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Abstract

 

—The work is devoted to the investigation of the key concepts of mathematical theory of pattern rec-
ognition: image equivalence and invariance. Different ways to determine equivalence on the image set are con-
sidered and relations between image equivalence and invariance are analyzed. It is proved that the image rec-
ognition task in standard formulation can be reduced to the task that has a correct algorithm in the framework
of AEC algebraic closure (with certain restrictions on image transformations).
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1. INTRODUCTION 

Over several years, research into the development of
the mathematical apparatus for analysis and estimation
of information represented in the form of images has
been carried out at the Scientific Council on Cybernet-
ics of the Russian Academy of Sciences [9, 10, 21].
This work presents new results concerning the estab-
lishment of the conditions for existence of the class of
effective algorithms that includes the algorithm for cor-
rect solution of an image recognition task. The pro-
posed method for verifying the condition feasibility is
based on the new definition of image equivalence intro-
duced with reference to the special formulation of the
image recognition task. It is shown that the efficient
class of algorithms based on estimate calculations
(AEC) [2] contains such an algorithm in its algebraic
closure. The existence theorem is the main result.

The selection of the algorithm that correctly classi-
fies images on the basis of their descriptions is a topical
problem in image recognition. The approach to image
recognition developed by the authors is a specialization
of the algebraic approach to recognition and classifica-
tion problems introduced by Yu.I. Zhuravlev [2, 20]. It
is based on the following idea. No accurate mathemat-
ical models have been developed for poorly formalized
fields, such as geology, biology, medicine, and sociol-
ogy. However, decent methods based on heuristic con-
siderations have a great practical effect in many cases.
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Therefore, it is sufficient to construct a family of such
heuristic algorithms for solving corresponding tasks
and then to construct an algebraic closure of this family.
The existence theorem is proved; it asserts that any task
from the set of tasks related to the investigation of
poorly formalized situations turns out to be solvable in
the closure [2].

Image recognition is one of the classical examples
of the tasks with incompletely formalized and partially
contradictory information. This gives reason to believe
that the algebraic approach applied to image recogni-
tion can yield convincing results and, hence, the most
perspective direction for developing the desired mathe-
matical apparatus for the analysis and estimation of the
information represented by images is the “algebraiza-
tion” in this field.

Note that the idea of developing a unified algebraic
theory covering different approaches and operations
used in image and signal processing has a certain his-
tory that starts with the works of von Neumann and was
continued by S. Unger, U. Grenander [8], M. Duff,
Yu.I. Zhuravlev [2, 20], G. Matheron, G. Ritter [16],
J. Serra [17], and others. The results presented here are
related to the descriptive approach to image analysis
and recognition [9, 10], a line of research in the field of
image algebras different from those mentioned above,
and they are completely original.

Unfortunately, the algebraic apparatus developed by
Zhuravlev failed when applied directly to an image rec-
ognition task. This is mainly caused by the complexity
of the object of recognition, the image, and, as a conse-
quence, by the substantial differences between the
image recognition task and the classical one:

• The standard object of classical recognition theory
is usually described by the feature set; there is no natu-
ral way for image description without losing essential
information about the image; the known ways of image
description are either too complicated and time-con-
suming (e.g., image representation as a raster) or
semantically primitive (feature set);
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• Several images that differ in brightness, contrast,
scale, or viewpoint can correspond to the same object
(scene); in the context of the recognition task, this
means that different images of the same object should
be equally classified by the recognition algorithm.

This explains the interest that has arisen in the
study and use of image equivalence in recognition
tasks [11, 13].

2. DIFFERENT DEFINITIONS
OF IMAGE EQUIVALENCE

One of the basic ideas of the proposed approach to
image recognition is the idea that a certain image is not
the only visual representation of the object but one of
many possible. This means that one object can corre-
spond to several images that differ in scale, observation
angle, illumination, etc.

Thus, image recognition tasks in the framework of
the proposed approach consist in the following: (a) the
image is a partial representation of a certain entity
(object, scene) that should be described through these
partial representations only; (b) on the image set, the
equivalence relation can be defined as correspondence
of the images to the same entity; (c) images of one class
should have equal vectors of belonging; and (d) transi-
tion from images to features is not predetermined, so
features can be varied in applied tasks.

There are several ways to determine the equivalence
relation on the image set. Note that the equivalence
relation should be reflexive, symmetric, and transitive
at the same time it splits the entire set of images into
nonoverlapping classes: image equivalence classes.

