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Abstract

 

—Most of the advanced data processing and analysis technologies designed for solving domain-spe-
cific problems employ the automation and optimization techniques of decision-making based on “real” (incom-
plete, indirect, heterogeneous, inconsistent, erroneous, etc.) information. The methods of mathematical theory
of pattern recognition play an important role here. To carry out image recognition, we need an image represen-
tation that corresponds to the requirements of the efficient recognition algorithm chosen for the task. A vast
majority of the efficient image recognition algorithms only work with image descriptions or models. To com-
pletely use the information contained in images, it is necessary to overcome the principal discrepancy between
the nature of images and the data-extraction techniques based on symbol models of images. Thus, there is a
practical need for an efficient recognition algorithm that directly deals with images and their fragments. More-
over, the algorithm should provide the possibility of posing and solving the problem of choosing the best rec-
ognition algorithm. This class of algorithms—algorithms of estimate calculations based on 2D information
(2D-AEC)—was defined by I. Gurevich as a special type of the classical model of the recognition algorithms
based on estimate calculations (AEC) introduced by Yu. Zhuravlev. Generally, the AEC model can cope with
the spatial (2D) image structure. The principal feature of the 2D-AEC is the use of the proximity of objects in
spatial support sets, i.e., in images and their fragments. The range of the problems of 2D-AEC includes the enu-
meration and investigation of spatial support sets as well as definition of the subclasses of algorithms (corre-
sponding to the types of the support sets) which allow one to produce efficient formulas that model the work of
the algorithms. In this work, we find these formulas for the particular subclass of 2D-AEC—algorithms of esti-
mate calculations with rectangular support sets.
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INTRODUCTION

Most of the current data technologies for information
processing and analysis designed to solve domain-specific
content-driven problems employ the automation and opti-
mization techniques of operative decision-making based
on “real” (incomplete, indirect, heterogeneous, inconsis-
tent, erroneous, etc.) information. These information tech-
nologies are widely used in medical and technical diag-
noses, nondestructive testing, ecological monitoring, nat-
ural disaster and emergency forecasting (like technogenic
catastrophes, earthquakes, floods, forest fires), informa-
tion and copyright protection, security systems, scientific
research automation, smart weapons, remote earth sens-
ing, criminal law, and control. The methods of mathe-
matical theory of pattern recognition are the basic tools
for solving all of these problems. In most cases, when
initial data are completely or partly represented as
images, it is necessary to use the methods of analysis
and estimation of information represented by images.

A vast majority of problems which arise during
image analysis are, naturally, pattern recognition prob-
lems. At the same time, the problems of image recogni-
tion 

 

per se 

 

are formulated and solved much more sel-
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dom than is required by practical needs. The reasons
are quite evident.

At the informational level, the main difficulties are
connected to the following two problems:
(i) image description (modeling) and
(ii) development and optimization of the choice of
mathematical methods for image transformations.

The solution to the image recognition problem
implies that (i) there is an image representation and an
efficient recognition algorithm and (ii) this representa-
tion corresponds to the requirements which the algo-
rithm imposes on the initial data [4, 5]. Generally, in
recognition problems, there are only two ways of data
representation:
(i) as direct spatial information (e.g., by pixels or a local
neighborhood of the second order that consists of pixel
arrays) and
(ii) as a system of objects and relations extracted in
images.

Before applying a recognition algorithm, it is neces-
sary to present initial data in the form convenient for
recognition.

In the first case, a recognition algorithm should
allow the image itself or its fragments to be processed;
here, the procedures of transforming the initial data in
the form convenient for recognition are reduced to
choosing the shape of the fragments whereby the rec-
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ognized object is matched to the template, to fragment-
ing the image, etc.

In the second case, the procedures of transforming
the initial data in the form convenient for recognition
should yield a mathematical model of an image. This
model should reflect the inner structure and content of
the image as an outcome of operations that construct
the image from the subimages and other objects of sim-
pler nature, i.e., from the primitives and objects
extracted in the image at different stages of processing.
During image recognition, one should use information
reflecting the way of pattern formation, i.e., of the
image as a whole, and of the objects presented in the
image.

Three types of information characterize an image:
(i) identifiable objects with a well-defined structure;
(ii) identifiable objects with an ill-defined structure; and
(iii) nonidentifiable objects.

To allow for an image structure means to extract
subimages (objects) in an image, to define the possible
elementary level for them, and to define the relations
between these objects and elements. As a result, the
hierarchical structural information of an image may be
explicitly presented and utilized. An image is described
by a system of objects, each object is described by sim-
pler objects, etc. The structural information can be
introduced into recognition process in two ways.

First, according to classical pattern recognition the-
ory, we can use the list of features as a main formaliza-
tion principle and

(a) two types of features are introduced in the
description; they reflect a two-dimensional character of
the object to be recognized:

—characteristics which reflect the properties of
some local image fragment (the distribution of pixel
values in this fragment, the presence or absence of a
certain geometrical object in this fragment, the type of
the object’s shape, etc.);

—characteristics of relations of separate objects and
features;

(b) the weights are assigned to the features, which
indicate the degree of their importance for image
description;

(c) separate features are combined into a system of
features and treated as a single feature.

The second way of introducing structural informa-
tion into recognition process is based on a regularity—
a property which is immanent to such information (and
to the real world) and manifests itself in different order-
ings and structures. By using structural methods of rec-
ognition, we can obtain a practically unlimited diversity
of descriptions from the limited set of primitives and
rules of their combination by endlessly applying these
rules to the initial primitives and to the results of some
combinatorial transformations.

The overwhelming majority of the computationally
efficient image recognition algorithms are designed for
working with feature descriptions or image models
only. To maximally use information contained in
images, we should overcome the conflict between the
image nature and the information-extraction techniques
based on using symbolic models of images. Images are
visual, informationally compact, and contain a vast
amount of complementary and sometimes redundant
information. Thus, the semantic nature of images
allows us to use various context data (forbidden order
relations, partial order relations, and other constraints
common to the physical and logic structure of the real
world) during recognition and analysis. At the same
time, most of the image recognition techniques are
purely heuristic, and their success is determined by
their ability to reflect a pictorial character of images by
nonpictorial means. As a result, image analysis and rec-
ognition rest on transformations which do not depend
on presenting information in the form of images.

The above reasoning implies that there is a need for
efficient recognition algorithms directly applied to
images and their fragments. In addition, these algo-
rithms should provide a possibility for choosing the
extreme algorithm according to functional of recogni-
tion quality. This means that the algorithm is a model,
i.e., a set of variables, objects, functions, parameters,
and ranges of their variations. By fixing a set of certain
variables, objects, parameters and function types, we
can choose a particular algorithm in the model under
consideration.

This class of the algorithms—algorithms based on
estimate calculation by using two-dimensional infor-
mation (2D-AEC)—was defined in [2–4] as a specifica-
tion of the classical model of recognition algorithms
based on estimate calculation (AEC), introduced by
Zhuravlev [16]. A principle of partial precedence
underlines AEC working. The proximity between the
parts of the description of the objects already classified
and the object presented for recognition is analyzed.
The proximity is a partial precedent estimated accord-
ing to some predefined rule (numerical estimation).
A set of proximity measures yields a general estimate
of an object to be recognized for a class. This estimate
is a value of the function of a membership of the object
to the corresponding class.

