulty in finding a measure of similarity

between partitions is that the labels are symbolic and any permutation of the symbols

represents the same partition. This would be a problem if we want to match the

labels directly. For example, the following two partitions of nine objects into

three classes are identical but a direct comparison will result in no match at all.

Object 1 2 3 4 5 6 7 8 9

Partition 1 1 1 1 2 2 2 3 3 3

Partition 2 3 3 3 1 1 1 2 2 2

We can fix the labels of Partition 1, enumerate all the permutations of the labels

of Partition 2 and pick the labeling that maximizes some direct measure of match.

The simplest direct measure of match is the proportion of matched labels.

A way to avoid relabeling is to treat the two partitions as (nominal) random vari-

ables, say X and Y , and calculate the mutual information [265–267] between them.

Consider the confusion matrix for partitions A and B where the rows correspond to

the clusters in A and the columns correspond to the clusters in B. Denote by Nij the

(i, j)th entry in this confusion matrix, where Nij is the number of objects in both

cluster i of partition A and cluster j in partition B. Denote by Ni: the sum of all col-

umns for row i; thus Ni: is the number of objects in cluster i of partition A. Define N: j
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to be the sum of all rows for column i, that is, N: j is the number of objects in cluster j

in partition B. (There is no requirement that the number of clusters in A and B should

be the same.) Let cA be the number of clusters in A and cB be the number of clusters

in B. The mutual information between partitions A and B is33

MI(A, B) ¼
XcA
i¼1

XcB
j¼1

Nij

N
log

NijN

Ni:N: j

� �
(8:9)

A measure of similarity between partitions A and B is the normalized mutual infor-

mation [265]34

NMI(A, B) ¼

�2
XcA
i¼1

XcB
j¼1

Nij log
NijN

Ni:N: j

� �
XcA
i¼1

Ni: log
Ni:

N

� �
þ
XcB
j¼1

N: j log
N: j

N

� � (8:11)

If A and B are identical, then NMI takes its maximum value of 1. If A and B are

independent, that is, having complete knowledge of partition A, we still know noth-

ing about partition B and vice versa, then

NijN

Ni:N:j
! 1, for any i, j, and NMI(A, B)! 0

Example: Normalized Mutual Information (NMI) Measure for Comparing

Partitions. Consider partitions A and B with the following labeling

Object 1 2 3 4 5 6 7 8

Partition A 1 1 2 2 3 3 4 4

Partition B 2 1 3 3 2 1 2 2

33By convention, 0� log (0) ¼ 0.
34 The NMI proposed by Strehl and Ghosh [266] is

NMI(A, B) ¼

XcA
i¼1

XcB
j¼1

Nij log
NijN

Ni:N: j

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXcA
i¼1

Ni: log
Ni:

N

� �XcB
j¼1

N: j log
N: j

N

� �vuut
(8:10)
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The confusion matrix between the two partitions is

B !

A # 1 2 3 Total

1 1 1 0 2

2 0 0 2 2

3 1 1 0 2

4 0 2 0 2

Total 2 4 2

Using Eq. (8.10),

NMI(A, B) ¼
�2� 5:5452

�11:0904� 8:3178
� 0:5714 (8:12)

The value of NMI will be the same for any permutation of the labels of A or B.

8.3.1.2 Rand Index. Rand [268] proposes a simple measure of agreement

between two partitions A and B. Denote by n11 the number of pairs of objects

from Z, which are both in the same cluster in A and are also both in the same cluster

in B. Let n00 be the number of pairs of objects from Z that are in different clusters in

A and are also in different clusters in B. Both n00 and n11 are agreement quantities as

in both partitions the pair of objects have been found to be either similar enough so

as to be placed in the same cluster or dissimilar enough so as to be placed in different

clusters. Accordingly, we can define the two disagreement quantities n01 and n10.

Note that there are N(N � 1)=2 possible pairs of objects in Z, therefore

n00 þ n11 þ n01 þ n10 ¼
N(N � 1)

2
(8:13)

The Rand index is

r(A, B) ¼
n00 þ n11

n00 þ n11 þ n01 þ n10
¼

2 � (n00 þ n11)

N(N � 1)
(8:14)

The Rand index takes value 1 if the partitions agree completely (regardless of the

permutation of the labels), but does not have a constant value for the case when

both partitions are drawn at random.
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8.3.1.3 Jaccard Index. Using the same notation as for the Rand index, the

Jaccard index between partitions A and B is [269]

J(A, B) ¼
n11

n11 þ n01 þ n10
(8:15)

8.3.1.4 Adjusted Rand Index. The adjusted Rand index corrects for the lack

of a constant value of the Rand index when the partitions are selected at random

[270]. Suppose that the two partitions A and B are drawn randomly with a fixed num-

ber of clusters and a fixed number of objects in each cluster (generalized hypergeo-

metric distribution). The expected value of the adjusted Rand index for this case is

zero. The adjusted Rand index, ar, is calculated from the values Nij of the confusion

matrix for the two partitions as follows

t1 ¼
XcA
i¼1

Ni:

2

� �
; t2 ¼

XcB
j¼1

N: j

2

� �
; (8:16)

t3 ¼
2t1t2

N(N � 1)
; (8:17)

ar(A, B) ¼

PcA
i¼1

PcB
j¼1

Nij

2

� �
� t3

1
2
(t1 þ t2)� t3

(8:18)

where a
b

� 	
is the binomial coefficient a!=b!(a� b)!. The value of the adjusted Rand

index for partitions A and B from the previous example is

ar(A, B) ¼
2� 8

7
1
2
(4þ 8)� 8

7

¼
3

17
(8:19)

8.3.2 Evaluating Clustering Algorithms

Rand [267] proposes four scenarios for evaluating a clustering algorithm:

1. Retrieval. The principal problem in clustering is that there are no preassigned

labels on the data set. However, we can generate artificial data with a desired

cluster structure and use this structure as a ground truth. Typical examples are

clouds of points generated from a multidimensional normal distribution; geo-

metrical figures such as our banana examples; and uniformly distributed

points.

2. Sensitivity to perturbation. A reliable clustering algorithm should not be

affected too much by small perturbations of the data set. We can test this prop-

erty by adding a small amount of noise to each point and compare the resultant

clustering with the clustering of the noise-free data [268]. Another option is to
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compare pairs of partitions obtained by injecting noise and draw conclusions

on the basis of the distribution of the pairwise similarities.

3. Sensitivity to missing values. Clustering should not be affected to a large

extent if a small part of the data set is missing. To evaluate a clustering algor-

ithm, we can subsample from Z (take M , N objects without replacement)

and run the algorithm on each sample. The similarity between each pair of

clustering results is calculated and the distribution of these similarities is

used to judge how sensitive the clustering algorithm is. An algorithm for

obtaining a set of pairwise similarities, called “the model explorer algorithm”

is proposed by Ben-Hur et al. [269] (Figure 8.3). They apply this model for

different values of c (the number of clusters), and estimate the most likely

number of clusters in data by inspecting the histograms of the distributions

of pairwise similarities. The details of the model-explorer procedure are

explained in an example below.

4. Comparison to other clustering algorithms. Clustering algorithms are usually

devised to optimize different criterion functions. These functions are chosen

to represent the concept of a “good clustering.” For example, a “good cluster”

might be defined as a compact one, that is, a cluster where the distances

between the points and the cluster centroid are small. Another equally intui-

Fig. 8.3 The model explorer algorithm of Ben-Hur et al. [269] for a fixed value of the number of

clusters, c.

Model explorer algorithm

(for a fixed number of clusters, c)

1. Pick the number of clusters c; the number of pairs of subsamples L; and
a similarity measure SðA;BÞ between two partitions A and B. Specify the

proportion of objects, f ; to be sampled from Z without replacement.

(Recommended value is f ¼ 0:8:)

2. Generate two subsamples from Z; S1 and S2; of size f N each.

3. Cluster S1 into c clusters; denote this partition by AðS1Þ:

4. Cluster S2 into c clusters; denote this partition by BðS2Þ:

5. Find the objects present in both subsamples, i.e., S12 ¼ S1 > S2:

6. Calculate and store the similarity between the restricted partitions

SðAðS12Þ;BðS12ÞÞ:

7. Repeat steps 2 to 6 L times.
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tive definition of a good cluster is that each point shares the same cluster label

as its nearest neighbor. The algorithms implementing these two definitions

might lead to very different partitions of the same data set. Comparison of

clustering algorithms that optimize different criteria only makes sense when

we have a ground truth label or when the goodness of the clusterings can be

evaluated visually (the retrieval task).

Example: The Model Explorer Algorithm for the Banana Data. The model

explorer algorithm was run with the single linkage clustering, for c ¼ 2, 3, . . . , 10
clusters and L ¼ 200 pairs of subsamples, with the banana data in Figure 1.16.

The presumption is that if there is a structure in the data, it will be found even if

small changes of the data set are made, for example, removing, adding, or slightly

offsetting a small fraction of the points [269]. Therefore, the partitions of the per-

turbed data sets will be similar to one another. Conversely, if there is no structure

in the data, then partitions will be arbitrary and will exhibit larger spread of the pair-

wise similarity. Ben-Hur et al. [269] suggest to inspect the histograms of the simi-

larity and choose the largest number of clusters, c, for which the similarity has

consistently high values. Figure 8.4 shows the results for the banana data using

the Jaccard index (8.15) as the similarity measure.

Fig. 8.4 Histograms of the Jaccard index of similarity between pairs of partitions randomly

drawn from the banana data according to the model-explorer algorithm (L ¼ 200, f ¼ 0.8). The

single linkage algorithm was used to obtain the partitions.
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The histograms suggest that the data set is most likely to have two clusters. A

piece of Matlab code for the model explorer algorithm is given in Appendix 8C.

The single linkage clustering procedure can be replaced by any other procedure

that produces a vector of numerical labels taking values 1, 2, . . . , c. The function

for calculating the Jaccard index is also given.

8.3.3 Cluster Ensembles

Combining the results of several clustering methods has recently resurfaced as one

of the branches of multiple classifier systems [122,265–267,271–275]. The aim of

combining partitions is to improve the quality and robustness of the results. Choos-

ing a single clustering algorithm for the problem at hand requires both expertise and

insight, and this choice might be crucial for the success of the whole study. Selecting

a clustering algorithm is more difficult than selecting a classifier. In classification we

may run cross-validation pilot experiments and determine which model to use. For

clustering, no ground truth is available and the results are not easy to assess. There-

fore, instead of running the risk of picking an unsuitable clustering algorithm, a

cluster ensemble can be used [266].

Based on potential applications in data mining, distributed computing, finance

data analysis, gene expression analysis, and so on, Strehl and Ghosh identify two

major uses of cluster ensembles [266]:

1. Knowledge reuse. In some application domains, various clusterings of the

data have already been made, either by data analysis or by predefined group-

ing rules. Each partition is a piece of knowledge about the object. We aim at

re-using this knowledge to build up a single resultant clustering.

2. Distributed clustering. Two subdomains of distributed clustering are feature-

distributed clustering and object-distributed clustering. Feature distributed

clustering means that, for some reason, the whole data set cannot be processed

on one machine or by one clustering procedure. The reason could be compu-

tational or one of privacy and security of the raw data. L partitions of the data

set are built separately, using different subsets of features, and then aggregated

into a single partition. In object-distributed clustering the objects are clustered

separately. A clustering will therefore be performed on the regional data and

the characteristics of the clusters will be aggregated at the combiner level.

In classifier combination diversity is vital for the success of the ensemble. To

ensure that the cluster ensemble is diverse we can use the same strategies as for

building classifier ensembles:

. Different subsets of features. Each partition is found using only a subset of the

original feature set. The subsets of features might be overlapping or disjoint.

. Different clustering algorithms. We can combine hierarchical and nonhier-

archical algorithms, sequential or batch algorithms, random or deterministic

algorithms, and so on.
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. Randomizing. Some clustering algorithms are inherently random, for

example, those based on genetic algorithms or simulated annealing ideas.

Thus the ensemble can be formed as the result of L different runs of the algor-

ithm. Other clustering algorithms, such as c-means, only need a random initi-

alization and then proceed in a deterministic way. To compose a cluster

ensemble, we can run such an algorithm from L different initial starting points.

Algorithms that use the data in a sequential way, for example, vector quantiza-

tion, may produce different results if the data set is reordered before feeding it

to the algorithm.

. Different data sets. Resampling with or without replacement is one possible

route for building a cluster ensemble [265,275].

8.3.3.1 Majority Vote Clustering. Figure 8.5 shows a generic cluster ensem-

ble algorithm. For a given data set Z ¼ {z1, . . . , zN}, L ensemble members are gen-

erated by clustering Z or a subsample of it. For each clustering, a co-association

matrix of size N � N is formed [265,271–273], denoted M(k), termed sometimes

connectivity matrix [275] or similarity matrix [266]. Its (i, j)th entry is 1 if zi and

zj are in the same cluster in partition k, and 0, otherwise. A final matrixM is derived

fromM(k), k ¼ 1, . . . , L, called a consensus matrix in Ref. [275]. The final clustering
is decided using M. The number of clusters may be prespecified or found through

further analysis of M.

Perhaps the simplest implementation of the generic cluster ensemble algorithm is

as follows (called “voting c-means algorithm” in Ref. [272] and “evidence accumu-

lation algorithm” in Ref. [273]).

Fig. 8.5 A generic cluster ensemble algorithm.

Cluster ensemble algorithm

1. Given is a data set Z with N elements. Pick the ensemble size L and the

number of clusters c.

2 Generate L partitions of Z in c clusters.

3. Form a co-association matrix for each partition, MðkÞ ¼


m
ðkÞ
ij

�
; of size

N � N; k ¼ 1; . . . ; L; where

m
ðkÞ
ij ¼

1; if zi and zj are in the same cluster in partition k;
0; if zi and zj are in different clusters in partition k

�

4. Form a final co-association matrixM (consensus matrix) fromMðkÞ; k ¼
1; . . . ; L; and derive the final clustering using this matrix.
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1. Pick the initial number of clusters c, the ensemble size L, and a threshold

u, 0 , u , 1.

2. Run c-means L times, with c clusters, and form M(1), . . . , M(L).

3. Calculate M ¼ 1
L
(M(1) þ � � � þM(L)).

4. “Cut” M at threshold u. Join in the same cluster all the points whose pairwise

entry in M is greater than u. For all the remaining points form single-element

clusters.

This implementation is based on the majority vote. If points zi and zj have been in

the same cluster in the majority of the L partitions, then they will be assigned to the

same cluster in the final partition. The final number of clusters is not prespecified; it

depends on the threshold u and on the number of initial clusters c. The combination

of these two parameters is crucial for discovering the structure of the data. The rule

of thumb is c ¼
ffiffiffiffi
N
p

. Fred and Jain [273] also consider fitting a mixture of Gaussians

to Z and taking the identified number of components as c. Neither of the two heur-

istics works in all the cases. Fred and Jain conclude that the algorithm can find clus-

ters of any shape but it is not very successful if the clusters are touching. Figure 8.6

shows the results from applying the voting c-means algorithm to the banana data.

The consensus matrix M can be regarded as a similarity matrix between the

points on Z. Therefore, it can be used with any clustering algorithm that operates

directly upon a similarity matrix. In fact, “cutting”M at a certain threshold is equiv-

alent to running the single linkage algorithm and cutting the dendrogram obtained

from the hierarchical clustering at similarity u. Viewed in this context, the cluster

ensemble is a type of stacked clustering whereby we can generate layers of simi-

larity matrices and apply clustering algorithms on them. Figure 8.7 shows the results

of the stacked clustering for the banana data. We ran single linkage clustering onM

and stopped at two clusters. The misclassified objects are encircled.

Fig. 8.6 Majority vote clustering: Results from the combination of L ¼ 50 c-means clusterings

from different initializations (c ¼ 10, u ¼ 0:5).
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To measure the match between the true banana labels and the obtained labels, we

used the Rand index, Jaccard index, the adjusted Rand index, and the normalized

mutual information index (NMI). Table 8.4 shows the values of the indices for the

two individual clusterings (single linkage and c-means), the majority vote cluster-

ing, and the stacked clustering. Majority vote scores higher than the rest of the

methods because the two bananas can be assembled from the identified clusters

with virtually no error and because of the higher number of final clusters. The

remaining three clustering methods are rated differently by the similarity indices,

which is yet another hint for the difficulties in judging clustering results.

It should be noted that the number of parameters that need to be specified in the

majority vote clustering and the stacked clustering is the same. Instead of a threshold

u, in stacked clustering we have to specify the desired number of clusters.

A suitable number of clusters can be derived from the single linkage clustering

using M as the similarity matrix [265,272,273]. At step i, hierarchical clustering

merges clusters at distance di (note that di increases with i). Suppose that the dis-

tance between the clusters is associated with some energy needed to join the clusters.

If the distance is small, then a small amount of energy is needed and joining is easy.

Fig. 8.7 Stacked clustering with two target clusters: Results from the combination of L ¼ 50

c-means clusterings from different initializations (c ¼ 10). The misclassified objects are encircled.

TABLE 8.4 Similarity Indices Between the Original Banana Labels

and the Labels from Four Clustering Methods.