Hereafter, the image will be regarded as a function
that satisfies the following definition.
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2.1 Equivalence Based on Groups 
of Transformations

 

Let us consider a definition of equivalent images
based on the hypothesis that images of the same object
(scene), differing in scale, illumination, and observa-
tion angle, are equivalent in a sense (in the common or
everyday meaning of the term). Let us fix a certain set
of transformations that describe changes in scale, illu-
mination, or observation angle. At first, the case where
the transformations form a group is considered.

Let 
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be a group of transformations.
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The equivalence relation should be reflexive, sym-

metric, and transitive. Let us check these properties for
the definition proposed.
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All three properties are fulfilled; therefore, 

 

R is the
equivalence relation.

The definition proposed is a constructive definition
in the sense that it suggests a way to construct classes
of equivalent images. Let us consider simple examples
of equivalent classes.

Example 2.1.1.
Let a finite group of transformations of order 3 be

given; it is described by the following equations: G =
{g, g–1, e}, g · g = g–1, g–1 · g–1 = g, and g · g–1 = g–1 · g = e.
Let F be the space of image functions. Each element of
the group of transformations operates in the following
way [4]:

g: f1(x, y) ∈  F  f2(x, y) ∈  F,   g is a bijection.

The effect of the element of the group of transfor-
mations on the image function can be interpreted in the
following way. Let us consider f(x, y) in polar coordi-
nates f(ρ, θ), by replacing the variables x = ρcosθ, y =
ρsinθ. Let g be a rotation trough 2π/3 angle, g–1 a rota-
tion trough –2π/3, and e a rotation trough 0. Here, the
equations g · g = g–1and g–1 · g–1 = g are fulfilled. Then,

(2.1.1)

Image equivalence classes are formed according to
the following rule: two images are equivalent if one can
be derived from another by rotating it trough 2π/3,
−2π/3, or 0.

Example 2.1.2.

Let G = {g, g–1, e} be a group of transformations
described by the equations g · g = g–1, g–1 · g–1 = g,
and g · g–1 = g−1 · g = e. Let F = {f1, f2, f3, f4, f5, f6, f7, f8}
be a space of image functions.

g f ρ θ,( )( ) f ρ θ 2π
3

------+, 
  .=
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The mapping g is defined as follows

. (2.1.2)

Let us recall that equivalence relation R was intro-
duced as follows: fi R fj , if ∃ g0 ∈  G: fi = g0( fj), i, j ∈  {1,
2, …, 8}.

The following relations are fulfilled in this example:

(2.1.3)

(2.1.4)

(2.1.5)

(2.1.6)

The following image equivalence classes are
formed:

(2.1.7)

The notion of image equivalence introduced above
is convenient, and it has indubitable advantages in
respect to applicability to pattern recognition theory.
Let us formulate the major advantages of this defini-
tion.

(1) The physical interpretation of this definition
conforms to our view of image equivalence, according
to which images are considered to be equivalent if one
differs from another due to a certain transformation,
e.g., rotation, translation, scaling, illumination change,
etc.

(2) The introduced definition allows one to reduce
an image recognition task in terms of equivalence
classes to the image recognition task in standard formu-
lation. This reduction is carried out by substituting each
equivalence class by a single image, a class representa-
tive, with certain restrictions on the type of transforma-
tions. As will be shown further, the theorem on the cor-
rectness of an algebraic closure of AEC algorithms can
be proved for the reduced image recognition task [13].

(3) It is essential that, in the case where transforma-
tions form a group, the mathematical methods of image
invariant construction are developed, which allows
images to be compactly described with no extra calcu-
lating effort [15]. Particularly, the parametric image
models can be constructed on the basis of invariant fea-
tures. In this case, equivalent images have the same
descriptions according to the equivalence definition
given above.

Let us consider some additional aspects of image
equivalence regarding groups of transformations.

Only transformations that form a group were used in
this definition. The question arises as to how important
this requirement is. In other words, what will happen to

g : 
f 1 f 2 f 3 f 4 f 5 f 6 f 7 f 8

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
f 2 f 3 f 1 f 5 f 6 f 4 f 7 f 8 

 
 
 
 

f 1R f 1 f 1R f 2 f 1R f 3 f 2R f 2 f 3R f 3 f 2R f 3,, , , , ,

f 4R f 4 f 4R f 5 f 4R f 6 f 5R f 5 f 6R f 6 f 5R f 6,, , , , ,

f 7R f 7,

f 8R f 8.

