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Abstract—Most of the advanced data processing and analysis technologies designed for solving domain-spe-
cific problems employ the automation and optimization techniques of decision-making based on “real” (incom-
plete, indirect, heterogeneous, inconsistent, erroneous, etc.) information. The methods of mathematical theory
of pattern recognition play an important role here. To carry out image recognition, we need an image represen-
tation that corresponds to the requirements of the efficient recognition algorithm chosen for the task. A vast
majority of the efficient image recognition algorithms only work with image descriptions or models. To com-
pletely use the information contained in images, it is necessary to overcome the principal discrepancy between
the nature of images and the data-extraction techniques based on symbol models of images. Thus, there is a
practical need for an efficient recognition algorithm that directly deals with images and their fragments. More-
over, the algorithm should provide the possibility of posing and solving the problem of choosing the best rec-
ognition algorithm. This class of algorithms—algorithms of estimate calculations based on 2D information
(2D-AEC)—was defined by I. Gurevich as a special type of the classical model of the recognition algorithms
based on estimate calculations (AEC) introduced by Yu. Zhuravlev. Generally, the AEC model can cope with
the spatial (2D) image structure. The principal feature of the 2D-AEC is the use of the proximity of objectsin
spatial support sets, i.e., inimages and their fragments. The range of the problems of 2D-AEC includesthe enu-
meration and investigation of spatial support sets as well as definition of the subclasses of algorithms (corre-
sponding to the types of the support sets) which allow one to produce efficient formulas that model the work of
the algorithms. In thiswork, we find these formulas for the particular subclass of 2D-AEC—algorithms of esti-

mate cal culations with rectangular support sets.

INTRODUCTION

Most of the current data technologies for information
processing and analysis designed to solve domain-specific
content-driven problems employ the automation and opti-
mization techniques of operative decision-making based
on “red” (incomplete, indirect, heterogeneous, inconsis-
tent, erroneous, etc.) information. Theseinformation tech-
nologies are widely used in medical and technical diag-
noses, nondestructive testing, ecological monitoring, nat-
ural disaster and emergency forecasting (like technogenic
catastrophes, earthquakes, floods, forest fires), informa-
tion and copyright protection, security systems, scientific
research automation, smart weapons, remote earth sens-
ing, criminal law, and control. The methods of mathe-
matical theory of pattern recognition are the basic tools
for solving all of these problems. In most cases, when
initial data are completely or partly represented as
images, it is necessary to use the methods of analysis
and estimation of information represented by images.

A vast mgority of problems which arise during
image analysis are, naturally, pattern recognition prob-
lems. At the same time, the problems of image recogni-
tion per se are formulated and solved much more sel-
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dom than is required by practical needs. The reasons
are quite evident.

At the informational level, the main difficulties are
connected to the following two problems:

(i) image description (modeling) and

(ii) development and optimization of the choice of
mathematical methods for image transformations.

The solution to the image recognition problem
implies that (i) there is an image representation and an
efficient recognition algorithm and (ii) this representa-
tion corresponds to the requirements which the algo-
rithm imposes on the initial data [4, 5]. Generally, in
recognition problems, there are only two ways of data
representation:

(i) asdirect spatial information (e.g., by pixelsor alocal
neighborhood of the second order that consists of pixel
arrays) and
(ii) as a system of objects and relations extracted in
images.

Before applying arecognition algorithm, it is neces-
sary to present initial data in the form convenient for
recognition.

In the first case, a recognition algorithm should
allow the image itself or its fragments to be processed;
here, the procedures of transforming the initial data in
the form convenient for recognition are reduced to
choosing the shape of the fragments whereby the rec-
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ognized object is matched to the template, to fragment-
ing the image, etc.

In the second case, the procedures of transforming
the initial data in the form convenient for recognition
should yield a mathematical model of an image. This
model should reflect the inner structure and content of
the image as an outcome of operations that construct
the image from the subimages and other objects of sim-
pler nature, i.e, from the primitives and objects
extracted in the image at different stages of processing.
During image recognition, one should use information
reflecting the way of pattern formation, i.e., of the
image as a whole, and of the objects presented in the
image.

Three types of information characterize an image:
(i) identifiable objects with awell-defined structure;
(ii) identifiable objects with an ill-defined structure; and
(iii) nonidentifiable objects.

To alow for an image structure means to extract
subimages (objects) in an image, to define the possible
elementary level for them, and to define the relations
between these objects and elements. As a result, the
hierarchical structural information of an image may be
explicitly presented and utilized. An imageis described
by a system of objects, each object is described by sim-
pler objects, etc. The structural information can be
introduced into recognition process in two ways.

First, according to classical pattern recognition the-
ory, we can use the list of features asamain formaliza-
tion principle and

() two types of features are introduced in the

description; they reflect atwo-dimensional character of
the object to be recognized:

—characteristics which reflect the properties of
some local image fragment (the distribution of pixel
values in this fragment, the presence or absence of a
certain geometrical object in this fragment, the type of
the object’s shape, etc.);

—characteristics of relations of separate objects and
features,

(b) the weights are assigned to the features, which
indicate the degree of their importance for image
description;

(c) separate features are combined into a system of
features and treated as a single feature.

The second way of introducing structural informa-
tion into recognition process is based on aregularity—
aproperty which isimmanent to such information (and
to thereal world) and manifestsitself in different order-
ings and structures. By using structural methods of rec-
ognition, we can obtain apractically unlimited diversity
of descriptions from the limited set of primitives and
rules of their combination by endlessly applying these
rulesto the initial primitives and to the results of some
combinatorial transformations.

PATTERN RECOGNITION AND IMAGE ANALYSIS  Val.

663

The overwhelming majority of the computationally
efficient image recognition algorithms are designed for
working with feature descriptions or image models
only. To maximaly use information contained in
images, we should overcome the conflict between the
image nature and the informati on-extraction techniques
based on using symbolic models of images. Images are
visual, informationally compact, and contain a vast
amount of complementary and sometimes redundant
information. Thus, the semantic nature of images
allows us to use various context data (forbidden order
relations, partial order relations, and other constraints
common to the physical and logic structure of the real
world) during recognition and analysis. At the same
time, most of the image recognition techniques are
purely heuristic, and their success is determined by
their ability to reflect apictorial character of images by
nonpictorial means. Asaresult, image analysisand rec-
ognition rest on transformations which do not depend
on presenting information in the form of images.

The above reasoning implies that thereis aneed for
efficient recognition algorithms directly applied to
images and their fragments. In addition, these algo-
rithms should provide a possibility for choosing the
extreme algorithm according to functional of recogni-
tion quality. This means that the algorithm is a model,
i.e, aset of variables, objects, functions, parameters,
and ranges of their variations. By fixing a set of certain
variables, objects, parameters and function types, we
can choose a particular algorithm in the model under
consideration.

This class of the algorithms—algorithms based on
estimate calculation by using two-dimensional infor-
mation (2D-AEC)—wasdefined in[2—4] asaspecifica
tion of the classical model of recognition algorithms
based on estimate calculation (AEC), introduced by
Zhuravlev [16]. A principle of partial precedence
underlines AEC working. The proximity between the
parts of the description of the objects already classified
and the object presented for recognition is analyzed.
The proximity is a partial precedent estimated accord-
ing to some predefined rule (numerical estimation).
A set of proximity measures yields a general estimate
of an object to be recognized for a class. This estimate
isavalue of the function of amembership of the object
to the corresponding class.

Experience showsthat discriminating information is
not contained in separate features, but in their combina-
tions. The AEC class carriesthisideatoitslogical con-
clusion. Sinceit is not always known which of the fea-
ture combinations is most informative, the proximity
measure is calculated by matching all possible (or the
particular, if the feature combinations of the maximum
discriminating power are known) feature combinations
in object description. In AEC, the proximity measures
of objects are calculated by simple analytical formulas,
which allow us to avoid exhaustive search during rec-
ognition (at the stage of tuning the algorithm’s parame-
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terswhilelearning). In addition, the AEC makesit pos-
sible to take account of differences in the information
content (discriminative power) among individual fea-
tures and their combinations and in representativeness
among some objects of learning sample.

Therefore, in general, the AEC modd can process
information related to a spatial (two-dimensiona) image
structure. The main distinction of the 2D-AEC classisthe
use of spatia (two-dimensional) support sets, i.e., images
and their fragments, for cal culating proximity measures of
objects. The range of the problems of 2D-AEC includes
enumeration and investigation of spatia support sets as
well asthe definition of the subclasses of agorithms (cor-
responding to the types of the support sets) which alow
oneto produce efficient formul as that model the work of
the algorithms. One of these subclasses of 2D-AEC is
described in [2—4] for acase of rectangular support sets.
Inthiswork, wefind the formulasfor the particular sub-
class of 2D-AEC—algorithms of estimate calculations
with rectangular support sets.

Since alot of research was made on the AEC class,
we start with reviewing the main results of different
researchers concerning different ways of specifying the
systems of 1D support sets while constructing efficient
formulas for estimate cal culations.

In Section 1, the AEC model and its parameters are
described and general definitions and examples are
given.

In Section 2, the problem of efficient estimate cal cu-
lations is formulated and the results obtained during its
solution (for the AEC class) are given.

In Section 3, support sets for the considered sub-
class of 2D-AEC are introduced.

In Section 4, amethod for efficient estimate calcula-
tions in this subclass with rectangular support sets is
described.

In Section 5, the main results of the research are out-
lined. We prove that the problem thus formulated is
equivalent to the problem of constructing an efficient
procedure of searching for some spatial generating ele-
ment on abinary raster. The problem of searching for a
spatial generative element on a binary raster is formu-
lated. We suggest aformalism that describes the muilti-
step search procedures and introduce anatural criterion
for efficiency (computational complexity) evaluation of
these procedures. An efficient two-step search proce-
dure is suggested for a generating element (a rectan-
gle), and itsoptimality in asubclass of all two-step pro-
cedures of search for arectangleis proven.

In Section 6, the results of the analysis of the infor-
mation content of initial data by the introduced method
are exemplified by the solution of the hemoblastoses
classification problem.
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1. GENERAL CHARACTERISTICS
OF THE AEC CLASS

The model of algorithms based on cal culation of the
estimates (AEC) was successfully used for solving
many problems of pattern recognition [16]. The model
describes the structure of recognition algorithm and
parameters necessary for choosing particular algorithm
in the model. In the framework of a model, the algo-
rithms differ by their parameters and, therefore, by the
way of their classification of the given objects. The
results of applying the algorithm of a model to the test
sample show the adequacy of this algorithm to the
problem at hand. Thus, al of the algorithms of a given
model can be supplied with a quality functional.

The choice and/or synthesis of the agorithm,
extreme according to the quality functional, presents
the main problem in implementing AEC in practice.
This problem is closely connected to the reduction of
the computational complexity of AEC. The algorithms
of acceptable computational complexity are based on
efficient formulas which model the algorithm’s perfor-
mance; these are formulas for calculating proximity
estimates of objects under recognition and precedents.
The complexity of formulasfor estimate cal cul ations sub-
stantialy depends onthe AEC parameters, such asthe sys-
tem of support sets and the type of proximity function. A
recognition agorithm uses a system of support sets as a
system of feature subsetsfor matching object descriptions.
A proximity function defines whether the matched
objects are “close.”

By now, the most comprehensive study concerned
the problems of deriving efficient formulas for AEC in
the case where all available objects are described by the
one-dimensional feature vectors and the support sets
encode the parts of these one-dimensional descriptions.
This problem was solved for the main subclasses of
AEC in[14-16].

When the efficient formulas for estimate calcula-
tions are constructed, the optimal (for the given model)
algorithm can be chosen by one of the classical optimi-
zation techniques or by modifying these techniques. A
lot of research was devoted to this problem [7, 10, 12,
14, 18-22, 24-26].

Although the efficient formulas are constructed
almost for every AEC model of practical interest, the
problem of constructing such formulas in the case
where the objects are images, object descriptions are
2D matrices, and support sets are spatia (2D) objects
still needs to be solved. As was noted above, the AEC
classwas specialized to operate with 2D object descrip-
tions called aclass of algorithms of estimate cal culation
from two-dimensona information (2D-AEC) [2-4].
Note that, by now, the efficient formulas are con-
structed for one 2D-AEC subclass only: for a subclass
with a square as a generative element of the system of
support sets[2—4].

Here, we propose the method for constructing the
efficient algorithms for the 2D-AEC subclass with two-
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dimensional support sets generated by arectangle. The
idea underlying this procedure consistsin transforming
the rectangle with the sides R; x R, into the unit square
by compressing the plane aong the one side R, times
and along the other R, times.

Let us recall the basic objects and properties of the
AEC model [11-13, 16]. Generally, arecognition algo-
rithm contains a recognizing operator and a decision
rule [13]. In AEC, arecognizing operator converts a stan-
dard description of object S subject to recognition into a
set of numerical estimates (M,(S), F'«(9), ..., I(9), where
I isanumber of classes. A decision rule helpsusto con-
dtruct theinformation vector (a,, s, ...,q)), a; 0 {0,1, A},
from this set. Here, a; = 0 if an algorithm does not
assign object S to jth class; a; = 1 if an agorithm
assigns object Sto jth class; and a; = A if an agorithm
cannot classify object S

To define a recognizing operator, it is necessary to
assign a system of support sets, proximity function,
feature weights, and precedent weights. L et us consider
these parametersin detail.

1. System of support sets.

A system of support sets is a totality of nonempty
subsets of thefeatureset N={1, 2, ..., n}; the object is
described by the values of these features. A system of
support sets is denoted by Q,.

Below, we list the examples of support sets.