Experience shows that discriminating information is
not contained in separate features, but in their combina-
tions. The AEC class carries this idea to its logical con-
clusion. Since it is not always known which of the fea-
ture combinations is most informative, the proximity
measure is calculated by matching all possible (or the
particular, if the feature combinations of the maximum
discriminating power are known) feature combinations
in object description. In AEC, the proximity measures
of objects are calculated by simple analytical formulas,
which allow us to avoid exhaustive search during rec-
ognition (at the stage of tuning the algorithm’s parame-
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ters while learning). In addition, the AEC makes it pos-
sible to take account of differences in the information
content (discriminative power) among individual fea-
tures and their combinations and in representativeness
among some objects of learning sample.

Therefore, in general, the AEC model can process
information related to a spatial (two-dimensional) image
structure. The main distinction of the 2D-AEC class is the
use of spatial (two-dimensional) support sets, i.e., images
and their fragments, for calculating proximity measures of
objects. The range of the problems of 2D-AEC includes
enumeration and investigation of spatial support sets as
well as the definition of the subclasses of algorithms (cor-
responding to the types of the support sets) which allow
one to produce efficient formulas that model the work of
the algorithms. One of these subclasses of 2D-AEC is
described in [2–4] for a case of rectangular support sets.
In this work, we find the formulas for the particular sub-
class of 2D-AEC—algorithms of estimate calculations
with rectangular support sets.

Since a lot of research was made on the AEC class,
we start with reviewing the main results of different
researchers concerning different ways of specifying the
systems of 1D support sets while constructing efficient
formulas for estimate calculations.

In Section 1, the AEC model and its parameters are
described and general definitions and examples are
given.

In Section 2, the problem of efficient estimate calcu-
lations is formulated and the results obtained during its
solution (for the AEC class) are given.

In Section 3, support sets for the considered sub-
class of 2D-AEC are introduced.

In Section 4, a method for efficient estimate calcula-
tions in this subclass with rectangular support sets is
described.

In Section 5, the main results of the research are out-
lined. We prove that the problem thus formulated is
equivalent to the problem of constructing an efficient
procedure of searching for some spatial generating ele-
ment on a binary raster. The problem of searching for a
spatial generative element on a binary raster is formu-
lated. We suggest a formalism that describes the multi-
step search procedures and introduce a natural criterion
for efficiency (computational complexity) evaluation of
these procedures. An efficient two-step search proce-
dure is suggested for a generating element (a rectan-
gle), and its optimality in a subclass of all two-step pro-
cedures of search for a rectangle is proven.

In Section 6, the results of the analysis of the infor-
mation content of initial data by the introduced method
are exemplified by the solution of the hemoblastoses
classification problem.

1. GENERAL CHARACTERISTICS
OF THE AEC CLASS

The model of algorithms based on calculation of the
estimates (AEC) was successfully used for solving
many problems of pattern recognition [16]. The model
describes the structure of recognition algorithm and
parameters necessary for choosing particular algorithm
in the model. In the framework of a model, the algo-
rithms differ by their parameters and, therefore, by the
way of their classification of the given objects. The
results of applying the algorithm of a model to the test
sample show the adequacy of this algorithm to the
problem at hand. Thus, all of the algorithms of a given
model can be supplied with a quality functional.

The choice and/or synthesis of the algorithm,
extreme according to the quality functional, presents
the main problem in implementing AEC in practice.
This problem is closely connected to the reduction of
the computational complexity of AEC. The algorithms
of acceptable computational complexity are based on
efficient formulas which model the algorithm’s perfor-
mance; these are formulas for calculating proximity
estimates of objects under recognition and precedents.
The complexity of formulas for estimate calculations sub-
stantially depends on the AEC parameters, such as the sys-
tem of support sets and the type of proximity function. A
recognition algorithm uses a system of support sets as a
system of feature subsets for matching object descriptions.
A proximity function defines whether the matched
objects are “close.”

By now, the most comprehensive study concerned
the problems of deriving efficient formulas for AEC in
the case where all available objects are described by the
one-dimensional feature vectors and the support sets
encode the parts of these one-dimensional descriptions.
This problem was solved for the main subclasses of
AEC in [14–16].

When the efficient formulas for estimate calcula-
tions are constructed, the optimal (for the given model)
algorithm can be chosen by one of the classical optimi-
zation techniques or by modifying these techniques. A
lot of research was devoted to this problem [7, 10, 12,
14, 18–22, 24–26].

Although the efficient formulas are constructed
almost for every AEC model of practical interest, the
problem of constructing such formulas in the case
where the objects are images, object descriptions are
2D matrices, and support sets are spatial (2D) objects
still needs to be solved. As was noted above, the AEC
class was specialized to operate with 2D object descrip-
tions called a class of algorithms of estimate calculation
from two-dimensional information (2D-AEC) [2–4].
Note that, by now, the efficient formulas are con-
structed for one 2D-AEC subclass only: for a subclass
with a square as a generative element of the system of
support sets [2–4].

Here, we propose the method for constructing the
efficient algorithms for the 2D-AEC subclass with two-
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dimensional support sets generated by a rectangle. The
idea underlying this procedure consists in transforming
the rectangle with the sides 

 

R

 

1

 

 

 

×

 

 

 

R

 

2

 

 into the unit square
by compressing the plane along the one side 

 

R

 

1

 

 times
and along the other 

 

R

 

2

 

 times.

Let us recall the basic objects and properties of the
AEC model [11–13, 16]. Generally, a recognition algo-
rithm contains a recognizing operator and a decision
rule [13]. In AEC, a recognizing operator converts a stan-
dard description of object 

 

S

 

, subject to recognition into a
set of numerical estimates (
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)), where
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 is a number of classes. A decision rule helps us to con-
struct the information vector (
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 {0, 1, 
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},
from this set. Here, 

 

α

 

j

 

 = 0 if an algorithm does not
assign object 

 

S

 

 to 

 

j

 

th class; 

 

α

 

j

 

 = 1 if an algorithm
assigns object 

 

S

 

 to 

 

j

 

th class; and 

 

α

 

j

 

 = 

 

∆

 

 if an algorithm
cannot classify object 

 

S

 

.
To define a recognizing operator, it is necessary to

assign a system of support sets, proximity function,
feature weights, and precedent weights. Let us consider
these parameters in detail.

1. System of support sets.
A system of support sets is a totality of nonempty

subsets of the feature set 

 

N

 

 = {1, 2, …, 

 

n

 

}; the object is
described by the values of these features. A system of
support sets is denoted by 

 

Ω

 

A

 

.

Below, we list the examples of support sets.

1.1. 

 

Ω

 

A

 

 = 2

 

N

 

; i.e., a system of support sets is a class
of all (nonempty) subsets of feature set 

 

N

 

.
1.2. 

 

Ω

 

A

 

 ={

 

Ω|Ω

 

 

 

⊆

 

 

 

N

 

, 

 

|Ω|

 

 = 

 

k

 

}, where 

 

k

 

 is an integer
and 1 

 

≤

 

 

 

k

 

 

 

≤

 

 

 

n

 

; i.e., a system of support sets consists of
all of the subsets of the set 

 

N

 

 which have a predefined
power 

 

k

 

, e.g., 

 

Ω

 

A

 

 = {{1}, {2}, …, {

 

n

 

}} for 

 

k

 

 = 1 and

 

Ω

 

A

 

 = {

 

N

 

} for 

 

k

 

 = 

 

n

 

.

The following relation connects the systems of sup-
port sets of 1.1 and 1.2:

1.3. 

 

Ω

 

A

 

 = {

 

Ω|Ω ⊆ 

 

N

 

, 

 

|Ω|

 

 

 

≤

 

 

 

k

 

}, where 

 

k

 

 is an integer
and 1 

 

≤

 

 

 

k

 

 

 

≤

 

 

 

n

 

; i.e., 

 

Ω

 

A

 

 consists of all of the subsets of the
set 

 

N

 

 which have a power no more than the predefined
one.

