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Abstract

 

—The paper describes new results of investigations into developing mathematical tools for the anal-
ysis and estimation of information represented in the form of images. It is a continuation of the study of a new
class of image algebras, descriptive image algebras (DIA). The use of DIA in image analysis applications
requires examination of a great many operations, which may lead (or may not) to the construction of DIA with
or without physical meaning. The questions about the kinds of operations which can be used for DIA construc-
tion and about the dependence of this process on the physical interpretability of these operations remain open.
In general, the problem consists in formulating conditions for the set of operations which ensure the DIA con-
struction. The ways of constructing the P-, G-, T-, and I-models by using one-ring DIA of a special type are
described. The possibility of formalization of different image representation (models) will help to use the prin-
ciples of algebraic recognition for image handling.
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1. INTRODUCTION

The paper describes new results from investigations
into developing mathematical tools for the analysis and
estimation of information represented by images. These
investigations have been carried out for several years in
the Computer Science Laboratory of the Scientific
Council on Cybernetics of the Russian Academy of Sci-
ences, where the descriptive approach to image analysis
and recognition is being developed and implemented
[5, 6]. The fundamental purpose of these investigations
is to create a general theory that would encompass var-
ious approaches and operations used in image process-
ing. A new image algebra (IA), a descriptive image
algebra (DIA), is being developed as such a theory [7,
8, 10, 11]. Its main distinction from the standard IA is
that it considers both algorithms and descriptions of
input information as algebraic objects. DIA generalizes
a standard IA and makes it possible to use basic image
models and operations over images (or both) as ring
elements. The new algebra tools can be used for auto-
mation of development, testing, and evaluation of the
quality of algorithms of image processing and analysis.
They can also serve as a basis for designing new com-
putational architectures specialized for image process-
ing and analysis. By applying a new algebra, a new lan-
guage is obtained for comparison and standardization
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of different algorithms for image analysis, recognition,
and processing.

The results presented below are obtained in the
framework of general research into structuring the con-
cepts of DIA and augmenting the set of basic operations
of DIA with respect to known image algebras. Main
efforts were focused on the construction and study of
the basic examples of DIA and on defining the condi-
tions for a set of operations ensuring DIA construction.

To this end, the following tasks should be first car-
ried out:

(1) The necessary and sufficient conditions for a set
of operations applied to ring elements and generating
one-ring DIA should be established.

(2) The possibility of generating special image mod-
els with the help of DIA and of using them as operands
in DIA should be investigated.

Our theoretical research consists of the following
stages:

At the first stage, examples of sets of operations are
constructed, which may have (or have not) physical
meaning and may lead (or may not) to the construction
of one-ring DIA. The standard algebraic operations, as
well as specialized operations of image processing and
analysis represented in algebraic form, can be used as
operations. Images and operations over images are used
as ring elements.

In this paper, we provide the following five exam-
ples: (i) three examples of basic one-ring DIA with dif-
ferent elements and operations having a certain physi-
cal meaning: in Examples 1 and 2, the images are ring
elements, and, in Example 3, binary operations over
images are ring elements; (ii) Example 4, where the
constructed set with the introduced operations forms a
group over addition; and (iii) Example 5, where the
operations which form groups neither over addition nor
over multiplication are shown.
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At the second stage, the results of applying one-ring
DIA operations to various sets of elements are col-
lected. The specificity of pattern recognition makes it
possible to successfully recognize a new object from
incomplete information about it. Thus, we can use
image models which contain information on the initial
image. In this case, we cannot restore an image from its
model; however, its correct classification is possible.
The following four classes of models are presented here
as image models: P-model (parametric model),
G-model (procedural model), T-model (generative
model), and image I in its natural form [7]. In the sec-
ond part of the paper, different ways of constructing
image models using DIA are demonstrated.

At the third stage, the conditions for the set of oper-
ations which ensure the one-ring DIA construction are
formulated. At this stage, the standard IA operations
introduced by G. Ritter [14] were studied. By applying
these operations to a variety of images, a set of opera-
tions was obtained leading to the DIA construction. The
necessary and sufficient conditions for a set of opera-
tions generating one-ring DIA are determined.

2. DESCRIPTIVE IMAGE ALGEBRAS: 
DEFINITIONS AND EXAMPLES

 

2.1. The Purposes and Fundamental Works

 

The stimulus for DIA construction was one of the
classical problems in image analysis: an efficient con-
struction of a sequence of operations for transforming
the given image into a desired one and vice versa. It
turned out that the general solution of this problem
requires a formal system for image representation and
transformation. This system should meet the following
conditions: (i) every object of transformation should be
a hierarchical structure built from the primitive objects
by using IA operations; (ii) points, sets, models, opera-
tions, and morphisms can be used as objects; and (iii)
every transformation is a hierarchical structure built
from the set of basic transformations by using IA oper-
ations.

An algebraic formalism should provide the follow-
ing possibilities [10]:

—construction of algebraic structures which allow
one to use the methods borrowed from other branches
of mathematics for image processing, analysis, and rec-
ognition;

—construction of correct and compact image
descriptions convenient both for procedure interpreta-
tions and for the design of new methods;

—construction of a language to describe image
transformations and operations over images as compact
sets of simple transformations;

—construction of machine-independent, as well as
architecture-dependent, descriptions of image transfor-
mations;

—enhancement of software implementation by the
matching of algebraic expressions to the program
blocks;

—establishment of the correlation between the
available programming languages and known algo-
rithms of image processing, analysis, and recognition,
or, in other words, selection of the most effective pro-
gramming languages for the resulting algebraic struc-
tures.

An essential drawback of the general theory of alge-
bras is that the character of the problem at hand is
neglected when the algebraic methods are applied to
information represented by images. In addition, a sim-
ple interpretation of the results of application of a the-
ory is not always possible. There are a lot of natural
image transformations that are easily understood by the
user (e.g., rotation, compression, dilation, color inver-
sion, etc.) which are resistant to standard algebraic
operations. Therefore, the IA tools should be combined
with a set of natural image transformations. Thus, this
new class of IA should cover not only the basic models
of images as objects of analysis and recognition but
also the basic models of transformations, which lead to
effective synthesis and implementation of the basic
procedures of image formal description, processing,
analysis, and recognition.

The idea of creating a general theory enveloping
various approaches and operations for image and signal
processing has a long history. It starts with the works of
von Neumann and continues with the works of
S. Anger, M. Duff, G. Materon, J. Serra, G. Ritter, and
others.

The mathematical morphology developed by
Materon and Serra [15] became a starting point for a
new mathematical trend in image processing and anal-
ysis. J. Serra and S. Stenberg [16] were the first to suc-
ceed in developing an algebraic theory of image pro-
cessing and analysis on the basis of mathematical mor-
phology. S. Stenberg was supposedly the first to
introduce the modern conception of image algebra:
“Image algebra is a representation of the algorithms of
the cell computer for image processing in the form of
algebraic expressions wherein images are variables and
logical or geometric combinations of images are oper-
ations” [16]. It should be noted that U. Grenander used
the concept of image algebra as early as in 1970; how-
ever, a different algebraic construction was meant [3].
A great number of works appeared in the framework of
this study concerned with the development of special
algebraic constructions that use or reject mathematical
morphology.

The following investigations of the 1970s–1980s
brought about the development of DIA:

—Zhuravlev algebra (also known as algebra of
algorithms). The algebraic methods in the theory of
algorithms are directed at the construction of efficient
procedures for solving problems with poorly formal-
ized and sometimes contradictory information and
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problems of discrete optimization which can only be
solved by an exhaustive search unrealizable in prac-
tice [2].

—Descriptive approach to image analysis and
understanding as a specialization of the general alge-
braic approach to the problems of recognition, classifi-
cation, and forecasting where the initial data are
resented by images (transforming images to a form
convenient for recognition, standardization of the syn-
thesis of formal image description, classes of image
models) [5, 6].

—General pattern theory of U. Grenander (descrip-
tion of analyzed objects) [3, 4]. The works of
Grenander are a basis for creating the most general
tools for dealing with patterns of arbitrary nature and
representing them as algebraic structures. An essential
contribution made by Grenander is the unification of
algebraic tools with the concept of Markov random
processes by setting probabilistic measures on arbitrary
algebraic structures. The fundamental idea of the
Grenander theory consists in the possibility of express-
ing knowledge on patterns in terms of regular struc-
tures.

—Extended (standard) IA of G. Ritter [14] has a
narrower application purpose: it is aimed at the gener-
alization of known local methods of image analysis,
e.g., mathematical morphology, for augmenting their
possibilities and eliminating the bottlenecks. Since IA
not only generalizes mathematical morphology and lin-
ear algebra but also is the most wide and convenient
structure, the IA language allows one both to imple-
ment known algorithms and to create new ones. The IA
can serve as a basis for creating a higher level language
for image analysis that uses operations and operands of
a standard IA. Also, it is possible to extend the structure
of IA by introducing new operations, which is helpful
in the cases when morphology and linear algebra do not
yield a satisfactory result.

 

2.2. Algebra Definitions

 

Definition 2.2.1.

 

 [17] A nonempty set 

 

G

 

 of elements
of arbitrary nature (e.g., numbers, mappings, transfor-
mations) is called 

 

a group

 

 if the following four condi-
tions are satisfied:

(1) A composition law is given which puts every pair
of elements 

 

a

 

 and 

 

b

 

 from 

 

G

 

 in correspondence with the
third element from 

 

G

 

, which is usually called a compo-
sition of the elements 

 

a

 

 and 

 

b

 

 and is denoted as 

 

ab

 

.
(2) An association law. For any three elements 

 

a

 

, 

 

b

 

,
and 

 

c

 

 from 

 

G

 

, the equality

(

 

ab

 

)

 

c

 

 = 

 

a

 

(

 

bc

 

)

holds.
(3) There is a (left) unity 

 

e

 

 in 

 

G

 

, i.e., an element 

 

e

 

with the following property:

 

ea

 

 = 

 

a

 

 for all 

 

a

 

 from 

 

G

 

.

(4) For every element 

 

a

 

 from 

 

G

 

, there is (at least)
one (left) inverse element 

 

a

 

–1

 

 in 

 

G

 

 defined by the rela-
tion

 

aa

 

–1

 

 = 

 

e

 

.

If the addition is used instead of multiplication, the
group is called 

 

additive.

 

If the law of commutativity is also fulfilled, i.e.,

 

ab 

 

= 

 

ba

 

, then the group is called an 

 

Abelian group.

 

Definition 2.2.2. 

 

[17] 

 

A system with double compo-
sition

 

 is an arbitrary set of elements 

 

a

 

, 

 

b

 

,…, wherein,
for any pair of elements 

 

a

 

 and 

 

b

 

, the sum 

 

a

 

 + 

 

b

 

 and the
product 

 

ab

 

 are uniquely determined and belong to the
same set. A system with double composition is called 

 

a
ring 

 

if the operations over elements of this system obey
the following laws:

(1) Laws of addition:
(a) Associative law: 

 

a 

 

+ (

 

b

 

 + 

 

c

 

) = (

 

a

 

 + 

 

b

 

) + 

 

c

 

.
(b) Law of commutation: 

 

a

 

 + 

 

b

 

 = 

 

b

 

 + 

 

a

 

.
(c) Solvability of equation 

 

a

 

 + 

 

x

 

 = 

 

b

 

 for all 

 

a

 

, 

 

b

 

.
(2) Law of multiplication:
(a) Associative law: 

 

a

 

(

 

bc

 

) = (

 

ab

 

)

 

c

 

.
(3) Distributive laws:
(a) 

 

a

 

 + (

 

b

 

 + 

 

c

 

) = 

 

ab

 

 + 

 

ac

 

.
(b) (

 

b

 

 + 

 

c

 

)

 

a

 

 = 

 

ba

 

 + 

 

ca

 

.
If the multiplication obeys the law of commutation

(2b): 

 

ab

 

 = 

 

ba

 

, then the ring is called 

 

commutative

 

.

 

Definition 2.2.3. 

 

[17] A ring is called 

 

a body

 

 if
(a) it contains at least one nonzero element; and

(b) equations  are unsolvable for 

 

a

 

 = 0.