Clustering

Method Rand Jaccard Adjusted Rand NMI

Single linkage 0.4982 0.4771 0.0049 0.0663

c-means 0.5927 0.4289 0.1858 0.1587

Majority vote 0.7935 0.5976 0.5856 0.6197

Stacked

clustering

0.5679 0.4653 0.1390 0.2615
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Define Di ¼ di � di�1 to be the additional energy from step i� 1 to step i for the

merge to occur. If this energy is too high, then this might mean that we are forcing

the system into a structure that it does not have. Therefore we should stop the pro-

cess at the highest Di and return the N � iþ 1 clusters at step i� 1. In other words,

we should cut the dendrogram resulting from the hierarchical clustering at the lar-

gest jump of the distance criterion.

Fred and Jain propose a framework for analyzing majority vote clustering ensem-

bles [265]. They use the normalized mutual information criterion (NMI) to measure

the consistency between the partition produced by the ensemble and the L individual

partitions. Let P ¼ {P1, . . . , PL} be the ensemble and let P� be the resultant par-

tition. The consistency of the final partition with the ensemble is measured as

NMI(P�, P) ¼
1

L

XL
i¼1

NMI(P�, Pi) (8:20)

Let c be the supposed number of clusters in Z. The optimal resultant partition in c

clusters will be the one that maximizes NMI(P�, P). To select the optimal

number of clusters c, Fred and Jain [265] propose to study the variance of

NMI(P�, P) computed across small perturbations in P. The value of c should be

the one corresponding to the lowest variance. The perturbations are generated by

taking bootstrap samples of the partitions in P. Suppose that Pb is an ensemble

formed by a bootstrap sample from the partitions in P. The ensemble partition,

P�b, is calculated and its consistency with the ensemble is measured by

NMI(P�b, Pb). This procedure is repeated B times for each c. The variance of

NMI(P�b, Pb) across all B bootstrap ensembles is taken to be a measure of the

robustness of the partition for the respective c.

Monti et al. [275] suggest using resampling from Z, either with or without repla-

cement. Data sets S1, . . . , SL are generated through resampling and each is clustered

using a chosen clustering algorithm. Since not all objects will be included in all the

data sets, the co-association matrices will not be completely filled. A co-association

matrixM(i) will have entries 1 and 0 for the elements of Z that are in Si and “blanks”

for the remaining elements of Z. The overall consensus matrix M will be again the

average of the L individual co-association matrices ignoring the blank entries. For

example, suppose that entries m2,7 in M(1), . . . , M(10) are [0, 0, 1, #, #, 1, 1, 0, #,

1], respectively, where # denotes a blank entry. Then m2,7 ¼ 4=7. Monti et al. pro-

pose to run the clustering for the individual ensemble members for a range of c and

analyze M in order to select the best c. If there was a clear-cut structure in the data

set, then all the individual algorithms would identify it, and the consensus between

them would be high. This is shown by values close to 1 and 0 in M. Hence the dis-

tribution of the values in M can be an indication of the confidence of the ensemble

about the currently used value of c. The optimal number of clusters is decided as the

one for whichM shows the highest confidence. The consensus matrixM is then sub-

mitted to a clustering algorithm together with the optimal c (stacked clustering as

discussed earlier) to derive the final partition.
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The generic cluster ensemble method requires a co-association matrix of size

N � N, which might be infeasible for large data sets [276]. To reduce the compu-

tational complexity Fred and Jain propose to reduce the N � N co-association matrix

to an N � p matrix where p , N. Only the p nearest neighbors of each element in Z

participate in the co-association matrices throughout the algorithm.

8.3.3.2 Direct Optimization in Cluster Ensembles. If we had a reliable

way to solve the correspondence problem between the partitions, then the voting

between the clusterers would be straightforward: just count the number of votes

for the respective cluster. The problem is that there are c! permutations of the labels

and an exhaustive experiment might not be feasible for large c. However, for small c

we can still be able to solve the correspondence problem and run a direct majority

vote clustering.

Let di, j(x) be the membership to cluster j in partition Pi. Denote by mk(x) the

membership to cluster k in partition P� found as the ensemble output. Weingessel

et al. [276] propose a sequential cluster ensemble algorithm that goes through the

following steps:

1. Choose the number of iterations (ensemble members) L and the number of

clusters c.

2. Run a clustering algorithm to find the first partition P1. Initialize the ensemble

partition P� as P� ¼ P1. Set i ¼ 2.

3. Run a clustering algorithm to find partition Pi.

4. Permute the labels of Pi to find the labeling that maximizes the similarity

between P� and Pi. (Similarity is defined as the trace of the confusion matrix

between the two partitions.)

5. Using the optimal labeling of Pi, update the membership of object zj [ Z in

cluster k at step i as

m
{i}
k (zj) ¼

i� 1

i
m
{i�1}
k (zj)þ

1

i
di,k(zj), j ¼ 1, . . . , N (8:21)

where the superscript of m denotes the iteration number and k ¼ 1, . . . , c.

6. Increment i and repeat steps 3 to 5 until i . L. Return P� ¼ PL.

Finally zj is assigned to the cluster with the largest mk(zj) in the final partition, that is,

argmax
k

m
{L}
k (zj), j ¼ 1, . . . , N (8:22)

This algorithm can be used with fuzzy clustering as the cluster membership

di,k(zj) is not restricted to zero or one.

If c is large, the correspondence problem between partitions A and B can be

solved approximately by the following greedy algorithm [276]:
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1. Find the confusion matrix between A and B.

2. Find the maximum element in the matrix.

3. Relate the two respective clusters and drop them from both partitions.

4. Reduce the confusion matrix and repeat steps 2 and 3 until all correspon-

dences are resolved.

The Operational Research field offers a solution to the assignment problem by the

so called Hungarian algorithm [277].

Strehl and Ghosh [266] consider a direct optimization method for finding the

resultant partition, P�, for a given ensemble. The objective is to maximize NMI

between P� and the ensemble, that is, find

NMI(P�, P) ¼ max
P

NMI(P, P) (8:23)

where P varies among the possible

1

c!

Xc
i¼1

c

i

� �
(�1)(c�i)iN (8:24)

partitions of N objects into c clusters [37]. To avoid the task of enumerating all

partitions and calculating the NMI for each one, Strehl and Ghosh devise a greedy

algorithm that sequentially relabels the points of Z until a local maximum of NMI

is reached. The algorithm operates as follows:

1. Choose partition Pk among P1, . . . , PL, which has the largest mutual infor-

mation with the ensemble, that is,

NMI(Pk, P) ¼ max
L

i¼1
NMI(Pi, P) (8:25)

to be the current partition.

2. Start a “sweep” through Z: For each zj [ Z change its label in the current par-

tition to any of the other c� 1 labels. Select the label that maximizes NMI

between the current partition and the ensemble.

3. If a label change has occurred during the sweep, arrange the data set Z in a

random order and start another sweep; else STOP and return the current par-

tition.

Besides being nonoptimal, this algorithm has been found to be very slow [266].

Strehl and Ghosh propose three alternative heuristic algorithms that are less time

consuming. Since all these algorithms are optimizing the same criterion (NMI),

they can be included in a meta-scheme whereby all three are tried on Z and the

best algorithm is chosen.
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The ultimate goal of cluster ensemble methods is to provide a robust clustering

tool that does not rely on great expertise on the user’s part or on a lucky guess.

The authors of the methods and algorithms presented in this section have given

experimental verification of the methods’ potential for that with both artificial and

real data.

APPENDIX 8A EXHAUSTIVE GENERATION OF ERROR
CORRECTING OUTPUT CODES

The code below generates a code matrix Cwith an exhaustive ECOC for c number of

classes.

Since there are exactly 2(c�1) � 1 different assignments, the exhaustive code will

be obtained if we enumerate the numbers from 0 to 2(c�1) � 2, convert them from

decimal to binary and append a string of 1s to be the first row of the code matrix.

The code line below produces a code matrix of string type.

C=[num2str(ones(2^(c-1)-1,1))’;dec2bin(0:2^(c-1)-2)’]

APPENDIX 8B RANDOM GENERATION OF ERROR CORRECTING
OUTPUT CODES

The Matlab code below was used to produce the example for c ¼ 8 classes and L ¼

15 classifiers. The function ecoc_hamming takes as its input a c� L code matrix

P and outputs the minimum row (class) Hamming distance D and minimum column

(classifier) Hamming distance DD. The resultant code matrix is stored in PP with

minimum row Hamming distance Hc and minimum column Hamming distance HL.

c=8;L=15;
Hc=0;HL=0;T=500;
for t=1:T,
P=rand(c,L)>0.5;
[D,DD]=ecoc_hamming(P);
if D+DD>Hc+HL
PP=P; % best code matrix
Hc=D;
HL=DD;

end
end

function [D,DD]=ecoc_hamming(P);
[c,L]=size(P);
D=L; % Find the two closest rows (codewords)
for j=1:c-1
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for k=j+1:c
D=min(D,sum(abs(P(j,:)-P(k,:))));

end;
end;
DD=c; % Find the two closest columns (classifiers)
for j=1:L-1

for k=j+1:L
DD=min(DD,min(sum(abs(P(:,j)-P(:,k))),...

sum(abs(1-P(:,j)-P(:,k)))));
end;

end;

APPENDIX 8C MODEL EXPLORER ALGORITHM FOR
DETERMINING THE NUMBER OF CLUSTERS C

The code below produces an array r with L rows and nine columns (for number of

clusters c ¼ 2; . . . ; 10Þ containing the Jaccard index of similarity between partitions

(8.15). The (i, j)th entry in r is the Jaccard index for the ith pair of partitions, with

jþ 1 clusters in each. The function single_linkage(Z,c) can be replaced

by any other clustering algorithm that takes a data set Z and the desired number

of clusters, c, and produces a vector with class labels for the elements of Z.

L=200;f=0.8;N=size(Z,1);
template=zeros(N,1);
for classes=2:10,

for i=1:L,
S1=rand(N,1)<f;
S2=rand(N,1)<f;
S=S1&S2;
A=single_linkage(Z(find(S1),:),classes);
labelA=template;labelA(find(S1))=A;
B=single_linkage(Z(find(S2),:),classes);
labelB=template;labelB(find(S2))=B;
r(i,classes-1)=Jaccard_index(labelA(find(S)),...

labelB(find(S)));
end;

end;

The function Jaccard_index calculates the Jaccard coefficient for two

label vectors A and B. The same code can be used for the Rand index by adding

at the end r=agreement/total_pairs;.

function J=Jaccard_index(A,B);
N=length(A);
agreement=0;Jaccard=0;
for i=1:N-1,

for j=i+1:N,
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logicalA=A(i)==A(j);
logicalB=B(i)==B(j);
if (logicalA&logicalB),

Jaccard=Jaccard+1;
end;
if (logicalA&logicalB)j((~logicalA)&(~logicalB)),

agreement=agreement+1;
end;

end;
end;
total_pairs=N*(N-1)/2;
J=Jaccard/(total_pairs-agreement+Jaccard);
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9
Theoretical Views and

Results

There is no general, agreed upon, underlying theory of classifier combination. There

are, however, various results and ideas scattered in the literature. Some of these are

nearly obvious but have not been formulated explicitly hitherto, for example, the

equivalence of minimum and maximum combination rules for two classes (Section

9.1.1). Others require straightforward but relatively long algebraic manipulations, so

only selected special cases are brought in. For example, we follow the derivation of a

relationship between the individual and the ensemble errors only for unbiased

classifiers (Section 9.2) and refer the reader to the relevant literature for further

exploration of this line.

9.1 EQUIVALENCE OF SIMPLE COMBINATION RULES

9.1.1 Equivalence of MINIMUM and MAXIMUM Combiners for
Two Classes

Let D ¼ {D1, . . . , DL} be the classifier ensemble and V ¼ {v1, v2} be the set of

class labels. The individual outputs are estimates of the posterior probabilities,

that is, the output di, jðxÞ of classifier Di in support of the hypothesis that x comes

from class vj is an estimate of P(vjjx), j ¼ 1, 2. Here we prove that the minimum

and the maximum combiners are equivalent for c ¼ 2 classes and any number of

classifiers L, provided the two outputs from each classifier satisfy

P̂P(v1jx)þ P̂P(v2jx) ¼ 1
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This equivalence means that the class label assigned by one of the rules will be the

same as the class label assigned by the other rule. In case of a tie for one of the rules,

there will be a tie for the other rule as well, and any of the two class labels could be

assigned in both cases.

Proposition. Let a1, . . . , aL be the L outputs for class v1, and 1� a1, . . . , 1� aL be

the L outputs for class v2, ai [ ½0, 1�. Then the class label assigned to x by the

MINIMUM and MAXIMUM combination rules is the same.

Proof. Without loss of generality assume that a1 ¼ mini ai, and aL ¼ maxi ai. Then

the minimum combination rule will pick a1 and 1� aL as the support for v1 and v2,

respectively, and the maximum rule will pick aL and 1� a1. Consider the three

possible relationships between a1 and 1� aL.

(a) If a1 . 1� aL then aL . 1� a1, and the selected class is v1 with both

methods;

(b) If a1 , 1� aL then aL , 1� a1, and the selected class is v2 with both

methods;

(c) If a1 ¼ 1� aL then aL ¼ 1� a1, and we will pick a class at random with

both methods.

Note, a discrepancy between the error rates of the two combination methods

might occur in numerical experiments due to the random tie break in (c). If we

agree to always assign class v1 when the support for the two classes is the same

(a perfectly justifiable choice), the results for the two methods will coincide.

9.1.2 Equivalence of MAJORITY VOTE and MEDIAN Combiners for
Two Classes and Odd Number of Classifiers

Consider again the case of two classes, and L classifiers with outputs for a certain x,

a1, . . . , aL, for class v1, and 1� a1, . . . , 1� aL, for class v2, where L is odd.

Proposition. The class label assigned to x by the MAJORITY VOTE rule and

MEDIAN combination rule is the same.

Proof. Again assume that a1 ¼ mini ai, and aL ¼ maxi ai. Consider the median rule

first. The median of the outputs for class v1 is aLþ1=2.

(a) If a(Lþ1)=2 . 0:5, then the median of the outputs for v2, 1� a(Lþ1)=2 , 0:5,
and class v1 will be assigned. The fact that a(Lþ1)=2 . 0:5 means that all

a(Lþ1)=2þ1, . . . , aL are greater than 0.5. This makes at least (Lþ 1)=2 pos-

terior probabilities for v1 greater than 0.5, which, when “hardened,” will

give label v1. Then the majority vote rule will assign to x class label v1.
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(b) Alternatively, if a(Lþ1)=2 , 0:5, then 1� a(Lþ1)=2 . 0:5, and class v2 will be

assigned by the median rule. In this case, at least (Lþ 1)=2 posterior prob-

abilities for v2 are greater than 0.5, and the majority vote rule will assign

label v2 as well.

(c) For a(Lþ1)=2 ¼ 0:5 a tie occurs, and any of the two labels can be assigned by

the median rule. The same applies for the majority vote, as all the “soft”

votes at 0.5 (same for both classes) can be “hardened” to any of the two

class labels. Thus the majority can pull either way.

Again, a difference in the estimated errors of the two methods might occur in

experiments due to the arbitrary “hardening” of label 0.5. For example, if we

agree to always assign class v1 when the posterior probabilities are both 0.5, the

results for the two methods will coincide.

9.2 ADDED ERROR FOR THE MEAN COMBINATION RULE

9.2.1 Added Error of an Individual Classifier

In a series of studies, Tumer and Ghosh analyze the theoretical improvement on the

individual accuracy using different combination methods [278–280]. In this section

we give their framework and follow their derivation for the added error of the clas-

sifier ensemble.

To make the analysis possible, we confine the study to the simple case of x [ R

instead of x [ R
n. Two posterior probability functions P(vijx) and P(vjjx) are

depicted in Figure 9.1. Their intersection defines the optimal classification boundary

x�. Using x� for labeling x (vi for x � x�, vj for x . x�), the Bayes error will corre-

spond to the light gray area. Shown in Figure 9.1 by dashed lines are the (imperfect)

approximations of the two functions by a hypothetical classifier. The approxi-

mations intersect at a different point, introducing an inaccurate classification bound-

ary, denoted xb. The dark gray area corresponds to the additional error incurred by

using xb instead of x� for labeling x.

We assume that at each x, the approximations can be expressed as

P̂P(vijx) ¼ P(vijx)þ 1i(x) (9:1)

where P(vijx) is the true posterior probability and 1i(x) is an error term.

Note that the exact shape of the approximations is irrelevant for the added error.

The important requirement is that wherever the true probability for class vi domi-

nates the probabilities for the other classes, the approximation for this class also

dominates the other approximations. In the example in Figure 9.1, P(vjjx) is the

dominating probability in the interval ½x�, xb� but the approximation erroneously

places P(vijx) as the higher valued function in this interval.