1.4. 

 

Ω

 

A

 

 = {
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, 
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}}, where
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1

 

, 
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, …, 

 

k

 

u

 

 are integers and 1 

 

≤

 

 ki ≤ n, i = .

Any support set Ω can be encoded by the binary
vector  of the length n in the following way: the ith
coordinate  is equal to one if and only if the ith fea-
ture is contained in Ω . The thus-constructed vector 
is called a characteristic vector of the support set Ω . It
is obvious that a set Ω and its characteristic vector 
are connected by a one-to-one correspondence.

2N Ω Ω N , Ω k=⊆{ } .
k 1=

n

∪=

1 u,

ω̃
ω̃

ω̃

ω̃

Sometimes, it is convenient to consider a system of
support sets as a set of characteristic vectors that encode
the support sets of the algorithm. In those cases, we
consider ΩA to be a set of vertices { } of n-dimen-
sional Boolean cube En.

As usual, we denote the norm (weight) of the binary
vector || || equal to the number of its unitary coordi-
nates by . The set of all binary vectors of the weight
k is called the kth layer of the Boolean cube and

denoted by .

We call the Boolean function fA( ) a characteristic
function of the system of support sets ΩA if fA( ) =
1 ⇔  ∈  ΩA. Obviously, a system of support sets of the
algorithm is unambiguously described by its character-
istic function.

The characteristic function of a system of support
sets of (1.1)-type vanishes only if all its variables vanish.

For a system of support sets of (1.2)-type, the char-
acteristic function is equal to unity in the whole layer of
Boolean cube and only there.

For a system of support sets of (1.3)-type, the char-
acteristic function is equal to unity in the whole first,
second, …, kth layers of Boolean cube and only there.

2. Proximity function.

Let I(S) = (a1, a2, …, an) be a standard (feature)
description of object S, Ω = {i1, i2, …, ik}, and let  be
a characteristic vector Ω . We denote a subdescription
of the object S represented in the form ( , , …, )

by the symbols I(S) or (S).

The proximity function (S, S ') depends on

-subdescriptions of objects S, S ' and takes two val-
ues: 0 if the objects are not close and 1 otherwise.

Most often, the following proximity functions are
considered:

2.1.

(1.1)

2.2. Let the metric (or semimetric) ρi(x, y), i = ,
be defined on the range of definition of the ith feature.
Let S = ( , , …, ), S ' = ( , , …, ),

and the quantities εi ≥ 0, i = , ε ≥ 0, where ε is inte-
ger, be set. Consider a system of inequalities

(1.2)

ω̃

ω̃
ω̃

En
k

ω̃
ω̃

ω̃

ω̃

ai1
ai2

aik

ω̃ ω̃

Bω̃

ω̃

Bω̃ S S ',( )
1, ω̃S ω̃S '=

0, ω̃S ω̃S '.≠



=

1 n,

ω̃ ai1
ai2

aik
ω̃ bi1

bi2
bik

1 n,

ρi1
ai1

bi1
,( ) εi1

,≤

ρi2
ai2

bi2
,( ) εi2

… ρik
aik

bik
,( ), , εik

≤ ≤
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and denote the number of unsatisfied inequalities in this
system by γ. Then,

(1.3)

The parameters of this function are the vector e =
(ε1, ε2, …, εn) and the quantity ε (maximally admissible
number of unsatisfied inequalities in system (1.2)). If

εi = 0, i = , and ε = 0, this proximity function is
identically equal to the proximity function determined
in 2.1.

2.3 If in the conditions of the previous point, we set
two integers ε1 and ε2 (ε1, ε2 ≥ 0) instead of ε, then

(1.4)

Vector e = (ε1, ε2, …, εn) and quantities ε1 and ε2

(minimal accessible number of satisfied inequalities in
system (1.2) and maximal accessible number of unsat-
isfied inequalities in system (1.2), respectively) are
parameters of the function. For ε1 = 0 and ε2 = ε, we get
the (2.2)-type proximity function.

Suppose once more that I(S) = (a1, a2, …, an),
I(S ') = (b1, b2, …, bn), the metric (or semimetric) ρi(x, y)
is defined in the range of definition of the ith feature,

and the values εi  ≥ 0, i =  are set. The binary vec-

tor  = (S, S ') = (δ1, δ2, …, δn) defined as follows:

(1.5)

where i = , is called a characteristic vector of the
proximity of objects S and S '.

By using a characteristic vector of proximity, we
can rewrite the expression for (2.2)-type proximity
function as

(1.6)

where  is a binary vector obtained by the coordinate-

wise negation of vector  and (α, β) is a scalar product
of the vectors α and β which is equal to the sum of their
coordinatewise multiplications.

In a similar way, for the (2.3)-type proximity func-
tion,

(1.7)

Bω̃ S S ',( )
1, γ ε≤
0, γ ε.>




=

1 n,

Bω̃ S S ',( ) 1, ω̃ γ ε1, γ ε2≤≥–

0, otherwise.



=

1 n,
δ̃ δ̃

δi

1, ρi ai bi,( ) εi≤
0, ρi ai bi,( ) εi,>




=

1 n,

Bω̃ S S ',( )
1, δ̃' ω̃,( ) ε≤

0, δ̃' ω̃,( ) ε,>



=

δ̃'

δ̃

Bω̃ S S ',( ) 1, δ̃ ω̃,( ) ε1, δ̃' ω̃,( ) ε2≤≥
0, otherwise.




=

We can introduce vector (S, S ') while ignoring the
metric ρi and quantities εi in the following way:

(1.8)

In this case, the expression for the (2.1)-type prox-
imity function can be rewritten in the following way:

(1.9)

3. Feature weights.
Feature weights are set by the vector p = (p1, p2, …, pn),

pi > 0, i = .

Let {i1, i2, …, ik} be a set of the indices of all unit
coordinates of the characteristic vector . The weight
of the support set Ω with a characteristic vector  is
denoted by p( );  p( ) =  +  + …+ .

4. Precedent weights.
Precedent weights are defined by the vector g =

(γ1, γ2, …, γm), where γq = γ(Sq) > 0, q = , and m is
a total number of precedents. This point concludes the
list of the parameters of the recognition operator of
AEC.

The estimate Γj(S) of the object S over the jth class
is defined by the following formula:

(1.10)

where K is a normalized coefficient and Wj is a set of
precedents of the jth class.

Sometimes we use the formulas to assess an esti-
mate Γj(S) that differ from Eq. (1.10). In any case, how-
ever, the semantics of the initial formulas for Γj is the
same; i.e., over all of the support sets, the value of prox-
imity function (and/or of its negation) is calculated for
the given object S and for each object S ' from the learn-
ing set. Each time, the weights of the features and the
precedents are equally accounted of.

We finish the definition of recognition algorithm by
setting the decision rule (see [13, 16]).

Note one important property of the estimate (1.10).
The following equality is true:

where ( ) is an estimate Γj(S), defined according

the system of support sets , t = 1, 2.

δ̃
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1, ai bi=

0, ai bi.≠
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Bω̃ S S ',( )
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Γ j S( ) 1
K
---- 1

W j

--------- γ S '( ) p ω̃( )Bω̃ S S ',( ),
ω̃ ΩA∈
∑

S ' W j∈
∑=

j 1 l, ,=

Γ j
S ΩA

1 ΩA
2∪( ) Γ j

S ΩA
1( ) Γ j

S ΩA
2( ) Γ j

S ΩA
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Γ j
S ΩA
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This equality admits the generalization for the case
of a union of any finite number of the support set sys-
tems.