If, in addition, a ring is commutative, it is called 

 

a
field

 

 or 

 

rational ring

 

.

 

Definition 2.2.4. 

 

[17] Let us consider the following:
(i) a body 

 

K

 

 whose elements 

 

a

 

, 

 

b

 

, … are called coeffi-
cients or scalars; (ii) an additive Abelian group 

 

M

 

whose elements 

 

x

 

, 

 

y

 

, … are called vectors; and (iii) mul-
tiplication of the vectors by scalars 

 

xa

 

, which meets the
following demands:

(1) xa is in M;
(2) (x + y)a = xa + ya;
(3) x(a + b) = xa + xb;
(4) x(ab) = (xa)b;
(5) x1 = x.
If all these demands are satisfied, M is called a vec-

tor space over K or, more precisely, a right K-vector
space, since the coefficients are placed to the right of
vectors. The left K-vector space is defined similarly. If
the body K is commutative, these notions coincide.

Definition 2.2.5. [17] A ring U which is a finite-
dimensional vector space over some field P is called an
algebra. If, in addition, the relation (au)v = u(av) =

ax b,=

ya b= 
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a(uv) is valid for α ∈  P and u, v ∈  U, then the algebra
is called associative.

Properties of the algebra:
—Properties of the field P(α, β, γ ∈  P):
(1) ∀α , β ∈  P, ∃ ! (α + β) ∈  P:
(a) α + (β + γ) = (α + β) + γ;
(b) α + β = β + α;
(c) ∃ 0 ∈  P, ∀α  ∈  P, α + 0 = α;
(d) ∀α  ∈  P, ∃ (–α), α + (–α) = 0.
(2) ∀α , β ∈  P, ∃ ! (αβ) ∈  P:
(a) α(βγ) = (αβ)γ;
(b) αβ = βα;
(c) ∃ 1 ∈  P. ∀α  ∈  P, 1α = α.
(3) α(β + γ) = αβ + αγ.
—Properties of the ring U(a, b, c ∈  U):
(1) ∀ a, b ∈  U, ∃ ! (a + b) ∈  U:
(a) a + (b + c) = (a + b) + c;
(b) a + b = b + a;
(c) ∃ 0 ∈  U, ∀ a ∈  U, a + 0 = a;
(d) ∀ a ∈  U∃ (–a), a + (–a) = 0.
(2) ∀ a, b ∈  U, ∃ !(ab) ∈  U:
(a) a(bc) = (ab)c.
(3) (αa + βb)c = αac + βbc.
—Properties of the vector space (∀α  ∈  P, a ∈  U:

αa Œ U):
(1) α(βa) = (αβ)a.
(2) (α + β)a = αa + βa.
(3) α(a + b) = αa + ab.
Definition 2.2.6. An algebra over the field A is

called an image algebra (IA) if the images (sets of
points) with their values and characteristics are the ele-
ments of its ring [14].

Definition 2.2.7. An algebra over the field A is
called a descriptive image algebra (DIA) if either the
image models or operations with images (or both) are
the elements of its ring. As a model, the image itself or
the set of corresponding values and characteristics can
be chosen [7, 8].

Definition 2.2.8. DIA is called a basic DIA if its
ring consists of either image models or operations over
images [7, 8].

2.3. Images According to G. Ritter

For the sake of generality, during the construction of
examples we use the definition of image (see Definition
2.3.1) and operations over images introduced by Ritter
in standard image algebra [14].

Definition 2.3.1. (Images According to Ritter
[14]) Let F be a set of values and X be a set of points. A
mapping of the set X into set F (the element of the set

FX): I = {(x, a(x)), x ∈  X, a(x) ∈  F} is called an image
that takes values from F in the set F.

Let I1 = {(x, a(x)), x ∈  X} and I2 = {(x, b(x)), x ∈  X}.
Operations over images according to Ritter ([14]).
Let the following operations be determined over F:

addition, multiplication, maximization, and inverse
operations, such as subtraction, division, minimization,
and exponential operation (∀ a(x), b(x) ∈  F) ∃ !a(x) +
b(x), ∃ !a(x)b(x), ∃ !a(x) ∨  b(x), ∃ !a(x) – b(x), for b(x) ≠ 0
∃ !a(x)/b(x), for a(x) > 0 ∃ !a(x)b(x).

The main operations over images from Fx are point-
wise addition, multiplication, and maximization:

I1 + I2 = {(x, c(x)), c(x) = a(x) + b(x), x ∈  X},

I1I2 = {(x, c(x)), c(x) = a(x)b(x), x ∈  X},

I1 ∨  I2 = {(x, c(x)), c(x) = a(x) ∨  b(x), x ∈  X}.

Operations of subtraction, division, and minimiza-
tion are introduced as inverse operations:

I1 – I2 = {(x, c(x)), c(x) = a(x) – b(x), x ∈  X},

 = {(x, c(x)), c(x) = , b(x) ≠ 0, c(x) = 0, b(x) ∈  0},

I1 ∧  I2 = {(x, c(x)), c(x) = a(x) ∧  b(x), x ∈  X}.

Similarly, we can introduce other operations over
images, such as

We can introduce unary operations like multiplication
by the element of the real number field (α ∈  R:

.

2.4. Compliance with Requirements
for Being a Member of DIA

2.4.1. Examples of a set of algebra-generating
operations. Here, we define the types of sets, opera-
tions, and their physical interpretation that we use in the
examples given below. Let us consider different sets U
with operations of addition, multiplication, and multi-
plication by the real number defined on them.

(1) Elements of the set U:
(1.1) Images defined on the set X which has an arbi-

trary range of values F with dimensionality coincident
with the dimensionality of a set X, i.e., X, F ⊂  Rn;

(1.2) Images defined on the set X which has a range
of values X, X ⊂  Rn;

(1.3) Standard binary operations over images [14].
(2) Operations over set elements:
(2.1) Addition;
(2.2) Multiplication;
(2.3) Multiplication by the field element.
(3) Physical meaning of operations:

I1

I2
---- a x( )

b x( )
-----------

I1
I2 x c x( ),( ) c x( ) a x( )b x( )= if a x( ) 0,>, ,{=

otherwise c x( ) 0= x X∈, } .

α I1 x c x( ),( ) c x( ) αa x( )= x X∈, ,{ }=
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(3.1) addition (getting the summary brightness of
two images), multiplication (pointwise filter), multipli-
cation by the element of the field of real numbers (pro-
portional increase or decrease in image brightness).

(3.2) addition (getting the summary brightness of
two images); multiplication (global, nonpointwise, fil-
ter and definition of an image in a set defined by
another image); multiplication by the element of the
field of real numbers (proportional increase or decrease
in image brightness).

(3.3) addition (global filter: first, two operations are
applied to both images, then, the resulting images are
added); multiplication (global filter: the second opera-
tion is applied to both images and the resulting image
serves as the first and second operands of the first oper-
ation); multiplication of the operation by the element of
the field of real numbers (image multiplication by a
field element, i.e., unary operation over images: stan-
dard operation of image multiplication by the element
of the field of real numbers [7]).

In what follows we describe the examples of DIA
generated by the sets U with defined characteristics (in
parentheses, we indicate the type of set elements, oper-
ations, and their physical interpretations according to
the list).

2.4.1.1. Example 1 (1.1, 2.1, 3.1).

Let the family of functions  be given.

—An operation of addition of two elements from Fi ,
Fj: i, j = 1, 2,…, is introduced as ∀ a(x) ∈  Fi , b(x) ∈  Fj:
∃ !a(x) + b(x) ∈  Fk, k = 1, 2, …, Fk ⊂  Rn, with the fol-
lowing properties:

(1.1) a(x) + (b(x) + c(x)) = (a(x) + b(x)) + c(x);
(1.2) a(x) + b(x) = b(x) + a(x);
(1.3) ∀ i: ∀ a(x) ∈  Fi , ∃ 0 ∈  Fi: a(x) + 0 = a(x);
(1.4) ∀ i: ∀ a(x) ∈  Fi, ∃ (–a(x)) ∈  Fi: a(x) + (–a(x)) = 0.
In the simplest case (all Fi ≡ F), this operation can

be introduced as a pointwise addition of two set ele-
ments.

—An operation of multiplication of two elements
from Fi , Fj: i, j = 1, 2, …, is introduced as a(x) ∈  Fi ,
b(x) ∈  Fj: ∃ !a(x)b(x) ∈  Fk , k = 1, 2, …, Fk ⊂  Rn, with
the following properties:

(∀ a(x) ∈  Fi , b(x) ∈  Fj , c(x) ∈  Fy , i, j, y = 1, 2, …):

(1.5) a(x)(b(x)c(x)) = (a(x)b(x))c(x).
—An operation of multiplication by the element of

the field of real numbers R is introduced over a set F:
∀α  ∈  R, a(x) ∈  F: ∃ !αa(x) ∈  F, with the following
properties:

(∀ a(x) ∈  Fi , b(x) ∈  Fj , c(x) ∈  Fy ,
i, j, y = 1, 2, …, ∀ a, b ∈  R);

(1.6) (αa(x) + βb(x))c(x) = αa(x)c(x) + βb(x)c(x);

Fi{ } 1
∞

a x( )∀ Fi∈ b x( ) F j∈ c x( ) Fy∈ i j y 1 2 …, ,=, , , , ,( )

(1.7) α(βa(x)) = αβa(x);
(1.8) (α + β)a(x) = αa(x) + βa(x);
(1.9) α(a(x) + b(x)) = αa(x) + αb(x).
Statement 2.4.1.1.
Suppose that
—R is a field of real numbers;
—I = {(x, f(x)), x ∈  X, f(x) ∈  F} (X, F ⊂  Rn, n ∈  N,

F ⊂  }, where F is a set of values taken by image
I over set X) are elements of the set U;

—I1 = {(x, a(x)), x ∈  X, a(x) ∈  F1}, I2 = {(x, b(x)), x
∈  X, b(x) ∈  F2}, (X, F1, F2 ⊂  Rn, n ∈  N, F1, F2 ⊂

).

We introduce
—the operation of addition of two images I1 and I2

as 

I1 + I2 = {(x, a(x) + b(x)), x ∈  X};

—the operation of multiplication of two images I1
and I2 as 

I1I2 = {(x, a(x)b(x)), x ∈  X}; and

—the operation of multiplication of image I by the
element of the field of real numbers α ∈  R as

Then, a set U with operations of addition, multiplica-
tion, and multiplication by the element of the field of
real numbers introduced over it is an algebra over the
field of real numbers.

Proof.
The proof is based on the validation of the alge-

bra’s properties (see Definition 2.2.5) of the set U
with operations of addition, multiplication, and mul-
tiplication by the element of the field of real numbers
introduced over it.