K1 f 1 f 2 f 3, ,{ } ,= K2 f 4 f 5 f 6, ,{ } ,=

K3 f 7{ } , K4 f 8{ } .= =

the equivalence definition if the requirement to be a
group on the transformation set is weakened? For
instance, let us remove the axiom of inverse element
existence from group axioms. Let us consider a sem-
igroup G = {g1, …, gn}. Suppose that two images
f1(x, y) and f2(x, y) are connected with equivalence
relation R, if ∃ g ∈  G: f1(x, y) = g( f2(x, y)). Let us check
whether this relation is reflexive, symmetric, and tran-
sitive, i.e., whether this relation is an equivalence rela-
tion.

(1) Reflexivity.
f = e( f ) (by virtue of the existence of a unit ele-

ment).
∀ f ⇒  f R f is fulfilled.
(2) Symmetry.

∀ f1, f2 f1 R f2 ⇒  f2 R f1 is not fulfilled.
(3) Transitivity.
f1 = g1( f2), f2 = g2( f3) ⇒  f1 = g1(g2( f3)) = g3( f3) (by

virtue of a closure).
∀ f1, f2, f3 f1 R f2, f2 R f3 ⇒  f1 R f3 is fulfilled.
The reflexivity and transitivity properties are ful-

filled, while the symmetry property fails without the
axiom of existence of inverse elements. Consequently,
this relation is not an equivalence relation. Further
weakening of group requirements leads to the failure of
transitivity and reflexivity property fulfillment.

Since the practical importance of the introduced
equivalence definition consists in its application for
proving the theorem about the correctness of algebraic
closure of AEC in an image recognition task, the group
requirement can be considered necessary for the trans-
formation set.

Also note that the question arises as to how to inter-
pret group application for image functions with the use
of an arbitrary group G of transformations of order n.

2.2. Equivalence Directed at the Recognition Task

Image equivalence definitions directed at the special
setup of an image recognition task can be considered.
Let a certain set of allowable images described by
n-dimensional feature vectors be given. The set of
allowable images is covered by a finite number of sub-
sets called classes; let l classes K1, …, Kl be given. Let
a recognition algorithm A be given which constructs an
l-dimensional information vector on the basis of an
n-dimensional description vector. Let us recall that a
vector of the object’s belonging to a class is called an
information vector; here, information vector element
values (0, 1, ∆) are interpreted as follows: “object does
not belong to the class,” “object belongs to the class,”
and “the algorithm fails to determine whether the object
belongs to the class or not,” respectively [2]. We con-
sider that each recognition algorithm A ∈  {A} can be
represented as a consequent implementation of algo-

f 1 g1 f 2( )= f 2 g2 f 1( )?=⇒



PATTERN RECOGNITION AND IMAGE ANALYSIS      Vol. 13      No. 4      2003

THE JOINT USE OF IMAGE EQUIVALENCE AND IMAGE INVARIANCE 573

rithms B and C, where B is a recognition operator that
transforms training information and a description of the
allowable object into a numerical vector, called the esti-
mation vector, and C is a decision rule that transforms
an arbitrary numerical vector into an information vec-
tor.

The performance of a recognition algorithm (A =
BC) can be sketched in the following way.

Thus, during the solution of an image recognition
task, an object of recognition, i.e., an image, is
described with the help of three different vectors: the
n-dimensional feature vector, the l-dimensional vector
of estimations for classes, and the l-dimensional infor-
mation vector. This permits consideration of three lev-
els of equivalence.

Definition 2.2.1. Images are called equivalent with
respect to the recognition algorithm A if their informa-
tion vectors constructed by the algorithm A coincide.

Definition 2.2.2. Images are called equivalent with
respect to the recognition operator B if their vectors of
estimations for classes constructed by the algorithm B
coincide.

Definition 2.2.3. Images are called equivalent if
their feature vectors coincide.

It is easy to verify that the introduced equivalence
definitions are correct, since they represent an equality
relation which is a special case of the equivalence rela-
tion. Moreover, image equivalence in terms of Defini-
tion 2.2.3 implies image equivalence in terms of Defi-
nition 2.2.2, which, in turn, leads to image equivalence
in terms of Definition 2.2.1.

Let us consider the equivalence definition based on
the group of transformations introduced in the previous
paragraph. If an image is described by the vector of fea-
tures invariant relative to the group transformations,
images equivalent in terms of Definition 2.1.1 will have
the same feature descriptions. In this case, image equiv-
alence based on group transformations implies image
equivalence in terms of Definitions 2.2.1, 2.2.2, and
2.2.3, i.e., equivalence directed at the recognition task.