1.1. Q,=2Y; i.e, asystem of support setsisaclass
of al (nonempty) subsets of feature set N.

1.2. Q, ={QIQ N, |Q| =Kk}, where k is an integer
and 1 < k< n;i.e, asystem of support sets consists of
all of the subsets of the set N which have a predefined
power k, e.q., Qs ={{1},{2}, ..., {n}} fork=1and
Q,={N} fork=n.

The following relation connects the systems of sup-
port setsof 1.1 and 1.2;

n
2V = []{QQON, |Q =K .
k=1
13.Q,={Q|Q ON, |Q|< Kk}, wherek is an integer
and1<ks<n;i.e, Q,consgsof dl of the subsets of the

set N which have a power no more than the predefined
one.

14.Q,={Q|Q ON, |Q| O {ky, k, ..., k}}, where
ky, Ko, ..., k,areintegersand 1<k <n,i= 1, u.

Any support set Q can be encoded by the binary
vector w of the length n in the following way: the ith
coordinate & is equal to oneif and only if theith fea-

ture is contained in Q. The thus-constructed vector &
is called a characteristic vector of the support set Q. It
is obvious that a set Q and its characteristic vector @
are connected by a one-to-one correspondence.
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Sometimes, it is convenient to consider a system of
support sets as a set of characteristic vectors that encode
the support sets of the algorithm. In those cases, we

consider Q, to be a set of vertices { w} of n-dimen-
sional Boolean cube E".

Asusual, we denote the norm (weight) of the binary
vector || ||equal to the number of its unitary coordi-
natesby . The set of all binary vectors of the weight
k is called the kth layer of the Boolean cube and

denoted by E.

We call the Boolean function f,() a characteristic
function of the system of support sets Q, if fo(®) =

1 = w 0Q,. Obviously, asystem of support sets of the
algorithm is unambiguously described by its character-
istic function.

The characteristic function of a system of support
setsof (1.1)-type vanishesonly if dl its variables vanish.

For a system of support sets of (1.2)-type, the char-
acteristic function isequal to unity in thewholelayer of
Boolean cube and only there.

For a system of support sets of (1.3)-type, the char-
acteristic function is equal to unity in the whole first,
second, ..., kth layers of Boolean cube and only there.

2. Proximity function.

Let I(S = (ay, &, ..., a,) be a standard (feature)
description of object S, Q ={iy, iy, ..., i}, and let @ be
a characteristic vector Q. We denote a subdescription
of theobject Srepresentedintheform (g, a; , ..., &)

by the symbols @ 1(S) or @ (9).
The proximity function B;(S S) depends on

w-subdescriptions of objects S, S' and takes two val-
ues: 0 if the objects are not close and 1 otherwise.

Most often, the following proximity functions are
considered:

2.1.
M, ©S = S
B-(S5S) = - - 1.1
oS S) Ep WS# KS. (1)

2.2. Let the metric (or semimetric) pi(X, y),i = 1, n,
be defined on the range of definition of the ith feature.
Let 0S=(a_, &, ..., &) @S =(b, b, ... b),

and the quantitiesg; = 0,i = 1, n, €2 0, whereg isinte-
ger, be set. Consider a system of inequalities

pi,(ai, b)) <g,

(1.2
pi(a,b)<e, ...p(a,.b)<¢,
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and denote the number of unsatisfied inequalitiesin this
system by y. Then,

M, y<e¢
84S S) = O §>s

(1.3)

The parameters of this function are the vector € =
(€1, &, ..., €,) and the quantity € (maximally admissible
number of unsatisfied inequalitiesin system (1.2)). If
g =0,i=1,n, and € = 0, this proximity function is
identically equal to the proximity function determined
in2.1.

2.3 If in the conditions of the previous point, we set
two integers € and €2 (g1, €2 > 0) instead of €, then

1, o -y =€,

[D, otherwise.

y< €

B,(S S) = (1.4)

Vector € = (g, €&, ..., §,) and quantities ! and €2
(minimal accessible number of satisfied inequalitiesin
system (1.2) and maximal accessible number of unsat-
isfied inequalities in system (1.2), respectively) are
parameters of the function. For e =0and €2 = ¢, we get
the (2.2)-type proximity function.

Suppose once more that I(S) = (a;, a, ..., a,),
1(S) =(by, by, ..., by), the metric (or semimetric) p;(X, y)
is defined in the range of definition of the ith feature,

and thevaluese; =0, i = 1, n are set. The binary vec-
tor 8 = 0(S S)=(d, 0,, ..., 0,) defined asfollows:

— A, pi(ai:bi)SSi
o= Ep, pi(a;, b) >¢;, (1.5)

wherei = 1, n, is caled a characteristic vector of the
proximity of objects Sand S'.

By using a characteristic vector of proximity, we
can rewrite the expression for (2.2)-type proximity
function as

041
81
I/\

[, (8, w)
[0, (6, w)>

where 3' isabi nary vector obtained by the coordinate-

Bi(SS) = (1.6)

oqz
81

wise negation of vector 5 and (a, B) isascalar product
of the vectorsa and 3 which isequal to the sum of their
coordinatewise multiplications.

In asimilar way, for the (2.3)-type proximity func-
tion,
0, (5,0) 2, (5, D) <&

B:(SS) =
[D otherwise,
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We can introduce vector & (S S) whileignoring the
metric p; and quantities €; in the following way:
M, & = b,

5 = 1.8
, & Zbh. (18)

In this case, the expression for the (2.1)-type prox-
imity function can be rewritten in the following way:

B S) = o (0@ = lu (1.9)
[0, (3, w) <||w]
3. Feature weights.
Featureweightsare set by thevector p = (py, P2, - -+, Pr)s
p>0,i=1n.
Let {iy, iy, ..., i} beaset of theindices of al unit

coordinates of the characteristic vector & . The weight
of the support set Q with a characteristic vector @ is
denoted by p(w); p(®) = p;, + pi, + ...+ P, -

4. Precedent weights.

Precedent weights are defined by the vector y =
(V1 Yar ---» Vi), Wherey, =v(S) >0, g = 1, m, and mis
atotal number of precedents. This point concludes the
list of the parameters of the recognition operator of
AEC.

The estimate I';(S) of the object Sover the jth class
is defined by the following formula:

r(S) = K|W| 293 P(®)BA(S S),

HO0Q,

(1.10)
j =11,

where K is a normalized coefficient and W, is a set of

precedents of the jth class.

Sometimes we use the formulas to assess an esti-
mate[;(S) that differ from Eq. (1.10). Inany case, how-
ever, the semantics of the initial formulas for I'; is the
same; i.e., over al of the support sets, the value of prox-
imity function (and/or of its negation) is calculated for
the given object Sand for each object S' from the learn-
ing set. Each time, the weights of the features and the
precedents are equally accounted of.

We finish the definition of recognition algorithm by
setting the decision rule (see [13, 16]).

Note one important property of the estimate (1.10).
The following equality istrue:

F(Qa0 Q) = Q) +T(QR) -Tj(Qan Q)
where I'7(Q,) is an estimate I';(S), defined according
the system of support sets Q' t =1, 2.
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This equality admits the generalization for the case
of a union of any finite number of the support set sys-
tems.

u
The estimate > Q'L over the union of mutu-
TH o

aly disoint systems of support sets is merely the sum

of estimates $(Q}) over al t = 1, u. Therefore, the
estimate I';(S) is additive with respect to the union of
digoint systems of the support sets.

This property allows usto easily obtain the estimate
u

r? H1Q}H if theestimates 7(Q4) (Qa n Qi =0,
t=1

t; # t,) are known. Suppose, for example, that Q v isa

(1.1)-type system of support sets and Q, is (1.2)-type
system of support sets with a given power k of N sub-
sets. Then,

r(Q,) = > r3(Qy).
k=1

Hereinafter, for the convenience, we omit the multi-

plier iﬁ in Eq. (1.10):
(s =y vs)

(1.11)

s ow,

Z P(e)By(S S),
j= ﬂ

2. EFFICIENT FORMULAS FOR ESTIMATE
CALCULATION IN A CLASS OF AEC:
MAIN RESULTS

In some application problems, there are large quan-
tities of precedents (hundreds and thousands) and sup-

port set systemsthat have ahigh power (e.g., 2"—1, Cﬁ
for n of the order of athousand and 2 < k< n). Then, the
estimate calculations according to Eq. (1.11) become
time-consuming and, sometimes, impracticable (W]
|Q4] summands are subject to calculation). The main
difficulty hereisthe calculation of the sum

Po(SS) = § p@BKSS). @D

o0Q,
This quantity depends on the choice of the support
set system Q, and the proximity function B, (S, S).
Therefore, a problem arises of getting the efficient
formulasfor estimate calculation, i.e., the formulas that
allow usto avoid the exhaustive search in Eqg. (2.1) and,

thus, to reduce combinatorial complexity of Eq. (1.11)
to the complexity proportional to the size of alearning
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table (i.e., to the number of elements of the matrix

, where S, S,, ..., S, are the objects of the

learning sample).

2.1. Combinatorial Systems of Support Sets

The authors of [16] obtained efficient formulas for
estimate calculations for (1.2)-type system of support
sets and (2.2)-type proximity function as well as for
some other cases.

Let us omit the multiplier p(®) in Eq. (1.11) (the
feature weights are not considered) and set k > € (oth-
erwise, B; (S S)=1forany S S and Eq. (1.11) isele-
mentarily simplified).

Theorem 2.1[16].

ri(S = Z (S)zcr(SS)Cn 1S S)r

Saw,

(2.2)

j =11,
wherer(S, S) isanumber of satisfied inequalitiesinthe
system p;(x, y) < €, i = 1, n. Hereinafter, we addition-
aly suppose that C;, for n>m.

To prove the theorem, we perform the direct calcu-
lation of the number of support setswheretwo arbitrary
objects Sand S' are close to each other for fixed k, €,
and knownr(S§ S).

Note that for (1.2)-type system of support sets, the
omitting of feature weights means that the weights of
all the features should be the same. If we set feature
weights to p, then a multiplier pk appears before the
first summation sign in Eq. (2.2). The identity of
weights of all the features does not substantially affect
the recognition ability of AEC.

Corollary 2.1 [16]. For the same system of support
sets and (2.1)-type proximity function, the following
expressionisvalid:

[ =3 vS)Cissy 1=11. (23
S'DWJ-
To prove the corollary, it is sufficient to put €, =
&=..=¢,=0,e=0.

Corollary 2.2 [16]. For the (1.1)-type system of
support sets and (2.1)-type proximity function,

r© =5 vV~ j=11. (249
sow,
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The proof is based on additivity of estimate I';(S
over the union of mutually disjoint systems of support
sets (see example at the end of Section 1).

For the (1.1)-type system of support sets, (2.2)-type
proximity function, and featureswith unity weights, the
following assertion is valid.

Assertion 2.1 [16].
(=3 v($)277r(ss), i =11 (29

Saw;

If instead of p(6)), we place a”® (ais positive con-
stant) under the second summation sign of Eg. (1.3),
other conditions being equal, we can make the second
assertion:

Assertion 2.2 [16].

e =y y(S)(1+a) ¥ -1), j = 1,1.(26)
sow,

The authors of [16] also obtained the efficient for-
mulas for the case when the probability measures were
used as feature estimates in object description (for
(1.1)-type system of support sets and the proximity
function of aspecial type). They considered acase with
the gaps in the object’s description denoting the
absence of information about the values of some fea-
tures. For the (1.1)- and (1.2)-type systems of support
sets, the representations of proximity function were
defined and efficient formulas were derived.

2.2. Intervals of the Boolean Cube

The efficient formulas of estimate calculations for
the case when the system of support setsis an interval
of the Boolean cube were obtained in [6]. They may
afford a basis for efficient formulas for the systems of
support sets representing the union of digoint intervals.
The authors also considered the possibility of deriving
the efficient formulas for systems of support sets repre-
senting the union of intersecting intervals. Note that the
efficient formulas of the subclass of 2D-AEC stem from
this result. Here, a square image fragment was used as a
generative e ement of a support set system [2-4].

Let a system of support sets in a Boolean cube be
represented as an interval. Then, a characteristic func-
tion of asystem of support sets can be written as

0'1 0'2 O'Ik
fA(Xy Xo0 i X0) = X 7%, 7 X
- 2.7)
X, =1 (
where o, 0{0,1}, x° =
! X, o =0.
Let{ig,ip ..., iy ={Hq Moy .oy Mt O{Vq, Vs, ...,V },

whereo, =1,j=1,uando, =0,j=1,v.Usngthe
introduced notations, we can describe the system of
support sets in the following way: every support set of
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the system (i) does contain features with the numbers
M1, Ko, ..., My, (i) does not contain features with the
numbersvy, v,, ..., v, and (iii) probably contain some
features with the numbers from the set N\{i,, iy,..., i\} =
PP P e

Let a (2.2)-type proximity function be set with € = 0,
WS=(ay, &,, - &), ad WS =(by, by, ..., by).
If the system of equations

ptl(atl’ btl) = Stli
ptz(atzi btz) = stq1 s ptq(atq! btq) = atq

contains at least one unsatisfied inequality with the
number from the set {4, Yo, ..., My}, then it is obvious
that B;, (S S) =0.

Definition 2.1 [6]. Object S'is caled inefficient for
Sif B;(S S)=0.

Theorem 2.2 [6].

Y vS)ZSY, =1,

S O(W,\W))

ri(S = (2.8)

where W, is aset of all objects from W, inefficient for
Sand r(S S) isanumber of satisfied inequalitiesin a
system p, (&, by ) <€, ,i=1 n-k.Inthemodel out-
lined here, we do not consider feature weights.