Next we evaluate the effect of the offset b ¼ xb � x� on the accuracy of the

hypothetical classifier. At the new boundary, xb ¼ x� þ b, the approximations are
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the same value, that is,

P̂P(vijx
� þ b) ¼ P̂P(vjjx

� þ b) (9:2)

and therefore

P(vijx
� þ b)þ 1i(xb) ¼ P(vjjx

� þ b)þ 1j(xb) (9:3)

Tumer and Ghosh [279] assume that the posterior probability functions are mono-

tonic in the vicinity of the decision boundary x�. This is based on the intuition

that decision boundaries are typically located in the transition regions between

membership and nonmembership to a class, and not in local extrema. Thus we

can use a linear approximation, giving

P(vijx
� þ b) � P(vijx

�)þ bP0(vijx
�) (9:4)

where P0 denotes the derivative of P on x. Then Eq. (9.3) becomes

P(vijx
�)þ bP0(vijx

�)þ 1i(xb) ¼ P(vjjx
�)þ bP0(vjjx

�)þ 1j(xb) (9:5)

Fig. 9.1 Plot of two posterior probabilities P(vi jx) (the thin line) and P(vj jx) (the thick line) and

their approximations.
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Since for the true boundary x�, P(vijx
�) ¼ P(vjjx

�), Eq. (9.5) can be rewritten as

b½P0(vjjx
�)� P0(vijx

�)� ¼ 1i(xb)� 1j(xb) (9:6)

Denoting the difference of the derivatives by s ¼ P0(vjjx
�)� P0(vijx

�), we arrive at

b ¼
1i(xb)� 1j(xb)

s
(9:7)

The error 1i(x) can be broken into bias and zero-mean noise terms

1i(x) ¼ bi þ hi(x) (9:8)

Note, 1i(x) is a random variable taking different values for a fixed x depending upon

the quality of the approximation.

We shall assume that all estimates are unbiased, that is, bi ¼ 0, i ¼ 1, . . . , c. The
case of bi = 0 is followed in Refs. [278–280]. To make the analysis possible, we

assume also that the noise terms have the same distribution characteristics across

x [ R, specific for each class, that is, hi(x) ¼ hi. Then b is a random variable

b ¼
hi � hj

s
(9:9)

with mean

E(b) ¼ E
hi � hj

s

n o
¼ 0 (9:10)

and variance

s2
b ¼ V

hi � hj

s

n o

¼
1

s2
E (hi � hj � E hi � hj

� �
)2

� �
¼

1

s2
E (hi � hj)

2
� �

¼
1

s2
E (hi � 0)2)
� �

þ E (hj � 0)2
� �

� 2E hihj

� �� �

¼
s2
i þ s2

j � 2Cov{hi, hj}

s2
(9:11)

where s2
i and s

2
j are the variances of the error for classes vi and vj, respectively, and

Cov{hi, hj} denotes the covariance between the two error terms.
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The added error incurred by the imprecision of the classification boundary can be

derived as a function of the offset b. The dark-shaded region in Figure 9.1, corre-

sponding to the added error, can be approximated by a triangle with a base of length

P(vjjx
� þ b)� P(vijx

� þ b) ¼ P(vjjx
�)þ bP0(vjjx

�)� P(vijx
�)� bP0(vijx

�)

¼ b(P0(vjjx
�)� P0(vijx

�)) ¼ bs (9:12)

and height b. The area of the triangle is S4(b) ¼ b2s=2, where s does not depend on

b. The added classification error is therefore

Eadd ¼

ðþ1
�1

S4(b)p(b) db (9:13)

where p(b) is the probability density function of b. Substituting the expression for

S4(b) in Eq. (9.13), and taking into account that E(b) ¼ 0

Eadd ¼
s

2

ðþ1
�1

b2p(b) db ¼
s

2

ðþ1
�1

(b� 0)2p(b) db

¼
s

2
E{(b� E{b})2}

¼
s

2
V{b} ¼

ss2
b

2

¼
s2
i þ s2

j � 2Cov{hi, hj}

2s
(9:14)

Note that this result holds for any type of distributions for hi(x), not just Gaussians,

as assumed in Refs. [278–280]. Tumer and Ghosh assume also that the interclass

noise terms are independent, which brings the expression for the added error

(9.14) to

Eadd ¼
s2
i þ s2

j

2s
(9:15)

For problems with just two classes (i ¼ 1, j ¼ 2), the formula is simpler and the

assumption of independence is not needed. On the contrary, we assume that the

approximations sum to 1,

P̂P(v1jx) ¼ 1� P̂P(v2jx) (9:16)
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hence

P(v1jx)þ 11(x) ¼ 1� P(v2jx)� 12(x)

11(x) ¼ �12(x) ¼ 1(x) (9:17)

Denote the variance of 1(x) by s2. Then Cov{h1, h2} ¼ �s
2: Then Eq. (9.14)

becomes

Eadd ¼
2s2

s
(9:18)

Notice also that for this case we have P0(v1jx
�) ¼ �P0(v2jx

�), so

s ¼ P0(v2jx
�)� P0(v1jx

�) ¼ �2P0(v1jx
�) (9:19)

Then the added error for the classifier for two classes is

Eadd ¼ �
s2

P0(v1jx�)
(9:20)

(Note that in our example P0(v1jx
�) , 0.)

9.2.2 Added Error of the Ensemble

Consider L classifiers, D1 . . . , DL. Each classifier produces estimates of the poster-

ior probabilities. Thus the output of classifier Dm consists of the c estimates

Pm(v1jx), . . . , P
m(vcjx). The ensemble output is also a set of estimates of the pos-

terior probabilities calculated as the average of the individual estimates

Pave(vkjx) ¼
1

L

XL
m¼1

Pm(vkjx), k ¼ 1; . . . ; c (9:21)

A new boundary bave is found, for which the result in Eq. (9.14) also holds.

Therefore

Eave
add ¼

ss2
ave

2
(9:22)

where s2
ave is the variance of the new boundary bave. We assume that the classes of

interest are again vi and vj. In other words, we require that the approximations

obtained by the averaging of the classifier outputs do not change the relevant classes

in the area of the boundary.

ADDED ERROR FOR THE MEAN COMBINATION RULE 273



To calculate s2
ave, consider

s2
ave ¼ V{bave} ¼ V

�hhi � �hhj

s

� �
(9:23)

The relationship between the two noise terms here is more complex than in Eq.

(9.11) because each noise terms �hhk, k ¼ 1, . . . , c, are averaged across the L classi-

fiers. Denote by hm
k the noise term for classifier Dm with respect to class vk. We

assume again that all hm
k have zero means, and continue Eq. (9.23) as follows

s2
ave ¼

1

s2
E ( �hhi � �hhj)

2
� �

¼
1

s2
E ( �hhi)

2 þ ( �hhj)
2 � 2 �hhi �hhj

� �
(9:24)

Let us take separately the three terms within the expectation brackets of Eq. (9.24).

E ( �hhi)
2

� �
¼ E

1

L

XL
m¼1

hm
i

 !2
8<
:

9=
;

¼
1

L2

XL
m¼1

(sm
i )

2 þ 2
XL�1
m¼1

XL
n¼mþ1

E hm
i h

n
i

� �" #

¼
1

L2

XL
m¼1

(sm
i )

2 þ
XL
m¼1

X
n=m

Cov hm
i , h

n
i

� �" #
(9:25)

Similarly,

E ( �hhj)
2

� �
¼

1

L2

XL
m¼1

(sm
j )

2 þ
XL
m¼1

X
n=m

Cov hm
j , h

n
j

n o" #
(9:26)

The third term is

E �hhi �hhj

� �
¼ E

1

L2

XL
m¼1

XL
n¼1

hm
i h

n
j

( )

¼
1

L2

XL
m¼1

Cov{hm
i , h

m
j }þ

XL
m¼1

X
n=m

Cov hm
i , h

n
j

n o" #
(9:27)
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Taking the three terms (9.25), (9.26), and (9.27) of Eq. (9.24) together,

s2
ave ¼

1

s2
1

L2

XL
m¼1

(sm
i )

2 þ (sm
j )

2 � 2Cov{hm
i , h

m
j }

"

þ
XL
m¼1

X
n=m

Cov{hm
i , h

n
i }þ Cov{hm

j , h
n
j }� 2Cov{hm

i , h
n
j }

#
(9:28)

According to Eq. (9.14), the individual added errors are

Em
add ¼

((sm
i )

2 þ (sm
j )

2 � 2Cov{hm
i , h

m
j })

2s
(9:29)

Then the added error of the ensemble in Eq. (9.22) becomes

Eave
add ¼

ss2
ave

2

¼
1

L2

XL
m¼1

(sm
i )

2 þ (sm
j )

2 � 2Cov{hm
i , h

m
j }

� �
2s

þ
1

2L2s

XL
m¼1

X
n=m

Cov hm
i , h

n
i

� �
þ Cov hm

j , h
n
j

n o

� 2Cov hm
i , h

n
j

n o

¼
�EEadd

L

þ
1

2L2s

XL
m¼1

X
n=m

Cov hm
i , h

n
i

� �
þ Cov hm

j , h
n
j

n o

� 2Cov hm
i , h

n
j

n o
(9:30)

where �EEadd is the averaged individual added error.

9.2.3 Relationship Between the Individual Outputs’ Correlation and
the Ensemble Error

For independent classifier outputs, all cross-covariances involving Dm and Dn will

be zero, and the added error Eave
add becomes L times smaller than �EEadd,

Eave
add ¼

�EEadd

L
(9:31)
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For a check consider the case of identical classifiers. The error terms are hm
i ¼ hn

i

for any Dm and Dn from D, and for any vi [ V. In this case �EEadd ¼ Eadd. Then

Eave
add ¼

Eadd

L
þ

1

2L2s

XL
m¼1

X
n=m

Cov hm
i , h

n
i

� �
þ Cov hm

j , h
n
j

n o

� 2Cov hm
i , h

n
j

n o

¼
Eadd

L
þ
(L� 1)

2L2s

XL
m¼1

s2
i þ s2

j � 2Cov{hi, hj}

¼
Eadd

L
þ
(L� 1)L

L2
Eadd ¼ Eadd (9:32)

As expected, no improvement is gained by combining identical classifiers.

To simplify the analysis of Eq. (9.30), Tumer and Ghosh make the assumptions

shown in Figure 9.2.

Under these assumptions, Eq. (9.30) becomes

Eave
add ¼ Eadd

1þ r(L� 1)

L

	 

(9:35)

The correlation coefficient r is suggested to be the weighted average of the class-

specific correlations. Denote by ri the correlation between hm
i and hn

i , averaged

across all classifier pairs Dm and Dn. Then

r ¼
Xc
i¼1

P̂P(vi)ri (9:36)

where P̂P(vi) is an estimate of the prior probability for class vi. For independent

classifier outputs, r ¼ 0, and Eq. (9.31) is recovered from Eq. (9.35). For identical

classifiers, r ¼ 1, and there is no improvement on Eadd. Equation (9.35) is an elegant

result but how realistic is it?

9.2.4 Questioning the Assumptions and Identifying
Further Problems

The error terms hi(x) and hj(x), x [ R, for a particular classifier might not be inde-

pendent. Typically the estimates of the c posterior probabilities produced by

a classifier will sum to 1, that is,

Xc
i¼1

P̂P(vijx) ¼ 1 (9:37)
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Then

Xc
i¼1

P(vijx)þ hi(x) ¼ 1þ
Xc
i¼1

hi(x) ¼ 1 (9:38)

hence

Xc
i¼1

hi(x) ¼ 0 (9:39)

which contradicts the assumption of interclass independence for any two classes.

Second, the supposed independence of hm
i and hn

j , i = j, m = n, is also

questionable.

Third, it is not clear why the classes’ contributions to the correlation, r, Eq.

(9.36), should be weighted by their prior probabilities.

Another problem that might jeopardize the relationship between Eave
add and

�EEadd is

the changing of the relevant classes because of the imprecision of the boundary

approximation. The example below illustrates this point.

Fig. 9.2 Assumptions needed for deriving the ensemble added error for the average

combination rule.

Assumptions

1. The errors in estimating the posterior probabilities for the classes by any

single classifier, e.g., Dm; are independent, i.e.,

Covfhm
i ;h

m
j g ¼ 0; ð9:33Þ

for all classes, i; j ¼ 1; . . . ; c; i = j:

2. The errors across the classifiers for different classes are independent,

i.e., for any two classifiers Dm and Dn; and for all classes i; j ¼
1; . . . ; c; i = j;

Covfhm
i ;h

n
j g ¼ 0: ð9:34Þ

3. All variances are the same, i.e., sm
i ¼ s;m ¼ 1; . . . ; L; i ¼ 1; . . . ; c:

4. All correlation coefficients between hm
i and hn

i ;m; n ¼ 1; . . . ; L;
m = n; are equal to some ri:
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Consider a three-class problem shown in Figure 9.3. The approximations of the

three posterior probabilities are only slightly different from the true probabilities:

P̂P(v1jx) ¼ P(v1jx)� 0:16

P̂P(v2jx) ¼ P(v2jx)þ 0:08

P̂P(v3jx) ¼ P(v3jx)þ 0:08 (9:40)

However, there is a dramatic change in the decision boundaries as shown in

Figure 9.3. The conflict when the true probabilities are concerned is between classes

v1 and v2. Instead of choosing between classes v1 and v2 at the guessed hypothe-

tical boundary xb, our classifier will choose class v3 whose posterior probability is

erroneously estimated to be higher than the other two. Then by using the light gray

area in our estimate of the probability of error, we will ignore the large error region

incurred by deciding v3 instead of v1 (shaded in dark gray).

This situation is not too unlikely to occur in practice. Sometimes more than two

classes appear to be highly overlapping. For example, in character recognition,

around the decision boundary between classes “H” and “K,” there might be high

posterior probabilities for “B” and “R” as well.

Fig. 9.3 Changes in the decision boundaries for erroneous approximations of the posterior

probabilities
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For the one-dimensional case, x [ R, the following can happen:

1. Shifting a boundary by a small margin.

2. Creating a boundary where there is none.

3. Failing to detect an existing boundary.

The above results consider only the first case. Tumer and Ghosh note that for

more than one dimension, the analysis becomes significantly more complicated

[278]. Besides, there is not an easy way to verify Eq. (9.35) or to check whether

the assumptions hold. The reason for that is that we can only calculate the corre-

lations between the estimates, that is, Corr{P̂P
m
(vijx), P

n(vjjx)}, and these are not

the correlations between the respective error terms hm
i (x) and hn

j (x). To explain

this point, take for example

Cov{Pm(vijx), P
n(vijx)} ¼ E{P(vijx)

2}þ 2s2
i þ Cov{hm

i (x), h
n
j (x)} (9:41)

We are interested in the last term, Cov{hm
i (x), h

n
j (x)}, but can only measure the total

covariance.

9.3 ADDED ERROR FOR THE WEIGHTED MEAN COMBINATION

Fumera and Roli derive the added error for the weighted mean combination rule

[165]. The weighted average (weighted mean) finds the ensemble’s estimate of

P(vijx) using the individual estimates as

Pwave(vijx) ¼
XL
m¼1

wmP
m(vijx), i ¼ 1, . . . , c (9:42)

where wm are weights, classifier-specific, but constant across x. We require that

XL
m¼1

wm ¼ 1, wm � 0 (9:43)

Assumptions 1 and 2 about the individual errors hm
i (x), listed in Figure 9.2, are

supposed to hold here as well. However, the important contribution of Fumera

and Roli is that there is no assumption of equal variances of the error s2, thereby

allowing for different added errors of the individual classifiers. The variance of

hm
i is denoted by s2

m for all classes i ¼ 1, . . . , c. Denote also by rmn the correlation

coefficient between hm
i and hn

i , again for all classes, i ¼ 1, . . . , c

rmn ¼
Cov{hm

i , h
n
i }

s2
(9:44)
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The errors obtained through the weighted average are

�hhi ¼
XL
m¼1

wmh
m
i (9:45)

9.3.1 Error Formula

We start with Eq. (9.24) and take the three terms separately. The first term and the

second terms are derived as

E{( �hhi)
2} ¼ E

XL
m¼1

wmh
m
i

 !2
8<
:

9=
;

¼
XL
m¼1

w2
m(s

m
i )

2 þ
XL
m¼1

X
n=m

wmwnCov{h
m
i , h

n
i }

" #

¼
XL
m¼1

w2
ms

2
m þ

XL
m¼1

X
n=m

rmnwmwnsmsn

" #

¼ E{( �hhj)
2} (9:46)

For the weighted average, the third term of Eq. (9.24) becomes

E{ �hhi �hhj} ¼ E
XL
m¼1

XL
n¼1

wmwnh
m
i h

n
j

( )

¼
XL
m¼1

w2
mCov{h

m
i , h

m
j }þ

XL
m¼1

X
n=m

wmwnCov{h
m
i ,h

n
j }

¼ 0 (9:47)

Then the variance of the averaged estimate is

s2
ave ¼

1

s2
2
XL
m¼1

w2
m(s

m)2 þ 2
XL
m¼1

X
n=m

rmnwmwnsmsn

" #
(9:48)
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and hence the added error becomes

Ewave
add ¼

ss2
ave

2

¼
1

s

XL
m¼1

w2
m(s

m)2 þ
XL
m¼1

X
n=m

rmnwmwnsmsn

" #
(9:49)

The individual added error is the same as for the simple average because we only

change the combination rule. For classifier Dm, we have

Em
add ¼

s2
m

s
, m ¼ 1, . . . , L (9:50)

Thus the added error in the case of weighted average combination becomes

Ewave
add ¼

1

s

XL
m¼1

w2
m(s

m)2 þ
XL
m¼1

X
n=m

rmnwmwnsmsn

" #

¼
XL
m¼1

w2
mE

m
add þ

XL
m¼1

X
n=m

rmnwmwn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Em
addE

n
add

p
(9:51)

For a check consider again the case of identical classifiers. In this case rmn ¼ 1,

for any m and n, and the individual errors Em
add are all the same, say, Eadd.

Ewave
add ¼ Eadd

XL
m¼1

w2
m þ 2

XL�1
m¼1

XL
n¼mþ1

wmwn

" #

¼ Eadd

XL
m¼1

wm

 !2

¼ Eadd (9:52)

As expected, there is no gain in combining identical classifiers i.