2.3. Equivalence with Respect to a Metric

In some cases, when images in the recognition task
are not strictly equivalent in terms of the definitions
introduced above, it makes sense to consider image
proximity with respect to a metric specified in a space

Feature description of an image α = 

Recognition operator B.

Vector of estimations for classes β =

Decision rule C.

Information vector γ = (γ1, γ2, …, γl).

= (α1, α2, …, αn).

= (β1, β2, …, βl).

of formal image descriptions or in a space of features rep-
resenting images. As this takes place, ε-equivalence of
images can be considered for a certain a priori given
parameter ε. We recall that we regard an image as a
real-valued function f (x, y) meeting the conditions of
Definition 2.1. Let D( f (x, y)) be a certain formal image
description (vector of features, image defined at each
point of a raster, analytical representation of image
function, etc.) and L(D( f (x, y))) be a metric space of
formal image descriptions with metric ρ.

Definition 2.3.1. Two images f1(x, y) and f2(x, y) are
ε-equivalent with respect to metric ρ if ρ( f1(x, y), f2(x,
y)) < ε, where ε is an a priori given constant.

3. INVARIANT-BASED CONSTRUCTION 
OF EQUIVALENCE CLASSES

The construction of equivalence classes becomes a
topical problem since the notion of equivalence is one
of the crucial notions in the proposed approach to
image recognition. Let us consider here one of the ways
to decompose an image set into equivalent classes
based on the construction of image invariants.

Let the space F of image functions f(x, y) be
given. Let F be a ring. Let us define a homomor-
phism ϕ : F  F '. The kernel of homomorphism is
Kerϕ = {f(x, y)|ϕ( f (x, y)) = 0}. Let us construct a factor
set F from the kernel of homomorphism F\Kerϕ. The
set (ring) of image functions is split into nonoverlap-
ping cosets from the kernel of homomorphism. These
cosets are considered to be image equivalence classes.

(3.1)

(Each coset is defined as follows: Class = bKerϕ =
{bh|h ∈  Kerϕ}.)

The main idea is to use invariants as the basis for
constructing the kernel of the homomorphism. Let us
recall one of the definitions of an invariant.

Definition 3.1. [3] An invariant is a mapping ϕ of
the considered aggregate of mathematical objects M,
supplied with a fixed equivalence relation ρ, into
another aggregate of mathematical objects N, which is
constant on equivalence classes M on ρ (more precisely,
the invariant of equivalence relation ρ at M).

The definition of invariant implies that the mapping
is constant on equivalence classes of the set. Hence
homomorphism ϕ is invariant. In other words, the
invariant ϕ must be constructed for the set F of func-
tions f(x, y) and, therewith, the set ϕ is the kernel of a
certain homomorphism. In order to construct image
equivalence classes, the kernel of homomorphism
should be constructed and, then, a factor-ring from
Kerϕ.

4. INVARIANTS IN IMAGE RECOGNITION

It is obvious from the above reasoning that invari-
ance is a very important notion in image recognition

f x y,( )|ϕ f x y,( )( ) a={ } Class a( ).=
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theory. Note that image invariance is often employed
for practical purposes. In many tasks of image analysis
and processing, it is convenient to describe images by
sets of invariant characteristics: they are more resistant
to noise as compared to other features and, as a rule,
provide high recognition quality. The proposed
approach treats invariants not only as effective numeri-
cal features but also as an algebraic instrument for con-
structing equivalence classes in image recognition
tasks. In order to cover these two positions of invariant
application in image recognition, we recall some
knowledge of invariant theory (Section 4.1) and briefly
discuss the invariant features that will be most often
used in image analysis (Section 4.2).

4.1. Basic Facts from the Theory of Invariants 

The theory of invariants [1] in its classical definition
(the algebraic theory of invariants) is an algebraic the-
ory concerned with algebraic expressions (polynomi-
als, rational functions and their aggregates) changing in
a certain way during nondegenerate linear replace-
ments of the variables. Here, generally speaking, not
the entire linear group is considered (i.e., not the com-
plete set of nondegenerate linear replacements of the
variables) but its certain subgroup (e.g., orthogonal,
symplectic, etc.)

One of the first objects invariant theory was con-
cerned with were so-called invariants of the form. The
form of order r of n variables with undefined coeffi-
cients is treated as

(4.1.1)

after linear replacement of variables xi 

xj , 1 ≤ i ≤ n, where αij are real or complex
numbers, it converts into the following form:

(4.1.2)

so that the linear replacement of variables mentioned
above determines a certain transformation of form
coefficients   .