The theorem is proven by the direct calculation of
the number of support sets which are used for determi-
nation of the proximity of two arbitrary objects S and
S, the number r(S, S') being known.

By using the property of additivity of the estimate
I';(S) over the union of mutually disjoint systems of the
support sets, Theorem 2.2 can be generalized to the
case when a system of support sets is represented in a
Boolean cube as the union of digoint intervals.

A generalization of Theorem 2.2 implies that effi-
cient formulas for estimate calculations may be con-
structed on the basis of DNF of the characteristic func-
tion of a system of support sets where all elementary
conjunctions are mutually orthogonal. ThisDNF can be
constructed for any Boolean function which isnot iden-
tically equal to zero. If, however, the constructed DNF
with mutually orthogonal conjunctionsistoo long (i.e.,
the interval s corresponding to elementary conjunctions
contain one or several vertices only), then the complex-
ities of corresponding formulas will be the same as the
complexity of exhaustive search and, therefore, they
will beinefficient. The formulas constructed according
to this method essentially reduce the search only if they
are constructed along the relatively short DNF with
orthogonal conjunctions—their complexity isin direct
proportion to the length of the DNF used. However,
synthesis of the short DNF with orthogonal conjunc-
tions obviously has a complexity similar to the com-
plexity of the synthesis of the shortest DNF.
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The author of [8] found another way of constructing
efficient formulas for AEC with asystem of the support
sets presented as a union of the arbitrary intervals of a
Boolean cube. He considered a proximity function of
(2.2)-type with € = 0. Unlike paper [6], the feature
weights were taken into account there. The formulas
for efficient calculation of Eq. (2.1) were obtained. The
complexity of the obtained formulas and, therefore,
their efficiency depend on the number of conjunctionsin
DNF which underlinesthe construction of theseformulas.

Definition 2.2 [8]. Vector @ = (Y1, Yar «-er Vi)
defined by therule
0, ¥ =vi =0
VEOLYW=yi=l i=In (9
D 0 1
(2, yi =0,y =1,

is called a characteristic vector of theinterval | ={y [
E'NV’ <V <V'H ¥ =V, va, o YR) DEN Y = (v,
V3, ..., Yr) O E" of the Boolean cube.

A number of twos in the characteristic vector is
called adimensionality of an interval.

It is obvious that the interval and its characteristic
vector are connected by one-to-one correspondence.

The author considered the proximity function of
(2.2)-type, € =0, objects Sand S' and their characteristic

proximity vector 8(S S) = (84, 0, ..., O).

Theorem 2.3 (about the reduction to the problem
with the unity vector) [8]. Let the system of support sets

Qabetheinterval 1inE™ If 8(S S)# (4,1, ..., 1), then
either @, (S, S") = 0 or we can discard some of the fea-
tures in the description of the objects Sand S' and pro-
ceed to the feature space of dimensionality n* < n,
where the system of support sets Q, isaninterva I* in

E", and ®,(S S) = ®(S S)>0and 3 (S S) =
1,1, ...,12).

The proof of the theorem is based on the fact that if
(8); = 0, then ®,(S S) =0for (y) =1 (wherey isa
characterigtic vector of theinterval 1); if (y), = 0, we can
discard the i th component in the descriptions of objects
Sand S, in the Boolean representation of the system of
support sets Q,, and in the vector €, which isa parame-
ter of aproximity function. Thus, the dimensionality of
theinitial classification problem and the dimensionality
of the AEC parameters are decreased by one. The
equality ®,(S S) = (S S) istill valid, but the value
of ®.(S S) iscaculated for a new problem and with
new parameters of AEC of lower dimensionality. The
case of (y); = 2 is reduced to the considered cases.
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A similar theorem isvalid for the case of support set
system being represented by a union of arbitrary inter-
vals of a Boolean cube.

During the construction of efficient formulas for
®,, (S S), Theorem 2.3 and its generdization make it

possibleto consider the case of S(S S)=(1,1,...,only.
Theorem 2.4 [8]. Let the system of support sets Q,

be the interval | in E" with characteristic vector @, and

dimensionality m. Then, the following equation isvdid:

®(88)=2"% p+2"" Yy p (210

ity =1 ity =2

for 3(S S)=(L, 1, ..., 1).

Here, two intervals|, and I, in E" with characteristic
vectors wy, = (ay, Oy, ..., Op), and wy, = (B, By, -, B,
respectively, are considered.

Definition 2.3 [8]. We define operation of multipli-
cation o of two characteristic vectors as follows:

(1) the product &, ° 6, isnot defined if 0 O N:
o; =0andB;=1ora;=1and 3 =0; otherwise
(2) a)ll ° (I)Iz = (y1! Yo -ens yn)i where

%), o, =B =0,0orqa; =0
B =2, 0ra, =2, B3=0
yi:%liaizp’izl’oraizl
Eﬁizz,oraizz, Bi=1
%2, a; =2, B =2,
i = 1,n.
Obviously, the product &, ° 0, is acharacteristic

vector of interval 1, n |, (if such interval exists, i.e., if
[, n 1,# ). Theintroduced operation - iscommutative

and associative.
Lettheintervalsly, I,, ..., I, be given with character-

istic vectors @ , @, ..., Gy, respectively, and | =
Lbnlyn..nlzO.Then @, o @, o...0 0, =6.

Theorem 2.5 [8]. Let the system of support sets Q4
betheintersection of theintervasly, I, ..., I, in E"with
characteristic vectors W, W, ey W, respectively,
andl=l;nln...nlz0and @ =Yy, Yo ..o Vi)
Then, for (S, S)= (1, 1, ..., 1),

cDIlm I,n..n Ik(Sr S)

— 2m1v2,“_,k Z pi+2m1‘2“"'k_1 Z pi,

ity =1 ity =2

(2.12)
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where m; ,  isthe dimensionality of the interval
bnl,n...nl

The proof of thistheorem followsfrom Theorem 2.4
and Definition 2.3.

The matrix of intervalsly, I, ..., |, with characteris-
tic vectors & , @, ..., &, , respectively, is consid-

ered, where @, = (a3, 03, ..., o), u= 1k, i.e,
o ... 0 ... OF
2 2 2
Akxn — |07 ... O . Oy ) (212)
k k k
aj ... Of ... O,

The column vector of thismatrix t = (al, a2, ..., al),
called theinterval vector of featuret over intervalsl,,
l,, ..., I, corresponds to each featuret LI N.

Theorem 2.6 [8]. Let the system of support sets Q,
betheunion of theintervalsly, I, ..., [, in E". Then, for

5(SS)=(L1, ..., 1),

n k
D g o 1 (SS) = zpt z(—:]-)]+1
t=1 |j=1

(2.13)
0 0
x [ Z fi i+ z fi 0l
D 1<i:<..<i;<k o 1<i.<...<i. <k ’ D
DE(t)n{il,...,ij} #0 H() O{iy, ...i} = H(Y) U
where
E(t) = {ijay=1,1<i <Kk,
H(t) = {ijoy=21<i<k,
kAT

it 1 2
%b, do— To = @ ¢, af, ..., OF)

0 i i
fipi, = Tk ke D41 ]} a =0, o =1

m i

] m . .
@ ', otherwise,

fio=f02

iy

Suppose we know that any g intervals (2 < g < K)
from the intervals I, 1, ..., |, do not intersect. Then,
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fivip i, = finiy..i, =0, 0j 2qand Eq. (2.13) may be

rewritten in the following form:

n q-1

D g g (SS)= zpt z(_l)j+1

i=1

z fi it z f;l...i% -

1<ij<..<ij<k 1<ij<..<ijs<k

E(t) n {iy, ....i} #0

X
o

H) O {iy, ....i} = H()

The following recurrence relation may be used for
adding a new interval to the system of the support sets
in Eq. (2.13):

o, = 2" Y p+2m ! S P

A &, (2.15)
where k = 1,
n k '
Poopgo o, =Poog oo, t z Pt Z(_l)Hl
t=1 |j=1
(2.16)
0 0
G 3 e 3 ha
|:|1si‘<...<ij:k lSii<...<ij:k |:|

E(t) 0 {iy, .oriy #0 H(t) n {ig, ....i} =H

wherek = 2.

We use the results outlined in [8] to propose a new
scheme of efficient calculation of the estimate I';(S) in
the case when a system of support setsisaunion of the
intervals of the Boolean cube. The current object S'
from the learning sample is subjected to the procedure
of reducing dimensionality of theinitial problem and of
AEC parameters (a generalization of the procedure
described in the proof of Theorem 2.3). This procedure

may yield ®q (S S) = 0; otherwise, the dimensional-
ity issuccessfully reduced; for anew problem an equal-
ity 3 (S S)=(1, 1, ..., 1) isvalid and Eq. (2.13) may
be used to calculate the values of @, (S S).

The reasoning made after Theorem 2.2 isalso actual
for the computational complexity of Eq. (2.13) with the
only correction: Eq. (2.13) is valid for the case of the
union of arbitrary intervals (the conjunctions corre-
sponding to the intervals are not necessarily be orthog-
onal).
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2.3 Symmetrical Proximity Functions

A genera approach to deriving efficient formulas of
estimate calculations is based on the following repre-
sentation of Eq. (1.3) [1, 13]:

rj(S) = z

s O Wj
where V(S S) isthe number of the support setsQ from

Q, containing featuret 0 N such that B;, (S, S) = 1. As

aresult, instead of efficient calculation of the value of
Eg. (2.1), we should efficiently calculate the value of

V(S)H pV(SS), | = 11, (217)

Z P V(S S). (2.18)

Suppose that the function V, (S S') takes k different
values (1 < k < n) for varied parameter t and fixed
objects S, S'. Then, feature set N is separated into k dis-
joint setsof featuresNy, Ny, ..., Ny, suchthat V(S S) =W
for t O N,, 1 < u < k. To calculate the value of W, an
arbitrary featurei,, is selected from the group of features
Ny, then, searching in al support sets Q 0 Q4 (i, 0 Q)
is performed and the value of proximity function
B; (S S iscalculated.

Thus, knowing that the function V, takes k different
values, to calculate the value of Eq. (2.18), we may con-
fine ourselves to the support sets that contain at least
one feature from the set {i,, iy, ..., i\} . Therefore, when
the number k of different values of the function V, is
smaller than n and, moreover, the number of the sup-
port sets that do not contain any feature from the set
{iy, iy, ..., i} isrelatively large, then the search in the
support sets for calculating the value of Eq. (2.18) can
be sufficiently reduced.

Sometypes of the proximity functions and so-called
regular systems of the support sets with asmall number
of different values of V,(S S') were considered in [13].

Definition 2.4 [13]. A system of support sets Q, is
considered to be regular if the conditions Q 0 Q, and
|Q|=k, L<k<n-1imply that all support sets of power
k belong to Q,.

In a Boolean cube, aregular system of support sets
is represented as a union of some of its layers. All sys-
tems of support sets considered in Section 1 ((1.1)—
(1.4)-types) areregular.

The value of function V, depends on the type of
proximity function.

Definition 2.5 [13]. Proximity function B (S, S),
which takes the values 0, 1, is called symmetrical if
08, 0w, w, O Q,, the condition ||(¢, - 8)|| =
(&, - 8)llimpliesthat B (3) = B;, (3). Here, (a - B)

is a vector obtained by coordinatewise product of vec-
torsa and f3.
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Let usintroduce two assumptions:
(1) B4 (S S) = B, (3(S S)); i.e, if theway of the

construction of characteristic proximity vector & ispre-
assigned, then the proximity function does not depend
on particular values of features in object descriptions,
but on the type of the corresponding proximity vector and,
formally, isafunction of two n-dimensiond binary vectors

w and &. This assumption concerning proximity func-
tion is rather natural—all proximity functions consid-
ered in Section 1 ((2.1)—2.3)-types) obey it.

(2) There are such a learning sample and such an

object Sthat function & (S S takes al values from E"
(except for zero value) for varied S'.

Definition 2.5 implies that

(i) asymmetrical function only depends on the num-
ber of features used for establishing the subdescription
closeness of two objects and isindependent of, e.g., the
indices of these features;

(ii) generdly, a symmetry of a proximity function
depends on the system of the support sets: thus, e.g.,
(2.3)-type proximity function is symmetrical if (1.2)-
type of the support set system is chosen and is not sym-
metrical if we choose the support set system of (1.1)-
type.

Theorem 2.7 [13]. Let the system of support setsbe
regular and the proximity function be symmetrical.
Then, V,(S S takes no more than two different values

fort=1,n,0SS.

The proof of the theorem implies that all features
that correspond to zero (unit) coordinates in the vector

3 (S S) enter into the equal number VO (V1) of support

sets Q 0 Q, such that B (S, S') = 1. Then, according to

the conditions of Theorem 2.7, Eq. (2.18) can be rewrit-
ten as

(8, PV + (8, p)V*,

where &' isavector obtained by coordinate negation of 5.

Theorem 2.7 is also valid for the particular case of
(2.2)-type of the proximity function and (1.2)-type of
the support sets.

Assertion 2.3 [13]. The following expressions are
valid for the (1.2)-type system of support sets and the
(2.2)-type proximity function:

€
VO(S, S) = z Cﬁ::‘(s S')_lclr((_sus-), (219)
u=1

€
Vl(S, S) = Z Cﬁ—r(S,S‘)—lC:’((_SuS_')l—l’

u=0

wherer(S, S) = |I3(S S)||

(2.20)
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Thus, the value V! is equd to the number of subsetsN
of power k containing the feature t, which corresponds

to the unity coordinate of vector & (S S), and no more
than € features, which correspond to the zero coordinate
of vector 8(S ' S).