Properties of algebra:
—R is a field of real numbers;
—Properties of a ring U(I1, I2, I3 ∈  U), where

I1 = {(x, a(x)), x ∈  X, a(x) ∈  F1},

I2 = {(x, b(x)), x ∈  X, b(x) ∈  F2},

I3 = {(x, c(x)), x ∈  X, c(x) ∈  F3},

are the following:
(1) ∀ I1, I2 ∈  U, ∃ !(I1 + I2) ∈  U
(a) I1 + (I2 + I3) = I1 + {(x, (b(x) + c(x)), x ∈  X} = {(x,

a(x) + (b(x) + c(x))), x ∈  X}
(I1 + I2) + I3 = {(x, a(x) + b(x)), x ∈  X} + I3 = {(x,

(a(x) + b(x)) + c(x)), x ∈  X)} = {according to Property
1.1} = {(x, a(x) + (b(x) + c(x))), x ∈  X}

I1 + (I2 + I3) = (I1 + I2) + I3

(b) I1 + I2 = {(x, a(x) + b(x)), x ∈  X}

Fi{ } 1
∞

Fi{ } 1
∞

α I x α f x( ),( ) x X∈,{ } .=
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I2 + I1 = {(x, b(x) + a(x)), x ∈  X} = {according to
Property 1.2} = {(x, a(x) + b(x)), x ∈  X}

I1 + I2 = I2 + I1

(c) O = {(x, 0), x ∈  X}
I1 + O = {(x, a(x) + 0), x ∈  X} = {according to Prop-

erty 1.3} = {(x, a(x)), x ∈  X} = I1

∃ O ∈  U, ∀ I1 ∈  U, I1 + O = I1

(d) (–I1) = {(x, –a(x)), x  X}

I1 + (–I1) = {(x, a(x) – a(x)), x ∈  X} = {according to
Property 1.4} = {(x, 0), x ∈  X} = O

∀ I1 ∈  U, ∃ (–I1), I1 + (–I1) = 0

(2) ∀ I1, I2 ∈  U, ∃ !(I1I2) ∈  U

(a) I1(I2I3) = I1({(x, b(x)c(x)), x ∈  X}) = {(x,
a(x)(b(x)c(x))), x ∈  X}

(I1I2)I3 = ({(x, a(x)b(x)), x ∈  X})I3 = {(x,
(a(x)b(x))c(x)), x ∈  X} = {according to Property 1.5} =
{(x, a(x)(b(x)c(x))), x ∈  X)}

I1(I2I3) = (I1I2)I3

(3) α, β ∈  R
(αI1 + βI2)I3 = ({(x, αa(x) + βb(x)), x ∈  X})I3 = {(x,

(αa(x) + βb(x))c(x)), x ∈  X} = {according to Property
1.6} = {(x, αa(x)c(x) + βb(x)c(x)), x ∈  X}}

αI1I3 + βI2I3 = {(x, αa(x)c(x)), x ∈  X} + {(x,
βb(x)c(x)), x ∈  X} = {(x, αa(x)c(x) + βb(x)c(x)), x ∈  X}

(αI1 + βI2)I3 = αI1I3 + βI2I3.

—The properties of a vector space (∀α  ∈  P, I ∈  U:
αI ∈  U) are:

(1) α(βI) = α{(x, βf(x)), x ∈  X} = {(x, α(βf(x))), x ∈
X} = {according to Property 1.7} = {(x, αβf(x)), x ∈  X}

(αβ)I = {(x, αβf(x)), x ∈  X}
α(βI) = (αβ)I
(2) (α + β)I = {(x, (α + β)f(x)), x ∈  X} = {according

to Property 1.8} = {(x, αf(x) + βf(x)), x ∈  X}
αI + βI = {(x, αf(x)), x ∈  X} + {(x, βf(x)), x ∈  X} =

{(x, αf(x) + βf(x)), x ∈  X)}

(α + β)I = αI + βI

(3) α(I1 + I2) = α{(x, a(x) + b(x)), x ∈  X} = {(x,
α(a(x) + b(x))), x ∈  X} = {according to Property 1.9} =
{(x, αa(x) + αb(x)), x ∈  X}

αI1 + αI2 = {(x, αa(x)), x ∈  X} + {(x, αb(x)), x ∈  X} =
{(x, αa(x) + αb(x)), x ∈  X}

α(I1 + I2) = αI1 + αI2.

All properties of a ring, field, and vector space are
valid. The set U with operations of addition, multiplica-
tion, and multiplication by the element of the field of
real numbers introduced over it is the algebra over the
field of real numbers. Q.E.D.

.∈

2.4.1.2. Example 2 (1.2, 2.2, 3.2).
Let the set X be given:
—The operation of addition of two elements from X

∀ a(x), b(x) ∈  X: ∃ ! a(x) + b(x) ∈  X is introduced which
is characterized by the following properties (∀ a(x),
b(x), c(x) ∈  X):

(2.1) a(x) + (b(x) + c(x)) = (a(x) + b(x)) + c(x);
(2.2) a(x) + b(x) = b(x) + a(x);
(2.3) ∀ a(x) ∈  X, ∃ 0 ∈  X: a(x) + 0 = a(x);
(2.4) ∀ a(x) ∈  X, ∃ (–a(x)) ∈  : a(x) + (–a(x)) = 0.
—The operation of superposition of two elements

from X is introduced: ∀ a(x), b(x) ∈  X: ∃ !a(b(x)) ∈  X.
—The operation of multiplication by the element of

the field of real numbers R is introduced over set X
which is characterized by the following properties
(∀ a(x), b(x), c(x) ∈  X, ∀α , β ∈  R):

(2.5) (αa(x) + βb(x))c(x) = αa(c(x)) + βb(c(x));
(2.6) α(βa(x)) = αβa(x);
(2.7) (α + β)a(x) = αa(x) + βa(x);
(2.8) α(a(x) + b(x)) = αa(x) + αb(x).
Statement 2.4.1.2.
Suppose that
—R is a field of real numbers;
—I = {(x, f(x)), x ∈  X, f(x) ∈  X} (X ⊂  Rn, n ∈  N) are

the elements of the set U; and 
—I1 = {(x, a(x)), x ∈  X, a(x) ∈  X}, I2 = {(x, b(x)), x

∈  X, b(x) ∈  X}.
We introduce
—the operation of addition of two images I1 and I2

as 

—the operation of multiplication of two images I1
and I2 as 

(thus, we stay within the set); and
—the operation of multiplication of image I by the

element of the field of real numbers α ∈  R as

(Conditions (2.1)–(2.4), (2.7), and (2.8) imply that the
set X is a vector field over field R.)

Then, a set U with operations of addition, multipli-
cation, and multiplication by the element of the field of
real numbers introduced over it is an algebra over the
field of real numbers.

Proof.
The proof is based on the validation of the algebra’s

properties (see Definition 2.2.5) of the set U with
operations of addition, multiplication, and multipli-
cation by the element of the field of real numbers
introduced over it.

I1 I2+ x a x( ) b x( )+,( ) x X∈,{ } ;=

I1I2 x a b x( )( ),( ) x X∈,{ }=

α I x α f x( ),( ) x X∈,{ } .=
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Properties of the algebra:
—R is a field of real numbers;
—Properties of a ring U(I1, I2, I3 ∈  U), where

I1 = {(x, a(x)), x ∈  X, a(x) ∈  X},

I2 = {(x, b(x)), x ∈  X, b(x) ∈  X},

I3 = {(x, c(x)), x ∈  X, c(x) ∈  X},

are the following:
(1) ∀ I1, I2 ∈  U, ∃ !(I1 + I2) ∈  U

(a) I1 + (I2 + I3) = I1 + {(x, b(x) + c(x)), x ∈  X} = {(x,
a(x) + (b(x) + c(x))), x ∈  X}

(I1 + I2) + I3 = {(x, a(x) + b(x)), x ∈  X} + I3 = {(x,
(a(x) + b(x)) + c(x)), x ∈  X} = {according to Property
2.1} = {(x, a(x) + (b(x) + c(x))), x ∈  X}

I1 + (I2 + I3) = (I1 + I2) + I3

(b) I1 + I2 = {(x, a(x) + b(x)), x ∈  X}

I2 + I1 = {(x, b(x) + a(x)), x ∈  X} = {according to
Property 2.2} = {(x, a(x) + b(x)), x ∈  X}

I1 + I2 = I2 + I1

(c) O = {(x, 0), x ∈  X}
I1 + O = {(x, a(x) + 0), x ∈  X} = {according to Prop-

erty 2.3} = {(x, a(x)), x ∈  X} = I1

∃ O ∈  U, ∀ I1 ∈  U, I1 + O = I1

(d) (–I1) = {(x, –a(x)), x  X}

I1 + (–I1) = {(x, a(x) – a(x)), x ∈  X} = {according to
Property 2.4} = {(x, 0), x ∈  X} = O

∀ I1 ∈  U, ∃ (–I1), I1 + (–I1) = 0

(2) ∀ I1, I2 ∈  U, ∃ !(I1I2) ∈  U

(a) I1(I2I3) = I1({(x, b(c(x))), x ∈  X}) = {(x,
a(b(c(x)))), x ∈  X}

(I1I2)I3 = ({(x, a(b(x))), x ∈  X})I3 = {(x, a(b(c(x)))),
x ∈  X}

I1(I2I3) = (I1I2)I3

(3) α, β ∈  R
(αI1 + βI2)I3 = ({(x, αa(x) + βb(x)), x ∈  X})I3 = {(x,

(αa(c(x)) + βb(c(x)))), x ∈  X}
αI1I3 + βI2I3 = {(x, αa(c(x))), x ∈  X} + {(x,

βb(c(x))), x ∈  X} = {(x, (αa(c(x)) + βb(c(x)))), x ∈  X}

(αI1 + βI2)I3 = αI1I3 + βI2I3.

—Properties of a vector space (∀α  ∈  P, I ∈  U:
αI ∈ U):

(1) α(βI) = α{(x, βf(x)), x ∈  X} = {(x, α(βf(x))), x ∈
X} = {according to Property 2.6} = {(x, αβf(x)), x ∈  X}

(αβ)I = {(x, αβf(x)), x ∈  X}

α(βI) = (αβ)I

.∈

(2) (α + β)I = {(x, (α + β)f(x)), x ∈  X} = {according
to Property 2.7} = {(x, αf(x) + βf(x)), x ∈  X}

αI + βI = {(x, αf(x)), x ∈  X} + {(x, βf(x)), x ∈  X} =
{(x, αf(x) + βf(x)), x ∈  X}

(α + β)I = αI + βI

(3) α(I1 + I2) = α{(x, a(x) + b(x)), x ∈  X} = {(x,
α(a(x) + b(x))), x ∈  X} = {according to Property 2.8} =
{(x, αa(x) + αb(x)), x ∈  X}

αI1 + αI2 = {(x, αa(x)), x ∈  X} + {(x, αb(x)), x ∈  X} =
{(x, αa(x) + αb(x)), x ∈  X}

α(I1 + I2) = αI1 + αI2.

All properties of a ring, field, and vector space are
valid. The set U with operations of addition, multiplica-
tion, and multiplication by the element of the field of
real numbers introduced over it is the algebra over the
field of real numbers. Q.E.D.

2.4.1.3. Example 3 (1.3, 2.3, 3.3).
Let

—A, B, C,… be images acting from X to X, X ⊂  Rn;
—The following operations over images are intro-

duced [14]:
(1) A + B = {(x, c(x)): c(x) = a(x) + b(x), x ∈  X};
(2) AB = {(x, c(x)): c(x) = a(x)b(x), x ∈  X};
(3) A ∨  B = {(x, c(x)): c(x) = a(x) ∨  b(x), x ∈  X};
(4) A ∧  B = {(x, c(x)): c(x) = a(x) ∧  b(x), x ∈  X};

(5)  = {(x, c(x)): c(x) = , if b(x) ≠ 0, otherwise

c(x) = 0; x ∈  X};

(6) AB = {(x, c(x)): c(x) = a(x)b(x), if a(x) > 0, other-
wise c(x) = 0; x ∈  X};

(7) A – B = {(x, c(x)): c(x) = a(x) – b(x), x ∈  X}.
When the operations of addition and multiplication

are thus defined, the set of images A, B, C,… forms a
ring (see Example 1 (2.4.1.1)).

—r1, r2, … ∈  {+, ×, ∨ , ∧ , –, \, AB], i.e., r1, r2 are the
operations over two images;

—r(A, B) is the resulting image after applying oper-
ation r to images A and B.

Statement 2.4.1.3. 
Suppose that
—R is a field of real numbers;

—r1, r2, … ∈  {+, ×, ∨ , ∧ , –, \, AB} are the elements
of the set U, i.e., r1 and r2 are the operations over two
images [14].

We introduce
—the operation of addition of two operations r1 and

r2 as

A
B
--- a x( )

b x( )
-----------

r r2⊕( ) A B,( ) r1 A B,( ) r2 A B,( );+=
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—the operation of multiplication of two operations
r1 and r2 as

 and

—the operation of multiplication of operation r by
the element of the field of real numbers α ∈  R as

(αr)(A, B) = αr(A, B) (the right part denotes multi-
plication of the image by the element of the field).

Then, a set U with operations of addition, multipli-
cation, and multiplication by the element of the field of
real numbers introduced over it is an algebra over the
field of real numbers.