Definition 4.1.1. [3] Polynomial ϕ(…, , …) of
form f(x1, …, xn) coefficients is called (relative) invari-
ant of the form if the following equation is fulfilled for
all nondegenerate linear replacements of variables:

(4.1.3)

where |αij| is the linear transformation determinant and
q is a constant (weight). If q = 0, then invariant is called
absolute. Thus, the simplest examples of an invariant
are the discriminant D = b2 – ac of a binary quadratic
(n = r = 2) form f(x, y) = ax2 + 2bxy + cy2 and the dis-

f x1 … xn, ,( ) ai1…in
x1

i1…xn
in;

i1 … in+ + r=

∑=

α ijj 1=
n∑

f ' x1 … xn, ,( ) ai1…in
' x1

i1…xn
in,

i1 … in+ + r=

∑=

ai1…in
ai1…in

'

ai1…in

ϕ … ai1…in
' …, ,( ) α ij

qϕ … ai1…in
…, ,( ),=

criminant ∆ = 3b2c2 + 6abcd – 4b3d – 4ac3 – a2d2 of a
ternary (n = 2, r = 3) form f(x, y) = ax3 + 3bx2y + 3cxy2 +
dy3.

The classical setup of the main task of the theory of
invariants is to calculate invariants and provide their
complete description. Various formal processes (polar-
ization, restitution, Kapelli identity law, Kelly Ω-pro-
cess, etc.) were developed for this purpose. The devel-
opment of the so-called symbolic method in the theory
of invariants was the culminant point of this activity; it
is a formal way to calculate all invariants of a degree no
more than that given.

The global theory of semisimple groups and their
representations developed by the 1930s promoted the
following most common setup of the main task of the
classical theory of invariants. Let an arbitrary group G
and its finite-dimensional linear representation ρ in the
linear space V on the field k be given. If x1, …, xn are the
coordinates in V (in some basis), then each element
g ∈  G determines a linear replacement of variables
x1, …, xn. Performing this replacement of variables in
the arbitrary polynomial ϕ(x1, …, xn), one obtains a new
polynomial; hence g induces a certain transform (auto-
morphism) of the ring of all polynomials k[x1, …, xn] on
variables x1, …, xn on the field k. The polynomial
ϕ(x1, …, xn), not changing under these transforms (i.e.,
when g runs over entire G), is called ϕ(x1, …, xn)-
invariant of representation ρ for group G.

From the very beginning, invariant theory revealed
the circumstance that made it possible to survey the
entire system of invariants as a whole: in all the consid-
ered cases, it was possible to separate a finite number of
basic invariants ϕ1, …, ϕm, i.e., the invariants that made
it possible to express each other invariant ϕ with the
prescribed representation as their polynomial; i.e., ϕ =
F(ϕ1, …, ϕm). In other words, the algebra of invariants
turned out to be finitely generated.

A new stage in invariant theory is connected to the
extension of the number of tasks and geometric appli-
cations of the theory. Contrary to the classical theory of
invariants, where, as a main object, the ring of polyno-
mials of n variables over the field k with a group of
automorphisms induced by the linear replacements of
variables was considered, the contemporary theory of
invariants considers arbitrary, finitely generated k-alge-
bra R and an algebraic group G of its k-automorphisms.
Instead of linear space V and representation ρ, an arbi-
trary affine algebraic manifold X and an algebraic
group G of its algebraic transformations (automor-
phisms) are considered, so that R is a ring of regular
functions on X and the effect of G on R is induced by
the effect of G on X. Elements of R stationary with
respect to G are invariants; their complete set consti-
tutes k-algebra of RG.

The definition of invariant connected with the group
performance on the set is of interest for image recogni-
tion theory. Let Γ be a group acting in the set E. This



PATTERN RECOGNITION AND IMAGE ANALYSIS      Vol. 13      No. 4      2003

THE JOINT USE OF IMAGE EQUIVALENCE AND IMAGE INVARIANCE 575

means that a mapping (σ, x)  σ · x : Γ × E  E is
given with the following properties:

(1) (σ · τ) · x = σ · (τ · x) for every x ∈  E, σ, τ ∈  Γ;
(2) ε · x = x for every x ∈  E, where ε is a unit element

of group Γ.
Then, the mapping µσ : E  E defined by the for-

mula x  σ · x will be a bijection of the set E. By vir-
tue of (1), mapping σ  µσ : Γ  ΓE of the group Γ
into the group of bijections of the set E is a homomor-
phism.