The notion of proximity function symmetrical over
the partitioning is a generalization of the notion of a
symmetrical proximity function.

Let apartitioning R of the feature set N into subsets
"4
Ng, Ny, ..., N, beset,i.e, N= ]N;.

i=1
Definition 2.6 [13]. The support sets Q, and Q, with
the characteristic vectors w, and @, are equivalent

over the partitioning R (or R-equivalent) if (6, - & )||=
(&, - @)L i=1,v,where & isacharacteristic vec-
tor of the subset N;. We denote R-equivalency of the sup-
port sets Q, and Q, (characteristic vectors w; and @, ) by
the following notation: Q; & Q, (&, = &,).

Definition 2.7 [13]. The proximity function B, (S S)
is called symmetrical over the partitioning R if DS,
06, @, O Q, the condition &, = @&, implies that
B;, (3) = Bg, ().

Itisevident that

(i) any proximity function is symmetrical over the
partitioning Rof theformN={1} O {2} O ... O {n},
becauseforany ¢ and @, @y = 6, = G = 0]

(i) any symmetrical proximity function is symmet-
rical over the arbitrary partitioning R of the set N;

(iii) there are proximity functions symmetrical over
some partitioning R which are not simply symmetrical
(examples can be found in [6]).

Definition 2.8 [13]. Features t; and t, are called
equivalent over the partitioning R of the set N if they
simultaneously enter (or do not enter) into each subset
Ni! i = 1,_V .

Theorem 2.8 [13]. Let the system of support setsbe
regular and the proximity function be symmetrical over
some partitioning R. Then, the function V,(S S) assumes

no more than 2r(R) different valuesfort= 1, n, 0S S,
r(R) isanumber of classes of R-equivalence, 1<r(R) <n.

Corollary 2.3 [13]. Suppose that in the conditions
of Theorem 2.8, the partitioning R consists of v digjoint

subsets. Then, r(R) = v and, therefore, anumber of dif-
ferent values of function V,(S, S') does not exceed 2v.

Thus, the estimates of the number of different values
V,(d)—the function of the argument t and parameter
d—were obtained in [13] during the construction of
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the efficient formulas of estimate calculations on the
base of Eq. (2.18) for the regular systems of support
sets and proximity functions having a special property
(symmetry, symmetry over the partitioning).

2.4. Ranks of the Systems of Support Sets

The change of the number of different values V,(d)
when different isometric substitutions and set-theoretic
operations were applied to Q, was investigated in [1]
for the arbitrary system of support sets Q, and (2.3)-
type proximity function. In addition, two new charac-
teristics were introduced which generalized the charac-

teristic V(). The change in these characteristics dur-
ing isometric substitution and set-theoretic operations
were also studied.

It is obvious that the (2.3)-type proximity function
B; (S S) can be considered as function B (0, €, €?)

and, therefore, VI(S) = Vt(E'), €l €?),i.e,
B(3, €', &%)
_ 0 -8t e zet |8t o <e® (22D
[0, otherwise,

where A ={iy, iy, ..., i } isaset of theindicesof al unit

coordinates of vector &, N\A ={i, 1, iy+2s ---, in} a@Nd,
therefore, every vector a = (a,, q,, ..., a,) can be
expressed asa = (0, a?), wherea = (a; , o, ..., O )

anda?=(a; , 0 o O ).
Definition 2.9 [1]. A system of support sets Q, has

A-rank kif O 8 , €1 €2 the number of different values of

lu+2?

the function Vt(S, e, €2) (of argument t) does not
exceed k and the number of different values of this

function is k for some & , €1, and €,. We denote A-rank
of the system of support sets Q, as R\(Q4).

If in Eq. (2.21), A is an arbitrary subset of N, then
B; (8, el €)= BG)(ES , A\, €1, €2) and, therefore, Vt(g) =
Vt(tNS LA\, €1, €2). Inaddition, Eq. (2.21) losesits previous
;:i%rr:t)ent (see definition of (2.3)-type proximity func-

Definition 2.10 [1]. A system of support sets Q, has
therank kif O 8 A, €1, €2, anumber of different values

of the function VI(S, A, €%, €2) does not exceed k and
the number of different values of this function is k for

some 3 A, g1 and €2,

The rank of a system of support sets Q, is denoted
asR(Qp). Itisobviousthat 1 < Ry(Qp) < R(Qp).
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Definition 2.11 [1]. A closure of the set { o} ' ., [

{m} '_, relative to the operation of composition of
mappings is called a group N of isometric permuta-
tions. Here, 0;;: E" — E"isthe permutation of theith
and j th coordinates of the Boolean cube'svectors (i, j [ N)
and 1;: E" — E"isareplacement of theith coordinate of
the Boolean cube's vectors by its negation, i U N.

This group exhausts all permutations ¢ in E" such

that ||a + B = [|d(a) + (B
Definition 2.12 [1]. A set G(Q,) = {¢]¢ 0 M, ¢(&) O

Q. Ow O Q) with an operation of composition of
mappingsis called a group of symmetry of the set Q,.

G(Q,) is a maximum subgroup of the group T
which leaves the set Q, static (i.e., converts Q, into
itself).

Let us consider a group Sy, X Sy, X ... X S,
induced by the partitioning R of the length k, where R
is a partitioning of the set N into disjoint subsets

k
Ny Np ooy NeN= [IN, N N =0, i 2, and S,

t=1
is asubgroup in I generated by the closure of the set
{oi} I” ion, relatively to the composition of the map-

pings.

Definition 2.13[1]. A system of support sets Q, has
a symmetrical rank k if a group of symmetries G(Q,)
has a subgroup induced by some partitioning R of the
length k and does not contain a subgroup induced by
any partitioning R' of the length smaller than k. A sym-
metrical rank of the system of support sets Q, is
denoted as SR(Q,).

Definition 2.13 implies that

(i) for any system of support sets Q,, 1< SR(Q,) £ n,
because G(Q,) always has a unit subgroup induced by the
partitioning of aset N of theform {1} 0 {2} O ... O {n};
and

(ii) the smaller the rank of symmetry of the system
of support sets Q,, the greater the symmetry of the rep-
resentation of Q, in aBoolean cube.

The following theorem proves a connection
between a rank and a symmetry rank of the system of
support sets.

Theorem 2.9[1]. For any system of support sets Q,,
the following inequality isvalid: R(Qa) < 4SR(Qp).
The proof of the theorem is based on the observation

that function Vt(S , A\, €1, €2) can possess no more than
four different values at each block N; from some parti-
tioning of the length SR(Q,).

Corallary 2.4 [1]. For any system of support sets Q,,
thefollowing inequality isvalid: Ry(Qn) < 2SR(Q,).
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This corollary directly follows from the proof of

Theorem 2.9 because function V, (8, €%, €2) can possess
no more than two different values at each block N; from
some partitioning of the length SR(Q,).

Theorem 2.10[1]. Letthegroup Sy, X S, * ... X S,

be induced by the partitioning N;, N,, ..., N, of the
length k. Then, thereisasystem of support sets Q, such
that SR(Q,) =kand Sy x Sy, X ... x S, U G(Qy).

The proof of the theorem is constructive. The desired
system of support sets may have thefollowing form: Q, =

(&, &, ..., Y, where @ = (), wb, ..., ) and
=1« NON,DO..ON,i=1n,j=1k.
The following theorem defines a change in the rank

of asystem of support sets during its transformation by
isometric permutations.

Theorem 211 [1]. Let & O M. Then, if ¢ O
S12..m then Ry(Qn) = Ra(9(Qn) and R(Qn) =
R(O(QW). 1fd 01 2 . 5, then05<R(Q)/R(H(Qn)) < 2.

Corollary 25[1]. Letthegroup S= S, x S, % ...
x Sy, beinduced by the partitioning of thelength k, and

let there be ¢ 00 M such that S~ O G(Q,). Then, if
0 OS2 . then Ry(Q) < 2k and R(Qp) < 4k If
¢ 0S5 . then R(Qy) < 8k.

Theorem 2.12[1]. Letthegroup S= Sy x Sy, x ...

x Sy, beinduced by the partitioning of the length k, and

let therebe ¢ [I 1 such that ¢ = 1to, where o O Sand 1t
only specifies negations. Then, if $SHp— 0 G(Q,), then
SR(Q,) < 2k.

Theorem 2.13 [1]. For the arbitrary systems of sup-
port sets Q3 and Q% , the following relations are true:

(SR(QA 0 QF), SR(Q4 n Q1)) < SR(Q,)SR(QA),

SR(Q}) = SR(ENQ}).
Coroallary 2.6 [1]. For the arbitrary systems of support
Sets Q,ﬁ and Qi,thefollovving inequalities are true:

(R(Qa 0 Q2), R(Qa n Q1)) < 4SR(Q)SR(Q3),
(Ra(Qa 0 QR), Ra(Qa n Q1)) < 2SR(Q)SR(Q%),

R(ENQJ) < 4SR(QL), Ry(E\QL) < 2SR(Q%).

Theorem 2.14 [1]. A projection of a system of sup-
port setsonto an interval increasesitsrank of symmetry
by no more than two. When a system of support setsis
projected from E" to E"* 9 by adding g dummy vari-
ables, its symmetry rank is increased by no more than
unity.
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The proof is based on the followi ng reasoning.

----- g

The projection Q, on interval N7» 2% i En-get
pr(Qy) ={® |® O0Q, w. =0y, W, —02, o W =0y
and the partitioning of theform N =M, O M; O (N,\M) O
(NAM) O ... O (NAM), SR(Q) =k, N; ON, O ... ON, =
N, Sy, x S\, X ... X S, O G(Qn), M ={iy, ip, ..., i},
M ={i; [i; 0M, o;=a}, a O{0, 1} are considered.
Since the product of the groups induced by this parti-
tioning is contained in G(pr(Q,)), the rank of symmetry
of this projection is no morethan k + 2.

By adding ¢ new variables to @ O Q,, i.e., by
transforming Q, O EMinto Q) ={(®, y) | @ O Q,,
y O E% O E"*9, we may establish that if SR(Q,) =k,
then SR(Q,) <k + 1.

Theorems 2.11-2.14 can be useful in assessing the
ranks of the systems of support sets obtained from some
basic systems of support sets via operations of union,

intersection, complementation, addition of dummy
variables, and isometric permutations.

Below, we give the examples of rank evaluation for
several systems of support sets.

(1) (1.4)-type system of support sets. G(Qn) =
S12 .. np therefore, Ry(Qn) < 2 and R(Qy) < 4.

(2) A sphere of a Boolean cube with a center at the
point a = (ay, O, ..., a,) and radiusr, i.e., Qx={ ®
|6) OE, [Jw+oal|<r}. Inthiscase, Sy, x Sy, 0 G(Qu) =

9, whereNB={| |o;=B,1<i<n},
B 0O {0 1} and ¢ isan isometric permutation such that
if i O Ny, then (¢(a)); = a; andif i I Ny, then (¢p()); =
Therefore, RA(Q,) <4 and R(Q,) < 8.

(3) Aninterval of the Boolean cube Q, = N, } “ "}
o; {0, 1}. Here, §, 0 G(Qp), where N ={1, 2, . n}\
{iq, iy, ..., i}, therefore, SR(Qn) < 3, RA(Qy) < 6 and
R(Qu) < 12.

||2

01 O - 0u

2.5 Absolutely Symmetrical Systems of Support Sets
A class of systems of support sets Q, such that
RA(Q,p) < 2 was completely described in [9].

A system Q) = { Qy, @y, ..., &} was considered.
For this system, a matrix

~ 1 1 1
Q)l C(l 02 Gn
g 2 2 2
— | _—
Crun(Qa) = |77 = |2 P2 G (222)
Wy b oy ..o

was defined accurate to the order of magnitude in ele-
ments enumeration.
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Definition 2.14 [9]. Vector t = t(C) = (al, o, ...,
a, )Tis called acharacteristic vector of thefeaturet O N
over matrix C.

Definition 2.15 [9]. Featuresi, j (I N are called fea-
tures—twinsif Ow 0 Q, (®); = (®);.

Note that featuresi and j are features—twins if and

only if JC O D(Qy) i (C) = | (C), where D(Q,) is aset
of (2.22)-type matricesfor all possible ways of enumer-
ation of characteristic vectors of a system of support
sets.

Definition 2.16 [9]. A matrix
— |,
B;(C) = |,

(2.23)

where @, @, ...

from Q, such that By, (3) = 1, is called an saction of

, & are all characteristic vectors

the proximity function B (S) on the system of support
sets. If B, (3)=0,i=1,r, then the action of the prox-
imity function B&)(S) on the system of support setsis
not determined.

Itissignificant that bg (C,) = bs (C,), IC,, C, 1 D(Q),
Bg (C) isavector equal to the coordinatewise sum of the
A% Bg(C)= 0, + Wt

Vectors @ , @, .., + 0

Definition 2.17 [9]. Vector a = (a4, Oy, ..., 0,) OR"

iscaled 2-ided if {0y, 05, ..., 0} < 2.

Definition 2.18 [9]. A system of support sets Q4 is
called 2-ideal if [C [0 D(Q,) such that vector bz (C) is
2-ided 05 L€, €9). Quis2-ided if and only if Ry\(Qu) < 2.

Assertion 2.4 [9]. Any system of support sets Q, [
EX(E) ") is2-ideal.