Proof.
The proof is based on the validation of the algebra’s

properties (see Definition 2.2.5) of the set U with oper-
ations of addition, multiplication, and multiplication by
the element of the field of real numbers introduced over
it.

Properties of the algebra:
—R is a field of real numbers;
—Properties of a ring U(I1, I2, I3 ∈  U), where

r1  r1(A, B),

r2  r2(A, B),

r3  r3(A, B),

are the following:
(1) ∀ r1, r2 ∈  U, ∃ !(r1 + r2) ∈  U

(a) (r1 ⊕  (r2 ⊕  r3))(A, B) = r1(A, B) + (r2(A, B) + r3(A,
B)) = {which is the property of associativity of image
addition (Statement 2.4.1.1)} = (r1(A, B) + r2(A, B)) +
r3(A, B)

((r1 ⊕  r2) ⊕  r3)(A, B) = (r1(A, B) + r2(A, B)) + r3(A, B)

(r1 ⊕  (r2 ⊕  r3))(A, B) = ((r1 ⊕  r2) ⊕  r3)(A, B);

(b) ((r1 ⊕  r2)(A, B) = r1(A, B) + r2(A, B) 

(r2 ⊕  r1)(A, B) = r2(A, B) + r1(A, B) = {which is Prop-
erty 1b of the ring (Statement 2.4.1.1)} = r1(A, B) +
r2(A, B)

(r1 ⊕  r2)(A, B) = (r2 ⊕  r1)(A, B);

(c) O(A, B) where I0 is a zero element of the image
ring {which is Property 1c of the ring (Statement
2.4.1.1)};

(r1 ⊕  O)(A, B) = r1(A, B) + O(A, B) = r1(A, B)

∃ O ∈  U, ∀ r1 ∈  U, (r1 ⊕  O)(A, B) = r1(A, B)

(d) (–r1)(A, B) = –r1(A, B) where –r1(A, B) is an
inverse element of the ring element r1(A, B)

(r1 ⊕  (–r1))(A, B) = r1(A, B) + (–r1(A, B)) = {which
is Property 1d of the ring (Statement 2.4.1.1)} = O(A,
B);

∀ r1 ∈  U ∃ (–r1), (r1 ⊕  (–r1))(A, B) = O(A, B)

r r2⊕( ) A B,( ) r1 r2 A B,( ) r2 A B,( ),( );=

(2) ∀ r1, r2 ∈  U, ∃ !(r1 ⊗  r2) ∈  U
(a) (r1 ⊗  (r2 ⊗  r3))(A, B) = (r1 ⊗  r2(r3(A, B), r3(A,

B))))(A, B) = r1(r2(r3(A, B), r3(A, B)), r2(r3(A, B), r3(A,
B)))

((r1 ⊗  r2) ⊗  r3)(A, B) = ((r1(r2(A, B), r2(A, B))) ⊗
r3)(A, B) = r1(r2(r3(A, B), r3(A, B)), r2(r3(A, B), r3(A,
B)))

(r1 ⊗  (r2 ⊗  r3))(A, B) = ((r1 ⊗  r2) ⊗  r3)(A, B)

(3) α, β ∈  R
((αr1 ⊕  βr2) ⊗  r3)(A, B) = ((αr1(A, B) + βr2(A, B)) ⊗

r3)(A, B) = αr1(r3(A, B), r3(A, B)) + βr2(r3(A, B), r3(A, B))
((αr1 ⊗  r3) ⊕  (βr2 ⊗  r3))(A, B)) = ((αr1(r3(A, B),

r3(A, B))) ⊕  ((βr2(r3(A, B), r3(A, B)))(A, B) = αr1(r3(A,
B), r3(A, B)) + βr2(r3(A, B), r3(A, B))

—Properties of a vector space (∀α  ∈  P, r ∈  U:
αr ∈ U):

(1) (α(βr))(A, B) = (α(βr(A, B)))(A, B) = αβr(A, B);
((αβ)r)(A, B) = (αβ)r(A, B) = αβr(A, B)
(α(βr))(A, B) = ((αβ)r)(A, B)
(2) ((α + β)r)(A, B) = (α + β)r(A, B) = αr(A, B) +

βr(A, B)
(αr ⊕  βr)(A, B) = αr(A, B) + βr(A, B)
((α + β)r)(A, B) = (αr ⊕  βr)(A, B);
(3) (α(r1 ⊕  r2))(A, B) = α(r1(A, B) + r2(A, B)) =

αr1(A, B) + αr2(A, B)
(α(r1 ⊕  r2))(A, B) = (αr1 ⊕  αr2)(A, B).

All properties of a ring, field, and vector space are
valid. The set U with operations of addition, multiplica-
tion, and multiplication by the element of the field of
real numbers introduced over it is the algebra over the
field of real numbers. Q.E.D.

2.4.2. Examples of sets of operations that do not
generate algebra. Here, like in Section 2.4.1, we con-
sider different sets U with operations of addition, mul-
tiplication, and multiplication by the real number
defined on them.

(1) Elements of the set U:
(1.4) Images defined on the set X having an arbitrary

range of values F with dimensionality coincident with
that of a set X, i.e., X, F ⊂  Rn;

(1.5) Images defined on any set Xi having an arbi-
trary range of values Fi with dimensionality coincident
with that of a set Xi , i.e., Xi , Fi ⊂  Rn.

(2) Operations over set elements (2.4, 2.5): addition,
multiplication, and multiplication by the field element.

(3) Physical meaning of operations:
(3.4) Addition (getting the summary brightness of

two images), multiplication (global nonpointwise filter
and defining of one image in the set defined by another
one; if this operation is not defined (i.e., F ⊄  X) the sec-
ond operand is considered as the resulting image), mul-
tiplication by the real number (proportional increase or
decrease in image brightness);
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(3.5) Addition (getting the summary brightness of
two images at the intersection of the sets wherein the
images are given; in the points of a set X wherein only
one image is defined, this image is considered to be
resulting); multiplication (global, nonpointwise filter;
in the points of an image X wherein only one image is
defined (the first or second operands), the image itself
(the first or second operands, respectively) is consid-
ered to be the result of operation of multiplication);
multiplication by the element of the field of real num-
bers, i.e., proportional increase or decrease in image
brightness.

In what follows, we describe the examples of con-
structions generated by the sets U with described char-
acteristics (in parentheses, we indicate the types of set
elements, operations, and their physical interpretation,
according to the above-mentioned list) which are not
algebras.

2.4.2.1. Example 4 (1.4, 2.4, 3.4).

Let the family of functions  be given.

—An operation of addition of two elements from Fi ,
Fj: i, j = 1, 2, …, is introduced as ∀ a(x) ∈  Fi , b(x) ∈  Fj:
∃ !a(x) + b(x) ∈  Fk , k = 1, 2, …, Fk ⊂  Rn with the follow-
ing properties:

(∀ a(x) ∈  Fi , b(x) ∈  Fj , c(x) ∈  Fy , k = 1, 2, …, y = 1,
2, …);

(4.1) a(x) + (b(x) + c(x)) = (a(x) + b(x)) + c(x);
(4.2) a(x) + b(x) = b(x) + a(x);
(4.3) ∀ i: ∀ a(x) ∈  Fi , ∃ 0 ∈  Fi: a(x) + 0 = a(x);

(4.4) ∀ i: ∀ a(x) ∈  Fi, ∃ (–a(x)) ∈  Fi: a(x) + (–a(x)) = 0.

In the simplest case (all Fi ≡ F), this operation can
be introduced as a pointwise addition of two set ele-
ments.

—An operation of superposition of two elements
from Fi , Fj: i, j = 1,2,…, is introduced as ∀ a(x) ∈  Fi ,
b(x) ∈  Fj , in the points where b(x) ∈  X: ∃ !a(b(x)) ∈  Fi .

—An operation of multiplication by the elements of
field R ∀α  ∈  R, a(x) ∈  F: ∃ !αa(x) ∈  F, is introduced
with the following characteristics: (∀ a(x) ∈  Fi , b(x) ∈
Fj , c(x) ∈  Fy , i, j, y = 1, 2, … ∀α , β ∈  R):

(4.5) (αa(x) + βb(x))c(x) = αa(x)c(x) + βb(x)c(x);
(4.6) α(βa(x)) = αβa(x);
(4.7) (α + β)a(x) = αa(x) + βa(x);
(4.8) α(a(x) + b(x)) = αa(x) + αb(x).
Statement 2.4.2.1.
Suppose that
—R is a field of real numbers;

—I = {(x, f(x)), x ∈  X, f(x) ∈  F}, (X, F ⊂  Rn, n ∈  N,

F ⊂  , F is a set of values of image I on the set X)
are the elements of the set U; and 

Fi{ } 1
∞

Fi{ } 1
∞

—I1 = {(x, a(x)), x ∈  X, a(x) ∈  F1}, I2 = {(x, b(x)), x
∈  X, b(x) ∈  F2}, (X, F1, F2 ⊂  Rn, n ∈  N, F1, F2 ⊂

).

We introduce
—the operation of addition of two images I1 and I2

as

I1 + I2 = {(x, a(x) + b(x)), x ∈  X};

—the operation of multiplication of two images I1
and I2 as

I1I2 = ; and

—the operation of multiplication of image I by the
element of the field of real numbers α ∈  R as

Then, the construction obtained is not an algebra but
an additive group.

Proof.
The proof is based on the validation of the algebra’s

properties (see Definition 2.2.5) of the set U with oper-
ations of addition, multiplication, and multiplication by
the element of the field of real numbers introduced over
it and also on testing the properties of the group of sets
U with the operation of addition (see Definition 2.2.1).

Properties of the algebra:
—R is a field of real numbers;
—The properties of a ring U(I1, I2, I3 ∈  U), where

I1 = {(x, a(x)), x ∈  X, a(x) ∈  F1},

I2 = {(x, b(x)), x ∈  X, b(x) ∈  F2},

I3 = {(x, c(x)), x ∈  X, c(x) ∈  F3},

are the following:
(1) ∀ I1, I2 ∈  U, ∃ !(I1 + I2) ∈  U
(a) I1 + (I2 + I3) = I1 + {(x, b(x) + c(x)), x ∈  X} = {(x,

a(x) + (b(x) + c(x))), x ∈  X} 
(I1 + I2) + I3 = {(x, a(x) + b(x)), x ∈  X} + I3 = {(x,

(a(x) + b(x)) + c(x)), x ∈  X} = {according to Property
4.1} = {(x, a(x) + (b(x) + c(x))), x ∈  X}

I1 + (I2 + I3) = (I1 + I2) + I3

(b) I1 + I2 = {(x, a(x) + b(x)), x ∈  X}
I2 + I1 = {(x, b(x) + a(x)), x ∈  X} = {according to

Property 4.2} = {(x, a(x) + b(x)), x ∈  X}

I1 + I2 = I2 + I1

(c) O = {(x, 0), x ∈  X}
I1 + O = {(x, a(x) + 0), x ∈  X} = {according to Prop-

erty 4.3} = {(x, a(x)), x ∈  X} = I1

∃ O ∈  U, ∀ I1 ∈  U, I1 + O = I1

Fi{ } 1
∞

x a b x( )( ),( ) b x( ) X∈,
x b x( ),( ) b x( ), X∉




α I x α f x( ),( ) x X∈,{ } .=
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(d) (–I1) = {(x, –a(x)), x  X}

I1 + (–I1) = {(x, a(x) – a(x)), x ∈  X} = {according to
Property 4.4} = {(x, 0), x ∈  X} = O

∀ I1 ∈  U, ∃ (–I1), I1 + (–I1) = 0

(2) ∀ I1, I2 ∈  U, ∃ !(I1I2) ∈  U

(a) I1(I2I3) = I1  =

 =

(I1I2)I3 = I3 =

 =

Let us consider the point x ∈  X such that b(x) ∉  X,
b(c(x)) ∈  X, c(x) ∈  X:

(1) I1(I2I3) = {(x, a(b(c(x))))},

(2) (I1I2)I3 = {(x, b(c(x)))},

where I1(I2I3) ≠ (I1I2)I3.