Consider the case of independent classifiers, that is, rmn ¼ 0, for anym and n. The

added error of the ensemble in this case is

Ewave
add ¼

XL
m¼1

w2
mE

m
add (9:53)

Since wm � 1, hence w2
m � wm, the added error is smaller compared to the averaged

individual error,

�EEadd ¼
XL
m¼1

wmE
m
add � Ewave

add (9:54)
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9.3.2 Optimal Weights for Independent Classifiers

Assume that we know the individual added errors Em
add, m ¼ 1, . . . , L. The question

is how do we pick the weights so that the added error of the ensemble is minimal?

We use Lagrange multipliers to introduce the constraint of Eq. (9.43) in the mini-

mization. Take the derivative,

@

@wk

Eave
add þ l

XL
m¼1

wm � 1

 !" #
¼ 2wkE

k
add þ l (9:55)

Then solve simultaneously the following Lþ 1 equations

2wkE
k
add þ l ¼ 0, k ¼ 1, . . . , L (9:56)

XL
m¼1

wm ¼ 1 (9:57)

to find the optimal combination weights to be

wk ¼ (Ek
add)
�1

XL
m¼1

(Em
add)
�1

" #�1
, k ¼ 1, . . . , L (9:58)

Thus the worse the classifier, the lower the weight. If all weights were equal, that is,

if we used the simple average, we recover Eq. (9.31). Clearly, if the individual errors

are different, the weighted average with the optimal coefficients will produce a lower

added error than the simple average.

Substituting the optimal weights into Eq. (9.53), the added error for independent

classifiers combined through the weighted average becomes

Ewave
add ¼

XL
k¼1

1

Ek
add

XL
m¼1

1

Em
add

" #�18<
:

9=
;

2

Ek
add (9:59)

¼

PL
k¼1 (1=E

k
add)

(
PL

m¼1 (1=E
m
add))

2
¼

XL
m¼1

1

Em
add

 !�1
(9:60)

Fumera and Roli [165] proceed to analyze the difference in the added error if we

used equal weights, wk ¼ 1=L (the simple average combination) and the added error

derived as Eq. (9.60), that is,

DEadd ¼
1

L2

XL
m¼1

Em
add �

XL
m¼1

1

Em
add

 !�1
(9:61)

Example: Gain of Weighted Average Over Simple Average. Take 10 indepen-

dent classifiers with the same range of the added errors (0.16 to 0.24), and consider

the following four cases:
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. Case 1: Random.

Added errors: 0.16 0.19 0.23 0.16 0.17 0.18 0.18 0.21 0.18 0.24

. Case 2: 50/50.
Added errors: 0.16 0.16 0.16 0.16 0.16 0.24 0.24 0.24 0.24 0.24

. Case 3: One best standing out.

Added errors: 0.16 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24

. Case 4: All good but one.

Added errors: 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.24

The added errors for the simple average, weighted average, and the difference DEadd,

are given below.

Case Eave
add Ewave

add DEadd

1 0.0190 0.0187 0.000339

2 0.0200 0.0192 0.000800

3 0.0232 0.0229 0.000343

4 0.0168 0.0166 0.000248

The largest difference was found for case 2, 50/50.

An interesting continuation of this study is to define an index describing the pat-

tern of the errors of the ensemble. Fumera and Roli [165] suggest

dE ¼
�EE
tr

add �minm Em
add

maxm Em
add �minm Em

add

(9:62)

where �EE
tr

add is the trimmed mean of the added errors, dropping the largest and the

smallest errors. They call dE the degree of performance imbalancing.

Fumera and Roli [281] also analyze DEadd and the improvement on the single best

classifier for ensembles of L � 3 classifiers. Their results can be summarized as

shown in Figure 9.4. The conclusion of this study is that weighted average might

not be as good as expected! The authors found that for large ensembles the advan-

tage of weighted averaging over simple averaging disappears. Besides, in weighted

averaging we have to estimate the L weights, which is a potential source of error,

and, as the authors suggest, may cancel the anyway small advantage. There is a

glimpse of hope for the weighted average though. In all the experiments reported

in Ref. [281], weighted average was better, albeit marginally, than the simple

average.

9.4 ENSEMBLE ERROR FOR NORMAL AND UNIFORM
DISTRIBUTIONS OF THE OUTPUTS

The framework for this section is defined by the assumptions displayed in Figure 9.5

[282,283].
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We discuss two distributions of h(x): a normal distribution with mean 0 and var-

iance s2 (we take s to vary between 0.1 and 1), and a uniform distribution spanning

the interval ½�b, þ b� (b varies from 0.1 to 1). Thus dj,1(x) is a random variable with

normal or uniform distribution with mean p and variance s2, and dj,2(x) is a random

variable with normal or uniform distribution with mean 1� p and the same variance,

s2.

Simple fusion methods are the most obvious choice when constructing a multiple

classifier system [11,149,159,241,280], that is, the support for class vi, mi(x),

yielded by the team is

mi(x) ¼ F (d1,i(x), . . . , dL,i(x)), i ¼ 1, 2 (9:64)

where F is the chosen fusion method. Here we study the minimum, maximum, aver-

age, median, and majority vote.

Recall that for the majority vote we first “harden” the individual decisions by

assigning class label v1 if dj,1(x) . 0:5, and v2 if dj,1(x) � 0:5, j ¼ 1, . . . , L.
Then the class label most represented among the L (label) outputs is chosen as

Fig. 9.4 Examples of the distributions of the individual errors of the ensemble members defining

the most and least favorable cases for the weighted average combination method. L ¼ 9

classifiers.
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the final label for x. The oracle model is analyzed as well. In this model, if at least

one of the classifiers produces the correct class label, then the team produces the cor-

rect class label too.

Denote by Pj the output of classifier Dj for class v1, that is, Pj ¼ dj,1(x) and let

P̂P1 ¼ F (P1, . . . , PL) (9:65)

be the fused estimate of P(v1jx). By assumption, the posterior probability estimates

for v2 are 1� Pj, j ¼ 1, . . . , L. The same fusion method F is used to find the fused

estimate of P(v2jx),

P̂P2 ¼ F (1� P1, . . . , 1� PL) (9:66)

According to the assumptions, we regard the individual estimates Pj as indepen-

dent identically distributed random variables, such that Pj ¼ pþ hj, with prob-

ability density functions (pdf) f (y), y [ R and cumulative distribution functions

(cdf) F(t), t [ R. Then P̂P1 is a random variable too with a pdf fP̂P1
(y) and cdf FP̂P1

(t).

For a single classifier, the average and the median fusion models will result in

P̂P1 þ P̂P2 ¼ 1. The higher of the two estimates determines the class label. The oracle

and the majority vote make decisions on the class label outputs, and we can stipulate

Fig. 9.5 Assumptions needed for deriving the ensemble error for normal and uniform

distributions of the individual estimates.

Assumptions

1. There are two possible classes V ¼ fv1;v2g:

2. All classifiers produce soft class labels, dj;iðxÞ [ ½0; 1�; i ¼ 1; 2; j ¼
1; . . . ; L; where dj;iðxÞ is an estimate of the posterior probability

PðvijxÞ by classifier Dj for an input x [ R
n: We consider the case

where for any x, dj;1ðxÞ þ dj;2ðxÞ ¼ 1; j ¼ 1; . . . ; L:

3. A single point x [ R
n is considered at a time. Without loss of general-

ity, we assume that the true posterior probability is Pðv1jxÞ ¼ p . 0:5:
Thus, the Bayes-optimal class label for x is v1 and a classification error

occurs if label v2 is assigned.

4. The classifiers commit independent and identically distributed errors in

estimation Pðv1jxÞ; i.e.,

dj;1ðxÞ ¼ Pðv1jxÞ þ hðxÞ ¼ pþ hðxÞ; ð9:63Þ

and respectively dj;2ðxÞ ¼ 1� p� hðxÞ:
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that P̂P1 ¼ 1, P̂P2 ¼ 0 if class v1 is assigned, and P̂P1 ¼ 0, P̂P2 ¼ 1 for class v2. Thus, it

is necessary and sufficient to have P̂P1 . 0:5 to label x in v1 (the correct label). The

probability of error, given x, denoted Pe, is

Pe ¼ P(errorjx) ¼ P(P̂P1 � 0:5) ¼ FP̂P1
(0:5) ¼

ð0:5
0

fP̂P1
(y) dy (9:67)

for the single best classifier, average, median, majority vote and the oracle.

For the minimum and the maximum rules, however, the sum of the fused esti-

mates is not necessarily one. The class label is then decided by the maximum of

P̂P1 and P̂P2. Thus, an error will occur if P̂P1 � P̂P2,
35

Pe ¼ P(errorjx) ¼ P(P̂P1 � P̂P2) (9:68)

for the minimum and the maximum.

The two distributions considered are

. Normal distribution, P̂P1 � N( p, s2). We denote by F(z) the cumulative distri-

bution function of N(0, 1).36 Thus, the cumulative distribution function for the

normal distribution considered here is

F(t) ¼ F
t � p

s

� �
(9:69)

. Uniform distribution within ½ p� b, pþ b�, that is,

f (y) ¼

1

2b
, y [ ½ p� b, pþ b�;

0, elsewhere,

8<
:

F(t) ¼

0, t [ (�1, p� b);

t � pþ b

2b
, t [ ½ p� b, pþ b�;

1, t . pþ b:

8>><
>>:

(9:70)

Clearly, using these two distributions, the estimates of the probabilities might fall

outside the interval [0, 1]. We can accept this, and justify our viewpoint by the fol-

lowing argument. Suppose that p is not a probability but the amount of support for

v1. The support for v2 will be again 1� p. In estimating p, we do not have to restrict

Pj values within the interval ½0, 1�. For example, a neural network (or any classifier

for that matter) trained by minimizing the squared error between its output and the

35We note that since P1 and P2 are continuous-valued random variables, the inequalities can be written

with or without the equal sign, that is, P̂P1 . 0:5 is equivalent to P̂P1 � 0:5, and so on.
36Available in tabulated form or from any statistical package.
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zero–one (class label) target function produces an estimate of the posterior prob-

ability for that class [27]. Thus, depending on the parameters and the transition func-

tions, a neural network output (that approximates p) might be greater than 1 and also

might be negative. We take the L values (in R) and fuse them by Eqs. (9.65) and

(9.66) to get P̂P1. The same rule applies, that is, v1 is assigned by the ensemble if

P̂P1 . P̂P2. Then we calculate the probability of error Pe as P(P̂P1 � P̂P2). This calcu-

lation does not require in any way that Pj values are probabilities or are within

the unit interval.

9.4.1 Individual Error

Since FP̂P1
(t) ¼ F(t), the error of a single classifier for the normal distribution is

Pe ¼ F
0:5� p

s

	 

(9:71)

and for the uniform distribution

Pe ¼
0:5� pþ b

2b
(9:72)

9.4.2 Minimum and Maximum

These two fusion methods are considered together because, as shown in Section

9.1.1, they are identical for c ¼ 2 classes and any number of classifiers L.

Substituting F ¼ max in Eq. (9.65), the team’s support for v1 is P̂P1 ¼ maxj {Pj}.

The support for v2 is therefore P̂P2 ¼ maxj {1� Pj}. A classification error will

occur if

max
j

{Pj} , max
j

{1� Pj} (9:73)

pþmax
j

{hj} , 1� p�min
j

{hj} (9:74)

hmax þ hmin , 1� 2p (9:75)

The probability of error for minimum and maximum is

Pe ¼ P(hmax þ hmin , 1� 2p) (9:76)

¼ Fhs
(1� 2p) (9:77)

where Fhs
(t) is the cdf of the random variable s ¼ hmax þ hmin. For the normally dis-

tributed Pj values, hj are also normally distributed with mean 0 and variance s2.

However, we cannot assume that hmax and hmin are independent and analyze their
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sum as another normally distributed variable because these are order statistics and

hmin � hmax. We have not attempted a solution for the normal distribution case.

For the uniform distribution, we follow an example taken from Ref. [284] where

the pdf of the midrange (hmin þ hmax)=2 is calculated for L observations. We derive

Fhs
(t) to be

Fhs
(t) ¼

1

2

t

2b
þ 1

� �L
, t [ ½�2b, 0�;

1�
1

2
1�

t

2b

� �L
, t [ ½0, 2b�

8>><
>>: (9:78)

Noting that t ¼ 1� 2p is always negative,

Pe ¼ Fhs
(1� 2p) ¼

1

2

1� 2p

2b
þ 1

	 
L

(9:79)

9.4.3 Mean

The average fusion method gives P̂P1 ¼ 1=L
PL

j¼1 Pj. If P1, . . . , PL are normally dis-

tributed (and independent!), then P̂P1 � N p, s2=L
� 


. The probability of error for this

case is

Pe ¼ P(P̂P1 , 0:5) ¼ F

ffiffiffi
L
p

(0:5� p)

s

	 

(9:80)

The calculation of Pe for the case of uniform distribution is not that straightforward.

We can assume that the sum of L independent variable will result in a variable of

approximately normal distribution. The higher the L, the more accurate the approxi-

mation. Knowing that the variance of the uniform distribution for Pj is b
2=3, we can

assume P̂P � N p, b2=3L
� 


. Then

Pe ¼ P(P̂P1 , 0:5) ¼ F

ffiffiffiffiffiffi
3L
p

(0:5� p)

b

	 

(9:81)

9.4.4 Median and Majority Vote

These two fusion methods are pooled because they are identical for the current set-

up (see Section 9.1.2).

Since only two classes are considered, we restrict our choice of L to odd numbers

only. An even L is inconvenient for at least two reasons. First, the majority vote

might tie. Second, the theoretical analysis of a median that is calculated as the aver-

age of the (L=2) and (L=2þ 1) order statistics is cumbersome.

288 THEORETICAL VIEWS AND RESULTS



For the median fusion method

P̂P1 ¼ med{P1, . . . , PL} ¼ pþmed{h1, . . . , hL} ¼ pþ hm (9:82)

Then the probability of error is

Pe ¼ P( pþ hm , 0:5) ¼ P(hm , 0:5� p) ¼ Fhm
(0:5� p) (9:83)

where Fhm
is the cdf of hm. From the order statistics theory [284],

Fhm
(t) ¼

XL
j¼Lþ1

2

L

j

	 

Fh(t)

j½1� Fh(t)�
L�j (9:84)

where Fh(t) is the distribution of hj, that is, N(0, s
2) or uniform in ½�b, b�. We can

now substitute the two cdf, to obtain the respective Pe

. for the normal distribution

Pe ¼
XL
j¼Lþ1

2

L

j

	 

F

0:5� p

s

	 
j

1�F
0:5� p

s

	 
� �L�j
(9:85)

. for the uniform distribution

Pe ¼

0, p� b . 0:5;

PL
j¼Lþ1

2

L

j

	 

0:5� pþ b

2b

	 
j

1�
0:5� pþ b

2b

� �L�j
, otherwise:

8><
>:

(9:86)

The majority vote will assign the wrong class label, v2, to x if at least Lþ 1=2
classifiers vote for v2. The probability that a single classifier is wrong is given by

Eq. (9.71) for the normal distribution and Eq. (9.72) for the uniform distribution.

Denote this probability by Ps. Since the classifiers are independent, the probability

that at least Lþ 1=2 are wrong is calculated by the binomial formula

Pe ¼
XL
j¼Lþ1

2

L

j

	 

P j

s½1� Ps�
L�j (9:87)

By substituting for Ps from Eq. (9.71) and Eq. (9.72), we recover Eqs. (9.85) and

(9.86) for the normal and the uniform distribution, respectively.
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9.4.5 Oracle

The probability of error for the oracle is

Pe ¼ P(all incorrect) ¼ F(0:5)L (9:88)

For the normal distribution

Pe ¼ F
0:5� p

s

	 
L

(9:89)

and for the uniform distribution

Pe ¼

0, p� b . 0:5;

0:5� pþ b

2b

	 
L

, otherwise:

8><
>: (9:90)

Table 9.1 displays in a compact form the results for the two distributions, the

single classifier and the six fusion methods.

9.4.6 Example

A direct comparison between the errors in Table 9.1 is hardly possible, except for the

single classifier and the oracle, where the preference is known anyway. Figure 9.6

plots the classification error of the single classifier and the team, calculated by the

respective equations for normally distributed Pjs. The top two plots depict Pe against

s for a fixed p ¼ 0:6, and the bottom two plots depict Pe against p for a fixed

TABLE 9.1 The Theoretical Error Pe for the Single Classifier and the Six Fusion

Methods.

Method Pe for Normal Distribution Pe for Uniform Distribution (p � b , 0:5)

Single classifier
F

0:5� p

s

	 

0:5� p þ b

2b

Minimum/maximum – 1

2

1� 2p

2b
þ 1

	 
L

Average
F

ffiffiffi
L
p

(0:5� p)

s

 !
F

ffiffiffiffiffiffi
3L
p

(0:5� p)

b

 !

Median/majority vote XL
j ¼ Lþ1

2

L
j

	 

�F

0:5� p

s

	 
j XL
j ¼ Lþ1

2

L
j

	 

�

0:5� p þ b

2b

	 
j

� 1�F
0:5� p

s

	 
� �L�j
� 1�

0:5� p þ b

2b

� �L�j

Oracle
F

0:5� p

s

	 
L 0:5� p þ b

2b

	 
L
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s ¼ 0:3. Figure 9.7 displays the results for uniformly distributed Pjs. The top two

plots depict Pe against b for a fixed p ¼ 0:6, and the bottom two plots depict Pe

against p for a fixed b ¼ 0:8.
The results can be summarized as:

1. Expected results. These are well documented in the literature on classifier

combination.