The estimate  over the union of mutu-

ally disjoint systems of support sets is merely the sum

of estimates ( ) over all t = . Therefore, the
estimate Γj(S) is additive with respect to the union of
disjoint systems of the support sets.

This property allows us to easily obtain the estimate

 if the estimates ( ) (  ∩  = ∅ ,

t1 ≠ t2) are known. Suppose, for example, that  is a

(1.1)-type system of support sets and Ωk is (1.2)-type
system of support sets with a given power k of N sub-
sets. Then,

Hereinafter, for the convenience, we omit the multi-

plier  in Eq. (1.10):

(1.11)

2. EFFICIENT FORMULAS FOR ESTIMATE 
CALCULATION IN A CLASS OF AEC:

MAIN RESULTS

In some application problems, there are large quan-
tities of precedents (hundreds and thousands) and sup-

port set systems that have a high power (e.g., 2n – 1, 
for n of the order of a thousand and 2 ≤ k ≤ n). Then, the
estimate calculations according to Eq. (1.11) become
time-consuming and, sometimes, impracticable (|Wj |
|ΩA | summands are subject to calculation). The main
difficulty here is the calculation of the sum

(2.1)

This quantity depends on the choice of the support
set system ΩA and the proximity function (S, S ').

Therefore, a problem arises of getting the efficient
formulas for estimate calculation, i.e., the formulas that
allow us to avoid the exhaustive search in Eq. (2.1) and,
thus, to reduce combinatorial complexity of Eq. (1.11)
to the complexity proportional to the size of a learning

Γ j
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S S ',( ) p ω̃( )Bω̃ S S ',( ).
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table (i.e., to the number of elements of the matrix

, where S1, S2, …, Sm are the objects of the

learning sample).

2.1. Combinatorial Systems of Support Sets

The authors of [16] obtained efficient formulas for
estimate calculations for (1.2)-type system of support
sets and (2.2)-type proximity function as well as for
some other cases.

Let us omit the multiplier p( ) in Eq. (1.11) (the
feature weights are not considered) and set k > ε (oth-
erwise, (S, S ') = 1 for any S, S ' and Eq. (1.11) is ele-
mentarily simplified).

Theorem 2.1[16].

(2.2)

where r(S, S ') is a number of satisfied inequalities in the

system ρi(x, y) ≤ εi , i = . Hereinafter, we addition-

ally suppose that  for n > m.

To prove the theorem, we perform the direct calcu-
lation of the number of support sets where two arbitrary
objects S and S ' are close to each other for fixed k, ε,
and known r(S, S ').

Note that for (1.2)-type system of support sets, the
omitting of feature weights means that the weights of
all the features should be the same. If we set feature
weights to p, then a multiplier pk appears before the
first summation sign in Eq. (2.2). The identity of
weights of all the features does not substantially affect
the recognition ability of AEC.

Corollary 2.1 [16]. For the same system of support
sets and (2.1)-type proximity function, the following
expression is valid:

(2.3)

To prove the corollary, it is sufficient to put ε1 =
ε2 = … = εn = 0, ε = 0.

Corollary 2.2 [16]. For the (1.1)-type system of
support sets and (2.1)-type proximity function,

(2.4)

…
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t ,
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1 n,
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S ' W j∈
∑ 1 l, .= =

Γ j S( ) γ S '( ) 2r S S ',( ) 1–( ), j
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The proof is based on additivity of estimate Γj(S)
over the union of mutually disjoint systems of support
sets (see example at the end of Section 1).

For the (1.1)-type system of support sets, (2.2)-type
proximity function, and features with unity weights, the
following assertion is valid.

Assertion 2.1 [16].

(2.5)

If instead of p( ), we place  (a is positive con-
stant) under the second summation sign of Eq. (1.3),
other conditions being equal, we can make the second
assertion:

Assertion 2.2 [16].

(2.6)

The authors of [16] also obtained the efficient for-
mulas for the case when the probability measures were
used as feature estimates in object description (for
(1.1)-type system of support sets and the proximity
function of a special type). They considered a case with
the gaps in the object’s description denoting the
absence of information about the values of some fea-
tures. For the (1.1)- and (1.2)-type systems of support
sets, the representations of proximity function were
defined and efficient formulas were derived.

2.2. Intervals of the Boolean Cube

The efficient formulas of estimate calculations for
the case when the system of support sets is an interval
of the Boolean cube were obtained in [6]. They may
afford a basis for efficient formulas for the systems of
support sets representing the union of disjoint intervals.
The authors also considered the possibility of deriving
the efficient formulas for systems of support sets repre-
senting the union of intersecting intervals. Note that the
efficient formulas of the subclass of 2D-AEC stem from
this result. Here, a square image fragment was used as a
generative element of a support set system [2–4].

Let a system of support sets in a Boolean cube be
represented as an interval. Then, a characteristic func-
tion of a system of support sets can be written as

(2.7)

Let {i1, i2, …, ik} = {µ1, µ2, …, µu} ∪  {ν1, ν2, …, νv},

where  = 1, j =  and  = 0, j = . Using the
introduced notations, we can describe the system of
support sets in the following way: every support set of

Γ j S( ) γ S '( )2r S S ',( ) 1– r S S ',( ), j
S ' W j∈
∑ 1 l, .= =

ω̃ ap ω̃( )

Γ j S( ) γ S '( ) 1 a+( )r S S ',( ) 1–( ), j
S ' W j∈
∑ 1 l, .= =

fA x1 x2 … xn, , ,( ) xi1

σi1xi2

σi2…xik

σik,=

where σi j
0 1,{ } , xσ∈

x, σ 1=

x, σ 0.=



=

σµ j
1 u, σν j

1 v,

the system (i) does contain features with the numbers
µ1, µ2, …, µu, (ii) does not contain features with the
numbers ν1, ν2, …, νv , and (iii) probably contain some
features with the numbers from the set N\{i1, i2,…, ik} =
{l1, l2, …, ln – k}.

Let a (2.2)-type proximity function be set with ε = 0,
S = ( , , …, ), and S ' = ( , , …, ).

If the system of equations

contains at least one unsatisfied inequality with the
number from the set {µ1, µ2, …, µu}, then it is obvious
that (S, S ') = 0.

Definition 2.1 [6]. Object S ' is called inefficient for
S if (S, S ') = 0.

Theorem 2.2 [6].

(2.8)

where  is a set of all objects from Wj inefficient for
S and r(S, S ') is a number of satisfied inequalities in a

system ( , ) ≤ , i = . In the model out-
lined here, we do not consider feature weights.

The theorem is proven by the direct calculation of
the number of support sets which are used for determi-
nation of the proximity of two arbitrary objects S and
S ', the number r(S, S ') being known.

By using the property of additivity of the estimate
Γj(S) over the union of mutually disjoint systems of the
support sets, Theorem 2.2 can be generalized to the
case when a system of support sets is represented in a
Boolean cube as the union of disjoint intervals.

A generalization of Theorem 2.2 implies that effi-
cient formulas for estimate calculations may be con-
structed on the basis of DNF of the characteristic func-
tion of a system of support sets where all elementary
conjunctions are mutually orthogonal. This DNF can be
constructed for any Boolean function which is not iden-
tically equal to zero. If, however, the constructed DNF
with mutually orthogonal conjunctions is too long (i.e.,
the intervals corresponding to elementary conjunctions
contain one or several vertices only), then the complex-
ities of corresponding formulas will be the same as the
complexity of exhaustive search and, therefore, they
will be inefficient. The formulas constructed according
to this method essentially reduce the search only if they
are constructed along the relatively short DNF with
orthogonal conjunctions—their complexity is in direct
proportion to the length of the DNF used. However,
synthesis of the short DNF with orthogonal conjunc-
tions obviously has a complexity similar to the com-
plexity of the synthesis of the shortest DNF.
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The author of [8] found another way of constructing
efficient formulas for AEC with a system of the support
sets presented as a union of the arbitrary intervals of a
Boolean cube. He considered a proximity function of
(2.2)-type with ε = 0. Unlike paper [6], the feature
weights were taken into account there. The formulas
for efficient calculation of Eq. (2.1) were obtained. The
complexity of the obtained formulas and, therefore,
their efficiency depend on the number of conjunctions in
DNF which underlines the construction of these formulas.