Definition 2.19[9]. A system of support sets Q, 0 E"
iscalled reducibleto the system of support sets Qx O E™,

n* <n,if (C, ., 0 D(Qy), OC e DD(Q ), Dl,lz,...,

e ON: K, ooy} = 0, .1(0)_|1(c*) 12(0)=

2(C*), oy 1 (©) = ¥ (C), 1(©) D{1(CY), 2(CY),
o % (C9)) O DNy, i, ooy e}
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Definition 2.20[9]. A matrix C,(Q,) iscalled reduc-
ibleto the matrix C,(Q3) if asystem of support sets Q,
is reducible to the system of support sets Q3 .

This definition implies that matrix C, isreducible to
the matrix C, if and only if matrix C, can be reduced
from the matrix C, by the following transformations:
(i) row permutation (renumbering of the support sets);
(ii) column deletion under condition that the matrix still
contains the columns equal to the deleted (deletion of
the features—twins);

(iii) column permutation (renaming of the features).

Inversely, matrix C, can be reduced from C, by row
permutation, by adding the columns equal to those that
the matrix C, already has, and by column permutation.

A system of support sets reducible to a 2-ideal sys-
tem is 2-idedl itself.

Definition 2.21 [9]. A system of support sets Q, is
caledinternd if {(0, 0, ...,0), (1,1, ..., 1)} n Q,=0.

Definition 2.22 [9]. An internal system of support
sets Q, with the matrix of the support sets C is called
absolutely reducibleif either

fc@) 21, Cton, (2.24)

or

||%(C(QA))|| <|Q) -1, OtON, (2.25)

If OC O D(Q,) such that either condition (2.24) or
(2.25) is fulfilled, then the same condition will be ful-
filled OC O D(Qp).

An absolutely reducible system of support sets is

reducibleto Qj [ Eﬁ if condition (2.24) isfulfilled, or

to Qx O Eﬂ_l, if condition (2.25) isfulfilled. All this
and assertion 2.4 imply that absolutely reducible sys-
tem of support setsis 2-ideal.

Definition 2.23 [9]. (1.4)-type system of support
setsis called absolutely symmetrical.

In the above-considered exampl e, we show that A-rank
of absolutely symmetrical system of support sets does
not exceed 2; i.e., an absolutely symmetrical system of
support setsis 2-ideal.

Absolute reducibility and absolute symmetry are
independent properties of the system of support sets.
Let us consider it on the following example. For n = 4,

1100

1010

1 1000 2 1001
C(Qa) =|o100[, C(Q) = 0110-
0010 0101

0011
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System Qj, is absolutely reducible but not absolutely

symmetrical, and system Qi is absolutely symmetrical
but not absolutely reducible.
It turned out that a class of all 2-ideal systems of

support sets is exhausted by absolutely reducible and
absolutely symmetrical systems.

Theorem 2.15 [9]. Let Q4 be a 2-ideal system of
support sets. Then, either Q, is absolutely symmetrical
or Q,\{(0,0,...,0), (1,1, ...,1)} isabsolutely reducible.

2.6. Atomic Systems of Support Sets

In [29], the systems of support sets called atomic
were considered. For atomic systems of support sets
and a (2.2)-type proximity function, an expression was

obtained for calculating the estimate of function V;(d).
Definition 2.24 [29]. Atomic set A(Ng; Ny; (M4, ky);

My, ko) ...; (M, k,)) isaset of all vectors w = (wy,

Wy, ..., wy,) from E" such that

(1) wy =0, Oi O Ny,

(2) =1, 0 ONy, and

® Y @=ki=1v

iDMj
arevalid for the partitioning of the set N of the form
N=N,ON, O HIME, Nyn N;=Nyn M, =N, n
1 Hi;!l N 1 1

M =M n M;=0,0i,j 0{1,2,..., v},i #], where each
subset M; corresponds to the integer k;: 0 < k; < |M;],
i=1v.

Obvioudly, any atomic set is a part of a vector layer

v

of aBoolean cube of the weight |N,| + z K; .
i=1

Here are the examples of atomic sets:

—Thekth layer of aBoolean cubeisatomic set A((N, k)
(No=N;=0,M; =N, k; =K);

—Atomic set A(Ny; Ny; (Mq, K)), where Ny = {iiy, Iy, ..., 14,
Ny ={j1Ja i Jds No 0 Ny =0, My = N\(Ng L Ny), is
the intersection of the interval specified by conjunction
of %X, ...% XX, ... X; with the cube layer Ey" "

An expansion of a sphere, ball, and severa other
sets in E" into atomic subsets is considered. By using
efficient formulas for estimate calculation over some
atomic subsets, this expansion allows oneto obtain effi-
cient formulas of estimate calculations for the given
system of support sets.
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Table
Proximity function
System 2 ’
of spportsas | o | Reu
X (2.2)-type, feature
n weights equal

EN{(0,0, ..., 0)} | (22)-type, feature | FOMUIasTormi(S

weights equal to 1

Absolutely (2.3)-type Ra(Qn) £2
symmetrical
Atomic set (2.2)-typefore =0 Formula for Vt(g)

Theorem 2.16 [29]. Let asystem of support sets be
atomic set A(Ng; Ni; (Mg, kp); (My, Ko); ...; (M, k).
Then,

[0, t 0 N,
3
8 ku_ 3
E Crsnu—d(Mu)Cd(Mi)f tON;
Daoﬂclu:l
E £ L ky—€0
p CEu C u— &y
jod D m _d M I_l mu_d(Mu) d(Mu)
Vi(d) = Bzomcz(p) p=dMp) (2.26)
TOM,, 1p<v, (B) =0
O ko—g0 L k,—€
P u u
. avi | | Cm-aomy Catm)
CFolCip — Plu=1
H0M,, 1<psv, (3) = 1,

where (a) vector 5is partitioned into subvectors 5 (No),
0(N,), d(M,), d(My), ..., d(M,); &(X) isavector with
components whose indices are contained in X, d(X) =

B AN N =, M| =m, i =1, v, gg =€—5+d(Ny)
(€ is a parameter of the (2.2)-type proximity function)

ande®= (e, €, ..., €2): and

D v
(0) C, = E Y st
U u=1

max(0, k,—d(M,)) £ sﬁ < min(k,, m,—d(M,)),
¥

=
<

u=

D v
Cy(p) = 550|Z€835eﬁ: 8221,
u=1

max (0, k, —d(M,)) < &0 < min(k,, m,—d(M,)),
},

[EEN
<

u=
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|:| v
Cs(p) = gOIZsﬁSseﬁ, e <k,—1,
u=1

max(0, k,—d(M,)) £ eﬂ < min(k,, m,—d(M,)),

u=1,v}.
The proof of the theorem consistsin the consideration
of threecasest IN;, t M, and (8), =0, t Ny, (8), =1,

and in the direct calculation of the value V,(d) for each
of the cases.

Some of the setsin E" reducible into atomic subsets
are considered. A notion of a ball sector introduced in
Section 1isused for constructing these expansions. For
other details, see[29].

(1) A sphere with a center a and radius r are set.
Sections of this sphere with the cube's layers of the

weigh k, k = max(|af| —r, 0), |al|| + r. The layers of
thistype are called sectors of the sphere. My ={i]i OO N,
(a); =1}, M, = N\M,. A sector of sphere located in the
kth layer is proveto be an atomic set A((M,, ky); (M,, ky))
wherek; = (k + [|a]|—r)/2 and k, = (k- ||a]| + r)/2. If at
least one of the numbers (k + ||al|-r)/2, (k—]|a]|+ r)/2
is not an integer, then the intersection of the sphere and
the kth layer isan empty set.

Since different sectors of the sphere are mutually
digoint, Theorem 2.16 and the additivity of the esti-
mate’; (S) over the union of digoint systems of the sup-
port sets are used for constructing efficient formulas of
estimate cal culations over the system of support setsin
the form of a sphere in a Boolean cube.

(2) A ball. The expansion into the atomic subsetsis
reduced to the expansion into the sectors of the spheres
constituting this ball. Then, obtained expansion con-
sists of mutually disjoint atomic subsets.

(3) Nonempty intersection of two arbitrary balls.

(4) Nonempty intersection of m balls of the same
radius with the center a; in one layer, such that scalar
product (a;, a;) =0forany i #j, 1<j < m(orthogonal-
ity of centers).

(5) Nonempty intersection of the two groups of balls
of the same radius; the ballsin every group satisfy con-
dition (4); the centersof the balls of different groupsare
also mutually orthogonal .

Thus, analysis of the works concerning deriving
efficient formulas for estimate cal culation shows that
—the system of support sets and the type of proximity
function are the AEC parameters defining complexity
of formulas for estimate calculation
—reduction of computational complexity of Eq. (1.11)
for the estimate I (S) is defined by the choice of AEC
parameters which set particular recognition agorithm
or afamily of such agorithms.

Main results of setting restrictions on the system of
support sets are presented in the table in the order of
presentation.
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By using these results, the efficient formulas for
estimate calculations based on the system of support
sets may be obtained which are the unions of disjoint
systems of the support sets shown in the table.

Some systems of support sets considered above are
generalizations, or they can be obtained by combining
other systems of support sets. These relations are
showninFig. 2.1.

The notation A — B in the figure means that a set
of the form A can be described in the form B. Thus, for
example, the kth layer of the Boolean cube is a sphere
with the center at the point (0, O, ..., 0) and radiusk. It
isobvious, that relation — istransitive; i.e., aball can
be obtained by the union of spheres.

Figure 2.1 shows that, generally, formulas for esti-
mate calculationsfor the atomic systems of support sets
may serve as a basis for constructing formulas for esti-
mate calculation for the systems of the support sets of
any type represented in the figure.

3. SUPPORT SETS IN THE ALGORITHMS
OF ESTIMATE CALCULATIONS
USING 2D INFORMATION

Mogt of the computationaly efficient algorithms of
image recognition are designed for the work with festure
descriptions or image models. To maximally use informa
tion contained in images, it is hecessary to overcome the
principal discrepancy between the image nature and the
techniques for information extraction based on symbol
models of images. This dictates a practical need in effi-
cient recognition algorithms directly applied to images
and their fragments.

This class of algorithms—algorithms based on esti-
mate calculations using two-dimensional information
(2D-AEC)—was defined as a specia case of AEC. The
model of AEC, in the general case, alows processing
the information which reflects a spatial (two-dimen-
siona) image structure. The principal property of the
2D-AEC classisthe use of two-dimensiond support sets,
i.e., imagesand their fragments, for cal culation of proxim-
ity estimates of imagesunder recognition. Therange of the
problems of 2D-AEC includesenumeration and investiga
tion of the spatial support sets and definition of the sub-
classes of the agorithms (corresponding to the types of
the support sets), which allow one to produce efficient
formulas that model the work of the algorithms.

In contrast to AEC, in 2D-AEC, amatrix of feature
values (pixels) is a primary description of the object
and a set of double indices, which code places in the
description matrix, is a support set.

In practice, the choice of support sets adequate to
the problem at hand is of great importance here. In most
cases, the use of support sets popular in AEC models
does not make sense, particularly, due to the extremely
high computational complexity of the correspondent
procedures. Thus, matching two images according to
all possible k pixelsis a priori senseless whatever the
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| kthlayer |->| Sphere |_> Udiﬂ.O;lttsaIOmiC
Absolutely
[ & |-[ Bal |-] U disioint spheres |~|  symmetrica
st

U digoint balls

Fig. 2.1. Relations between different systems of support sets.

proximity function may be. Both the informational
nature of the wide class of images encountered in rec-
ognition problems and the content of these problems
make the matching of images or their fragments by sep-
arate arhitrary isolated pixels impractical. On the other
hand, the informational regions (segments, contours,
lines, etc.) are naturally extracted in images. It is rea-
sonable to perform the matching on the level of these
regions. During construction of the support sets, these
regions can be considered as a sort of image primitives
which are unreasonable or impossible to divide.

Thus, 2D-AEC are based on the region-matching
principle—images are matched by some local neigh-
borhoods (connected group of pixels) and not by the
separateindividual pixels. Inthis context, alocal neigh-
borhood, connected group of pixelsof power m(m= 2),
is considered as a minimum potential information-car-
rier for matching information images.

Let the description of the image be a rectangular
matrix u X v, u>1, v > 1. Similar to the one-dimen-
sional case, the two-dimensional support set Q can be

represented by the characteristic matrix @ = (@), v
o = o, (i,j))0Q
= B, dioa.

The characteristic matrix & can be considered as a
binary image on the raster u x v, where zeros corre-
spond to the color of a background (e.g., white) and uni-
ties, to the color of figures (e.g., black). For the conve-
nience, we call the characteristic matrix @ asupport set.

A technique of extracting and matching local neigh-
borhoods determines the following necessary stages of
constructing two-dimensional support sets:

(2) The number k (k = 1) of connected components of
the support set @ is specified.

(2) In @, k rectangles are fixed; i.e., an upper left posi-
tion is chosen along with the side length of each of the
k rectangles.

(3) A connected component tangent to al sides is
inscribed in each rectangle; several connected compo-
nents should not constitute a new component.

As the connected components, we may choose arbi-
trary geometrical figures (circles, elipses, triangles,
squares, etc.) and lines.

11
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This description also allows one to structure an
admissible two-dimensiona support set. This set con-
sists of k connected components, and the position of
each connected component is determined by the posi-
tion of the upper left vertex of the circumscribed rect-
angle.