Not every property of a ring is valid for elements of
the set U. For the operation of addition, all properties of
a group are valid. In view of the given definitions of the
operations of addition and multiplication, the only
group constructed without additional restrictions was
the group over addition. Q.E.D.

2.4.2.2. Example 5 (1.5, 2.5, 3.5).

Let the families of functions  and  be
given:

.∈

x b c x( )( ),( ) c x( ) X∈,
x c x( ),( ) c x( ) X∉,




 
 
 

x a b c x( )( )( ),( ) b c x( )( ) X∈,
x b c x( )( ),( ) b c x( )( ) X∉,




x c x( ),( ) c x( ) X∉,





x a b c x( )( )( ),( ) b c x( )( ) X∈ c x( ) X∈, ,
x b c x( )( ),( ) b c x( )( ) X∉ c x( ) X∈, ,
x c x( ),( ) c x( ) X∉,






x a b x( )( ),( ) b x( ) X∈,
x b x( ),( ) b x( ) X∉,




 
 
 

x a b c x( )( )( ),( ) b c x( )( ) X∈ c x( ) X∈, ,
x b c x( )( ),( ) b c x( )( ) X∉ c x( ) X∈    b x ( ) X ∈, ,  
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X
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x c x( ),( ) c x( ) X
b x( ) X∉∉,
















x a b c x( )( )( ),( ) b x( ) X∈ b c x( )( ) X∈ c x( ) X∈, , ,
x b c x( )( ),( ) b c x( )( ) X∉ c x( ) X∈ b x( ) X ,∈, , ,

or c x( ) X b x( ) X∉,∈
x c x( ),( ) c x( ) X .∉,
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∈
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∈
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∃

 

!

 

a

 

(x) +
b(x) ∈  Fk , k = 1, 2, …, Fk ⊂  Rn with the following prop-
erties (∀ a(x) ∈  Fi , b(x) ∈  Fj , c(x) ∈  Fy , i, j, y = 1, 2, …
in the general set of definitions X):

(5.1) a(x) + (b(x) + c(x)) = (a(x) + b(x)) + c(x);
(5.2) a(x) + b(x) = b(x) + a(x);
(5.3) ∀ i: ∀ a(x) ∈  Fi , ∃ 0 ∈  Fi: a(x) + 0 = a(x);
(5.4) ∀ i: ∀ a(x) ∈  Fi, ∃ (–a(x)) ∈  Fi: a(x) + (–a(x)) = 0.
—An operation of multiplication of two elements

from Fi , Fj: i, j = 1, 2, …, is introduced as ∀ a(x) ∈  Fi ,
for x ∈  Xi, b(x) ∈  Fj for x ∈  Xj , for x ∈  Xj , for x ∈  Xi ∩
Xj ∃ !a(x) × b(x) ∈  Fk , k = 1, 2, …, Fk ⊂  Rn with the fol-
lowing properties (∀ a(x) ∈  Fi , b(x) ∈  Fj , c(x) ∈  Fy , i, j,
y = 1, 2, … in the general set of definitions X):

(5.5) a(x)(b(x)c(x)) = (a(x)b(x))c(x).
—An operation of multiplication by the element of

the field of real numbers R is introduced over a set F:
∀α  ∈  R, a(x) ∈  F: ∃ !αa(x) ∈  F with the following prop-
erties (∀ a(x) ∈  Fi , for x ∈  Xi, b(x) ∈  Fj for x ∈  Xj ,
c(x) ∈  Fy for x ∈  Xy , for x ∈  Xi ∩ Xj ∩ Xy i, j, y = 1, 2,
…, ∀α , β ∈  Rn):

(5.6) (αa(x) + βb(x))c(x) = αa(x)c(x) + βb(x)c(x);
(5.7) α(βa(x) = αβa(x);
(5.8) (α + β)a(x) = αa(x) + βa(x);
(5.9) α(a(x) + b(x)) = αa(x) + αb(x).
Statement 2.4.2.5.
Suppose that
—R is a field of real numbers;
—I = {(x, f(x)), x Œ X, f(x) ∈  F} (X, F ⊂  Rn, n ∈  N,

F ⊂  , X ⊂  , where F is a set of values taken
by image I over set X) are the elements of the set U; and

—I1 = {(x, a(x)), x ∈  X1, a(x) ∈  F1}, I2 = {(x; b(x)),

x ∈  X2, b(x) ∈  F2}, (X1, X2, F1, F2 ∈  Rn, F1, F2 ⊂  ,

X1, X2 ⊂  ).

We introduce
—the operation of addition of two images I1 and I2 as

I1 + I2 = ;

—the operation of multiplication of two images I1
and I2 as

I1I2 = ; and

Fi{ } 1
∞ Xi{ } 1

∞

Fi{ } 1
∞

Xi{ } 1
∞

x a x( ) b x( )+,( ) x X1 X2∩∈,
x a x( ),( ) x X1\X2∈,
x b x( ),( ) x X2\X1∈,






x a x( ) b x( )×,( ) x X1 X2∩∈,
x a x( ),( ) x X1\X2∈,
x b x( ),( ) x X2\X1∈,
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—the operation of multiplication of image I by the
element of the field of real numbers α ∈  R as

Then, a set U with operations introduced over it is
neither an algebra nor a group for any of the thus-
defined operations.

Proof.
The proof is based on the validation of the algebra’s

properties (see Definition 2.2.5) of the set U with oper-
ations of addition, multiplication, and multiplication by
the element of the field of real numbers introduced over
it and also on testing the properties of the group of a set
U with addition (see Definition 2.2.1).

Properties of the algebra:
—R is a field of real numbers;
—Properties of a ring U(I1, I2, I3 ∈  U), where

I1 = {(x, a(x)), x ∈  X, a(x) ∈  X},

I2 = {(x, b(x)), x ∈  X, b(x) ∈  X},

I3 = {(x, c(x)), x ∈  X, c(x) ∈  X},

are the following:

(1) ∀ I1, I2 ∈  U, ∃ !(I1 + I2) ∈  U

(a) I1 + (I2 + I3) = I1 +

 =

 =

α I x α f x( ),( ) x X∈,{ } .=

x b x( ) c x( )+,( ) x X2 X3∩∈,
x b x( ),( ) x X2\X3∈,
x c x( ),( ) x X3\X2∈,






x a x( ) b x( ) c x( )+ +,( ) x X1 X2 X3∩ ∩∈,
x a x( ),( ) x X1\ X2 X3∩{ }∈,
x b x( ) c x( )+,( ) x X2 X3∩{ } \X1∈,
x a x( ) b x( )+,( ) x X1\ X2\X3{ }∈,
x a x( ),( ) x X1 X2\X3{ }∩∈,
x b x( ),( ) x X2\X3{ } \X1∈,
x a x( ) c x( )+,( ) x X1 X3\X2{ }∩∈,
x a x( ),( ) x X1\ X3\X2{ }∈,
x c x( ),( ) x X3\X2{ } \X1∈,


















x a x( ) b x( ) c x( )+ +,( ) x X1 X2 X3∩ ∩∈,
x a x( ) b x( )+,( ) x X1 X2\X3{ }∩∈,
x b x( ) c x( )+,( ) x X2 X3∩{ } \X1∈,
x a x( ) c x( )+,( ) x X1 X3\X2{ }∩∈,
x a x( ),( ) x X1∈,
x b x( ),( ) x X2\X3{ } \X1∈,
x c x( ),( ) x X3\X2{ } \X1∈,














(I1 + I2) + I3 =  + I3 = 

 =

It is obvious that, for the identity

I1 + (I2 + I3) = (I1 + I2) + I3

to be fulfilled, the following condition is required:

X1 ∩ X2 = X2 ∩ X3 = X3 ∩ X1 = .

This contradicts the definition of the sum, since it is
defined on the union of sets of summands and multipli-
ers. Similarly, the multiplication operation contradicts
the property of associativity. The set is not a group for
any defined operation. Q.E.D.

3.APPLICATION OF ONE-RING DIA 
TO ELEMENTS OF VARIOUS NATURES

3.1. Definition of Image: Image Models

Definition 3.1.1. Image I is information in the form
of a square numerical matrix written on some computer
carrier and reproducing the properties of the imaged
object (scene) and deformations caused by the method
and process of image acquisition [13].

Definition 3.1.2. Models are different image repre-
sentations. The models of the following four classes
were introduced by I. Gurevich: (i) parametric model
(P-model), (ii) procedural model (G-model), (iii) gen-

x a x( ) b x( )+,( ) x X1 X2∩∈,
x a x( ),( ) x X1\X2∈,
x b x( ),( ) x X2\X1∈,
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erative model (T-model), and (iv) image in its natural
form (I-model).

Definition 3.1.3. The class of I-models consists of
images proper; e.g., the digital image can be considered
as a model image of an analog image, i.e., digital
matrix-model of an image.

Definition 3.1.4. P-model is an object description
by some numerical characteristics, e.g., image representa-
tion in the form of a numerical feature vector. (Numerical
features are defined below, see Definition 3.2.1.2).

Definition 3.1.5. G-model is an abstract image rep-
resentation, such as

—vector graphics (images are not stored pixel-by-
pixel but are described by equations of curves);

—description of image by indicating the arrange-
ment of basic primitives and relations between them;

—various types of coding by using an alphabet of
code symbols (codebook), e.g., coding by neural nets;
and 

—image representation in the form of Boolean
functions, particularly, in disjunctive normal form.

Definition 3.1.6. T-model represents images as a
sequence of transformations of one or several initial
images.

It should be noted that the original image could be
transformed into a model of any type; however, the
transition from one model to another is sometimes very
difficult and yields ambiguous results. For instance, in
order to restore a digital image from its P-model, the
feature vector must have a sufficient number of coordi-
nates. It is possible to completely restore an image if the
number of coordinates coincides with the number of
pixels; however, in this case, the P-model is not
required.

3.2. DIA with a Ring of Numerical Features 
and Standard Algebraic Operations

3.2.1. Definitions.
Definition 3.2.1.1. A mathematical object used for

producing formal image description is called a feature.
Most often, the numerical features are used.

Definition 3.2.1.2. A numerical image feature is a
variable representing numerical characteristics of the
spatial image properties.

Definition 3.2.1.3. A formal image description by
features is a set of mathematical objects (e.g., numbers,
vectors, matrices) that contain some information on an
image and are allowed by the recognition algorithm
used for problem solving.

Definition 3.2.1.4. An operation of calculation of
the feature vector is a mapping f(I) of image I into a set
of numerical features. (The mapping can be into the
number, vector, or matrix, whose elements can be inte-
ger, real-number, and binary values.)

There are different classifications of image features.
According to [9], all image features can be condition-

ally divided into three groups: statistical features,
shape-based features, and spectral features.

Statistical features are widely used in different
image recognition problems. They are calculated on the
basis of the assumption that the analyzed image is a
realization of some field of random numbers. The phys-
ical meaning of statistical features is the frequency of
occurrence of different image subsets or the values of
functions defined on these subsets. The most frequently
used statistical features are histograms, cooccurence
matrices, entropy-based features, and calculated fractal
dimensions.

Shape-based features are the sets of primitives with
corresponding relations and properties. The types of
primitives depend on the class of images. For instance,
in analysis and synthesis of artificial scenes, the primi-
tives are standard geometrical figures, such as circles,
angles, straight lines, etc. Usually, they are detected in
images by matching the image with patterns. This
group of features also contains topological features,
different moments, coefficients of curve polynomial
approximation with the given precision, etc.

When spectral features are calculated, the image is
regarded as a quantized discrete signal. For image
enhancing, e.g., for image filtering, the Fourier trans-
form is often used. Also, this group of features contains
an image spectrum, its elements, and different func-
tions based on gradient calculation.

There are other classifications, and the most inter-
esting among them are based on

(1) function (generative, parametric, symbols, spe-
cific objects, and procedures for feature extraction);

(2) informational nature (global and local);

(3) way of definition (computable, measurable,
extractable, and simulated);

(4) mathematical apparatus (algebraic or structural,
combinatorial, logical, arithmetical, statistic, spectral,
topological or geometric, and matrix-type);

(5) type of images (binary, grayscale, and texture);

(6) nature of an object that supports feature extrac-
tion (contour, segment, skeleton, and point).