Definition 4.1.2. [1] Element x ∈  E is called
Γ-invariant or invariant if µσ(x) = x for all σ ∈  Γ.

The concept of invariants is one of the most impor-
tant in mathematics, since the study of invariants is
closely related to the classification tasks for objects of
different kinds. In essence, the goal of each mathemat-
ical classification is to construct a certain complete sys-
tem of invariants (the simplest, whenever possible), that
is, a system separating any two nonequivalent objects
from the set under consideration.

4.2. Image Description with the Help 
of Invariant Features

One of the most commonly used ways to describe
images is their representation by feature sets. Invariants
are often used as features for image description in prac-
tice; this is based on the following facts. The most
effective methods among widely used image recogni-
tion algorithms are those invariant under certain trans-
formations: in the simplest case, translation, rotation,
and scaling, and in real application tasks, changes in
intensity and contrast, blurring, viewpoint changes (for
3D scenes), etc., can be added to those mentioned
above. The easiest way to achieve this is to use charac-
teristics invariant to these transforms as algorithmic
parameters. It is not always possible to ensure strict
invariance of image features, since images are usually
discrete. However, in some cases, it is possible to con-
struct characteristics that are nonstrictly invariant and
noise-immune. For the cases when transforms which
necessitate the invariance form a group, the methods
for constructing the invariants were developed. More-
over, an image can be restored with a certain accuracy
from the fixed set of invariants of the same type. Com-
putational experiments and the results of solved applied
tasks show that invariants can be efficient for construct-
ing an image description.

While constructing image descriptions, a question
arises concerning the invariants to be chosen. The prob-
lem of invariant selection, as well as the number of
invariants, is complicated by the fact that the known
invariants are conceptually dissimilar in their proper-
ties, form, and geometric and physical interpretation. It
should be taken into account that a formalized image
description depends on the recognition task at hand.

It is necessary to systematize knowledge about
invariants and their properties for effective construction

of image representations. For this purpose, invariant
classification was carried out in [12] by generalizing
and normalizing knowledge about invariants and taking
into account specific properties of different types of
invariants.

The following basic principles are suggested for
classification: (a) globality vs. locality, (b) transform
under which the invariance is required, (c) noise sensi-
tivity, (d) information redundancy, and (e) reconstruc-
tion ability of the invariant.

One reason to use invariants as features for image
description in recognition tasks is that invariants con-
tain more information about images as compared to
other features. Thus, an invariant set makes it possible
to describe images and objects of a scene in a suffi-
ciently compact manner. It should be mentioned, how-
ever, that different invariants convey information of dif-
ferent types. Invariants characterizing, for example,
image texture or shapes of objects in the image can be
distinguished in the set of known invariants. Therefore,
the use of different types of invariants depends on the
recognition task. For instance, invariant features based
on moments of different types [5, 6, 14, 18] are often
used in plane identification, recognition of ship images,
symbol recognition, scene matching, and 3D object
recognition from 2D projections. Some types of invari-
ants are used for texture analysis and recognition. The
following invariants can be assigned to the basic types
of invariants used in image recognition: (a) texture
invariants based on a cooccurrence matrix for a gray-
scale image [7]; (b) invariants regarding blurring, affine
transformations, and changes in intensity and contrast
based on moments of different types [5, 6, 14, 18];
(c) integral invariants based on integral transformations
of Fourier- and Melline-type [19]; and (d) invariants of
geometric objects in the image [15].

5. MATHEMATICAL SETUP 
OF THE RECOGNITION TASK 

Let us return to the problem of selecting the algo-
rithm that correctly solves the image recognition task.
In order to prove the theorem on the existence of an
algorithm that correctly solves the image recognition
task, let us lean toward the similar Zhuravlev theorem
on the correctness of algebraic closure of AEC for a
pattern recognition task [2]. The results of the theorem
cannot be employed immediately in the case when the
image is an object for recognition. There are several
reasons for this. Firstly, representing an image as a fea-
ture vector (as a standard object for recognition) usu-
ally results in the loss of a considerable amount of
information about the image and, as a consequence, in
incorrect classification. Secondly, the existence of
equivalence classes substantially differ the image rec-
ognition task from the recognition task in the classical
formulation.
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A method based on image invariance and equiva-
lence was proposed in order to eliminate these differ-
ences. Here, an image is described not by an arbitrary
feature set but by a set of invariants. As was shown
above, this representation is not only compact but also
sufficiently informative and immune to image distor-
tions. An image recognition task in terms of equivalent
classes can be reduced to the classical setup with the
use of the allowable transformation notion. To show
this, a standard formulation of the recognition task, as
well as different setups of an image recognition task,
should be considered in detail.