Definition 3.1. Configuration made by all con-
nected components of the support set & iscalled agen-
erative element of the support set & (GESS). Itisasub-

matrix M'Jl1 ifz’,'j,'_’vijks of k x smatrix & and is generated by
the elements of this matrix located at the intersections

of therowsiy, iy, ..., iy and the columnsj4, jo, ..., js

If (i,j1), (i1, J2)s .-, (i i) @rethe positions of the k
connected components of the support set w and p; =

min i,,p,= max i, = mn j,,andqg =
kt p2 '[:1,2,...,kt ql t:l,Z,...,th q2

t=1,2,...,
max kj" then GESS generating this support set is

t=12,...,

described by the submatrix & of theform MP P17 P2

Op o +1,...,0; °

Definition 3.2. The position (py, q;) of the upper left
vertex of the circumscribed rectangle is called a posi-
tion of GESS on the raster.

Definition 3.3. A number of black points of GESS
iscalled itsarea.

Among all possible systems of support sets, the sys-
tems are distinguished which are generated by one
GESS and differ only in its position on the matrix u x v.
Correspondingly, different systems of two-dimensional
support sets are generated by different GESS (each by
its own).

In addition, there is one more possibility to specify
asystem of support sets generated by GESSin a differ-
ent way—by GESS-close support sets. These support
sets are formed by the following procedure.

Let usfix k connected components on the raster u x v
and transfer each component along the raster, so that
they do not intersect. All allowable transfers of such
kind generate a system of two-dimensional support
sets, of no more than k connected components per set.
This family of two-dimensiona support sets can be
considered as an analog of the family of one-dimen-
sional support sets representing the kth layer of the
Boolean cube.

4. EFFICIENT FORMULAS OF ESTIMATE
CALCULATIONS USING 2D INFORMATION

The problem of constructing efficient formulas for
estimate calculations using 2D information is caused,
first of all, by the irrationality of using 2D-AEC in the
application problemswithout adequate formulas. There
are two important factors connected with this problem:

—in 2D-AEC, the type of formula (1.11) defining esti-
mate I (S) is not changed;
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—systems of support sets considered in the model of
2D-AEC have a great power and substantially differ
from the systems of one-dimensional support sets
which are already supplied with efficient formulas.

Generdly, an arbitrary system of two-dimensional
support sets @ = (wy)yx , May be represented as a set of
vertices of the Boolean cube E*. Knowing the expansion
of the system of support setsinto intervals in EYY, we can
use Eq. (2.13) to calculate the estimate I’ (S). However, as
was said before, Eq. (2.13) is efficient not for any expan-
sion of the system of support sets

The simplest way of specifying the 2D-AEC classis
the following:

In a standard classification problem, let a set of
allowable objectsbe aset of u x v matriceswith theele-
ments fromtheset D; i.e.,

S= I(S) = (aij)uxv' S = I(S') = (bij)UxV'

The parameters of the 2D-AEC family are defined
asfollows:

(1) A system of support sets Q, is a collection of
rectangles My g, ={(,]), (i + 1), ., (i,j + Re=1),
i+2j),...0+1,j+R-1),...,(i+R-1,j+R,—-1)}
withthesidesR;, R, 1< R U, 1< R, <Vv,2< RR,.

(2) Let a metric (semimetric) p(x, y) be defined in
the set D, thevaluesg; >0, (i=1,u,j=1,v,e20,¢
isan integer), and Q = ﬂglsz are specified. Consider
the following system of inequalities:

p(ai, by) <&,
P(a 105 j41) <€ junns

P(&+r -1 j+R-1 DisRr -1, j+R-1) SE+R -1 +R,—1s

and denote the number of unsatisfied inequalities by y.
Suppose that

01, y<e

Ba(S S) = y> e

4.2
This proximity function is the analog of the (2.2)-type
proximity function for two-dimensional object descrip-
tions.

(3) The feature weights (defined by the matrix P =
(Pi)ux v+ Py > 0), the precedent weights, and the deci-
sionrule are al arbitrary.

This concludes the description of the 2D-AEC family.

Similar to the characteristic proximity vector 5 (S 9),
the characteritic proximity matrix C = C(S S) = (Gj)ux -
_ 01, play, by <g;

4.2
, p(aij,bij)>8ij_ (4.2

ij
is introduced.
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As before, a problem of efficient calculation of the
value of Eq. (2.1) can be reduced to the problem of effi-
cient calculation of the value of the following expres-
sion:

u v
Z Z P Vi (S S),
i=1j=1
where V(S S)) isthe number of support sets Q from Q,
suchthat B, (S S) = 1.

The author of [17] suggested the estimate calcula-
tion technique in AEC for (2.2)-type proximity func-
tion and for the system of support sets being a collec-
tion of rectangles of definite size. The algorithm imple-
mented by operators A; and A, was proposed for
calculating the values of V;(S S). Firdt, the case was
considered when € = 0 in Eq. (4.1). The following pro-
cedures were executed for each position (i, j) of matrix
Csuchthat ¢; = 1.

(1) Using podition (i, j) of matrix the C, operator A
constructsafigure d(i, j) whichisaunion of al maximum
rectangles comprised from the unities of the matrix C that
contain unity in the position (i, j). Here, a maximum
rectangle is a rectangle with the sides that cannot be
increased.

(2) Using figure @(i, j), operator A, calculates the
value of Vj(S S).

Now, let 0 < € < R;R,. Thefollowing procedures are
executed for each position (i, j) of matrix C:

(1) Operator A; constructs afigure d(i, j) whichisa
union of all maximum rectangles comprised from zeros
and unities of the matrix C that contain zero and unity
inthe position (i, j); here, ®(i, j) contains no more than
€ Zeros.

(2) Using figure @(i, j), operator A, calculates the
value of Vj(S S).

The operators A; and A, are implemented for the
caseswhen € = 0 and € > 0. However, the efficiency of
the proposed technique was not estimated.

Now, we proceed to the new approach to the effi-
cient estimate calculation in 2D-AEC for the system of
rectangular support sets and proximity function (4.1)
fore=0.

Let the weights of all features be the same and equal
top>0. Then,

4.3

®,,(SS) = pRR; z Ba(S S). (4.4)
O0Q,

Thevalue of thesumin Eq. (4.4) isno more than the
number of rectangles of the size R, x R, formed by the
unities of the matrix C(S, S).

The essence of this approach consists in providing the
efficient (sped up) cdculation of value (4.4) by prelimi-
nary caculation of some characterigtics of the matrix C
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(S . B
— | = [ = | N

wmhs W N =
—
el e RN e I

gl [t[1[ 1] 1] H=1

=1,
H3=2

Fig. 4.1. Matrix C and corresponding valuesof Hy, H,, Hs,
u=v=5R; =Ry, =3, empty sellsare zeros.

which alow usto check whether the necessary conditions
are fulfilled: the matrix contains the rectangles of the
given size that contain unities.

Suppose

V-Ry+1
hy = Ij Cii[Ei v U [ gy |
i=1

U-R +1
hy, = |:| CilCiiy U g1y j

i=1

=1,v.(4.6)

Obviously, hy ;=1 (h, ;= 1) if and only if thereisa
continuous sequence of at least R, (R;) unitiesin theith
row (jth column) of matrix C (see Fig. 4.1).

Let

0 0
H,(C(S S)) = Hy(S) = N 0. (A
(C(S'S)) = Hy(S) @,géljw,,g @7)

=1 =1
H, = 1if and only if the following conditions for the
matrix C are simultaneousdly fulfilled (see Fig. 4.1):

—at least one row contains a continuous sequence of at
least R, unities,

—at least one column contains a continuous sequence
of at least R; unities.

Therefore, if Hy(S) = 0, matrix C a priori does not
havethe rectanglethat containsunitieswiththesidesR;
and R; thus, ®,, (S S) =0.

The following assertion is proven:
Assertion 4.1.

(S =pRR, 5 V(S) ) BySS),

SOwW, ®00,

(4.8
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Let

H,(C(S S) = Hy(S)

|jJ—R +1 D
=0 |:| hyiChy e, O Eh1,i+R1—1D (4.9)
0 — 0

i=1

Eflj 0
x [ hZ]Eh2]+lD' Eh21+R2 -
0 0

H, = 1 if and only if the following conditions for the
matrix C are simultaneously fulfilled (see Fig. 4.1):

—there is a sequence of R, unities situated in R; adja-
cent rows at least;

—there is a sequence of R; unities situated in R, adja-
cent columns at least.

Therefore, if Hy(S) =0, then @, (S S) = 0. Note
aso that (i) if Hy(S) = 1, then H(S) = 1 and (ii) if
H,(S) = 0, then H,(S) = 0.

Thus, the following assertion is proven:
Assertion 4.2.

Mi(S) = pRiR, z Y(S) z Bs(S S),
sow, ®00,
Hy(S) =1

ji=11.

(4.10)

Consider matrices C; = (Cj;)(u-r, +1)x(v-R,+1) and

2 . 1
C, = (Cj)u-r,+1)x(v-r,+1) defined as follows: ¢;; =

2 _
C'J - C|,] 'Ci+1’j R

Ciap-1j i =LU-R +1,j=1v-R,+1.If ¢ =1

Gj Gij+1 "G jrry,—11

(cﬁ = 1), then it meansthat in theith row (jth column) of
matrix C, a sequence of at least R, (R;) unities begins.

Let C'=(Cij)u—r,+1)x (v-Rr,+1) = C1Cs Hi(C'(S S)) =
Hy(S) = ||C'||, where C,C, is a coordinatewise product
of matrices C, and C, and ||C'||isanumber of unitiesin
the matrix C'. Let ¢;; = 1; thismeansthat in the position

(i,J) of thematrix C, avertex of aright angleissituated
withthe sideslocated in theith row and j th column (the
length of the side is no less than R; unities). For the
matrix C presented in Fig. 4.1, the matrix C' contains
unitiesin positions (2, 2) and (3, 2).

Hence, if H3(S) =0, then @, (S S) = 0. Therefore,
the following assertion is valid.
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Assertion 4.3.

(S = pRiR, Z Y(S) z B»(S S),
sTw, ®0Q,
Hy(S) = 1
Hy(S)2 1

j =11

If H(S) = 1, Hy(S) = 1, then for calculating the
value of EQ. (4.4) (Whi ch may be zero), it is sufficient
to search for @ = I'IR «r, 0 Qa suchthat ¢j; = 1.

Thus, amethod of fast calculation of estimate (1.11)
consists in the following steps:
1. Construct the matrix C = C(S, S) for the current
object S' 00 W,.
2. Cdculate the value H,(C); if H(C) = 0, proceed to
the next object S' 0 Wi.

3. Calculate the value H,(C); if H,(C) = 0, proceed to
the next object S’ Wi.

4. Construct the matrix C'; calculate the value H4(CY;
if H3(C') =0, proceed to the next object S' [1 W; other-

wise, for calculating the value of (4.4), sumup al @ =
Mi xr, OQ suchthat ¢ =1,

(4.11)

5. SEARCH PROBLEM:
MULTISTEP SEARCH PROCEDURE

Let us consider asubclass of DAEC with the follow-
ing parameters:

(1) Some GESS @ of theareat is set. A system of sup-
port setsQu={ &, , A, ..., ©} isgenerated by k parallel
trangtions of GESS @ aong theraster u x v. Let (iy, j;) be
aposition of GESS ® in the support set &, t= 1, k.
(2) A proximity function hasaform of Eq. (4.1) for € = 0.
(3) Feature weights are equal to some quantity p > 0.
(4) Object weights and adecision rule are arbitrary.
This concludes the description of 2D-AEC class.
We have

®0,(SS) = pu ) By(SS). (5.1)

6©0Q,

Thevaueof Z B,(S S) isthe number of occur-
OOQ,

rences of GESS & in the characteristic proximity

matrix C(S, S") such that a position of GESS (i, j)

belongsto theset {(iy, j1), (i2: j2), ---» (i j)} - If @ does
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not enter into thematrix Cor (i, ) O{ (i1, 1), (i ]2), ---
(i J} then % By(S S) =0.

6©0Q,

Thus, in the considered subclass of 2D-AEC, the
problem of calculating the value of the function (5.1) is
equivalent to the problem of the search for GESS @ in
the matrix C. This means that the task of developing a
technique of efficient calculation of the value of the
function (5.1) is equivalent to the task of constructing
an efficient search procedure in the framework of some
formalism that describes such procedures.

Consider the statement of the problem of search for
GESS on the raster and the formalism describing the
procedure of searching for the solution to this problem.

Denoteaset of all matricesof thesizeux v (u, v are
natural numbers) with the elements from the set {0, 1}
by E“*". Let C = (c;) O E**".

R, xR,

Consider the matrix GESS @ = (¢,,) U E ,
wherel<R;<u,1<R,<Vv.Thereare numbers P1, pz,

Q1 and 0z, su such that ¢pll ¢p2R2 = ¢lq1 = ¢R2q2 =
Sisanareaof GESS: S= M|, whereMs, ={(p, 0)|, =1,

Pq
l<psR, 1< R},

Definition 5.1. GESS @ is correctly superimposed
on thematrix Cinthe position (i,j),1<i<u-R; +1,
1SJ < V_R2+ 1! If Ci+p—1,j+q—1 = 11 D(p1 q) D Md)'

Figures 5.1a and 5.1b exemplify the matrix C and
GESS @. Cellswith unities are colored black, and cells
with zeros, white. In thisexample, GESS @ is correctly

superimposed on the matrix C in the position (2, 2)
only.

Definition 5.2. To find a GESS @ on the matrix C
meansto put apair (C, @) into correspondence with the
matrix C = C(C, ®) = (§;) O E" " VR
where c =1, if aGESS @ is correctly superlmposed

on the matrlx C inthe position (i, j) and cij = 0 other-
wise.

Notethat for Ry, =1 and R, = 1, C = C; therefore,
hereinafter we consider R|R, > 1 (and, therefore, S= 2).

In our example, the matrix é(C, @) has the form
presented in Fig. 5.1c.