(a) The individual error is higher than the error of any of the fusion methods.

(b) The oracle model (an abstraction) is the best of all. For L ¼ 9, the oracle

error rate is approximately zero.

(c) The more classifiers we have in the team, the lower the error. Recall that

the classifiers are assumed to be independent, which can hardly be

achieved in real-life problems.

Fig. 9.6 Pe for normally distributed Pjs.
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2. More interesting findings from this example.

(a) The average and the median/vote methods have approximately the same

performance for normally distributed Pj, but are different for the uniform

distribution, the average being the better of the two.

(b) Contrary to some experimental evidence published elsewhere, the aver-

age method is outperformed by the minimum/maximum method. This

observation is based on the uniform distribution model only. Unfortu-

nately, the theoretical calculation of Pe for the minimum/maximum

method in the case of normally distributed Pjs is not easy, and we cannot

draw a parallel with the average in this case.

It is claimed in the literature that combination methods are less important than the

diversity of the team. However, given a set of classifiers, the only way to extract the

Fig. 9.7 Pe for uniformly distributed Pjs.
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most of it is to pick a good combination method. Indeed, for normally distributed

errors, the fusion methods gave very similar performance, but for the uniformly dis-

tributed error, the methods differed significantly, especially for higher L. For

example, the top right plot in Figure 9.7 shows that Pe for a single classifier of

40.0 percent can be reduced to 26.7 percent by the median or majority vote, 14.9

percent by the average, and 6.7 percent by minimum or maximum fusion. This

example comes in support of the idea that combination methods are also relevant

in combining classifiers.

Similar analyses can be carried out for distributions other than Normal or uni-

form. Kittler and Alkoot [285] and Chen and Cheng [286] studied the behavior of

the sum, median, and vote combination methods for nonnormal distributions.

Their conclusions suggest that while for symmetrical distributions the methods per-

form similarly, nonsymmetrical distributions might lead to large differences.
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10
Diversity in Classifier

Ensembles

Common intuition suggests that the classifiers in the ensemble should be as accurate

as possible and should not make coincident errors. As simple as this sounds, there

are a variety of diversity measures and their relationship with the ensemble accuracy

is ambiguous. The methods for building ensembles, which rely on inducing diversity

in an intuitive manner, are very successful. Even weakening the individual classi-

fiers for the sake of better diversity appears to be an excellent ensemble building

strategy, unequivocally demonstrated by AdaBoost. Ironically, trying to measure

diversity and use it explicitly in the process of building the ensemble does not

share the success of the implicit methodologies. This chapter introduces measures

of diversity in an attempt to present the philosophy, the state of the art, and the poss-

ible directions of the studies in classifier diversity.

10.1 WHAT IS DIVERSITY?

If we have a perfect classifier that makes no errors, then we do not need an ensemble.

If, however, the classifier does make errors, then we seek to complement it with

another classifier, which makes errors on different objects. The diversity of the clas-

sifier outputs is therefore a vital requirement for the success of the ensemble. Intui-

tively, we want the ensemble members to be as correct as possible, and in case they

make errors, these errors should be on different objects. In practice, it appeared to be

difficult to define a single measure of diversity, and even more difficult to relate that
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measure to the ensemble performance in a neat and expressive dependency. The

most useful ideas often drift across sciences and branches thereof.

10.1.1 Diversity in Biology

Suppose that we are interested in the height of adult gorillas in a certain region of

Africa. Consider a population p with a probability measure P associated with it.

The measure P defines the distribution of heights for the population. A comprehen-

sive study on diversity in life sciences by Rao [287] gives the following axiomatic

definition of a diversity measure.

Let (X , B) be a measurable space, and let P be a convex set of probability

measures defined on it.37 A function H(�) mapping P onto the real line is said to

be a measure of diversity if it satisfies the following conditions

C1: H( p) � 0, for any p [ P and H( p) ¼ 0 iff p is degenerate.

C2: H is a concave function of p.38

The concavity condition ensures that any mixture of two populations has a higher

diversity than the average of the two individual diversities. H( pi) is the diversity

within a population pi characterized by the probability measure Pi. To quantify

diversity we need a measure of difference or distance between pairs of objects, X1

and X2, from the population. The distance, z(X1, X2), could be any function that

satisfies the axioms for distance (nonnegativity, symmetry, and a version of the tri-

angle inequality). We can use the Euclidean distance for quantitative variables and a

matching type of function for qualitative variables, that is,

z(X1, X2) ¼
1, if X1 = X2

0, if X1 ¼ X2:

�
(10:1)

Rao defines H( pi) to be the averaged difference between two randomly picked indi-

viduals in the population pi according to the probability measure pi

H(Pi) ¼

ð
X1,X2

z(X1, X2)pi(X1)pi(X2) dX1dX2 (10:2)

If the two individuals are drawn from two different populations pi and pj, then the

total diversity will be

H( pi, pj) ¼

ð
X1,X2

z(X1, X2)pi(X1)pj(X2) dX1dX2 (10:3)

37Convexity means that for any p1, p2 [ P, and for any t [ ½0, 1�, tp1 þ (1� t)p2 [ P.
38 The concavity here means that for any p1, p2 [ P, and for any t [ [0, 1],

H(tp1 þ (1� t)p2) � tH( p1)þ (1� t)H( p2)
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The dissimilarity between populations pi and pj is

Dij ¼ H( pi, pj)�
1

2
(H( pi)þ H( pj)) (10:4)

The concavity of H guarantees that Dij will be positive for any two populations and

their probability measures. This dissimilarity is based on taking out the diversity

coming from each population and leaving only the “pure” diversity due to mixing

the two populations.

Example: Diversity Between Two Populations. Let p1 and p2 be two populations

of green iguanas and X be the number of eggs a female iguana produces in a single

brood.39 Owing to climate differences in their habitat, the distributions of X differ for

the two populations. The two distributions are illustrated in Figure 10.1 and shown

numerically in Table 10.1.

If we take z(X1, X2) ¼ jX1 � X2j to be the distance between two individuals X1

and X2, then using Eqs. (10.2) to (10.4), we get H( p1) ¼ 4:0504, H( p2) ¼ 5:0058,
H( p1, p2) ¼ 8:4046, and D1,2 ¼ 3:8764.

Consider a data set Z ¼ {z1, . . . , zN} and an ensemble,D ¼ {D1, . . . ,DL}. Each

classifier suggests a class label from V ¼ {v1, . . . ,vc} for every data point zj. A

population is defined to be a collection of objects. The objects within the classifier

39 The data follows an example in Ref. [288].

Fig. 10.1 Distribution of the numbers of eggs in a single brood by female green iguanas in two

different populations. The top plot gives the distribution for p1 and the bottom plot gives the

distribution for p2.
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ensemble framework can be either the classifiers or the data points. If a population

consists of classifiers, then we have N populations of classifiers, one per data point.

Since we are interested in the diversity within each population, (H( pi)), we can cal-

culate N diversity values and average across Z.40 Alternatively, we may regard the

output of each classifier as a population with N individuals in it, and look for diver-

sity between the L populations. A pairwise measure of this quantity is Dij in Section

10.4. The L(L� 1)=2 pairwise measures can be averaged to get an overall diversity

value for the ensemble.

10.1.2 Diversity in Software Engineering

Amajor issue in software engineering is the reliability of software. Multiple programs

(called versions) can be run in parallel in the hope that if one or more fail, the others

will compensate for it by producing correct outputs. It is tempting to assume that the

errors of the versions will be independent if the versions are created independently. It

appears, however, that independently created versions fail together on “difficult”

assignments and run correctly together on “easy” assignments [289–291].

While the biological model does not have a clear-cut analogy with classifier

ensembles, the multiversion software model does. The programs (versions) corre-

spond to the classifiers in the ensemble and the inputs correspond to the points in

the feature space.

The model proposed in Ref. [290] and developed further in Refs. [291,292] con-

siders a set of programs and a set of inputs. The quantity of interest, which underpins

several measures of diversity (discussed later), is the probability that two randomly

selected programs will fail on a randomly chosen input.

10.1.3 Statistical Measures of Relationship

For convenience, below is the list of the three major types of classifier outputs (see

Chapter 4):

. Oracle. For a given data set Z, classifier Di produces an output vector yi such
that

yij ¼
1, if Di classi es object zj correctly,

0, otherwise:

(
(10:5)fi

TABLE 10.1 Probability Distributions for Populations p1 and p2.

X 25 30 35 40 45 50 55 60

p1(X ), in [%] 0.01 0.91 15.51 49.81 30.21 3.46 0.07 0.00

p2(X ), in [%] 0.00 0.01 0.50 6.76 29.60 41.63 18.79 2.72

40 This is the idea of the KW diversity measure discussed later.
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Clearly oracle outputs are only possible for a labeled data set and their use is

limited to the design stage of the classifiers and the ensemble.

. Label. The output of the classifier is a label from V.

. Soft outputs. Classifier Di gives c values of support, di, j, j ¼ 1, . . . , c, for the
classes.

Various measures of the relationship between two variables can be found in the

statistical literature [293].

10.1.3.1 Correlation. Correlation coefficients can be calculated for pairs of

classifiers using soft outputs. There will be c coefficients for each pair of classifiers,

one for each class. To get a single measure of diversity, the correlations can be

averaged across classes.

Correlation can be calculated for a pair of classifiers with oracle outputs because

we can treat the two values (0 and 1) numerically. To illustrate the calculation,

consider a table of the joined (oracle) outputs of classifiers Di and Dj as shown in

Table 4.4 (for convenience we reproduce the table here as Table 10.2). The entries

in the table are the probabilities for the respective pair of correct/incorrect outputs.
The correlation between two binary classifier outputs is

ri, j ¼
ad � bcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(aþ b)(cþ d)(aþ c)(bþ d)
p (10:6)

10.1.3.2 The Q Statistic. Using Table 10.2, Yule’s Q statistic [294] for classi-

fiers Di and Dj is

Qi, j ¼
ad � bc

ad þ bc
(10:7)

For statistically independent classifiers, Qi, j ¼ 0. Q varies between �1 and 1.

Classifiers that tend to recognize the same objects correctly will have positive values

of Q. For any two classifiers, Q and r have the same sign, and it can be proved that

jrj � jQj.

10.1.3.3 Interrater Agreement, k . A statistic developed as a measure of inter-

rater reliability, called k, can be used when different raters (here classifiers) assess

subjects (here zj) to measure the level of agreement while correcting for chance [20].

TABLE 10.2 The 2 3 2 Relationship Table with Probabilities.

Dj correct (1) Dj wrong (0)

Di correct (1) a b

Di wrong (0) c d

Total, a þ b þ c þ d ¼ 1.
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For c class labels, k is defined on the c� c coincidence matrix M of the two classi-

fiers. The entry mk,s ofM is the proportion of the data set, which Di labels as vk and

Dj labels as vs. The agreement between Di and Dj is given by

ki, j ¼

P
k mkk � ABC

1� ABC
(10:8)

where
P

k mkk is the observed agreement between the classifiers and “ABC” is

“agreement-by-chance”

ABC ¼
X
k

X
s

mk,s

 ! X
s

ms,k

 !
(10:9)

Low values of k signify higher disagreement and hence higher diversity. If calcu-

lated on the 2� 2 joined oracle output space using probabilities,

ki, j ¼
2(ac� bd)

(aþ b)(cþ d)þ (aþ c)(bþ d)
(10:10)

10.2 MEASURING DIVERSITY IN CLASSIFIER ENSEMBLES

Along with borrowing ideas for diversity measures across the disciplines, there are

measures of diversity developed specifically for classifier ensembles.

10.2.1 Pairwise Measures

These measures, and the ones discussed hitherto, consider a pair of classifiers at a

time. An ensemble of L classifiers will produce L(L� 1)=2 pairwise diversity

values. To get a single value we average across all pairs.

10.2.1.1 The Disagreement Measure. The disagreement measure is probably

the most intuitive measure of diversity between a pair of classifiers. For the oracle

outputs, this measure is equal to the probability that the two classifiers will disagree

on their decisions, that is,

Di, j ¼ bþ c (10:11)

Without calling it a disagreement measure, this statistic has been used in the litera-

ture for analysing classifier ensembles [243,295].

The disagreement measure is equivalent to the total diversity H( pi, pj) within the

biological interpretation of diversity. Suppose that pi and pj are two populations

produced by classifiers Di and Dj. Consider oracle outputs and a new space with
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four elements: 00, 01, 10, and 11. Using as a distance measure z(m, n), given by Eq.

(10.1),

H( pi, pj) ¼ z(1, 1)� aþ z(1, 0)� bþ z(0, 1)� cþ z(0, 0)� d ¼ bþ c

¼ Di, j (10:12)

H(pi, pj) is the expectation of the disagreement between classifiers Di and Dj in the

space of their joint oracle outputs.

10.2.1.2 The Double-Fault Measure. The double fault measure is another

intuitive choice, as it gives the probability of classifiers Di and Dj both being wrong,

DFi, j ¼ d (10:13)

Ruta and Gabrys [296] note that DF is a nonsymmetrical diversity measure, that is, if

we swap the 0s and the 1s, DF will no longer have the same value. This measure is

based on the concept that it is more important to know when simultaneous errors are

committed than when both classifiers are correct. Thus the measure is related by

design to the ensemble performance.

All diversity measures introduced so far are pairwise. To get an overall value for

the ensemble we can average across all pairs. There are also nonpairwise measures

as discussed below.

10.2.2 Nonpairwise Measures

The measures of diversity introduced below consider all the classifiers together and

calculate directly one diversity value for the ensemble.

10.2.2.1 The Entropy Measure E. Intuitively, the ensemble is most diverse

for a particular zj [ Z when bL=2c of the votes are 0s (1s) and the other L�

bL=2c votes are 1s (0s).41 If they all were 0s or all were 1s, there is no disagreement,

and the classifiers cannot be deemed diverse. One possible measure of diversity

based on this concept is

E ¼
1

N

2

L� 1

XN
j¼1

min
XL
i¼1

yj,i

 !
, L�

XL
i¼1

yj,i

 !( )
(10:14)

E varies between 0 and 1, where 0 indicates no difference and 1 indicates the highest

possible diversity. Let all classifiers have the same individual accuracy p. Then

while value 0 is achievable for any number of classifiers L and any p, the value 1

can only be attained for p [
L� 1

2L
,
Lþ 1

2L

� �
.

41
bac is the “floor” function. It returns the largest integer smaller than a. dae is the “ceiling” function. It

returns the smallest integer greater than a.
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It should be noted that E is not a standard entropy measure because it does not

use the logarithm function. A classical version of this measure is proposed by

Cunningham and Carney [297] (we denote it here as ECC). Taking the expectation

over the whole feature space, letting the number of classifiers tend to infinity

(L! 1), and denoting by a the proportion of 1s (correct outputs) in the ensemble,

the two entropies are

E(a) ¼
1

2
min{a, 1� a} (10:15)

ECC(a) ¼ �a log(a)� (1� a) log(1� a) (10:16)

Figure 10.2 plots the two entropies versus a. The two measures are equivalent up

to a (nonlinear) monotonic transformation. This means that they will have a similar

pattern of relationship with the ensemble accuracy.

10.2.2.2 Kohavi–Wolpert Variance. Kohavi and Wolpert derived a

decomposition formula for the error rate of a classifier [231]. Consider a classifier

model. Let y be the predicted class label for x. The variance of y across different

training sets that were used to build the classifier is defined to be

variancex ¼
1

2
1�

Xc
i¼1

P(y ¼ vijx)
2

 !
(10:17)

The variance (10.17) is the Gini index for the distribution of the classifier output

regarded as a set of probabilities, P(y ¼ v1jx), . . . ,P(y ¼ vcjx). The variance

also coincides with the biological definition of diversity within the population

H( p) in Eq. (10.2) for z(m, n) as in Eq. (10.1).

Fig. 10.2 The two entropies E(a) (thin line) and ECC(a) (thick line) plotted versus a.
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We use the general idea for calculating the variance for each zj in the following

way. We look at the variability of the predicted class label for zj for the given train-

ing set using the classifier models D1, . . . ,DL. Instead of V, here we consider just

two possible classifier outputs: correct and incorrect. In the Kohavi–Wolpert frame-

work, P(y ¼ vijzj) is estimated as an average across different data sets. In our case,

P(y ¼ 1jzj) and P(y ¼ 0jzj) will be obtained as an average across the set of

classifiers D, that is,

P̂P(y ¼ 1jzj) ¼
Y(zj)

L
and P̂P(y ¼ 0jzj) ¼

L� Y(zj)

L
(10:18)

where Y(zj) is the number of correct votes for zj among the L classifiers, that is,

Y(zj) ¼
XL
i¼1

yi, j

Substituting Eq. (10.18) into Eq. (10.17),

variancex ¼
1

2
(1� P̂P(y ¼ 1jzj)

2 � P̂P(y ¼ 0jzj)
2) (10:19)

and averaging over the whole of Z, we set the KW measure of diversity to be

KW ¼
1

NL2

XN
j¼1

Y(zj)(L� Y(zj)) (10:20)

Interestingly, KW differs from the averaged disagreement measure Dav by a

coefficient, that is,

KW ¼
L� 1

2L
Dav (10:21)

(The proof of the equivalence is given in Appendix 10A.)