5.1 Classical Setup of Pattern Recognition Task Z 

Let us briefly recall a pattern recognition task in the
standard setup formulated by Zhuravlev [2].

Let Z(I0, S1, …, Sq, P1, …, Pl) be a recognition task,
where I0 is allowable initial information, S1, …, Sq is a
set of allowable objects described by feature vectors,
K1, …, Kl is a set of classes, and P1, …, Pl is a set of
predicates on allowable objects, Pi = Pi(S), i = 1, 2, …, l.
The task Z is to calculate predicate values P1, …, Pl .

Definition 5.1.1. [2] The algorithm is correct for the
task Z if the following equation is fulfilled:

(5.1.1)

where .

5.2 Mathematical Setup 
of Image Recognition Task Z1 

The task setup consists in the following [13]. Let the
set K of objects to be classified be given. It is known
that the set K can be represented as a sum of subsets
K1, …, Kl  called classes: K = . Let also some
information I0(K1, …, Kl) about the classes be given.

According to the approach described above, an
image is a visual representation of a certain essence S
(e.g., object, scene) and each scene S has a correspond-
ing set of images that differ in scale, viewpoint, illumi-
nation, etc. In other words, these images are equivalent
(in terms of the definitions provided above). Let us con-
sider the situation when each image is represented by a
vector of invariant features.

The main task is to calculate predicate values Pj(I):
“I ∈  Kj”; j = 1, 2, …, l from information about classes
I0(K1, …, Kl) and from image I description D(I) = (a1,
a2, …, an).

Let A be a recognition algorithm transforming train-
ing information I0(K1, …, Kl) = I0(l) and object descrip-
tion D(I) = (a1, a2, …, an) into an information vector

 composed of elements 0, 1, ∆. The following
equation is valid:

A I S1 … Sq P1 … Pl, , , , , ,( ) α ij q l× ,=

α ij P j Si( )=

K jj 1=
l∪

α j
A{ } 1 l×

Standard interpretation is accepted for elements :

 = 1, the image I belongs to the class Kj;

 = 0, the image I does not belong to the class Kj;

 = ∆, the algorithm A failed to identify whether
the image I belongs to the class Kj; j = 1, 2, …, l.

Since real recognition tasks concern not objects but
their images, we consider that the entire set of images
is somehow divided into equivalence classes. There-
with, we assume that there is a correspondence between
image equivalence classes and objects; however, we
will drop objects in setting up a recognition task from
here on. Taking into account the introduced notion of
image equivalence, the image recognition task can be
formulated as follows.

Z1 , {Mi}i = 1, 2, …, q, {Kt}t = 1, 2, …, l,

is the image recognition task Z1, where  are
images, i = 1, 2, … q, ji is an image number within the
ith equivalence class, pi is the number of images in the

ith equivalence, ji = 1, 2, …, pi; Mi = { , , …, },

i = 1, 2, …, q are equivalence classes in the set ;
K1, K2, …, Kl are the classes in the image recognition

task; and : “  ∈  Kt”, t = 1, 2, …, l,   i = 1, 2, …, q,
ji = 1, 2, …, pi  are the predicates. Task Z1 consists in cal-

culating values of the predicate .

5.3 Mathematical Setup
of Image Recognition Task Z2 

The difference between task Z2 and task Z1 is that
each equivalence class is replaced by a single image,
class representative, with the number ni , 1 ≤ ni ≤ pi ,
where i is the number of the equivalence class. The
replacement is made by introducing the notion of
allowable transformation.

Definition 5.3.1. An arbitrary transformation

f: { }  { } is called an allowable transformation

if f ( ) and  belong to the same equivalence class for

each .