Let us fix a natura number n and consider a
sequence of matrices
0
CO = (Cij)uoxVo’

. n (5.2)
Cl = (Cij)ulxvl, ...,Cn = (Cij)UnXVn’
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(a) (b) (©
123456 123 1234
1
2
3
4 CD3><3
5 ~
; ¢, )
C6X6

Fig. 5.1. Matrices C, ®, and C (C, ®).

whereC,0 E°" ", C. O E™" ", C =f(C_,), and the
function f, is defined by the relation

= & chg (5.3)
(p. @) OS(i, j, k)
S,j, 0 0{L 2 ...,u_3*x{L2 ..., vi_},i= 1 u,,
j=1, v, k=1n.

Definition 5.3. A set (i, |, K) is called a domain of
dependence of the (i, j)th element of the matrix C, or
the (i, j)th connection of the matrix C,, and the power
of this set |4, j, K)| is called the power of the (i, j)th
connection of the matrix C,.

Obvioudly, the function f, is completely defined by
specifying a set of connections { (i, j, K)|i = 1, u,,j =
1, v, } of the matrix C,.

Further, we suppose that uy = u, vy = Vv.

Definition 5.4. A set of functions F" = (f, f,, ..., f,)
is called an n-step procedure of the search for GESS ®
if the following conditions are specified:

(1) C, = C(Cp, ®), OC, O E™™";

) I96,j, K22, i=1u,j=1, v, k=1,n;

(3) Slia, J1. K) iz, J2, K) for all admissible (iy, j1), (12 J2):
(inJ0) # @iz j2), k= 1,n;

(4) D D SG,j, K ={1,2 ....u_3 x{1,2 ..., vi_q},
i=1j=1
k=2,n.

Condition (1) implies that
@u,=u-R+1v,=v-R,+1;and

oU0sein= 0 O @ p-1i+a-D)

(p, Q) D Mq}; i.e, the connectlons of the matrix C;
should cover only those positions of the matrix C,,
where the unities of GESS ® may occur.

Thus, the n-step procedure of searching for F" per-
forms a search for a given GESS @& on the arbitrary
matrix C, of thesize u, % v,,. The procedureis specified
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by the set of parameters ((u;, v4), (Uy, V5), ..., (U,_1,
Vaoa), (S5 1 D)uxv,s &b Js D)uyxv, o (Sl
n))(U—R1+l)X(V—R2+1)’ where (S(l, ja k))ukka denotes a
matrix of the size Uy x vy whose elements are the sets
i, j, K).
Definition 5.5. The quantity
i=1j=1
is called a complexity of the function f,.

The complexity of the function f, coincides with the
number of conjunctions necessary for its implementa
tion and is a measure of its computational complexity.

Definition 5.6. The quantity

(5.4)

n
|Fn| = z |fk|
k=1
is called a complexity of the procedure F".

Definition 5.7. A procedure F of searching for
GESS @ iscalled optimal intheclassK of the searching
procedures @ if it has the least complexity among al
procedures of the class K. A procedure F of searching
for GESS @ iscalled optimal if itisoptimal inthe class
of al procedures of searching for @.

L et us consider some properties of searching proce-
dures.

The one-step procedure of searching for arbitrary
GESS @ isuniquely defined by

S(G,j,1) = {(i+p-1j+q-1)|(p,q) O Mg},
i=Lu-R+1, j=1Vv-R+L

Here,

[Fl = [t = (U-R+1)(v-R,+1)(S-1). (57)

If the area of the GESS is equal to 2, then only one-
step procedure exists for its search.

Theorem 5.1. The following equations are valid for
an n-step procedure F" of the searching GESS @:

DK gom={_i+p-1j+a-1Dlp a) O Mg},
i= Lu-R;+1,j=1v-R,+1 where i, j, n) =

[] []

(in—1’ jn—l) o S(i, j, n) (in—2’ jn—z) g S(in—:l’ jn—l' I’l—l)
[] S(iy, j1, 1)
(i1, J2) O S(iz j2: 2)

@180,5, KI<Si=1u,j=1 v, k=1n;5j,K|=
Sen=1;

(5.5)

(5.6)

Ug_1Vi_1

(3
@nsS-1

<uVv, k=1,n;and
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Proof.

Therelations (1)—3) obviously follow from the def-
inition of F". To proverelation (4), notethat, in carrying
out a transition from the matrix C, to matrix C, , 4,
l<ks<n-1, a least one position of the matrix C, falls

in the domain of dependence of each element clkJ
whereasin carrying out atransition from the matrix C, to

matrix C,, minimum two positions of the matrix C, fal in

the domain of dependence of the eement cﬁ Hence,
2+(n-1)<S

The ultimate aim in the considered case of the two-
dimensional support setsisaconstruction of an optimal
procedure of searching for GESS which is a rectangle
R; X R,. Thefirst result in this respect was the construc-
tion of the two-step procedure of the special search. It
is shown that the complexity of this procedure is less
than that of one-step searching procedure implement-
ing the exhaustive search for rectangle and, thus, its
efficiency is established. The optimality of this proce-
dure is proven for some class K; of searching proce-
dures, which is a subset of class {F?} of all two-step
procedures of searching for arectangle.

Now, let us proceed to the description of this two-
step procedure of searching for arectangle and give an
account of the results connected to its efficiency and
optimality.

Consider a problem of searching for GESS @ =
(q)pq)Rlsz! q)pq = 1’ p= 1, Rl! q= 1, Rz on the raster
u x v, and

1<R;<u, 1<R,<v. (5.8)

Let us define a one-step procedure F of searching
for &:

1 _
Cj = &_ Civp_t1,j+q-1,

(p.a) DM, (5.9)
i = Lu-R+1, j=1Vv-R+L
The complexity of the procedure F is
IFl = (U-R;+1)(v -R,+1)(R,R,—1). (5.10)

Definition 5.8. An operator f;(r;) which transfers
the matrix C,  , into the matrix C, = (cilj)(u_,1+1)xv ,
Where cjj =G *Ciyg) e " Cap,_1,1<r S U, iscaled
an operator of columns compression.

Definition 5.9. An operator f,(r,) which transfers a

matrix C, ., into thematrix C, = (cizj)ux(v _r,+1), Where
€l =G Cjs1 - Cur1, 1<ry< v iscaledan
operator of rows compression.

Figure 5.2 shows the exampl e where the operator of
columns compression is applied to the matrix C and,
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then, the operator of rows compression is applied to the
obtained result. An example shows that the introduced
operators may be used for constructing two-step proce-
dures of searching for arectangle.

Let us define two two-step operations of searching
for & by setting

Fi = (f1(R), f2(Ry)), Fz = (f2(Ry), f1(Ry)). (5.11)
Itisevident that
|Fi = (U=Ry+1)v(R; 1)
+(U-R +1)(v -R, + 1)(R,-1),
|Fd = u(v-R;+1)(R,—1)
+(U-R+1)(v-R,+1)(R,-1).
Notethat |Fo| - |F|=(Ri - D(R.-D)(V-R,—u+R) >
0= v-R,>u—Ry,i.e,forv-R,>u-R, F;isaless
complex procedure than F,.
Let |F4| <|F,. Then,

IFl —|F4
= (U-R +1)(R—-1)(R,-1)(Vv —-Ry).

Eq. (5.14) indicates the difference in the computa-
tional complexities of the two procedures: the one-step
procedure of searching for the rectangle F and the pro-
posed two-step procedure F,. This difference remains
nonnegative even for |F4| > |F,|.

Now, let usshow that for u— R < v—-R, (U—-R; >
v — R)), the procedure F; (F,) is optimal in a certain
classK,; O{F?} of the two-step searching procedures.

Let usdefinethisclass. Letindicesiy, iy, ..., iy, 1,
Jor cerje 10 <ip <. <igS Uy 1] <jp< ... <<
vV, be chosen. A matrix of the size k x s made up of the
elements of the matrix C,, situated at the intersection of
therowsiy, iy, ..., iy and columnsj,, j,, ..., js IS asub-
matrix M'Jl1 'lzz'j of the matrix C,.

Let usfix the integers x and y such that

1<x<R;, 1sy<R,, 1<xy<RR,,

(5.12)

(5.13)

(5.14)

(5.15)

and define a two-step procedure F? = (f,, f,) in the fol-
lowing way. L et us construct the cover of the submatrix

Mi ij jjjjgi of the matrix C, by rectangles x x y so that it

isminimal with respect to the number of the rectangles
X X y used. Each rectangle we associate with a connec-
tion in amatrix C;. In the same manner, we construct
the cover of the submatrix M; §; i i; 1 by the rectan-
gles x x y and define new connections in the matrix C,.
For the rest of the submatrices M'J'J++11 ','_'_’,'j:EZ__ll of the
matrix C,, we make the similar construction: the mini-
mal coverings of these submatrices by the rectangles
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(a)
123456

(b)
123456 12

f,3)

—

f,(3)

C6><6

Fig. 5.2. Operators of column and row compression.

x x y are performed, and new connections in the matrix
C, are defined. The function f; is now defined.

Thus,

IS, j, )l = xy, i =Lu, j=1vy. (516
If the inequalities
X=1<u-R;,, y-1<sv-R, (5.17)

arefulfilled, then the matrix C, is covered by rectangles
x x y and the number of rectanglesis (u—x+ 1)(v —
y + 1). Therefore, u;v; = (U—x+ 1)(v —y + 1).
Thefunctionf, isdefined in the following way. Con-
nection (i, j, 2) of the matrix C, consists of all posi-
tions (and only of them) of the matrix C, which are con-
nected with the rectangles x x y covering the submatrix

ij+1,..i+R -1 .
Mi+1 j+r,—1 Of thematrix C,.

Hence,
IS(i, j, 2)l = (Ri—x+1)(R,—y+1),

S — (5.18)
I =1 u-R+1, j=1Vv-R,+1

The procedure F? = (f,, f,) is completely defined.
Integers x and y which satisfy the conditions (5.15) and
(5.17) are the parameters of this procedure. Note that if
Xx=R,y=1thenF?2=F, andif x=1,y = R,, then
F2=F,

The complexity of the procedure F? is

[F? = |f)) +|f,)
= (IS, j, 1) -1) + (I1(i, J, 2) - 1)
izl jZl izl jZl (5 19)

= (U=x+1)(v-y+1)(xy-1)+(u-R,+1)
X(V-Ry+ D((Ri—x+1)(R,—y+1)-1).

Thevariation of the values of x and y in the range of
admissible values defined by conditions (5.15) and
(5.17) determines a class K, of the two-step procedures
of searching for arectangle R; x R..

11
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Theorem 52 Letu—-R, s v-R (U-R 2 V—-R).
Then, the procedurewithx =R, andy=1(x=1andy =
R,) isoptimal in the set K; of searching procedures.

Proof. Let u— R, < v — R,. Consider the function
fy)=U-x+(v-y+Dy-1) +(U-R +1)(v-
R, + 1)((R, —x + 1)(R,—y + 1) — 1) of continuous argu-
mentsxandy definedonaset D;=[1, R]] x[1, R,]\{ (1, 1),
(Ry, Ry)}. Let usprovethat the point (Ry, 1) isapoint of
minimum of this function in the area of its definition.
Note that

2
a_xf2 :—Zy(v—y+1)<0,
’f .,
a_y2 = 2X(u—-x+1)<0, 0O(x,y) O D;x.

Therefore, at the fixed value of some of its argu-
ments, f(x, y) isaconvex function of another argument.
Thus, a point of function minimum isamong the points
1R), (12,21, (R, ), (R, R-1),and (R -1, R).

(1) Let usprovethat f(R;, 1) < f(1, R)).
We have

f(R,1) = (U-R+1)v(R,—-1)
+(U=R +1)(v-R,+1)(R,-1);
f(LR) = u(v-R,+1)(R,-1)
+(U-R+1)(v-R,+1)(R, - 1).
Then,
f(1, Ry)) —f(Ry, 1)
= (U-R+1)(v-R,+1)(R, - Ry)
+u(v-R+1)(R,-1)—(u—-R; +1)v(R,-1)
= (U-R+1)(VR, - VR,
-(R,-1)(R,—-R,))—VR; + V)
+u(v-R,+1)(R,-1)
= (U-R+1)(R,-1)(-v-R, +R)
+u(v-R,+1)(R,-1)
= (R,—1)(—uv —uR; +uR, + (R, = 1)v
+(R-1)(R,—R,) +uv —uR, + u)
= (R-1)(R,-1)(v-R,—u+R;))=0
= V-R,ZU—-R;.

The last inequality is valid due to the assumption
made.