Definition 2.2 [8]. Vector  = (γ1, γ2, …, γn)
defined by the rule

(2.9)

is called a characteristic vector of the interval I = {  ∈
En |  ≤  ≤ },  = ( , , …, ) ∈  En,  = ( ,

, …, ) ∈  En of the Boolean cube.

A number of twos in the characteristic vector is
called a dimensionality of an interval.

It is obvious that the interval and its characteristic
vector are connected by one-to-one correspondence.

The author considered the proximity function of
(2.2)-type, ε = 0, objects S and S ' and their characteristic

proximity vector (S, S ') = (δ1, δ2, …, δn).

Theorem 2.3 (about the reduction to the problem
with the unity vector) [8]. Let the system of support sets

ΩA be the interval I in En. If (S, S ') ≠ (1, 1, …, 1), then
either ΦI(S, S ') = 0 or we can discard some of the fea-
tures in the description of the objects S and S ' and pro-
ceed to the feature space of dimensionality n* < n,
where the system of support sets ΩA is an interval I* in

, and ΦI(S, S ') = ΦI*(S, S ') > 0 and (S, S ') =
(1, 1, …, 1).

The proof of the theorem is based on the fact that if

( )i = 0, then ΦI(S, S ') = 0 for ( )i = 1 (where  is a
characteristic vector of the interval I); if ( )i = 0, we can
discard the ith component in the descriptions of objects
S and S ', in the Boolean representation of the system of
support sets ΩA, and in the vector ε, which is a parame-
ter of a proximity function. Thus, the dimensionality of
the initial classification problem and the dimensionality
of the AEC parameters are decreased by one. The
equality ΦI(S, S ') = ΦI*(S, S ') is still valid, but the value
of ΦI*(S, S ') is calculated for a new problem and with
new parameters of AEC of lower dimensionality. The
case of ( )i = 2 is reduced to the considered cases.

ω̃I

γi

0, γi
0 γi

1 0= =

1, γi
0 γi

1 1,= =

2, γi
0 0, γi
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δ̃
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δ̃ γ̃ γ̃
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γ̃

A similar theorem is valid for the case of support set
system being represented by a union of arbitrary inter-
vals of a Boolean cube.

During the construction of efficient formulas for
(S, S'), Theorem 2.3 and its generalization make it

possible to consider the case of (S, S') = (1, 1, …, 1) only.
Theorem 2.4 [8]. Let the system of support sets ΩA

be the interval I in En with characteristic vector  and
dimensionality m. Then, the following equation is valid:

(2.10)

for (S, S ') = (1, 1, …, 1).

Here, two intervals I1 and I2 in En with characteristic
vectors  = (α1, α2, …, αn), and  = (β1, β2, …, βn),
respectively, are considered.

Definition 2.3 [8]. We define operation of multipli-
cation ° of two characteristic vectors as follows:

(1) the product  °  is not defined if ∃ i ∈  N:
α i = 0 and βi = 1 or αi = 1 and βi = 0; otherwise

(2)  °  = (γ1, γ2, …, γn), where

Obviously, the product  °  is a characteristic
vector of interval I1 ∩ I2 (if such interval exists, i.e., if
I1 ∩ I2 ≠ ∅ ). The introduced operation ° is commutative
and associative.

Let the intervals I1, I2, …, Ik be given with character-
istic vectors , , …, , respectively, and I =

I1 ∩ I2 ∩ … ∩ Ik ≠ ∅ . Then,  °  ° … °  = .

Theorem 2.5 [8]. Let the system of support sets ΩA

be the intersection of the intervals I1, I2, …, Ik in En with
characteristic vectors , , …, , respectively,

and I = I1 ∩ I2 ∩ … ∩ Ik ≠ ∅  and  = (γ1, γ2, …, γn).

Then, for (S, S ') = (1, 1, …, 1),

(2.11)
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where m1, 2, …, k is the dimensionality of the interval
I1 ∩ I2 ∩ … ∩ Ik.

The proof of this theorem follows from Theorem 2.4
and Definition 2.3.

The matrix of intervals I1, I2, …, Ik with characteris-
tic vectors , , …, , respectively, is consid-

ered, where  = ( , , …, ), u = , i.e.,

(2.12)

The column vector of this matrix  = ( , , …, ),
called the interval vector of feature t over intervals I1,
I2, …, Ik, corresponds to each feature t ∈  N.

Theorem 2.6 [8]. Let the system of support sets ΩA

be the union of the intervals I1, I2, …, Ik in En. Then, for

(S, S ') = (1, 1, …, 1),

(2.13)

where

Suppose we know that any q intervals (2 ≤ q ≤ k)
from the intervals I1, I2, …, Ik do not intersect. Then,
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=

f i1…i j
' f ii…i j

/2.=

 =  = 0, ∀ j ≥ q and Eq. (2.13) may be
rewritten in the following form:

(2.14)

The following recurrence relation may be used for
adding a new interval to the system of the support sets
in Eq. (2.13):

(2.15)

(2.16)

where k ≥ 2.

We use the results outlined in [8] to propose a new
scheme of efficient calculation of the estimate Γj(S) in
the case when a system of support sets is a union of the
intervals of the Boolean cube. The current object S '
from the learning sample is subjected to the procedure
of reducing dimensionality of the initial problem and of
AEC parameters (a generalization of the procedure
described in the proof of Theorem 2.3). This procedure
may yield (S, S ') = 0; otherwise, the dimensional-
ity is successfully reduced; for a new problem an equal-

ity (S, S ') = (1, 1, …, 1) is valid and Eq. (2.13) may
be used to calculate the values of (S, S ').

The reasoning made after Theorem 2.2 is also actual
for the computational complexity of Eq. (2.13) with the
only correction: Eq. (2.13) is valid for the case of the
union of arbitrary intervals (the conjunctions corre-
sponding to the intervals are not necessarily be orthog-
onal).
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2.3 Symmetrical Proximity Functions

A general approach to deriving efficient formulas of
estimate calculations is based on the following repre-
sentation of Eq. (1.3) [1, 13]:

(2.17)

where Vt(S, S ') is the number of the support sets Ω from
ΩA containing feature t ∈  N such that (S, S ') = 1. As
a result, instead of efficient calculation of the value of
Eq. (2.1), we should efficiently calculate the value of

(2.18)

Suppose that the function Vt(S, S ') takes k different
values (1 ≤ k ≤ n) for varied parameter t and fixed
objects S, S '. Then, feature set N is separated into k dis-
joint sets of features N1, N2, …, Nk, such that Vt(S, S') = Vu

for t ∈  Nu, 1 ≤ u ≤ k. To calculate the value of Vu, an
arbitrary feature iu is selected from the group of features
Nu, then, searching in all support sets Ω ∈  ΩA (iu ∈  Ω)
is performed and the value of proximity function

(S, S ') is calculated.