Z 2 , {Kt}t = 1, 2, …, l,  is

an image recognition task Z 2, where , i = 1, 2, …, q,

A I0 l( ) D I( ),( ) α j
A{ } 1 l× .=

α j
A

α j
A

α j
A

α j
A

Ii
ji{ } i 1 2 … q, , ,=

ji 1 2 … pi, , ,=




Pt
i ji{ } t 1 2 … l, , ,=

i 1 2 … q; ji 1 2 … pi, , ,=, , ,=




Ii
ji{ }

Ii
1 Ii

2 Ii
pi

Ii
ji{ }

Pt
i ji Ii

ji

Pt
i ji

Ii
j Ii

j

Ii
j Ii

j

Ii
j

Ii
ni{ } i 1 2 … q, , ,=

1 ni pi≤ ≤


 Pt

i{ } t 1 2 … l, , ,=
i 1 2 … q, , ,=




Ii
ni
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are images;  ∈  Mi; K1, K2 ,…, Kl are the classes in the

image recognition task; and : “  ∈  Kt”; t = 1, 2, …, l,
i = 1, 2, …, q are the predicates. The task Z 2 consists in

calculating values of the predicate .

6. COMPLETENESS CONDITIONS
FOR THE AEC CLASS

IN IMAGE RECOGNITION TASK

The main result of the research concerns the compu-
tationally efficient class of recognition algorithms for
estimate calculations [13]. These algorithms are based
on formalization of the concept of precedents or partial
precedents; i.e., the “proximity” between partial
descriptions of objects already classified and the object
to be classified is analyzed. Let standard descriptions

for objects { },  ∈  Kj and {S'}, S' ∉  Kj be given, as
well as a method for finding the proximity of some

parts of description {I( ), I(S')} and corresponding
parts of descriptions j = 1, 2, …, l, where S is the object
of recognition. By calculating proximity estimations

for parts of descriptions of {I( )} and {I(S')}, I(S) and
I(S'), respectively, one can make a generalized estima-

tion of the proximity between S and object sets  a
and {S'} (in the simplest case, the generalized estima-
tion equals the sum of proximity estimations between
description parts). Then, the overall estimation of the
object over the class is formed from the estimation set;
this is the value of the function of an object’s belonging
to a class.

The following theorem on the existence of an algo-
rithm for estimate calculations, solving the recognition
task Z correctly, is proved for algebraic closure of AEC.

Theorem 6.1. [2] Let the natural assumptions about
the difference in descriptions of classes and objects
under recognition be true for feature vectors in the rec-
ognition task Z. Then, the algebraic closure of the AEC
class is correct for the task Z.

It should be noted once again that the equivalence is
not employed in the classical setup of a recognition
task, which prevents the immediate application of the
proven theorem on existence algorithm to correct
image recognition.

The task Z1 differs from Z in that it employs image
equivalence classes in an explicit form. In order to
reduce an image recognition task Z1 to a standard rec-
ognition task Z, it is necessary to move from classifica-
tion of object groups to classification of a single object.
The task Z2 is distinguished from Z1 by the presence of
allowable transformations that do not move an image
out of the equivalence class; it is possible to operate
with a single object, a representative of the equivalence
class, under certain restrictions on allowable transfor-
mations.

Ii
ni

Pt
i Ii

ni

Pt
i

S̃ S̃

S̃

S̃

S̃{ }

The following theorem is the direct generalization
of Theorem 6.1. for the task Z2.

Theorem 6.2. Let allowable image transformations
{f1, f2, …} form a transitive group. Then, image recog-
nition task Z 1 can be reduced to recognition task Z 2

and algebraic closure of the AEC class is correct for
the task Z 2.

This theorem establishes the conditions of existence
of the correct algorithm in the image recognition task
and proves that such an algorithm can be found in alge-
braic closure of AEC.

CONCLUSIONS 

The problem of selecting a correct algorithm for
image recognition tasks was investigated in the paper.
Notions of image equivalence and invariance related to
this topic were examined. Different ways to define
image equivalence were considered, namely, equiva-
lence based on groups of transformations, equivalence
directed at the recognition task, and equivalence with
respect to a metric. Examples of equivalence classes
were constructed for the case of equivalence definition
based on groups of transformations. It was shown that
equivalence is one if the key notions of image recogni-
tion theory.

The connection between image equivalence and
invariance was studied. The notion of an invariant both
in terms of its practical application in image analysis
and processing and in terms of algebraic theory of
invariants was analyzed. Different definitions of an
invariant were given.

Based on the notion of image equivalence, the stan-
dard mathematical setup of the image recognition task
was modified, and the image recognition task was for-
mulated in terms of equivalence classes. It was proved
that the image recognition task in the classical setup can
be modified to a reduced task that has a correct algo-
rithm in the framework of algebraic closure of AEC
under certain restrictions on image transformations.

In our further investigations, we plan to study in
more detail the image equivalence and relations
between image equivalence and invariance. The
obtained results will be applied to automated diagnos-
tics of lymphatic system tumors from hematological
specimens.
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