3.2.2. Conditions of generation of P-models of
images.

Theorem 3.2.2.1. Let a set U consist of operations
for calculating numerical features, i.e., mappings of the
form f1(I), f2(I),…, where I is an image. Let also the
standard algebraic operations of addition, multiplica-
tion, and multiplication by the element of some field P
of elements of the set U be introduced, so that U and
operations introduced on it are an algebra. Then, for a
vector of numerical features to be the P-model of image
I, it is necessary and sufficient that each element of the
vector belong to algebra U.
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Proof.
Remark 1. Numerical features can be represented

as integer, real-valued, and binary vectors and matrices
of various dimensions. According to the conditions of
the theorem, the following operations are introduced on
the elements of the set U: addition, multiplication, and
multiplication by the element of some field. For correct
introduction of these operations, one of the two follow-
ing conditions should hold:

(a) Elements of the set U should be brought to uni-
formity. Introduction of operations of addition and mul-
tiplication of numerical features of different natures
(e.g., binary feature of a triangle being present in the
image or statistical feature of a cooccurrence matrix)
has no physical meaning; therefore, this condition for
correctness will not be used in the theorem.

(b) Elements of the set U must be of the same nature;
i.e., they must belong to some subset of a set of opera-
tions for calculating numerical features. Therefore,
next we consider different variants of the set U.

Sufficiency.
(1) Let
—the set U be all numerical features represented as

real-valued vectors of dimension n. A set of vectors of
integer values belongs to a set of vectors of real values,
and, thus, is not considered separately;

—with no loss of generality, R be the field of real
numbers; and

—for the elements of the set U (f1(I), f2(I) ∈  U), the
following operations be introduced:

(a) addition of two operations of calculation of
numerical features f1(I), f2(I):

f1(I) + f2(I) ∈  U

(addition is a standard algebraic operation of addition
of two vectors having the same dimension; addition of
two vector elements is a standard algebraic operation of
addition of two real numbers);

(b) multiplication of two operations of calculation
of numerical features f1(I), f2(I):

f1(I)f2(I) ∈  U

(multiplication is a standard algebraic operation of
termwise multiplication of two vectors of the same
dimension; multiplication of two vector elements is a
standard algebraic operation of multiplication of two
real numbers);

(c) operation of multiplication of an operation of
numerical feature calculation f(I) by the element of the
field of real numbers α ∈  R:

αf(I) ∈  U

(the operation of multiplication by the element of the
field corresponds to the standard algebraic operation of
multiplication of the vector and scalar; multiplication
of every vector element by the element of the real-val-

ued field is a standard algebraic operation of multipli-
cation of two real numbers).

The set U with the operations introduced over it is an
algebra. By applying the introduced operations to the
set U, we obtain all possible numerical features repre-
sented as real-valued vectors of one dimensionality.
Each of the obtained features describes image I, i.e., is
a part of a P-model of the image I.

(2) Let

—numerical features represented as binary vectors
of dimension n be the elements of set U;

—Z+ be the field of natural values and zero; and

—for the elements of the set U (f1(I), f2(I) ∈  U), the
following operations be introduced:

(a) addition of two operations of calculation of
numerical features f1(I), f2(I):

f1(I) + f2(I) ∈  U

(addition is a standard algebraic operation of addi-
tion of two vectors of the same dimension; addition of
two vector elements is an operation over elements of a
Boolean set, e.g., addition modulo two);

(b) multiplication of two operations of calculation
of numerical features f1(I), f2(I):

f1(I)f2(I) ∈  U

(multiplication is a standard algebraic operation of
termwise multiplication of two vectors of the same
dimension; multiplication of two vector elements is an
operation over elements of Boolean set, e.g., conjunc-
tion);

(c) operation of multiplication of an operation of
calculation of numerical feature f(I) by the element of
the field α ∈  Z+:

αf(I) ∈  U

(operation of multiplication by the element of the field
corresponds to the standard algebraic operation of mul-
tiplication of the vector and scalar; multiplication of a
vector element by the element of the field of nonnega-
tive integers corresponds to, e.g., α-multiple addition of
a vector element with itself modulo two).

The set U with the operations introduced over it is an
algebra. By applying the introduced operations to the
set U, we obtain all possible numerical features repre-
sented as binary vectors of the same dimension. Each of
the obtained features describes image I, i.e., is a part of
a P-model of image I.

(3) Let

—numerical features represented as square matrices
of real-valued elements with dimensions n × n be the
elements of set U;

—R be the field of natural values; and
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—for the elements of the set U (f1(I), f2(I) ∈  U), the
following operations be introduced:

(a) addition of two operations of calculation of
numerical features f1(I), f2(I):

f1(I) + f2(I) ∈  U

(addition is a standard algebraic operation of addition
of two matrices of the same dimension; addition of two
matrix elements is a standard algebraic operation of
two real numbers);

(b) multiplication of two operations of calculation
of numerical features f1(I), f2(I):

f1(I)f2(I) ∈  U

(multiplication is a standard algebraic operation of
multiplication of two square matrices of the same
dimension; multiplication of two matrix elements is a
standard algebraic operation of multiplication of two
real numbers);

(c) multiplication of an operation of calculation of
numerical feature f(I) by the element of the field α ∈  Z+:

αf(I) ∈  U

(operation of multiplication by the element of the field
corresponds to the standard algebraic operation of mul-
tiplication of the matrix and scalar; multiplication of a
matrix element by the element of the field of real num-
bers corresponds to standard algebraic operation of
multiplication of two real numbers).

The set U with the operations introduced over it is an
algebra. By applying the introduced operations to the
set U, we obtain all possible numerical features repre-
sented as square matrices of the same dimension. Each
of the obtained numerical features describes the image
I, i.e., is a part of a P-model of the image I.

(4) Let
—numerical features of the type not considered in

(1)–(3) be the elements of set U;
—P be an arbitrary field; and
—for the elements of the set U (f1(I), f2(I) ∈  U), the

following operations be introduced:
(a) addition of two operations of calculation of

numerical features f1(I), f2(I):

f1(I) + f2(I) ∈  U;

(b) multiplication of two operations of calculation
of numerical features f1(I), f2(I):

f1(I)f2(I) ∈  U;

(c) multiplication of an operation of calculation of
numerical feature f(I) by the element of the field α ∈  P:

αf(I) ∈  U.

The set U with the operations introduced over it is an
algebra. By applying the introduced operations to the
set U, we obtain all possible numerical features repre-
sented as (4).

Necessity.
By definition, P-model is an image described by

numerical characteristics. Since the considered type of
DIA allows us to obtain any kind of numerical features
for the given image, for the vector of numerical charac-
teristics to be P-model, it is necessary that each of its
elements belong to some algebra U constructed over
the operations of calculation of numerical characteris-
tics of the given image I. Q.E.D.

3.3. DIA with a Ring of Images 
and Standard Algebraic Operations

3.3.1. Definitions.
By Definition 3.1.1, image I is information pre-

sented in the form of a square numerical matrix written
on some computer carrier and reproducing the proper-
ties of the imaged object (scene) and deformations
caused by the method and process of image acquisition.

We distinguish two types of images:
(1) images in the form of a matrix whose rank is

equal to the number of rows (columns) of the matrix
and

(2) images in the form of a matrix whose rank is less
than the number of rows (columns) of the matrix.

Definition 3.3.1.1. Images in the form of a matrix
whose rank is less than the number of rows (columns)
of the matrix are called image fragments.

3.3.2. Conditions of generation of type-1 images.
Theorem 3.3.2.1. Let the type-1 images be the ele-

ments of the set U. Let also the standard algebraic oper-
ations over elements of the set U be introduced so that
the constructed set U along with operations introduced
on it is an algebra. Then, the elements of algebra U are
type-1 images and not type-2 images (i.e., image frag-
ments; see Definition 3.3.1).

Proof.
By introducing standard algebraic operations over

images in such a way that the set U and the operations
introduced in it would be algebra, we again obtain
images by definition.

Obviously, by applying standard algebraic opera-
tions to type-2 images, we can obtain both images of
type 2 and type 1. Let us prove that, by using standard
algebraic operations, it is impossible to obtain type-2
image (i.e., image fragments) from two type-1 images.

There are four standard algebraic operations: addi-
tion, multiplication, division, and subtraction.

(I) By definition of algebra, the operation of addi-
tion in the ring U should have the following properties:

Properties of the algebra:
Properties of the ring U(a, b, c ∈  U):
(1) ∀ a, b ∈  U, ∃ !(a + b) ∈  U:
(a) a + (b + c) = (a + b) + c;
(b) a + b = b + a;
(c) ∃ 0 ∈  U, ∀ a ∈  U, a + 0 = a;
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(d) ∀ a ∈  U, ∃ (–a), a + (–a) = 0.
These properties are satisfied by standard operations

of addition and multiplication and are not satisfied by
standard algebraic operations of subtraction and divi-
sion, since they are not associative.

(II) By definition of algebra, the operation of multi-
plication in the ring U should have the following prop-
erties:

(2) ∀ a, b ∈  U, ∃ !(ab) ∈  U
(a) a(bc) = (ab)c;
(3) (αa + βb)c = αac + βbc.
These properties are satisfied by standard operations

of addition and multiplication and are not satisfied by
standard algebraic operations of subtraction and divi-
sion, since they are not associative.

Standard operations of addition and multiplication
applied to type-1 images yield only type-1 images.
Q.E.D.

3.4. DIA with a Ring of Operations over Images
and Standard Algebraic Operations

Let us formulate and prove the theorem of generat-
ing G- and T-models of images and fragments of
images.

Theorem 3.4.1. Let the following operations of
image algebra be the elements of the set U:

(1) r1, r2 are unary operations, 

(2) r1, r2 are binary operations

(such operations can be operations over images
introduced by Ritter [14], standard operations over
images like rotation, compression, superposition of two
images, etc.).

Let also standard algebraic operations of addition,
multiplication, and multiplication by the element of the
field P be introduced so that the constructed set U along
with the operations introduced on it is an algebra. To
construct G- and T-models of images or images and
fragments of images, it is sufficient to apply operations
of algebra U to the elements of the algebra.

Proof.
To prove the theorem, it is required (I) to construct

G- and T-models of image, images, or image fragments
and (II) to prove that, by applying operations of this
algebra to the elements of the algebra, it is impossible
to obtain constructions that differ from G- and T-mod-
els of image, images, or image fragments.

Let the operations of addition, multiplication, and
multiplication by the element of the field satisfying the
properties of algebra be described so that r1 ⊕  r2 ∈  U,
r1 ⊗  r2 ∈  U, αr ∈  U (α ∈  P).

(I) Construction of G- and T-models of image,
images, or image fragments.

(A) Generation of the G-model.

(1) Generation of the image in the form of equations
describing image-constituent curves.

Let operations r1, r2, … be unary operations that cal-
culate the presence of curves of types 1 and 2 in the
image and obtain their equations in the presence of
curves. Then, the elements of the constructed algebra U
are all possible unary operations of obtaining equations
describing the curves constituting image I; i.e., a type 1
G-model of image I is constructed.

(2) Image description by indicating the arrangement
of the basic primitives and relations between them.

Let operations r1, r2, … be unary operations of cal-
culating the presence of the primitives of types 1 and 2
in the image and of determining the position of a prim-
itive if it is present. Then, the elements of the con-
structed algebra U are all possible unary operations of
obtaining the arrangement of various elements and rela-
tions between them in the image I; i.e., a type 2
G-model of image I is constructed.

(3) Various types of encoding with the alphabet of
the code symbols.

Let operations r1, r2, … be unary operations of
obtaining the code from the image. Then, the elements
of the constructed algebra U are all possible operations
of obtaining the code from the image I; i.e., a type 3
G-model of image I is constructed.

(4) Image representation in the form of Boolean
functions, particularly, in disjunctive normal form
(DNF).