10.2.2.3 Measurement of Interrater Agreement, k, For L. 2. If we

denote �pp to be the average individual classification accuracy, then [20]

k ¼ 1�

1

L

XN

j¼1
Y(zj)(L� Y(zj))

N(L� 1)�pp(1� �pp)
(10:22)

It is easy to see that k is related to KW and Dav as follows

k ¼ 1�
L

(L� 1)�pp(1� �pp)
KW ¼ 1�

1

2�pp(1� �pp)
Dav (10:23)

Note that k is not equal to the averaged pairwise kappa, ki, j in Eq. (10.10).

10.2.2.4 The Measure of “difficulty” u. The idea for this measure came from

a study by Hansen and Salamon [298]. We define a discrete random variable X

taking values in {0=L, 1=L, . . . , 1} and denoting the proportion of classifiers in D
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that correctly classify an input x drawn randomly from the distribution of the pro-

blem. To estimate the probability mass function of X, the L classifiers in D are

run on the data set Z.

Figure 10.3 shows three possible histograms of X for L ¼ 7 and N ¼ 100 data

points. We assumed that all classifiers have individual accuracy p ¼ 0:6. The left-

most plot shows the histogram if the seven classifiers were independent. In this

case the discrete random variable X � L has a Binomial distribution ( p ¼

0:6, n ¼ L). The middle plot shows seven identical classifiers. They all recognize

correctly the same 60 points and misclassify the remaining 40 points in Z. The right-

most plot corresponds to the case of negatively dependent classifiers. They recog-

nize different subsets of Z. The figures in the histogram are calculated so that the

sum of all correct votes is L� p� N ¼ 7� 0:6� 100 ¼ 420. That is, if mi denotes

the number of data points for X ¼ i=L, in all three histograms,
PL

i¼1 imi ¼ 420.

Hansen and Salamon [298] talk about a pattern of “difficulty” of the points in the

feature space, which in our case is represented by the histogram over Z. If the same

points have been difficult for all classifiers, and the other points have been easy for

all classifiers, we obtain a plot similar to the middle one (no diversity in the ensem-

ble). If the points that were difficult for some classifiers were easy for other classi-

fiers, the distribution of X is as the one on the right. Finally, if each point is equally

difficult for all classifiers, the distribution on the left is the most likely one. Diverse

ensembles D will have smaller variance of X (right plot). Ensembles of similar clas-

sifiers will have high variance, as in the pattern in the middle plot. Let the three vari-

ables X in Figure 10.3a, 10.3b, and 10.3c be Xa, Xb, and Xc, respectively. The three

variances are

ua ¼ Var(Xa) ¼ 0:034 ub ¼ Var(Xb) ¼ 0:240, uc ¼ Var(Xc) ¼ 0:004

Therefore we define the measure of difficulty u to be Var(X). For convenience we

can scale u linearly into [0, 1], taking p(1� p) as the highest possible value. The

higher the value of u, the worse the classifier ensemble. Ideally, u ¼ 0, but this is

Fig. 10.3 Patterns of “difficulty” for three classifier ensembles with L ¼ 7, p ¼ 0.6, and N ¼ 100.

The dashed line is themajority vote border. The histograms show the number of points (out of 100)

that are correctly labeled by i of the L classifiers. The x-axis is “proportion correct,” that is, i=L.
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an unrealistic scenario. More often, real classifiers are positively dependent and will

exhibit patterns similar to Figure 10.3b.

10.2.2.5 Generalized Diversity. Partridge and Krzanowski [291] consider a

random variable Y, expressing the proportion of classifiers (out of L) that are incor-

rect (or fail) on a randomly drawn object x [ R
n. Denote by pi the probability that

Y ¼ i=L, that is, the probability that exactly i out of the L classifiers fail on a ran-

domly chosen input. (Note that Y ¼ 1� X, where X was introduced for u.) Denote

by p(i) the probability that i randomly chosen classifiers will fail on a randomly cho-

sen x. Suppose that two classifiers are randomly picked from D. Partridge and Krza-

nowski argue that maximum diversity occurs when failure of one of these classifiers

is accompanied by correct labeling by the other classifier. In this case the probability

of both classifiers failing is p(2) ¼ 0. Minimum diversity occurs when a failure of

one classifier is always accompanied by a failure of the other classifier. Then the

probability of both classifiers failing is the same as the probability of one randomly

picked classifier failing, that is, p(1). Using

p(1) ¼
XL
i¼1

i

L
pi, and p(2) ¼

XL
i¼1

i

L

(i� 1)

(L� 1)
pi (10:24)

the generalization diversity measure GD is defined as

GD ¼ 1�
p(2)

p(1)
(10:25)

GD varies between 0 (minimum diversity when p(2) ¼ p(1)) and 1 (maximum

diversity when p(2) ¼ 0).

10.2.2.6 Coincident Failure Diversity. Coincident failure diversity is a modi-

fication of GD also proposed by Partridge and Krzanowski [291].

CFD ¼

0, p0 ¼ 1:0;

1

1� p0

XL

i¼1

L� i

L� 1
pi, p0 , 1:

8<
: (10:26)

This measure is designed so that it has a minimum value of 0 when all classifiers

are always correct or when all classifiers are simultaneously either correct or wrong.

Its maximum value 1 is achieved when all misclassifications are unique, that is,

when at most one classifier will fail on any randomly chosen object.

Note that GD and CFD originated from the software reliability literature.

Partridge and Krzanowski propose also the distinct failure diversity, DFD [292].

For oracle outputs we do not know exactly which (wrong) class label has been

assigned if the classifier makes an error. If all classifiers choose the same wrong

label, then this is a sign of low diversity. Conversely, classifiers suggesting
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different wrong labels is a sign of diversity. For oracle outputs the two cases are

indistinguishable as the wrong labels will all be coded by one value.

Various other diversity measures have been proposed [299–301], which once

again illustrates the diversity of diversity.

10.3 RELATIONSHIP BETWEEN DIVERSITY AND ACCURACY

The general anticipation is that diversity measures will be helpful in designing the

individual classifiers, the ensemble, and choosing the combination method. For this

to be possible, there should be a relationship between diversity and the ensemble

performance.

10.3.1 Example

To investigate the hypothetical relationship between diversity and the ensemble

accuracy we recall the example in Section 4.2.2. We generated all possible distri-

butions of correct/incorrect votes for 10 objects and three classifiers, such that

each classifier recognizes exactly 6 of the 10 objects (individual accuracy p ¼

0:6). The 28 possible vote distributions are displayed in Table 4.3. The accuracy of

the ensemble of three classifiers, each of accuracy 0.6, varied between 0.4 and

0.9. The two limit distributions were called the “pattern of success” and the “pattern

of failure,” respectively.

Example: Calculation of Diversity Measures. We take as our example row 27

from Table 4.3. The 10 objects are so distributed that Pmaj ¼ 0:5 even though all

three classifiers have accuracy p ¼ 0:6. For an easier reference, the distribution of

the votes (correct/wrong) of row 27 of Table 4.3 is duplicated in Table 10.3.

The three tables with the probability estimates for the classifier pairs are shown in

Table 10.4.

TABLE 10.3 A Distribution of the Votes of Three Classifiers (Row 27 from Table 4.3).

D1, D2, D3 111 101 011 001 110 100 010 000

Frequency 3 0 0 3 2 1 1 0

TABLE 10.4 The Three Pairwise Tables for the Distribution in Table 10.3.

D1, D2 D1, D3 D2, D3

0.5 0.1 0.3 0.3 0.3 0.3

0.1 0.3 0.3 0.1 0.3 0.1
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The pairwise measures of diversity are calculated as follows

Q1,2 ¼
5� 3� 1� 1

5� 3þ 1� 1
¼

7

8

Q1,3 ¼ Q2,3 ¼
3� 1� 3� 3

3� 1þ 3� 3
¼ �

1

2

Q ¼
1

3

7

8
�
1

2
�
1

2

� �
¼ �

1

24
� �0:04 (10:27)

r1,2 ¼
5� 3� 1� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(5þ 1)(1þ 3)(5þ 1)(1þ 3)
p ¼

7

12

r1,3 ¼ r2,3 ¼
3� 1� 3� 3

(5þ 1)(1þ 3)
¼ �

1

4

r ¼
1

3

7

12
�
1

4
�
1

4

� �
¼

1

36
� 0:03 (10:28)

D ¼
1

3
((0:1þ 0:1)þ (0:3þ 0:3)þ (0:3þ 0:3))

¼
7

15
� 0:47 (10:29)

DF ¼
1

3
(0:3þ 0:3þ 0:1) ¼

1

6
� 0:17 (10:30)

The nonpairwise measures KW , k, and E are calculated by

KW ¼
1

10� 32
(3� (1� 2)þ 2� (2� 1)þ 1� (1� 2)þ 1� (1� 2))

¼
7

45
� 0:16 (10:31)

k ¼ 1�
D

2� 0:6� (1� 0:6)
¼ 1�

7=15

12=25

¼
1

36
� 0:03 (10:32)

E ¼
1

10
�

2

(3� 1)
� (3�min{3, 0}þ 3�min{1, 2}

þ 2�min{2, 1}þ 1�min{1, 2}þ 1�min{1, 2})

¼
7

10
¼ 0:70 (10:33)
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The distribution of the random variables X and Y needed for u, GD, and CFD are

depicted in Figure 10.4.

The mean of X is 0.6, and the mean of Y( p(1)) is 0.4. The respective measures are

calculated as follows:

u ¼ Var(X) ¼ (1=3� 0:6)2 � 0:5þ (2=3� 0:6)2 � 0:2þ (1� 0:6)2 � 0:3

¼
19

225
� 0:08 (10:34)

p(2) ¼
2

3
�

(2� 1)

(3� 1)
� 0:5 ¼

1

6

GD ¼ 1�
1=6

0:4
¼

7

12
� 0:58 (10:35)

CFD ¼
1

1� 0:3

(3� 1)

(3� 1)
� 0:2þ

(3� 2)

(3� 1)
� 0:5

� �

¼
9

14
� 0:64 (10:36)

Calculated in this way, the values of the 10 diversity measures for all distribu-

tions of classifier votes from Table 4.3 are shown in Table 10.5. To enable cross-

referencing, the last column of the table shows the majority vote accuracy of the

ensemble, Pmaj. The rows are arranged in the same order as in Table 4.3.

With 10 objects, it is not possible to model pairwise independence. The table of

probabilities for this case will contain a ¼ 0:36, b ¼ c ¼ 0:24, and d ¼ 0:16. To use
10 objects, we have to round so that a ¼ 0:4, b ¼ c ¼ 0:2, and d ¼ 0:2, but instead

Fig. 10.4 The frequencies and the probability mass functions of the variables X and Y needed

for calculating diversity measures u, GD, and CFD.
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of 0, this gives a value of Q

Q ¼
0:08� 0:04

0:08þ 0:04
¼

1

3

In this sense, closest to independence are rows 2, 17, and 23.

10.3.2 Relationship Patterns

It is not easy to spot by eye in Table 10.5 any relationship between diversity and

accuracy for any of the diversity measures. To visualize a possible relationship

we give a scatterplot of diversity Qav versus improvement in Figure 10.5.

Each point in the figure corresponds to a classifier ensemble. The x-coordin-

ate is the diversity value, Qav, averaged for the three pairs of classifiers,

(D1, D2), (D1, D3), and (D2, D3). The y-value is the improvement Pmaj � p. Since

TABLE 10.5 The 10 Diversity Measures and the Majority Vote Accuracy, Pmaj, for the 28

Distributions of Classifier Votes in Table 4.3. The Ensembles Separated with Lines Are:

(Row 1) Pattern of Success, (Row 13) Identical Classifiers, and (Row 28) Pattern of Failure.

No. Q r D DF KW k E u GD CFD Pmaj

1 20.50 20.25 0.60 0.10 0.20 20.25 0.90 0.04 0.75 0.90 0.9

2 0.33 0.17 0.40 0.20 0.13 0.17 0.60 0.11 0.50 0.75 0.8

3 20.22 20.11 0.53 0.13 0.18 20.11 0.80 0.06 0.67 0.83 0.8

4 20.67 20.39 0.67 0.07 0.22 20.39 1.0 0.02 0.83 0.90 0.8

5 20.56 20.39 0.67 0.07 0.22 20.39 1.0 0.02 0.83 0.90 0.8

6 0.88 0.58 0.20 0.30 0.07 0.58 0.30 0.17 0.25 0.50 0.7

7 0.51 0.31 0.33 0.23 0.11 0.31 0.50 0.13 0.42 0.64 0.7

8 0.06 0.03 0.47 0.17 0.16 0.03 0.70 0.08 0.58 0.75 0.7

9 20.04 0.03 0.47 0.17 0.16 0.03 0.70 0.08 0.58 0.75 0.7

10 20.50 20.25 0.60 0.10 0.20 20.25 0.90 0.04 0.75 0.83 0.7

11 20.39 20.25 0.60 0.10 0.20 20.25 0.90 0.04 0.75 0.83 0.7

12 20.38 20.25 0.60 0.10 0.20 20.25 0.90 0.04 0.75 0.83 0.7

13 1.0 1.0 0.00 0.40 0.00 1.0 0.00 0.24 0.00 0.00 0.6

14 0.92 0.72 0.13 0.33 0.04 0.72 0.20 0.20 0.17 0.30 0.6

15 0.69 0.44 0.27 0.27 0.09 0.44 0.40 0.15 0.33 0.50 0.6

16 0.56 0.44 0.27 0.27 0.09 0.44 0.40 0.15 0.33 0.50 0.6

17 0.33 0.17 0.40 0.20 0.13 0.17 0.60 0.11 0.50 0.64 0.6

18 0.24 0.17 0.40 0.20 0.13 0.17 0.60 0.11 0.50 0.64 0.6

19 0.00 0.17 0.40 0.20 0.13 0.17 0.60 0.11 0.50 0.64 0.6

20 20.22 20.11 0.53 0.13 0.18 20.11 0.80 0.06 0.67 0.75 0.6

21 20.11 20.11 0.53 0.13 0.18 20.11 0.80 0.06 0.67 0.75 0.6

22 20.21 20.11 0.53 0.13 0.18 20.11 0.80 0.06 0.67 0.75 0.6

23 20.33 20.11 0.53 0.13 0.18 20.11 0.80 0.06 0.67 0.75 0.6

24 0.88 0.58 0.20 0.30 0.07 0.58 0.30 0.17 0.25 0.30 0.5

25 0.51 0.31 0.33 0.23 0.11 0.31 0.50 0.13 0.42 0.50 0.5

26 0.06 0.03 0.47 0.17 0.16 0.03 0.70 0.08 0.58 0.64 0.5

27 20.04 0.03 0.47 0.17 0.16 0.03 0.70 0.08 0.58 0.64 0.5

28 0.33 0.17 0.40 0.20 0.13 0.17 0.60 0.11 0.50 0.50 0.4
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each classifier has individual accuracy 0.6, the y-value is simply Pmaj � 0:6. The
scatter of the points does not support the intuition about the relationship between

diversity and accuracy. If there was a relationship, the points would be distributed

along a straight or a curved line with a backward slop, indicating that the lower

the values of Q (high diversity), the greater the improvement. What the figure

shows is that the best ensemble is not found for the minimum Qav and the worst

ensemble is not found for the maximum Qav. The patterns of success and failure

occur for values of Qav within the span of possible values for this experiment.

The hypothetical independence point shows only mild improvement of about

0.05 on the individual accuracy p, much smaller than the improvement of 0.30 cor-

responding to the pattern of success. Note, however, that values of Qav ¼ 0 are

associated with improvement of 0.10 and also with a decline of the performance

by 0.10. For the hypothetical independence point all three pairwise Q are 0, that

is, Q1,2 ¼ Q1,3 ¼ Q2,3 ¼ 0, while for the other points at the same Qav, the individual

diversities just add to 0. This suggests that a single measure of diversity might not be

accurate enough to capture all the relevant diversity in the ensemble.

The relationship patterns were not substantially different for the other measures

either. To populate the scatterplots with points we repeated the simulation but took

N ¼ 30 objects (L ¼ 3 classifiers, each of accuracy p ¼ 0:6), which gave a total of

Fig. 10.5 Improvement on the individual accuracy (Pmaj-p) versus Qav.
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563 ensembles. Figure 10.6 shows the scatterplots of the improvement versus diver-

sity for the ten measures. As the figure shows, the measures are not unequivocally

related to the improvement. The plots will be the same if we plotted Pmaj instead

of the improvement because we will only shift the y axis by a constant.

Fig. 10.6 Improvement on the individual accuracy (Pmaj-p) versus the 10 diversity measures for

N ¼ 30, p ¼ 0.6.
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So far we assumed that all feasible distributions of the classifier votes are equally

likely. Next we assume approximately equal individual accuracies p and approxi-

mately equal pairwise dependencies Qi, j. We vary Qi, j (which in this case is the

same as Qav) from �1 to 1. Classifier outputs were generated in the form of cor-

rect/incorrect votes. Within the generation algorithm adopted [302], it was not

always possible to maintain the values of Qi, j equal for all the pairs.