Thus, knowing that the function Vt takes k different
values, to calculate the value of Eq. (2.18), we may con-
fine ourselves to the support sets that contain at least
one feature from the set {i1, i2, …, ik}. Therefore, when
the number k of different values of the function Vt is
smaller than n and, moreover, the number of the sup-
port sets that do not contain any feature from the set
{i1, i2, …, ik} is relatively large, then the search in the
support sets for calculating the value of Eq. (2.18) can
be sufficiently reduced.

Some types of the proximity functions and so-called
regular systems of the support sets with a small number
of different values of Vt(S, S ') were considered in [13].

Definition 2.4 [13]. A system of support sets ΩA is
considered to be regular if the conditions Ω ∈  ΩA and
|Ω| = k, 1 ≤ k ≤ n – 1 imply that all support sets of power
k belong to ΩA.

In a Boolean cube, a regular system of support sets
is represented as a union of some of its layers. All sys-
tems of support sets considered in Section 1 ((1.1)–
(1.4)-types) are regular.

The value of function Vt depends on the type of
proximity function.

Definition 2.5 [13]. Proximity function (S, S '),
which takes the values 0, 1, is called symmetrical if

∀ , ∀ ,  ∈  ΩA, the condition ||(  · )|| =

||(  · )|| implies that ( ) = ( ). Here, (α · β)
is a vector obtained by coordinatewise product of vec-
tors α and β.

Γ j S( ) γ S '( ) ptVt S S ',( ), j
t 1=

n

∑
S ' W j∈
∑ 1 l, ,= =

Bω̃

ptVt S S ',( ).
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n
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Bω̃

Bω̃

δ̃ ω̃1 ω̃2 ω̃1 δ̃

ω̃2 δ̃ Bω̃1
δ̃ Bω̃2

δ̃

Let us introduce two assumptions:

(1) (S, S ') = ( (S, S ')); i.e., if the way of the

construction of characteristic proximity vector  is pre-
assigned, then the proximity function does not depend
on particular values of features in object descriptions,
but on the type of the corresponding proximity vector and,
formally, is a function of two n-dimensional binary vectors

 and . This assumption concerning proximity func-
tion is rather natural—all proximity functions consid-
ered in Section 1 ((2.1)–(2.3)-types) obey it.

(2) There are such a learning sample and such an

object S that function (S, S ') takes all values from En

(except for zero value) for varied S '.
Definition 2.5 implies that
(i) a symmetrical function only depends on the num-

ber of features used for establishing the subdescription
closeness of two objects and is independent of, e.g., the
indices of these features;

(ii) generally, a symmetry of a proximity function
depends on the system of the support sets: thus, e.g.,
(2.3)-type proximity function is symmetrical if (1.2)-
type of the support set system is chosen and is not sym-
metrical if we choose the support set system of (1.1)-
type.

Theorem 2.7 [13]. Let the system of support sets be
regular and the proximity function be symmetrical.
Then, Vt(S, S ') takes no more than two different values

for t = , ∀ S, S '.
The proof of the theorem implies that all features

that correspond to zero (unit) coordinates in the vector

(S, S ') enter into the equal number V0 (V1) of support
sets Ω ∈  ΩA such that (S, S ') = 1. Then, according to
the conditions of Theorem 2.7, Eq. (2.18) can be rewrit-
ten as

where  is a vector obtained by coordinate negation of .
Theorem 2.7 is also valid for the particular case of

(2.2)-type of the proximity function and (1.2)-type of
the support sets.

Assertion 2.3 [13]. The following expressions are
valid for the (1.2)-type system of support sets and the
(2.2)-type proximity function:

(2.19)

(2.20)

where r(S, S ') = || (S, S ')||.
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Thus, the value V1 is equal to the number of subsets N
of power k containing the feature t, which corresponds

to the unity coordinate of vector (S, S '), and no more
than ε features, which correspond to the zero coordinate

of vector (S, S ').
The notion of proximity function symmetrical over

the partitioning is a generalization of the notion of a
symmetrical proximity function.

Let a partitioning R of the feature set N into subsets

N1, N2, …, Nv , be set, i.e., N = .

Definition 2.6 [13]. The support sets Ω1 and Ω2 with
the characteristic vectors  and  are equivalent

over the partitioning R (or R-equivalent) if ||(  · )|| =

||(  · )||, i = , where  is a characteristic vec-
tor of the subset Ni. We denote R-equivalency of the sup-
port sets Ω1 and Ω2 (characteristic vectors  and ) by

the following notation: Ω1  Ω2 (   ).

Definition 2.7 [13]. The proximity function (S, S')

is called symmetrical over the partitioning R if ∀ ,

∀ ,  ∈  ΩA, the condition    implies that

( ) = ( ).

It is evident that
(i) any proximity function is symmetrical over the

partitioning R of the form N = {1} ∪  {2} ∪  … ∪  {n},

because for any  and       ⇔  = ;

(ii) any symmetrical proximity function is symmet-
rical over the arbitrary partitioning R of the set N;

(iii) there are proximity functions symmetrical over
some partitioning R which are not simply symmetrical
(examples can be found in [6]).

Definition 2.8 [13]. Features t1 and t2 are called
equivalent over the partitioning R of the set N if they
simultaneously enter (or do not enter) into each subset

Ni, i = .
Theorem 2.8 [13]. Let the system of support sets be

regular and the proximity function be symmetrical over
some partitioning R. Then, the function Vt(S, S') assumes

no more than 2r(R) different values for t = , ∀ S, S ',
r(R) is a number of classes of R-equivalence, 1 ≤ r(R) ≤ n.

Corollary 2.3 [13]. Suppose that in the conditions
of Theorem 2.8, the partitioning R consists of v  disjoint
subsets. Then, r(R) = v  and, therefore, a number of dif-
ferent values of function Vt(S, S ') does not exceed 2v.

Thus, the estimates of the number of different values

Vt( )—the function of the argument t and parameter

—were obtained in [13] during the construction of

δ̃

δ̃

Ni
i 1=

v

∪

ω̃1 ω̃2

ω̃1 ω̃i

ω̃2 ω̃i 1 v, ω̃i

ω̃1 ω̃2

~R ω̃1 ~R ω̃2

Bω̃

δ̃
ω̃1 ω̃2 ω̃1 ~R ω̃2

Bω̃1
δ̃ Bω̃2

δ̃

ω̃1 ω̃2 ω̃1 ~R ω̃2 ω̃1 ω̃2

1 v,

1 n,

δ̃
δ̃

the efficient formulas of estimate calculations on the
base of Eq. (2.18) for the regular systems of support
sets and proximity functions having a special property
(symmetry, symmetry over the partitioning).

2.4. Ranks of the Systems of Support Sets

The change of the number of different values Vt( )
when different isometric substitutions and set-theoretic
operations were applied to ΩA was investigated in [1]
for the arbitrary system of support sets ΩA and (2.3)-
type proximity function. In addition, two new charac-
teristics were introduced which generalized the charac-

teristic Vt( ). The change in these characteristics dur-
ing isometric substitution and set-theoretic operations
were also studied.

It is obvious that the (2.3)-type proximity function

(S, S ') can be considered as function ( , ε1, ε2)

and, therefore, Vt( ) = Vt( , ε1, ε2), i.e.,

(2.21)

where ∆ = {i1, i2, …, iu} is a set of the indices of all unit

coordinates of vector , N\∆ = {iu + 1, iu + 2, …, in} and,
therefore, every vector α = (α1, α2, …, αn) can be
expressed as α = (α1, α2), where α1 = ( , , …, )

and α2 = ( , , …, ).