Let operations r1, r2, … be unary operations of cal-
culating the presence of the primitives of types 1 and 2
from the image. Then, the elements of the constructed
algebra U are all possible combinations of the presence
of the primitives in the image I. If we use disjunction
and conjunction as such operations, it is easy to con-
struct a DNF of the initial image, i.e., a type 4 G-model
of image I.

Let operations r1, r2, … be
(1) standard unary operations over images (rotation,

scaling, noise addition, etc.);
(2) standard binary operations over images (super-

imposing, image subtraction, etc.).
(B) Obtaining the T-model.
By applying standard algebraic operations of addi-

tion, multiplication, and multiplication by the field ele-
ment to the set U, we obtain various sequences of trans-
formations of one (for unary operations) or several (for
binary operations) image into another, i.e., a T-model
(under the condition that these operations meet the con-
ditions of an algebra).

(C) Obtaining images and image fragments.
By applying standard algebraic operations of addi-

tion, multiplication, and multiplication by the field ele-
ment to the set U, we obtain various sequences of trans-
formations of one (for unary operations) or several (for
binary operations) images into another (under the con-
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dition that these operations meet the conditions of an
algebra). If we apply the available operations that have
physical meaning to the particular input images, we
shall obtain images in their explicit form. We can obtain
images of two types: (i) prime image and (ii) fragments
of images.

As opposed to Theorem 2, we can obtain fragments
of images if one or several operations r1, r2, … yield
image fragments from the initial image (or images) (see
Definition 3.3.1).

(II) Impossiblity to obtain constructions that differ
from G- and T-models of images, images and fragments
of images.

By definition of algebra, one cannot obtain objects
which fall outside the limits of a set by using an opera-
tion of algebra. The operations themselves do not
lead outside the image set. Therefore, by applying
operations of algebra, we can obtain either a descrip-
tion of image generation, i.e., a G-model or T-model,
or the image itself in the explicit form (images of types
1 and 2). Q.E.D.

3.5. DIA with a Ring of Standard Algebraic Operations 
with a Parameter and Operations of Image Algebra

3.5.1. Definitions.

Definition 3.5.1.1. The similarly described opera-
tions over images with parameters which change oper-
ation while changing themselves are standard alge-
braic operations with a parameter.

For instance, ri = (αi) is rotation by angle αi  or the
more complex operation rj = (αj , xj , tj) is rotation by αj ,
shift by xj , and scaling by tj .

3.5.2. Conditions of generation of G- and T-mod-
els of image, images, and fragments of images.

Theorem 3.5.2.1. Let algebraic operations with
parameters r1, r2, … be the elements of set U and let
operations of image algebra over elements of set U be
introduced so that the constructed set U together with
the operations introduced over it is an algebra. To con-
struct G- and T-models of image, images, or image
fragments, it is sufficient to apply operations of algebra
U to the elements of the algebra.

Proof.

To prove the theorem, it is necessary (i) to construct
G- and T-models of image, images, or image fragments
and (ii) to prove that, by applying operations of this
algebra to the algebra elements, it is impossible to
obtain constructions other than G- and T-models of an
image, images, or image fragments.

Let the operations of addition, multiplication, and
multiplication by the field element be described such
that they satisfy the algebra’s properties: r1 ⊕  r2 ∈  U,
r1 ⊗  r2 ∈  U, αr ∈  U.

The possibility of constructing G- and T-models of
an image, images, or image fragments is proved simi-
larly to the previous theorem.

By definition of algebra, one cannot obtain objects
which fall outside the limits of a set by using an opera-
tion of algebra. The operations with parameters them-
selves do not lead outside the image set. Therefore, by
applying operations of algebra, we can obtain either
description of image generation, i.e., a G-model or
T-model, or the image itself in the explicit form
(images of types 1 and 2). Q.E.D.

3.6. DIA with a Ring of Images and Image 
Representations and Operations of Image Algebra

Let us formulate and prove the following theorem of
generation of the P-, G-, and T-models, images, and
image fragments.

Theorem 3.6.1. Let the images and image represen-
tations (models) be the elements of the set U and the
operations of image algebra be introduced such that the
constructed set U together with operations introduced
over it is an algebra. Then, P-, G-, and T-models,
images, and image fragments are the elements of the
given algebra.

Proof.
By definition of algebra, the operations of addition,

multiplication, and multiplication by the field element
do not lead outside the set U. {the P-, G-, and T-models,
images and image fragments} ∈  U. Q.E.D.

3.7. Resulting Table

Theorem 3.7.1. By using different types of DIA,
one can obtain any image model.

Corollary. By using two DIAs (of types 1 and 3 or
of types 1 and 4), one can obtain the P-, G-, and T-mod-
els, images, and image fragments.

The considered algebras which lead to the construc-
tion of image models are tabulated in Table 1.

4. ONE-RING DIA: BASIC VARIANTS

Let us look more closely at Definition 2.2.7. Algebra
over field A is called descriptive image algebra if the
elements of its ring are either image models (including
the image itself or the set of image values and charac-
teristics), operations over images, or both simulta-
neously.

Below, the elements of the ring of DIA are listed.
(1) Operations of calculation of numerical features

(Definition 3.2.1.4);
(2) Operations of image algebra (described by Ritter

in [14]);
(3) Standard algebraic operations with parameters

(Definition 3.5.1.1);
(4) Images (Definitions 2.3.1 and 3.1.1.);
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(5) Image models (Definition 3.1.2).
Ring operations:
(1) Standard algebraic operations (+ and ×; division

and subtraction are unsuitable, since they are not asso-
ciative);

(2) Standard operations of image algebra; for exam-
ple, operations over images introduced by Ritter. On
the other hand, one can consider standard operations
over images, such as rotation, compression, superim-
posing of two images, etc.

(3) Complex algebraic operations (combinations of
algebraic operations, threshold functions, filters).

Let us consider DIA that can be constructed.
Let P be some field (∀α , β, γ ∈  P, ∃ !(a + b) ∈  P,

∃ !(αβ) ∈  P satisfying the properties of the field).
(1) Elements of the ring are images I.
Operations introduced on the ring:
(A) Standard algebraic operations.
Let us consider two definitions of image:
—An image is information organized in the form of

a numerical matrix (Definition 3.1.1). Standard opera-
tions of addition and multiplication of square matrices
are used as ring operations. If P is a field of real num-
bers, then the multiplication by the field element corre-
sponds to the multiplication of the matrix and scalar.

—Image I = {(x, a(x)), x ∈  X, a(x) ∈  F} (Definition
2.3.1).The operations of addition and multiplication of
two images are introduced in [14]. These operations are
part of the operations of image algebra.

(B) Operations of image algebra. The most compre-
hensive description of all possible algebraic operations
over images can be found in [14]. Here, DIA is standard
image algebra (the operations introduced on the set of
images must satisfy the properties of algebra).

(C) Complex algebraic operations.
Let us consider two definitions of an image:
—An image is information organized in the form of

a numerical matrix (Definition 3.1.1). Standard opera-
tions over square matrices can be used as ring opera-
tions. If P is a field of real numbers, then multiplication

by the field element corresponds to multiplication of
the matrix and scalar.

—Image I = {(x, a(x)), x ∈  X, a(x) ∈  F} (Definition
2.3.1).The operations of image algebra and their com-
binations, threshold functions, introduced in [14] can
be used as ring operations. These operations are
selected according to the definition of an algebra.

The way of testing using examples was shown
above.

(2) Elements of the ring are image models I, P, G,
and T.

According to the definition of an algebra, special
operations for particular models are introduced on the
elements of this type.

(3) Elements of the ring are operations of image
algebra.

Operation introduced on the ring:
(A) Standard algebraic operations (+, ×);
(B) Operations of image algebra can be used only if

after their application one also obtains images. Opera-
tions are selected according to the algebra definition.

(C) Complex algebraic operations. Operations are
selected according to the algebra definition.

(4) Elements of the ring are standard algebraic oper-
ations with a parameter.

According to the definition of the standard algebraic
operation (Definition 3.5.1.1), its application leads to
the image; i.e., all operations for images are possible.

(5) Elements are the operations of calculation of
numerical features, i.e., mapping f(I) which can be a
scalar, a vector, or a matrix.

Operations which can be introduced on the elements
of this nature are the operations with numbers, vectors,
and matrices; i.e., the following operations are possi-
ble: standard algebraic operations (+, ×) and complex
algebraic operations under the condition that the prop-
erties of the algebra are satisfied.

Theorem 4.1. Let P be a field of arbitrary nature and
U be a set of elements of the following natures: (i) oper-
ations of calculation of numerical features, (ii) opera-
tions of image algebra, (iii) standard algebraic opera-

Table 1.  Generation of image models by DIA

Types of models Ring elements Ring operations Result

1 Operations of calculation of 
numerical features

Standard algebraic operations P-models

2 Images Standard algebraic operations Images

3 Operations of image algebra Standard algebraic operations G- and T-models, images,
fragments

4 Standard algebraic operations 
with a parameter

Operations of image algebra G- and T-models, images,
fragments

5 Images and image representations Operations of image algebra P- G-, and T-models, images, 
fragments
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tions with a parameter, (iv) images, and (v) image mod-
els. Let also Θ be a set of operations (addition,
multiplication, and multiplication by the field element)
out of the set of operations: (i) standard algebraic oper-
ations, (ii) operations of image algebra, and (iii) com-
plex algebraic operations. Then, a mathematical con-
struction (P, U, Θ) is one-ring DIA under the condition
that all elements of U, along with the set of operations
Θ introduced over it and the field P, satisfy the condi-
tions of the algebra (Definition 2.2.5).

Theorem 4.2. Let F be a field. Let also images (in
accordance with Ritter’s definition) be the elements of
the ring U; i.e., I = {(x, a(x)), x ∈  X, a(x) ∈  F}, where
F is a set of values and X is a set of points. The opera-
tions ⊕ , ⊗ , and multiplication by the field element are
introduced. These operations are from the set of stan-
dard image algebra operations. Then, the following
conditions are necessary and sufficient for obtaining
DIA:

(1) I ∈  (RX) or I ∈  (Rn)X, then
—operation ⊕  is addition of two images; 
—operation ⊗  is multiplication of two images; and
—multiplication by the field element is a scalar

multiplication of the element of the set F and the image.

(2) I ∈  (2F)X, then
—operation ⊗  is the operation of union and opera-

tion of intersection of two images; and
—multiplication by the field element is a scalar

multiplication of the element of the set F and the image.

(3) I ∈  (R2)X, then, besides (1),
—operation ⊕  is addition of two images;
—operation ⊗  is the following operation:

Let γ1 and γ2 be binary operations R2 × R2  R
defined as

,

then, if I1, I2 ∈  (R2)X are two complex-valued images,
the product I3 = I1γI2 is a complex product

I3 = {(x, c(x)), c(x) = (a1(x)b1(x) – a2(x)b2(x), a1(x)b2(x) 
+ a2(x)b1(x)), x ∈  X};

—multiplication by the field element is a scalar
multiplication of the element of the set F and the image.

Remark. All operations described by Ritter [14,
pp. 20, 22] were considered as operations of standard
image algebra.

Proof.
The proof is based on the validation of the algebra’s

properties (see Definition 2.2.5) of operations of stan-
dard image algebra and their combinations. As an oper-
ation of multiplication by the element of the field, we

x1 x2,( )γ1 y1 y2,( ) x1y1 x2y2–=

x1 x2,( )γ2 y1 y2,( ) x1y2 x2y1;+=

consider two operations induced by operations in alge-
braic system F:

For k ∈  F and a ∈  FX,

kγa = {(x, c(x)): c(x) = kγa(x), x ∈  X)},

aγk = {(x, c(x)): c(x) = a(x)γk, x ∈  X)}.

Binary operations over images are also induced by
operations introduced in algebraic system F. For
instance, if γ is a binary operation over the set F and
a, b ∈  FX, then

aγb = {(x, c(x)): c(x) = a(x)γb(x), x ∈  X)}.

For this operation to be an addition operation in the ring
U, it must satisfy Property 1 of the ring and operations
of multiplication and multiplication by the element of
the field must satisfy Property 3 of the ring and proper-
ties of the vector space.