Six sets of experiments were carried out with the individual accuracy p [
{0:6, 0:7} and the number of classifiers L [ {3, 5, 9}. In all experiments

N ¼ 1000. For each of the six combinations of p and L, 15 classifier ensembles D

were generated for each of the 21 values of the averaged pairwise dependency

Qav [ {�1:0, � 0:9, . . . , 0:9, 1:0}, giving a total of 315 classifier ensembles.

In summary,

1. All individual classifiers have approximately the same accuracy (prespeci-

fied).

2. The pairwise dependency was approximately the same (prespecified).

3. Not all negative values of Qav were possible for all L. This means that the

distribution of Qav, which was intended to range uniformly from �1 to þ1

spanned a shorter range from �a to 1, where a [ (0, 1).

Let Pmean and Pmax be the observed mean and maximum accuracies, respectively,

of the generated ensemble D. For each combination of L and p, we calculated the

correlation between each of Pmaj � Pmean and Pmaj � Pmax with the 10 measures.

All measures exhibited high (by absolute value) correlation as summarized in

Table 10.6.

The relationship between Qav and Pmaj � Pmax is illustrated graphically in

Figure 10.7. Each point in the scatterplot corresponds to a classifier ensemble.

Smaller Q (more diverse classifiers) leads to higher improvement over the single

best classifier. Negative Q (negative dependency) is better than independence

(Q ¼ 0) as it leads to an even bigger improvement. The zero improvement is marked

with a horizontal line in Figure 10.7. The points below the line correspond to

TABLE 10.6 Extreme Values of the Rank Correlation Coefficients

Between Measures of Diversity and the Improvement on the Single

Best Accuracy and the Mean Accuracy of the Ensemble.

Pmaj2 Pmax Pmaj2 Pmean

p ¼ 0.6 p ¼ 0.7 p ¼ 0.6 p ¼ 0.7

Minimum 0.9371 0.9726 0.9652 0.9826

Maximum 0.9870 0.9923 0.9909 0.9949
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classifier ensembles that fared worse than the single best classifier. In all these cases,

the ensembles consist of positively related but not identical classifiers.

Although the suspected relationship appears on a large scale, that is, when diver-

sity spans (uniformly) the whole range of possible values, in practice we are faced

with a different picture. Usually the candidates for the ensemble are not very

different from one another. This leads to small variations of diversity and also

small variations of the accuracy of the ensemble about the individual accuracies.

Unfortunately, none of the various diversity measures that we investigated pre-

viously (10 measures: 4 pairwise and 6 nonpairwise [303]) appeared to be sensitive

enough to detect the changes in the accuracy. This phenomenon is illustrated in

Figure 10.8 showing a typical graph of accuracy versus diversity. The relationship

can easily be spotted on the plot. However, when diversity only varies in a small

range, this relationship is blurred as illustrated by the gray dot and the cloud of

classifiers in it.

If we do not enforce diversity, the ensemble is most likely to appear as a dot

towards the right side of the graph. For such ensembles, the improvement on the

individually best accuracy is usually negligible.

Fig. 10.7 Plot of (Pmaj � Pmax) versus Qav for the simulation experiment.
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10.4 USING DIVERSITY

10.4.1 Diversity for Finding Bounds and Theoretical Relationships

Assume that classifier outputs are estimates of the posterior probabilities, P̂Pi(vsjx),

s ¼ 1, . . . , c, i ¼ 1, . . . ,L, so that the estimate P̂Pi(vsjx) satisfies

P̂Pi(vsjx) ¼ P(vsjx)þ hi
s(x) (10:37)

where hi
s(x) is the error for class vs made by classifier Di. The outputs for each class

are combined by averaging, or by an order statistic such as minimum, maximum, or

median. In Chapter 9 we derived an expression about the added classification error

(i.e., the error above the Bayes error) of the ensemble under a set of assumptions

Eave
add ¼ Eadd

1þ d(L� 1)

L

� �
(10:38)

where Eadd is the added error of the individual classifiers (all have the same error),

and d is a correlation coefficient (the measure of diversity of the ensemble).42

42Averaged pairwise correlations between Pi(vsjx) and Pj(vsjx), i, j ¼ 1, . . . ,L, are calculated for every

s, then weighted by the prior probabilities P̂P(vs) and summed.

Fig. 10.8 A typical accuracy–diversity scatterplot. Each point corresponds to an ensemble. The

gray dot shows a hypothetical area where ensembles appear most often in real problems.
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Breiman [214] derives an upper bound on the generalization error of random

forests (ensembles of decision trees built according to a simple randomization tech-

nology, one possible variant of which is bootstrap sampling) using the averaged

pairwise correlation between the ensemble members. The classifiers produce class

labels, which are combined by the majority vote. The bound is given by

Pr(generalization error of the ensemble) � �rr(1� s2)s2 (10:39)

where �rr is the averaged pairwise correlation (10.6) and s is the “strength” of the

ensemble. The strength is a measure of accuracy based on the concept of margin.

Admittedly the bound is not very tight as it is based on the Chebyshev’s inequality

but nonetheless it shows the tendency: the higher the diversity (small �rr), the lower
the error.

10.4.2 Diversity for Visualization

Diversity measures have been used to find out what is happening within the ensem-

ble. Pȩkalska and co-authors [304] look at a two-dimensional plot derived from the

matrix of pairwise diversity. Each classifier is plotted as a dot in the two-dimen-

sional space found by Sammon mapping, which preserves the distances between

the objects. Each point in the plot represents a classifier and the distances correspond

to pairwise diversities. The ensemble is a classifier itself and can also be plotted.

Any method of combination of the individual outputs can also be mapped. Even

more, the oracle classifier (all objects correctly recognized) can be plotted as a

point to complete the picture.

Margineantu and Dietterich suggest the kappa–error plots as shown in

Figure 10.9 [305]. Every pair of classifiers is plotted as a dot in a two-dimensional

space. The pairwise measure kappa (10.8) is used as the x-coordinate of the point

and the average of the individual training errors of the two classifiers is used as

the y-coordinate. Thus there are L(L� 1)=2 points in the scatterplot. The best

pairs are situated in the left bottom part of the plot: they have low error and low

kappa (low agreement ¼ high diversity).

The cloud of points shows the pairwise diversity in one ensemble. Margineantu

and Dietterich use it to verify that AdaBoost generates more diverse classifiers than

bagging. The example in the figure corresponds to an ensemble of 50 classifiers for

the glass data set from the UCI Machine Repository Database.43 The shape of the

cloud indicates that there is a certain trade-off between the accuracy of the pair

and its k-diversity.

10.4.3 Overproduce and Select

Several studies advocate the method of producing a pool of classifiers followed by a

selection procedure to pick the classifiers that are most diverse and accurate

[202,238,299,300,305–308]. Below we explain some of the ideas.

43 http://www.ics.uci.edu/�mlearn/MLRepository.html
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10.4.3.1 The Most Diverse Ensemble. Giacinto and Roli [202] use the

double fault measure (probability of both classifiers being incorrect, DF ¼ d in

Eq. (10.13)) and also the Q statistics [307], to form a pairwise diversity matrix

for a classifier pool and subsequently to select classifiers that are least related.

The selection is carried out using a search method through the set of pairs of classi-

fiers until the desired number of ensemble members is reached. Similarly, Margin-

eantu and Dietterich [238,305] use kappa to select the ensemble out of the set of

classifiers produced by AdaBoost. They call this “ensemble pruning.” The pruned

ensemble is created by progressively selecting pairs with lowest kappas (highest

diversity) until the desired number of classifiers is reached. A Matlab function for

selecting the “most diverse ensemble” is given in Appendix 10B.

10.4.3.2 Clustering and Selection. Giacinto and Roli [306] cluster the

ensembles based on the matrix of pairwise diversity. The double fault measure of

diversity (DF) is used. The matrix with diversities is regarded as a distance matrix

and the average linkage clustering is applied (see Section 1.7) to find clusters of clas-

sifiers. Grouped in this way, the members of each cluster tend to make common

errors while two classifiers selected from different clusters will tend to make errors

on different objects. At each step of the procedure, one classifier is taken from

each cluster, for example, the classifier with the highest individual accuracy, to be

Fig. 10.9 Kappa–error plot, the convex hull (the thick line), and the Pareto optimal set (the thin

line) of pairs of classifiers.

316 DIVERSITY IN CLASSIFIER ENSEMBLES



a member of the ensemble. Thus at the first step where each classifier is a cluster of

its own, there are L clusters, hence the ensemble consists of all classifiers. At the

next step, the two least diverse classifiers are joined in a cluster so there are

L� 1 members of the ensemble. The classifier picked from the two members of

the cluster will be the more accurate of the two. Next the distances to the new cluster

are recalculated by the average method and the next two least diverse clusters

are merged. The procedure goes through L steps, producing ensembles of L,

L� 1, . . . , 2, and 1 classifiers. At the first step there is no selection and at the last

step the single best classifier is chosen instead of the ensemble. Giacinto and Roli

suggest to find the optimal ensemble size L� to be the size of the most accurate

ensemble. To reduce the optimistic bias of the estimates, the accuracy of the

ensemble should be evaluated on a validation set that is different from the set on

which the classifiers were trained. A Matlab function implementing the clustering

and selection method is given in Appendix 10B. It requires a clustering function

based on a distance matrix, which in our case is the matrix of pairwise diversities.

Examples of suitable clustering procedures are single linkage and average linkage.

10.4.3.3 Thinning the Ensemble. Banfield et al. [300] propose an algorithm

for what they call “thinning the ensemble.” They introduce a diversity measure

called the ensemble diversity measure (EDM), which is calculated as the proportion

of data points for which the proportion of correct votes is between 10 and 90. We can

refer to these points as “uncertain points.” The uncertain points will vary depending

on which classifiers are chosen for the ensemble. The idea of the thinning algorithm

is to find out which classifier is most often incorrect on the uncertainty points

and remove it from the ensemble. The procedure starts with all classifiers and the

desired ensemble size is reached by removing one classifier at each step. The original

thinning algorithm is shown below:

1. Start with the ensemble of all L classifiers.

2. Set the value of the parameter a (recommended a ¼ 0:9).

3. Find out the uncertainty points in the data set, that is, the points for which the

proportion of correct votes is between 0.1 and 0.9 (uncertainty points).

4. Calculate the diversity (EDM) as the proportion of uncertainty points.

5. Calculate the mean classifier accuracy, m, for the members of the current

ensemble.

6. Calculate the lower bound (LB) and the upper bound (UB) needed for the

thinning

LB ¼ m� EDM þ
1� EDM

c
and UB ¼ a� EDM þ m� (1� EDM)

where c is the number of classes.

7. Find the classifier with the lowest accuracy on all the points whose proportion

of correct votes is between LB and UB. (Note that this is a different set of

uncertain points; the bounds are used in the place of the constants 0.1 and 0.9.)
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8. Remove this classifier and continue with the new ensemble from Step 3 until

the desired ensemble size is reached.

The bounds vary depending on the diversity of the current ensemble.

It seems that the thinning might succeed even without considering EDM. We can

just apply the main idea of removing the least accurate classifier for the uncertainty

points found at Step 3. We can skip Steps 2, 4, 5, and 6, and use at Step 7 the set of

uncertainty points found at Step 3, that is, fix LB ¼ 0:1 and UB ¼ 0:9. The code for
this variant of the thinning method is given in Appendix 10B.

10.4.3.4 Kappa–Error Convex Hull Pruning. Margineantu and Dietterich

[238,305], use the kappa–error plots. As the most desirable pairs of classifiers are

situated toward the lower left corner of the plot, Margineantu and Dietterich use

the convex hull [305], called kappa–error convex hull pruning. The convex hull

of points is depicted in Figure 10.9 with a thick line. The pairs of classifiers that

make the convex hull are taken as the ensemble.

10.4.3.5 Pareto Optimality. It might happen that the convex hull contains only

a few classifiers on the frontier. Small variations of the estimates of k and e1þe2
2

might

change the whole frontier, making convex hull pruning overly sensitive to noise.

The number of classifiers in the pruned ensemble cannot be specified in advance.

This lack of control on the ensemble size is seen as a defect of the method [305].

Therefore we may look at Pareto optimality as an alternative to the convex hull

approach. Let A ¼ {a1, . . . , am} be a set of alternatives (pairs in our case) character-
ized by a set of criteria C ¼ {C1, . . . ,CM} (low kappa and low error in our case).

The Pareto-optimal set S� # S contains all nondominated alternatives. An alterna-

tive ai is non-dominated iff there is no other alternative aj [ S, j = i, so that aj is

better than ai on all criteria. For the two criteria in our example, the Pareto optimal

set will be a superset of the convex hull. The concept is illustrated in Figure 10.10.

The Pareto-optimal set for the glass data example is depicted in Figure 10.9 by a thin

line joining the circled points in the set.

Fig. 10.10 Illustration of Pareto optimality.
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A Matlab function for finding the Pareto-optimal set of alternatives on two cri-

teria is given in Appendix 10B. In our case the alternatives are the pairs of classifiers

and the two criteria for each pair are the averaged individual error and the diversity.

The code is designed in such a way that high values are more desirable than low

values. Therefore, the function should be called using �ðei þ ejÞ=2 and �ki, j as

the input.

Example: Illustration of Overproduce and Select Methods. Recall the rotated

check-board data from Chapter 1. We used a data set generated from the distribution

illustrated in the right-hand side plot of Figure 1.10 (a ¼ 0:5, a ¼ �p=3). There are
two classes that are difficult to separate using a simple classifier, but which are

nonoverlapping. We generated 100 points for training and 1000 points for testing.

Ideally there should be a separate validation set. For the purposes of this simple illus-

tration, however, we will use the training set both for training the classifiers, estimat-

ing their accuracies and finding the optimal size of the ensemble.

Figure 10.11 shows the training and testing accuracy of the ensemble when add-

ing classifiers designed through bagging. The kappa–error plot for the final ensem-

ble of L ¼ 50 classifiers is shown in Figure 10.12, where the pairs of classifiers on

the convex hull of the cloud of points are joined by a thick line and the pairs of clas-

sifiers in the Pareto-optimal set are circled and joined by a thin line.

The methods and algorithms discussed above were applied for this single run of

bagging using ki, j as the diversity measure. The convex hull selection and Pareto-

Fig. 10.11 Training and testing error for one run of bagging for the rotated checkboard data

versus the number of classifiers.
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optimal selection do not have a mechanism to control the number of classifiers in the

ensemble. The convex hull will always result in ensembles of smaller or equal size to

these found by Pareto-optimal selection. The reason for this is that a Pareto-optimal

set always contains the convex hull as a subset. All the other methods can be run for

ensembles of sizes from 1 to L. The optimal ensemble size, L�, can be identified as

the size of the most accurate ensemble evaluated on a validation set. In our case we

used the training set to find L�. Figure 10.13 shows the testing errors of the overpro-

duce and select methods versus the ensemble size. The convex hull and Pareto-opti-

mal selections are depicted as points with coordinates (size, error). The method

based on selecting the most diverse ensemble is the worst of the group as it does

not take into account the performance of the classifiers or the ensemble. The best

selection method for a small number of classifiers happened to be the ensemble thin-

ning version. Convex hull gave also an excellent result, but such good results have

not been observed on a large experimental scale [305]. Clustering and selection was

marginally worse than the thinning method. The original thinning algorithm was

also applied, but the results were not much different to those of the simplified

version.

Table 10.7 shows the ensemble sizes L� identified on the training sets and the

corresponding testing errors. The example shows that smaller ensembles can be

as good as or sometimes better than larger ensembles.

Fig. 10.12 Kappa–error plot for 50 classifiers obtained by bagging for the rotated check-board

data. The Pareto-optimal set and the convex hull set of classifier pairs are shown.
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Classifier selection has been found not as efficient in improving the accuracy on

AdaBoost. Usually the most accurate ensemble is the one with all the classifiers in

it [305]. The reason for this could be that AdaBoost explores diversity by design, and

does not create redundant members of the ensemble.

Instead of forming clusters and selecting one classifier from each cluster or resort

to a greedy algorithm that may not perform particularly well, some authors consider

using genetic algorithms for selecting the ensemble [309,310]. Each chromosome

has L bits and corresponds to an ensemble. The bits for the classifiers that participate

in the ensemble are set to 1, and the remaining bits are set to 0. Each population con-

tains ensembles as the individuals. Using genetic algorithms for classifier selection

TABLE 10.7 Testing Error and Ensemble Sizes for the Overproduce and Select

Methods for the Rotated Check-Board Data Set.

Method Testing Error [%] Ensemble Size (L�)

The whole ensemble 15.1 50

The most diverse ensemble 16.9 21

Clustering and selection 15.2 14

Thinning the ensemble 15.9 7

Kappa–error convex hull pruning 14.0 9

Pareto-optimality 15.0 33

Fig. 10.13 Testing error versus the number of classifiers for the overproduce and select

methods.
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pays off when the search space is large and the calculation of the criterion function

(ensemble accuracy, ensemble diversity, individual accuracy, and so on) is cheap.

10.4.4 Diversity for Building the Ensemble

Here we only sketch a possible way of using diversity explicitly during the process

of building of the ensemble. The motivation is that diversity should step out of the

passive role of being only a tool for monitoring and should help actively at the

design stage. The overproduce and select approach discussed earlier is a step in

this direction. However, we need to overproduce first. An alternative approach

would be to stop the growing of the ensemble when diversity and accuracy satisfy

a certain condition.