(2) Let us provethat f(R;, 1) < (1, 2).
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Set R} =R, —1and R, =R,—1. By virtue of Eq. (5.8),
R, 21and R, > 1. Then,
f(Ry, 1) = (U=R)VR; + (U-Ry)(Vv -Ry)R;,
f(1,2) = u(v-1)+(u-R)(v -R))(RR,—-1).
We have
f(1,2) -f(R, 1) =u(u—-R; + R, —1)
+(U-R)(RIR,—1) — (u—-R)(u-R + R)R;
= U'—uR, +uUR,—u+ U'R|R, — U’ - 2uRR,
+2uR, + R’R,— R? —U’R} + 2uR?
~R-URR,+R’R,
= Ry(u+U'R,—2uR? + R —uR; + R})
—UR,—u+2uR, - R —U’R, + 2uR? - R},
The last expression is a linear function g(R)) of the

argument R, . Let us show that, for all admissible values

of the arguments R, and parametersu and R, this func-
tion takes nonnegative values. To do that, let us show that,
for al admissible u and R}, the coefficient u + U’R; —

2uR? + R? —uR, + R? of the argument of linear
function is positive and the function’s value at the point
R, = 1isnonnegative.
We have
u+Uu’R;—2uRy + R’ —uR, + R}
>U’R, - 2uR?+ R —uR, + R
Dividing the last expression by R; >0, we obtain

w2 —u(l + 2R;) + RY + R,. The last expression is a
guadratic trinomial relative to u; it takes nonnegative
valuesforu=1+ R; =R;, whichisvalid for any allow-

ablevaluesof uand R; .
Here,

g(1) = u+Uu’R,—-2uR? + R2—uR; + R}
—UR,—u+2uR,—R?-U°R; + 2uRY-R; = 0.
(3) Let usprovethat f(R;, 1) < (2, 1).
We have

f(2,1) = (u=1)v + (U-R)(V - R)(RiR, - 1);
£(2,1) —f(Ry, 1) = (U=1)v + (U=R)(V —=R)) (5.20)
xRy(R;—1)—(u-R)VR].
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Then,
(U=R)(V —Ry)R(R;—1)
= (u=Ry)Vv - (U-R)R)R,(R; - 1)
= (U=R}) VR (R —1) - (U= R)R;R,(R, — 1)
= (U-R)VR;R,—(U—-R))
x Ry(v + Ry(R; —1))

= (U-R)VR; + (U-R)VRR,

—(U=Ry)Ry(v + Ry(R - 1)).

By substituting the last expression into the Eq. (5.20)
and by reducing similar terms, we obtain

f(2,1)-f(R,1) = (u-1)v +(U-R)VRIR,
—(U=R)(Rz+ 1)(v + (R - 1)Ry)
= uv-v +uvRR,—-vR'R,—uvR,
—uRR? +uR?
—uv —UuRR, +UR, + VRIR, + RTR; = RiR;
+ VR, +R’R, - R|R,.
Estimating the expression R} R, (v — u) from below

by theexpression R R, (R, — R; ) (thisestimationisvalid
by virtue of the supposition we made in the beginning of
the proof) and reducing similar terms, we obtain

f(2! 1)_f(R11 1)
>u(vRR,—VR,—R,R’ + R + R))
—v-VR'R,+R'R, + VR, —R/R,.

Theright-hand part of theinequality isalinear function
g(u). Let us show that g(u) = O for all admissible values

of the argument u and the parameters v, R;, and R;,. To
do that, let us show that for dl admissiblev, R}, ad R;,

the coefficient VR,R, —VR, — R,R? + RY + R, of the
argument of linear function is positive and the function’s
vaue at the point u = R, = R} + 1isnonnegative.
Indeed,
VRR,— VR, —RiR; + Ry + R,
= Ry((v-R})(R;—1)+1)>0.
In addition,

g(Ri+1) = VRi+R,+ Ry —v(R, +1)
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= v(R,-R,-1) + R, + R?
>(U-R +R)(R,-R,-1) + R, + RY
= (U-R)(Ri-R-1) +RiR;

>R -R,-1+R|R, = (R;-1)(R,+1)=0.

(4) Let usprovethat f(R;, 1) < f(R, R,—1).

We have

f(R, R,—1) = (U-R)(v-R,+1)(RR,-1)

+(U=-R) (v -Ry).
f(R, R,—1)—f(Ry, 1)
= (U-R)((v -R+ 1)(RR; - 1)

+(V-R)-VvR,—(v-R,)R;) 00|: u-R;>1.

By opening the brackets and by reducing similar terms
in the last expression, we obtain

R,(VR,—2V —R;+3R,—2)
+2v -V R, + RS- 2R, 0O.

The expression compared to zero is a linear function
o(Ry) of the argument R;. Let us show that g(R;) = 0 for
all admissiblevalues of theargument R, and parameters
v and R,. To do that, let us show that for all admissible

v and R,, the coefficient VR, —2v — R} + 3R, — 2 of the

argument of the linear function and the function’svalue
at the point R, = 2 are nonnegative.

The expression V(R, —2) — R; + 3R, — 2 isitsdf a
linear function g,(v); in addition, R,— 2= 0 and g;(R,) =
R,—2=0.Here,g(2)29(1) =R,—2=0.

(5) Let usprovethat f(R;, 1) < f(R, — 1, R)).
We have

f(Ri-1LR,) = (U-R;+1)
x (v —R)(RIR;—1) + (u—Ry)(v - Ry).
f(R,—1, Ry) —f(Ry, 1)
= (U-R+1)(v-R)(R|R,—-1)
+(U-R)(v -Ry) —(u-R) VR,
—(u=R)(v -R)R..

By opening the brackets, using the inequality
RIRy(v —u) = RiR; (R, — R}), and by reducing simi-
lar termsin the last expression, we obtain

f(R,— 1, R,) —f(Ry, 1)
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Fig. 6.1. Monochrome photomicrographic image of the
preparations of the lymphatic gland.

~

10 x 10

7

(©

10 x 10

70

Fig. 6.2. Matching pair of nuclei.

> UV R R, —URIRy — VRYR, + RYRy + VR - v
~RR,+ R,—uvR, +URY + VR,R, — R|RY
>R,(uV R, —uR,R, - VR + R'R, - R}
+1-uv +uR,+ VR —RR;) 00|: Ry = 1;
V(UR,—RY-u+R))-uRR,

+R/R,—R, +1+UR,— R,R, 0.

The expression compared to zero isalinear function
g(v) of theargument v. Let us show that g(v) = 0for al
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admissible values of the argument v and the parameters
u, R; and R, . To do that, let us show that for all admis-

sibleu, R, and R, the coefficient uR, — R? —u+ R}
of theargument of thelinear function and thefunction’s
value at the point v = R, = R, + 1 are nonnegative:

URi—RY-u+R; = (U-R)(Ri-1) 20;
g(R,+1) = UR|R, +uR, - R’R,— Ry —uR,—u
+R,R, + R, —UR,R, + R’R,— R, + 1 + UR, - R|R,

= u(R,—1) - (R~ 1)

= (Ri-1)(u-R;-1) = (R;-1)(u-R,) = 0.

The theorem is proven.

The searching procedure may be considered as an
implementation of a morphological operation “erosion
by the structuring element ®” and, hence, an efficient
procedure of searching for GESS @ is an efficient
implementation of a morphological operation “erosion
by the structuring element ®.” In addition, for several
types of GESS @, inversion of the searching procedure
allows one to perform the morphological operation of
“dilation by the structuring element ®.”

6. APPLICATION EXAMPLE
OF THE INTRODUCED SUBCLASS OF 2D-AEC:
CLASSIFICATION OF HEMOBLASTOSES

The proposed subclass of 2D-AEC with rectangular
support sets outlined here was used for compiling an
efficient algorithm with rectangular support sets. This
algorithm was employed for estimating initial data in
automated diagnosis of malignant growths in a human
hematogenic system (RFBR project no. 00-07-9004
“Knowledge-oriented system of automation of scien-
tific research in the area of morphology of blood-cells
and hematogenic organs’).

The photomicrographic images of nuclei of lym-
phocytes in the preparations of lymphatic tissues of the
patients were the objects of our analysis. The photomi-
crographic images were obtained by the digital photo
camera with the lens x100 combined with the micro-
scope; they were represented as 24-bitefilesin TIFF of
1500 x 1000 pixels in size. Each of the pictures con-
tained 3-40 nuclei of lymphocytes. Figure 6.1 shows
the reduced monochrome picture of the dide of lym-
phatic gland. This picture was additionally processed to
enhance contrast. The dark rounded regions against the
light background including the light streaks are the
nuclei of lymphocytes.

The hematologists indicated the nuclei suitable for
analysis (i.e.,, not smeared, without artifacts, uniformly
colored, etc.). The learning sample was formed of 639 of
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such nucle taken from 107 preparations (ten patients).
Each patient was classified into one of the three classes:
malignant growth, nonmalignant growth, and reactive
lymphatic gland.

To preliminarily estimate the quality of the source
material, first, we estimate the similarity of the cellsfor
different patients and different classes of patients.

The preprocessing of images compensates for dif-
ferent illumination conditions and different colors of
stain used for the preparations. After that, the mono-
chromeimageswith 256 intensity levelswere obtained.
In theseimages, each nucleus from the learning sample
was matched with the rest of the nuclei from the learn-
ing sample over all possible local neighborhoods of the
rectangular shape of 10 x 10 pixel sizes.

Figure 6.2. exemplifies the process of nuclei match-
ing. A nucleus extracted in the monochromeimage was
placed against some background and treated as a rect-
angular image with dimensions similar to those of the
circumscribed rectangle (see gray schematic images of
the nuclei against the white background). The sizes of
rectangular images constructed for different nuclel may
differ, asisseenin Fig. 6.2. Inthe casedepictedinFig. 6.2,
firgt, theimage of the nucleus S(Fig. 6.24) ismatched with
the fragment of theimage of the nucleus S isolated by the
dotted line (Fig. 6.2b). In the image (a) and in the sepa-
rated image fragment (b), it is necessary to search for all
possible square neighborhoods of 10 x 10 pixel sizes
(one of these neighborhoods is depicted as a square)
and to calculate the value of the proximity function

B (S S, Fr) for each of these neighborhoods (it is

coded by amatrix ®). Here, the proximity function is
written with the additional argument Fr, which indi-
catesthat it is necessary to take account of the separate
fragments of the image (b) of the nucleus S. Apart from

the value of proximity function B, (S S, Fr), it is neces-

sary to calculate the number of pixels EffArea,, (S S, Fr)

which have the brightness level different from the level
of background both in the first and second images.

In the same manner, at the following steps of pro-
cessing, the remaining rectangular fragments of the
image of the nucleus S' are searched and matched with
the image of the nucleus S over all possible neighbor-
hoods of 10 x 10 pixels. For example, at the second
step, one can choose afragment of theimage of nucleus
S' bounded by a rectangle shifted by one pixel to the
right with respect to the first fragment (see Figs. 6.2c
and 6.2d); at the third step, a fragment bounded by a
rectangle shifted by one pixel to the right with respect
to the second fragment, etc. When the fragment in the
upmost right corner of the image of the nucleus S' is
considered, the fragment bounded by a rectangle
shifted by one pixel down with respect to the first frag-
ment is chosen, etc.
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After matching all fragments of the image (b) of the
nucleus S' with the image (@) of the nucleus S has been
performed, the value of expression

B.(S S, Fr)

(6.1
;QDZQAEffAreaa(S S, Fr)
is calculated.

For nuclei S' from the learning set and fixed nucleus
S vector (S = (M(9), TA9), ..., M1o(9) of the esti-

mates of the nucleus S for different patients is calcu-
lated. Here, the estimate I';(S) of the nucleus Sfor the
jth patient is determined by the formula

_ 1 Bo(S S, Fr)
M = W 2 Z EffArea,(S S, Fr)’ (62)
SOW; Fr @0Q,
S#S

where W, is a set of nuclel of the jth patient;
EffArea,, (S S, Fr) isthe number of pixels for match-
ing nuclei Sand S'; Q, is a system of support sets: a
totality of 10 x 10 squares; B, (S, S, Fr) isaproximity
function (4.1) withe =0 and g; = 8 for al i andj.

The value of the sum

z B,(S S, Fr) (6.3)

60O,

was estimated by the following procedure of searching
for the square (further, we will omit the additional argu-
ment Fr):

(1) acharacteristic proximity matrix C(S, S') was calcu-
lated;

(2) amatrix C, = f;(C) was constructed (or C, = f,(C)
which depends on the ratio between the image lengths
S S and theimage heightsr, and r,);

(3) amatrix C, = f,(C,) (C, = f,(C,)) was constructed.

The value of the sought sum was equal to the num-
ber of unitiesin the matrix C,.

The results obtained testify that (i) the initial data
were substantially heterogeneous and (ii) alearning set
should be enlarged by adding new precedents from the
existing three classes and from the new class of “norm.”
This means that data presented cannot serve as a basis
for areliable detection of diagnostic features of human
hematogenic system. In practice, it demands a substan-
tial extension of theinitial data.

CONCLUSIONS

The problem of the construction of efficient algo-
rithm in one subclass of 2D-AEC is equivalent to the
problem of the construction of efficient procedure of
searching for GESS in the binary raster. We proposed a
formalism describing the multistep procedures of

11
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searching for solutions to these problems and a crite-
rion of efficiency for searching procedures related to
their computational complexity.

A large number of GESS generating the systems of
support sets which make sense in pattern recognition
can be represented by the union of the rectangles.
Therefore, our primary task is a construction of the
optimal procedure of searching for a rectangle. Here,
we propose an efficient two-step procedure of search-
ing for arectangle and proveits optimality in asubclass
of all two-step procedures of searching for a rectangle
(Theorem 5.2).

The constructed two-step procedure of searching for
arectangle served as a basis of the efficient algorithm
of the 2D-AEC class which was successfully used for
analysis of initial datain the problem of hemoblastoses
classification from the images of lymphocyte nuclei in
the histological preparations.

The introduced approach to the construction of the
efficient algorithm of the 2D-AEC class can be gener-
alized to the case where the three-dimensional matrices
are the object descriptions and the support sets are the
aggregates of the three-dimensional indices.

In the second part of this work, we plan to investi-
gate the possihility of constructing optimal procedures
of searching for arectangle as well as efficient parallel
schemes of searching for arbitrary GESS constructed
from rectangles. The obtaining of the upper and lower
complexity estimates for the procedures of searching
for GESS, in particular, rectangular GESS, is also a
challenging problem. In the future research, we sup-
pose to construct efficient procedures for other spatial
systems of support sets.
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