Definition 2.9 [1]. A system of support sets ΩA has

∆-rank k if ∀ , ε1, ε2, the number of different values of

the function Vt( , ε1, ε2) (of argument t) does not
exceed k and the number of different values of this

function is k for some , ε1, and ε2. We denote ∆-rank
of the system of support sets ΩA as R∆(ΩA).

If in Eq. (2.21), ∆ is an arbitrary subset of N, then

( , ε1, ε2) = ( , ∆, ε1, ε2) and, therefore, Vt( ) =

Vt( , ∆, ε1, ε2). In addition, Eq. (2.21) loses its previous
content (see definition of (2.3)-type proximity func-
tion).

Definition 2.10 [1]. A system of support sets ΩA has

the rank k if ∀ , ∆, ε1, ε2, a number of different values

of the function Vt( , ∆, ε1, ε2) does not exceed k and
the number of different values of this function is k for

some , ∆, ε1, and ε2.

The rank of a system of support sets ΩA is denoted
as R(ΩA). It is obvious that 1 ≤ R∆(ΩA) ≤ R(ΩA).

δ̃

δ̃

Bω̃ Bω̃ δ̃

δ̃ δ̃

Bω̃ δ ε1 ε2, ,( )

=  
1, ∆ δ1 ω1+ ε1, δ2 ω2+ ε2≤≥–

0, otherwise,



δ̃

α i1
α i2

α iu

α iu 1+
α iu 2+

α in

δ̃
δ̃

δ̃

Bω̃ δ̃ Bω̃ δ̃ δ̃

δ̃

δ̃
δ̃

δ̃
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Definition 2.11 [1]. A closure of the set  ∪

 relative to the operation of composition of
mappings is called a group Π of isometric permuta-
tions. Here, σij: En  En is the permutation of the ith
and jth coordinates of the Boolean cube’s vectors (i, j ∈  N)
and πi: En  En is a replacement of the ith coordinate of
the Boolean cube’s vectors by its negation, i ∈  N.

This group exhausts all permutations ϕ in En such
that ||α + β|| = ||ϕ(α) + ϕ(β)||.

Definition 2.12 [1]. A set G(ΩA) = {ϕ|ϕ ∈  Π , ϕ( ) ∈
ΩA, ∀  ∈  ΩA} with an operation of composition of
mappings is called a group of symmetry of the set ΩA.

G(ΩA) is a maximum subgroup of the group Π
which leaves the set ΩA static (i.e., converts ΩA into
itself).

Let us consider a group  ×  × … × 
induced by the partitioning R of the length k, where R
is a partitioning of the set N into disjoint subsets

N1, N2, …, Nk: N = , Ni ∩ Nj = ∅ , i ≠ j, and 

is a subgroup in Π generated by the closure of the set

 relatively to the composition of the map-

pings.
Definition 2.13 [1]. A system of support sets ΩA has

a symmetrical rank k if a group of symmetries G(ΩA)
has a subgroup induced by some partitioning R of the
length k and does not contain a subgroup induced by
any partitioning R' of the length smaller than k. A sym-
metrical rank of the system of support sets ΩA is
denoted as SR(ΩA).

Definition 2.13 implies that
(i) for any system of support sets ΩA, 1 ≤ SR(ΩA) ≤ n,

because G(ΩA) always has a unit subgroup induced by the
partitioning of a set N of the form {1} ∪ {2} ∪  … ∪  {n};
and

(ii) the smaller the rank of symmetry of the system
of support sets ΩA, the greater the symmetry of the rep-
resentation of ΩA in a Boolean cube.

The following theorem proves a connection
between a rank and a symmetry rank of the system of
support sets.

Theorem 2.9 [1]. For any system of support sets ΩA,
the following inequality is valid: R(ΩA) ≤ 4SR(ΩA).

The proof of the theorem is based on the observation

that function Vt( , ∆, ε1, ε2) can possess no more than
four different values at each block Ni from some parti-
tioning of the length SR(ΩA).

Corollary 2.4 [1]. For any system of support sets ΩA,
the following inequality is valid: R∆(ΩA) ≤ 2SR(ΩA).

σij{ } i j, 1=
n

πi{ } i 1=
n

ω̃
ω̃

SN1
SN2

SNk

Nt
t 1=

k

∪ SNt

σij{ } i j Nt∈,
n

δ̃

This corollary directly follows from the proof of

Theorem 2.9 because function Vt( , ε1, ε2) can possess
no more than two different values at each block Ni from
some partitioning of the length SR(ΩA).

Theorem 2.10 [1]. Let the group  ×  × … × 
be induced by the partitioning N1, N2, …, Nk of the
length k. Then, there is a system of support sets ΩA such
that SR(ΩA) = k and  ×  × … ×  ⊆  G(ΩA).

The proof of the theorem is constructive. The desired
system of support sets may have the following form: ΩA =

{ , , …, }, where  = ( , , …, ) and

 = 1 ⇔ N1 ∪  N2 ∪  … ∪  Nj , i = , j = .

The following theorem defines a change in the rank
of a system of support sets during its transformation by
isometric permutations.

Theorem 2.11 [1]. Let ϕ ∈  Π . Then, if ϕ ∈
S{1, 2, …, n}, then R∆(ΩA) = R∆(ϕ(ΩA)) and R(ΩA) =
R(ϕ(ΩA)). If ϕ ∉  S{1, 2, …, n}, then 0.5 ≤ R(ΩA)/R(ϕ(ΩA)) ≤ 2.

Corollary 2.5 [1]. Let the group S =  ×  × …

×  be induced by the partitioning of the length k, and

let there be ϕ ∈  Π such that ϕSϕ–1 ⊆  G(ΩA). Then, if
ϕ ∈  S{1, 2, …, n}, then R∆(ΩA) ≤ 2k and R(ΩA) ≤ 4k. If
ϕ ∉  S{1, 2, …, n}, then R(ΩA) ≤ 8k.

Theorem 2.12 [1]. Let the group S =  ×  × …

×  be induced by the partitioning of the length k, and
let there be ϕ ∈  Π such that ϕ = πσ, where σ ∈  S and π
only specifies negations. Then, if ϕSϕ–1 ⊆ G(ΩA), then
SR(ΩA) ≤ 2k.

Theorem 2.13 [1]. For the arbitrary systems of sup-

port sets  and , the following relations are true:

Corollary 2.6 [1]. For the arbitrary systems of support

sets  and , the following inequalities are true:

,

Theorem 2.14 [1]. A projection of a system of sup-
port sets onto an interval increases its rank of symmetry
by no more than two. When a system of support sets is
projected from En to En + q by adding q dummy vari-
ables, its symmetry rank is increased by no more than
unity.

δ̃

SN1
SN2

SNk

SN1
SN2

SNk

ω̃1 ω̃2 ω̃k ω̃j ω1
j ω2

j ωn
j

ωi
j 1 n, 1 k,

SN1
SN2

SNk

SN1
SN2

SNk

ΩA
1 ΩA

2

SR ΩA
1 ΩA

2∪( ) SR ΩA
1 ΩA

2∩( ),( ) SR ΩA
1( )SR ΩA

2( ),≤

SR ΩA
1( ) SR En\ΩA

1( ).=

ΩA
1 ΩA

2

R ΩA
1 ΩA

2∪( ) R ΩA
1 ΩA

2∩( ),( ) 4SR ΩA
1( )SR ΩA

2( ),≤

R∆ ΩA
1 ΩA

2∪( ) R∆ ΩA
1 ΩA

2∩( ),( ) 2SR ΩA
1( )SR ΩA

2( )≤

R En\ΩA
1( ) 4SR ΩA

1( ), R∆ En\ΩA
1( ) 2SR ΩA

1( ).≤ ≤
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The proof is based on the following reasoning.