We take as the starting point the kappa–error diagram and run AdaBoost.44

The first and the second classifier (D1 and D2) will define one single point on the

diagram. This point will be the convex hull and the Pareto optimal set of itself.

The third classifier, D3, will place two more points: one for (D1, D3) and another

for (D2, D3). At this step we recalculate the Pareto-optimal set. If the points

added by the new classifier have not changed the previous Pareto-optimal set,

then this classifier is not accepted. Another training set is generated with the same

distribution and a new classifier is attempted on it. We run the acceptance check

again, and proceed in this manner. A prespecified parameter T defines the limit of

the number of attempts from the same distribution. When T attempts have been

made and a classifier has not been accepted, the procedure stops and the classifier

pairs in the last Pareto optimal set are declared to be the ensemble.

10.5 CONCLUSIONS: DIVERSITY OF DIVERSITY

Although diversity is perceived as one of the most important characteristics of the

ensemble, there is still a diversity of opinions about it. We exploit diversity at an

intuitive level in creating the ensemble, but so far it has defied the attempts to be

measured and used systematically. The problem might be in the philosophy of the

concept of diversity. Three views on diversity are detailed below.

1. Diversity as a characteristic of the set of classifiers. We have a set of

classifiers and we have not decided yet which combiner to use. Also, we do

not involve information about whether or not the classifier votes are correct.

This view seems to be the “cleanest.” It would provide information additional

to the individual error rates and the ensemble error rate. In a way, we measure

diversity to discover whether it contributes to the success of the ensemble.

2. Diversity as a characteristic of the set of classifiers and the combiner. In this

case the ensemble output is also available. Thus we can find out which clas-

sifier deviates the most and which deviates the least from the ensemble output,

44We use AdaBoost in its resampling version: the likelihood of data points to be selected is modified.
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and measure diversity on such an individual basis. Different combiners might

lead to different diversity values for the same set of classifiers.

3. Diversity as a characteristic of the set of classifiers, the combiner, and the

errors. Here we can also use the oracle information available. Diversity is

seen as a component of the ensemble error and formulas have been sought

to relate diversity to the ability of the ensemble to improve on the individual

classifier performances. Here we are actively searching for a useful relation-

ship between diversity and the ensemble error that will guide us toward con-

struction of better ensembles [292,301].

The problem is that the “clean” diversity measure might be of little use due to its

weak relationship with the ensemble accuracy [303,311]. On the other hand, the

more we involve the ensemble performance into defining diversity, the more we

are running onto the risk of trying to replace a simple calculation of the ensemble

error by a clumsy estimate that we call diversity. Interpretability of the measure

as diversity might be lost on the way of trying to tie it up with the ensemble error.

There is no easy solution to this dilemma. The quest for defining and using diver-

sity might be heading toward a dead end or might result in powerful new ensemble-

building methodologies. In science we do not know the answer in advance and this is

what makes it fun.

APPENDIX 10A EQUIVALENCE BETWEEN THE AVERAGED
DISAGREEMENT MEASURE Dav AND KOHAVI–WOLPERT
VARIANCE KW

Recall that Y(zj) is the number of correct votes (1s) for object zj. The Kohavi–Wol-

pert variance [231], in the case of two alternatives, 0 and 1, is

KW ¼
1

NL2

XN
j¼1

Y(zj)(L� Y(zj)) (A:1)

¼
1

NL2

XN
j¼1

XL
i¼1

yj, i

 !
L�

XL
i¼1

yj, i

 !
¼

1

NL2

XN
j¼1

Aj (A:2)

where

Aj ¼
XL
i¼1

yj, i

 !
L�

XL
i¼1

yj, i

 !
(A:3)

The disagreement measure betweenDi andDk used in Ref. [295] can be written as

Di,k ¼
1

N

XN
j¼1

(yj,i � yj,k)
2 (A:4)
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Averaging over all pairs of classifiers i, k,

Dav ¼
1

L(L� 1)

XL
i¼1

XL
k¼1i=k

1

N

XN
j¼1

(yj,i � yj,k)
2 (A:5)

¼
1

NL(L� 1)

XN
j¼1

XL
i¼1

XL
k¼1i=k

(yj,i � yj,k)
2

¼
1

NL(L� 1)

XN
j¼1

Bj (A:6)

where

Bj ¼
XL
i¼1

XL
k¼1i=k

(yj,i � yj,k)
2 (A:7)

Dropping the index j for convenience and noticing that y2i ¼ yi

A ¼ L
XL
i¼1

yi

 !
�

XL
i¼1

yi

 !2

(A:8)

¼ L
XL
i¼1

yi

 !
�

XL
i¼1

y2i

 !
�

XL
i¼1

XL
k¼1i=k

yiyk

 !
(A:9)

¼ (L� 1)
XL
i¼1

yi

 !
�

XL
i¼1

XL
k¼1i=k

yiyk

 !
(A:10)

On the other hand,

B ¼
XL
i¼1

XL
k¼1 i=k

(y2i � 2yiyk þ y2k) (A:11)

¼ 2(L� 1)
XL
i¼1

yi

 !
� 2

XL
i¼1

XL
k¼1i=k

yiyk

 !
(A:12)

¼ 2A (A:13)
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Therefore,

KW ¼
L� 1

2L
Dav (A:14)

Since the two diversity measures differ by a coefficient, their correlation with

Pmaj � Pmean will be the same.

APPENDIX 10B MATLAB CODE FOR SOME OVERPRODUCE AND
SELECT ALGORITHMS

The most diverse ensemble uses a matrix of pairwise diversities, D. The higher the

value, the better the diversity. The output variable “ens” contains the indices of the

classifiers that make up the ensemble. The maximum value of diversity is found, the

classifiers added to the ensemble and then the maximum value is set to�1 so that it

is not found again. It may happen that none of the classifiers in the pair with the (cur-

rent) highest diversity is in the selected set, one of the pair is already in the set or

both are in the set. Thus at each step either one of two classifiers may enter the

selected set. The function returns the indices of the selected classifiers.

function ens = most_diverse_ensemble(D,M)
%
% Returns in ens the list of classifier indices
% which make the ensemble of M or M+1 classifiers
% according to the greedy algorithm called “most
% diverse ensemble" described in the text.
% D is a matrix with pairwise diversity.
% M is the desired ensemble size
% We assume that larger values of D indicate
% high diversity
%
L=size(D,1); % Find out the total number of classifiers
mask=zeros(1,L); % Start with an empty ensemble
while sum(mask)<M,

% Find the pair with the highest diversity
[a1,a2]=max(D);
[b1,b2]=max(a1);
% The classifier pair with largest
% diversity is (a2(b2),b2)
mask(a2(b2))=1;
mask(b2)=1;
D(a2(b2),b2)=-inf; % Disable the current maximum

end;
ens=find(mask); % Assign the classifier indices to

% the output variable
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The following function implements the clustering and selection method. It

requires a clustering function operating on a distance matrix. The distance matrix

in our case is the matrix of pairwise diversities D. The clustering function ‘cluster’

must output a vector column of numerical class labels for the N objects. The cluster

labels should be consecutive integers: 1,2, . . . , M.

function ens = clustering_and_ensemble_selection (l,M,laba,D)

%

% l is the array of size N � L containing

% the outputs of the L classifiers on a data set

% of N objects (preferably a validation set)

% The classes should be labeled by consecutive

% integers: 1,2, . . . , c

% M is the desired ensemble size

% laba is a vector-column with the true labels

% of the N objects

% D is a matrix with pairwise diversity.

%

[N,L]=size(l);

p=mean(l== repmat(laba,1,L)); % Estimate individual accuracies

labels=cluster(D,M); % Cluster the classifiers

% Find the best individual classifier in each cluster

mask=zeros(1,L); % Start with an empty ensemble

for j=1:M,

t1=find(labels== j); % Find all classifiers in cluster j

[t2,t3]=max(p(t1));

% t1(t3) is the most accurate classifier

mask(t1(t3))=1; % Add it to the ensemble

end;

ens=find(mask);

The version of the thinning the ensemble algorithm described in the text is

given as a Matlab function below.

function ens = thinning_the_ensemble(l,M,laba)
%
% A simpler variant of the ensemble thinning method [18]
% l is the array of size N � L containing
% the outputs of the L classifiers on a data set
% of N objects (preferably a validation set)
% The classes should be labeled by consecutive
% integers: 1,2,...,c
% M is the desired ensemble size
% laba is a vector-column with the true labels
% of the N objects
%
[N,L]=size(l);
mask=ones(1,L);% Start with the whole ensemble
oracle=(l== repmat(laba,1,L)); % Create a binary

% matrix with the correct/incorrect outputs
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for i=L:-1:2, % Remove one classifier at a time
% Using the current ensemble, find the
% ‘‘uncertain’’ points
uncertain_points=(mean(oracle (:,find (mask))’)>0.1)...

& (mean(oracle(:,find(mask))’)<0.9);
% Calculate a vector, p, with the accuracies
% of the L classifiers
uncertain_labels=repmat(laba(find(uncertain_points)),1,L);
p=mean(l(find(uncertain_points),:)==uncertain_labels);
% Eliminate the classifiers that have been discarded
p(find(mask))=inf;
[t1,t2]=min(p); % Find the least accurate classifier
% for the uncertain points (t2)
mask(t2)=0; % Remove classifier t2

end;
ens=find(mask);

The following function finds the Pareto-optimal set (the set of nondominated

alternatives) on two criteria for a set of N alternatives. The alternatives

correspond to the rows of X; each row contains the two criteria values for the

respec-tive alternative. The code outputs the Pareto-optimal set (a matrix with the

respective rows from X) and the indices of the rows of X that constitute the

Pareto-optimal set.

function [P,set_of_indices]=Pareto(X);
%
% Calculates the Pareto optimal subset P of an array X (Nx2)
% Assumes “the higher the better” on both coordinates
%
set_of_indices=[1];
if size(X,1)==1, % If X contains only one row,

P=X; % then this is also the Pareto optimal set
else

P=min(X); % Initialize the Pareto optimal set
for i=1:size(X,1),

index=(P(:,1)>X(i,1))&(P(:,2)>X(i,2));
if sum(index)==0, % X(i,:) is non-dominated

% Calculate the elimination index
% to find out which alternatives in the set
% are dominated by X(i,:)
index_el=(P(:,1)<X(i,1))&(P(:,2)<X(i,2));
P=P(~index_el,:); % Update P
P=[P;X(i,:)]; % Add X(i,:)
set_of_indices=[set_of_indices;i];

end;
end;

end;
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Index

Bagging, 166, 203

nice, 211

pasting small votes, 208–210

random forests, 207

Bayes

approach to combining classifiers, 179–182

decision theory, 25

error, 32–34, 269

Bias-variance

decomposition

Breiman’s, 224, 227

Domingos’s, 224, 227–228

Kohavi–Wolpert’s, 223, 226, 302

dilemma, 229

Bootstrap

for bagging, 203

for data editing, 63. See also Data, editing

methods

for error estimation, 9

Boosting

AdaBoost, 215–216

arc-x4, 215, 218

bounds on the error, 214, 217–219

Hedge (b), 212

reweighting and resampling, 215

Boundaries, see Decision, boundaries

Class

label, 3

linear separability, 8

overlap, 6

Classification

boundaries, see Decision, boundaries

error, 8. See also Bayes, error

region, 6–7, 13, 190

Classifier(s), 3

base, 45

comparison of, 12, 34

ensemble, 102, 151

fusion, 106

independent, 124, 282, 285, 310

instable, 12, 203

linear discriminant, 45, 152–153

minimum-error, 32, 45

multinomial, 51

nearest neighbor (k-nn), 56, 155

neural network, 87

nonparametric, 50

out-of-bag, 208

Parzen, 54

quadratic discriminant, 23, 46, 152–153

selection, 106, 189. See also Classifier

competence

space of, 103

taxonomy of, 36

tree, see Tree(s)

weighted nearest neighbor, 67

weights, optimal, 282

Classifier competence

estimate of, 190–196

local, 190

regions of, 190, 196
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Classifier output, 111–112, 298–299

abstract (label), 111, 299

correlation between, 205, 275, 299

measurement (continuous), 111, 299

oracle, 112, 298

rank, 111

types of, 111

Cluster ensembles, 251, 257–259

Jaccard index, 254

majority vote, 257

Rand index, 253

adjusted, 254

stacked, 260

Clustering, 37, 197

c-means (k-means), 38

hierarchical and nonhierarchical, 37

and selection, 197, 316

selective, 197–198

single linkage, 38

Combiner

BKS, 128, 184

consensus theory, 186

constrained regression, 165

decision templates, 170–175

Dempster–Shafer, 175–177

fuzzy intregral, 167–170

majority vote, see Majority vote

mean, 157, 177–180, 184–186, 268, 288

generalized, 158

multinomial, 128

naive Bayes, 126

nontrainable, 107, 157

oracle, 285, 290

order statistics (minimum, maximum, median),

157, 267, 287

ordered weighted averaging (OWA), 162

probabilistic, 131

product, 157, 178, 184–185

trainable, 107, 163

trimmed mean, 157

weighted average, 163, 180–182, 279

Wernecke’s, 129

Cross-validation, 9, 18

Curse of dimensionality, 52

Data

editing methods, see also Prototype(s),

selection

bootstrap, 63

Hart’s, 60

Modified Chang, 62

random, 61

Wilson’s, 60

set, 5

generated, 27

rotated checkboard, 29

training and testing, 9, 12

validation, 10

weights, 47

Decision

boundaries, 6, 30, 269–270

(versus coverage) optimization, 106

profile, 151

region, see Classification, region

templates, see Combiner

theory, see Bayes

tree, see Tree(s)

Discriminant

analysis, regularized, 46

classifier, linear, see Classifier(s)

classifier, quadratic, see Classifier(s)

function, see Function(s)

Distribution(s)

approximation, 132

first-order, 132

normal, 26

Diversity, 295

in biology, 296

measures

coincident failure, 305

correlation, 299

difficulty, u, 303

disagreement, 300

double fault, 301

entropy, 301

generalized diversity, 305

interrater agreement k, 299, 303

Q, 299

population, 296

in software engineering, 298

Ensemble(s)

feature selection for, 237

pruning, 315

thinning, 317

Error

added

ensemble, 273–275

single classifier, 269–273

apparent error rate, 8

bias-variance decomposition of, see Bias-

variance, decomposition

confidence interval of, 9

estimation methods, 9

squared, 82

Error correcting output codes (ECOC), 244

code matrix, 244

348 INDEX



codeword, 244

dichotomy, 244

exhaustive codes, 246

random codes, 246

row and column separation, 245

Feature(s), 3

extraction, 140

independent, 27

selection, 71, 237

by ensemble methods, 242

for ensembles, 237

favourite class method, 238

by genetic algorithms, 240

space, 4, 140

type of, 4

Functions

activation (neurons), 83

sigmoid, 84

threshold, 84

cumulative distribution, 27

discriminant, 5–7, 29, 45, 64–66, 152–153

kernel, 54, 153–154

probability

mass (pmf), 25

density (pdf), 25, 50, 64–66

Impurity measures

Gini, 71

entropy, 71

misclassification, 72

Intermediate feature space, 140, 144

Kappa-error plot, 315–316

Kernel, see Function(s)

Kullback–Leibler divergence, 184

Leave-one-out method, 9

Majority vote, 112

accuracy, 113–114, 120–123, 288

clustering, 258. See also Cluster ensembles

limits, 116, 122

pattern of failure, 117, 120, 310

pattern of success, 117, 119, 310

weighted, 123

Margin theory, 219

Matrix

code (ECOC), 244

confusion, 10–12, 126–127

covariance, 26, 46–48

loss, 10–12

Maximum membership rule, 6

Medical tests, 114

Mixture of experts, 200–202

Multilayer perceptron (MLP), 82, 86–88

Mutual information, 133–136, 251

Neuron, 83

Neural network training

backpropagation, 88

batch, 91

epoch, 91

online, 92

stochastic, 92

Overlap, 6

Overproduce-and-select, 315

Overtraining, 23

Pareto optimality, 318

Partition(s), 37, 192, 251

Pasting small votes, 208. See also Bagging

Perceptron

Rosenblatt’s, 85

training algorithm, 85–86

Probability (-ies)

class-conditional, 25–26

density functions, see Functions

distribution, see Distributions

Laplace estimator of, 154–157

mass functions, see Functions

posterior, 25, 151, 164

prior, 25

unconditional, 25

Prototype(s), 56. See also Classifiers, nearest

neighbor

reference set of, 56

selection, 59. See also Data, editing methods

Pruning

cost-complexity, 79

critical value method, 78

of ensemble, 315

error-based, 79

pessimistic, 78

reduced error method, 77

Random forests, 207. See also Bagging

Random subspace method, 237

Regularization, 48

Resubstitution method, 9

Rule

combination, see Combiner

maximum membership, 6

nearest neighbor, 56–59

softmax, 153

Singular value decomposition, 141
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Stacked generalization, 109

Statistical tests

chi square, 74

Cochran’s Q, 16–18

difference of proportions, 15–16

F-test, 16–18

McNemar, 13–15

paired t-test, 18

sensitivity and specificity, 115

Supra Bayesian approach, 183–184

Tree(s), 68

C4.5, 81

CART, 81

ID3, 81

dependence, 132

impurity, 71. See also Impurity

horizon effect, 77

pruning, 70, 77. See also Pruning

Voronoi diagrams, 57–58

Vote

majority, see Majority vote

plurality, 112

small, see Pasting small votes

unanimity, 113
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