Let us check the fulfilment of Properties 1 and 2 of
the ring U for all operations described in [14]:

—Let I1, I2 ∈  (RX).
Replacing γ by the particular operations +, ×, ∨ ,

(operation of maximization), and ∧  (operation of mini-
mization), we obtain for the real-valued images

I1 + I2 = {(x, c(x)): c(x) = a(x) + b(x), x ∈  X)}
(Operation of addition satisfies Properties 1 and 2 of the
ring);

I1I2 = {(x, c(x)): c(x) = a(x)b(x), x ∈  X)}
(Operation of multiplication satisfies Properties 1 and 2
of the ring);

I1 ∨  I2 = {(x, c(x)): c(x) = a(x) ∨  b(x), x ∈  X)}
(Operation of maximization satisfies Property 2 and
does not satisfy Properties 1c and 1d of the ring);

I1 ∧  I2 = {(x, c(x)): c(x) = a(x) ∧  b(x), x ∈  X)}
(Operation of minimization satisfies Property 2 and
does not satisfy Properties 1c and 1d of the ring).

—Let I1, I2 ∈  (2F)X.

Let 2X be a power set, i.e., a set of all subsets of the
set X. Let also the image I be I: X  2F. In this case,
the following binary operations are possible:

I1 ∪  I2 = {(x, c(x)): c(x) = a(x) ∪  b(x), x ∈  X)}
(Operation of union satisfies Property 2 and does not
satisfy Properties 1c and 1d of the ring);

I1 ∩ I2 = {(x, c(x)): c(x) = a(x) ∩ b(x), x ∈  X)}
(Operation of intersection satisfies Property 2 and does
not satisfy Properties 1c and 1d of the ring);

—Let I1, I2 ∈  (R≥0)X,

(Operation of exponential does not satisfy Properties 1a
and 2 of associativity).

—Let I1, I2 ∈  (R+)X

I1
I2 x c x( ),( ): c x( ) a x( )b x( )= x X∈,{ }=

I1I2
log x c x( ),( ): c x( ) a x( )b x( )log= x X∈,{ }=
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(Operation of taking the logarithm does not satisfy
Properties 1a and 2 of associativity).

—Let I1 ∈  (F)X, I2 ∈  (F)Y, where X, Y are the subsets
of topological space.

The expansion of image a ∈  FX by image b ∈  FY on
the set Y, where X and Y are the subsets of a topological
space, is denoted by a|b and defined as

.

The operations of concatenation of image series are
also introduced as

a ∈   and b ∈  :

(a|b) ≡ a|b + (0, k).

Similarly, a concatenation on the column is intro-
duced by using the notion of matrix transposition:

(Operations of concatenation do not satisfy the associa-
tivity and commutativity properties);

—Let I1, I2 ∈  (Rn)X

I1 + I2 = 

(Operation of addition satisfies Properties 1 and 2 of the
ring);

I1I2 = 

(Operation of multiplication satisfies Properties 1 and 2
of the ring);

I1 ∨  I2 = 

(Operation of maximization satisfies Property 2 and
does not satisfy Properties 1c and 1d of the ring).

I1 ∧  I2 = 

(Operation of minimization satisfies Property 2 and
does not satisfy Properties 1c and 1d of the ring).

Let the binary operation γ be such that γj : Rn ×
Rn  R, where j = 1, …, n, defined as

I1γI2 = (I1γ1I2, …, I1γnI2).

For instance, if γj: Rn × Rn  R are defined such
that (x1, …, xn)γ(y1, …, yn) = max{xi ∨  yj: 1 ≤ i ≤ j},
then, for I1, I2 ∈  (Rn)X and I3 = I1γI2, the components
c(x) = (c1(x),  …, cn(x)) have the values

cj(x) = a(x)γjb(x) = max{ai(x) ∨  aj(x): 1 ≤ i ≤ j},
where j = 1,…, n

(Operation does not satisfy the associativity Proper-
ties 1a and 2).

a|b
a x( ) if x X∈

b x( ) if x Y \X∈



=

F
ZmxZk F

ZmxZn

a
b
--- 

  a|b( )=

I1
1 I2

1 … I1
n I2

n+, ,+( )

I1
1I2

1 … I1
nI2

n, ,( )

I1
1 I2

1 … I1
n I2

n∨, ,∨( )

I1
1 I2

1 … I1
n I2

n∧, ,∧( )

Let us cite another example: suppose that γ1 and γ2

are binary operations R2 × R2  R defined as

(x1, x2)γ1(y1, y2) = x1y1 – x2y2,

(x1, x2)γ2(y1, y2) = x1y2 + x2y1;

then, if I1, I2 ∈  (R2)X are two complex-valued images,
the product I3 = I1γI2 is a complex product

c(x) = (a1(x)b1(x) – a2(x)b2(x), a1(x)b2(x) + a2(x)b1(x))

(Operation satisfies Properties 1 and 2 of the ring).

Let us consider other examples of operations (I1,
I2 ∈  (Rn)X):

I1∨| jI2 = {(x, c(x): c(x) = a(x) if aj(x) ≥ bj(x)
otherwise c(x) = b(x)}

(Operation of maximization satisfies Property 2 and
does not satisfy Properties 1c and 1d of the ring);

I1 ∧| jI2 = {(x, c(x): c(x) = a(x) if aj(x ≤ bj(x)
otherwise c(x) = b(x)}

(Operation of maximization satisfies Property 2 and
does not satisfy Properties 1c and 1d of the ring).

For better presentation of the operations that satisfy
Properties 1 and 2, we tabulated them (see Table 3).

Analysis of different combinations of operations
shows that only operations listed in the corollary corre-
spond to Property 3 of the ring U and to properties of
the vector space over field F. Q.E.D.

Conditions for properties of an algebra:
Let U be a given set and P be a given field.

(I) Θ is a set of operations (addition ⊕ , multiplica-
tion ⊗ , and multiplication by the element of a field)
from the set of following operations:

Table 2.  Basic DIA variants

Ring elements Ring operations

1. Operations of calcula-
tion of numerical features

1) Standard algebraic operations

2) Complex algebraic operations

2. Operations
of image algebra

1) Standard algebraic operations

2) Operations of image algebra 
on the subset of operations

3) Complex algebraic operations

3. Standard
algebraic operations
with a parameter

1) Standard algebraic operations

2) Operations of image algebra

3) Complex algebraic operations

4. Images 1) Standard algebraic operations

2) Operations of image algebra

3) Complex algebraic operations

5. Images and image
representations

Complex algebraic operations
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(1) standard algebraic operations of addition, multi-
plication, and standard multiplication by the element of
a field;

(2) operations of image algebra:
(a) I ∈  (RX) or I ∈  (Rn)X, then
—operation ⊕  is an operation of addition of two

images;
—operation ⊗  is an operation of multiplication of

two images; and 
—scalar multiplication of element from the set F

and image is multiplication by the field element;
(b) I ∈  (2F)X, then
—operation ⊗  is an operation of union of two

images and an operation of intersection of two images;
and

—scalar multiplication of an element from the set F
and an image is multiplication by the field element;

(c) I ∈  (R2)X, then, in addition to case (a)
—operation ⊕  is an operation of addition of two

images;
—operation ⊗  is complex multiplication; and
—scalar multiplication of element from the set F

and image is multiplication by the field element.
Remark. All operations described by Ritter [14,

pp. 20, 22] were considered as operations of standard
image algebra.

(3) Complex algebraic operations.
(II) The following properties are fulfilled:
—ring properties U(a, b, c ∈  U)
(1) ∀ a, b ∈  U, ∃ !(a ⊕  b) ∈  U
(a) a ⊕  (b ⊕  c) = (a ⊕  b) ⊕  c;

(b) a ⊕  b = b ⊕  a;
(c) ∃ 0 ∈  U, ∀ a ∈  U, a ⊕  0 = a;
(d) ∀ a ∈  U, ∃ (–a), a ⊕  (–a) = 0.
(2) ∀ a, b ∈  U, ∃ !(a ⊗  b) ∈  U
(a) a ⊗  (b ⊗  c) = (a ⊗  b) ⊗  c.
(3) (αa ⊕  βb) ⊗  c = αa ⊗  c ⊕  βb ⊗  c.
—vector space properties (∀α  ∈  P, a ∈  U: αa ∈  U)
(1) α(βa) = (αβ)a.
(2) (α + β)a = αa ⊕  βa.
(3) α(a ⊕  b) = αa ⊕  αb.
Corollary. Let P be a field of arbitrary nature and U

be a set of the following elements: (i) operations of cal-
culation of numerical features, (ii) image algebra oper-
ations, (iii) standard algebraic operations with parame-
ter, (iv) images, and (v) image models. Θ is a set of
operations (addition, multiplication, and multiplication
by the element of the field P of the set U). Mathematical
construction (P, U, Θ) is descriptive image algebra if
and only if the set of operations Θ satisfies the condi-
tions of fulfillment of the algebra’s properties.

CONCLUSIONS

In the first part of this paper, examples of sets with
different elements and operations introduced on them
are considered. They can both belong and not belong to
algebras. To construct examples, the standard image
operations are used in order to verify that DIA covers
mathematical constructions of standard IA that satisfies
the algebra’s properties. These examples are the first
step in systematizing operations introduced on different
sets both generating DIA and not.

Table 3.  Implementation of the ring properties

Operations Ring property 1 Ring property 2

I1, I2, ∈  (RX) I1 + I2 = {(x, c(x)): c(x) = a(x) + b(x), x ∈  X} + +

I1 · I2 = {(x, c(x)): c(x) = a(x) · b(x), x ∈  X} + +

I1 ∨  I2 = {(x, c(x)): c(x) = a(x) ∨  b(x), x ∈  X} – +

I1 ∧  I2 = {(x, c(x)): c(x) = a(x) ∧  b(x), x ∈  X} – +

I1, I2, ∈  (2F)X I1 ∪  I2 = {(x, c(x)): c(x) = a(x) ∪  b(x), x ∈  X} – +

I1 ∩ I2 = {(x, c(x)): c(x) = a(x) ∩ b(x), x ∈  X} – +

I1, I2, ∈  (Rn)X
I1 + I2 = (  + , …,  + ) + +

I1 · I2 = (  · , …,  ° ) + +

I1 ∨  I2 = (  ∨  , …,  ∨  ) – +

I1 ∧  I2 = (  ∧  , …,  ∧  ) – +

I1, I2, ∈  (R2)X Complex product + +

I1, I2, ∈  (Rn)X I1 ∨  |j I2 = {(x, c(x)): c(x) = a(x), if aj(x) ≥ bj(x), otherwise c(x) = b(x) – +

I1 ∧  |j I2 = {(x, c(x)): c(x) = a(x), if aj(x) ≤ bj(x), otherwise c(x) = b(x) – +

I1
1 I2

1 I1
n I2

n

I1
1 I2

1 I1
n I2

n

I1
1 I2

1 I1
n I2

n

I1
1 I2

1 I1
n I2

n
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An image has no natural way of being represented as a
set of features used in classical image recognition prob-
lems. The possibility of formalizing different image repre-
sentations (models) will help to extend the algebraic con-
cept of recognition on images. The second part of the
paper describes the ways of constructing P-, G-, T-, and
I-models by the use of one-ring DIA of special type.

The method for formulating and verifying the con-
ditions for a set of operations that ensure DIA construc-
tion is a basis for obtaining a mathematically valid cri-
terion for choosing operations in order to generate effi-
cient algorithms for image analysis and recognition.
The third part of the paper presents necessary and suf-
ficient conditions imposed on the set of operations that
ensure one-ring DIA construction.

We plan to proceed with the study of the one-ring
DIA and construct new examples of DIA by using
image-processing operations both realizable and unre-
alizable physically. DIA with operations that have no
physical interpretation are interesting because of the
fine mathematical constructions they produce. We plan
to study examples of DIA with image models as ring
elements. Further research will be concentrated on study-
ing DIA with several rings. The experimental part of our
research concerns the construction, investigation, and
implementation of algebraic schemes intended for simu-
lated and applied problems of analysis and estimation of
information represented by images.
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