The projection ΩA on interval  in En-set

pr(ΩA) = {  |  ∈  ΩA,  = σ1,  = σ2, …,  = σu}
and the partitioning of the form N = M0 ∪  M1 ∪  (N1\M) ∪
(N2\M) ∪  … ∪  (Nk\M), SR(ΩA) = k, N1 ∪  N2 ∪  … ∪  Nk =
N,  ×  × … ×  ⊆  G(ΩA), M = {i1, i2, …, iu},

Mα = {ij | ij ∈  M, σj = α}, α ∈  {0, 1} are considered.
Since the product of the groups induced by this parti-
tioning is contained in G(pr(ΩA)), the rank of symmetry
of this projection is no more than k + 2.

By adding q new variables to  ∈  ΩA, i.e., by

transforming ΩA ⊆  En into  = {( , ) |  ∈  ΩA,

 ∈  Eq} ⊆  En + q, we may establish that if SR(ΩA) = k,

then SR( ) ≤ k + 1.

Theorems 2.11–2.14 can be useful in assessing the
ranks of the systems of support sets obtained from some
basic systems of support sets via operations of union,
intersection, complementation, addition of dummy
variables, and isometric permutations.

Below, we give the examples of rank evaluation for
several systems of support sets.

(1) (1.4)-type system of support sets. G(ΩA) =
S{1, 2, …, n}; therefore, R∆(ΩA) ≤ 2 and R(ΩA) ≤ 4.

(2) A sphere of a Boolean cube with a center at the
point α = (α1, α2, …, αn) and radius r, i.e., ΩA = {
|  ∈  En, ||  + α|| ≤ r}. In this case,  ×  ⊆  G(ΩA) =

ϕ–1S{1, 2, …, n}ϕ, where Nβ = {i | α i = β, 1 ≤ i ≤ n},
β ∈  {0, 1}, and ϕ is an isometric permutation such that
if i ∈  N0, then (ϕ(α))i = αi and if i ∈  N1, then (ϕ(α))i = .
Therefore, R∆(ΩA) ≤ 4 and R(ΩA) ≤ 8.

(3) An interval of the Boolean cube ΩA = ,
σi ∈  {0, 1}. Here, SN ⊆  G(ΩA), where N = {1, 2, …, n}\
{i1, i2, …, iu}, therefore, SR(ΩA) ≤ 3, R∆(ΩA) ≤ 6, and
R(ΩA) ≤ 12.

2.5 Absolutely Symmetrical Systems of Support Sets

A class of systems of support sets ΩA such that
R∆(ΩA) ≤ 2 was completely described in [9].

A system ΩA = { , , …, } was considered.
For this system, a matrix

(2.22)

was defined accurate to the order of magnitude in ele-
ments enumeration.

Ni1 i2 … iu, , ,
σ1 σ2 … σu, , ,

ω̃ ω̃ ωi1
ωi2

ωiu

SN1
SN2

SNk

ω̃
ΩA' ω̃ γ̃ ω̃

γ̃
ΩA'

ω̃
ω̃ ω̃ SN0

SN1

α i

Ni1 i2 … iu, , ,
σ1 σ2 … σu, , ,

ω̃1 ω̃2 ω̃r

Cr n× ΩA( )

ω̃1

ω̃2

ω̃r

α1
1 α2

1 … αn
1

α1
2 α2

2 … αn
2

… … … …

α1
r α2

r … αn
r

= =…

Definition 2.14 [9]. Vector  = (C) = ( , , …,

)T is called a characteristic vector of the feature t ∈  N
over matrix C.

Definition 2.15 [9]. Features i, j ∈  N are called fea-
tures–twins if ∀  ∈  ΩA ( )i = ( )j .

Note that features i and j are features–twins if and

only if ∀ C ∈  D(ΩA) (C) = (C), where D(ΩA) is a set
of (2.22)-type matrices for all possible ways of enumer-
ation of characteristic vectors of a system of support
sets.

Definition 2.16 [9]. A matrix

(2.23)

where , , …,  are all characteristic vectors

from ΩA such that ( ) = 1, is called an saction of

the proximity function ( ) on the system of support

sets. If ( ) = 0, i = , then the action of the prox-

imity function ( ) on the system of support sets is
not determined.

It is significant that (C1) = (C2), ∀ C1, C2 ∈  D(ΩA),

(C) is a vector equal to the coordinatewise sum of the

vectors , , …, : (C) =  +  + … + .

Definition 2.17 [9]. Vector α = (α1, α2, …, αn) ∈  Rn

is called 2-ideal if |{α1, α2, …, αn}| ≤ 2.

Definition 2.18 [9]. A system of support sets ΩA is

called 2-ideal if ∃ C ∈  D(ΩA) such that vector (C) is

2-ideal ∀ , ε1, ε2). ΩA is 2-ideal if and only if R∆(ΩA) ≤ 2.

Assertion 2.4 [9]. Any system of support sets ΩA ⊆
( ) is 2-ideal.

Definition 2.19 [9]. A system of support sets ΩA ⊆  En

is called reducible to the system of support sets  ⊆  En*,

n* < n, if ∃ Cr × n ∈  D(ΩA), ∃  ∈  D( ), ∃ i1, i2, …,

in* ∈  N: |{i1, i2, …, in*}| = n*, (C) = (C*), (C) =

(C*), …, (C) = (C*), (C) ∈  { (C*), (C*),

…, (C*)} ∀ j ∈  N\{i1, i2, …, in*}.

t̂̃ t̂̃ α t
1 α t

2

α t
r

ω̃ ω̃ ω̃

ĩ
ˆ

j̃
ˆ

Bδ̃ C( )

ω̃i1

ω̃i2

ω̃ik

,= …

ω̃i1
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ω̃ik

Bω̃i j
δ̃

Bω̃ δ̃

Bω̃i
δ̃ 1 r,

Bω̃ δ̃

b̃δ̃ b̃δ̃

b̃δ̃

ω̃i1
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ω̃ik
b̃δ̃ ω̃i1

ω̃i2
ω̃ik

b̃δ̃

δ̃

En
1 En

n 1–

ΩA*

Cr n*×* ΩA*

ĩ1
ˆ

ĩ1
ˆ

ĩ2
ˆ

2̃
ˆ

ĩn*
ˆ

ñ*ˆ j̃
ˆ

1̃
ˆ

2̃
ˆ

ñ*ˆ
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Definition 2.20 [9]. A matrix C1(ΩA) is called reduc-

ible to the matrix C2( ) if a system of support sets ΩA

is reducible to the system of support sets .

This definition implies that matrix C1 is reducible to
the matrix C2 if and only if matrix C2 can be reduced
from the matrix C1 by the following transformations:
(i) row permutation (renumbering of the support sets);
(ii) column deletion under condition that the matrix still
contains the columns equal to the deleted (deletion of
the features–twins);
(iii) column permutation (renaming of the features).

Inversely, matrix C1 can be reduced from C2 by row
permutation, by adding the columns equal to those that
the matrix C2 already has, and by column permutation.

A system of support sets reducible to a 2-ideal sys-
tem is 2-ideal itself.

Definition 2.21 [9]. A system of support sets ΩA is
called internal if {(0, 0, …, 0), (1, 1, …, 1)} ∩ ΩA = ∅ .

Definition 2.22 [9]. An internal system of support
sets ΩA with the matrix of the support sets C is called
absolutely reducible if either

(2.24)

or

(2.25)

If ∃ C ∈  D(ΩA) such that either condition (2.24) or
(2.25) is fulfilled, then the same condition will be ful-
filled ∀ C ∈  D(ΩA).

An absolutely reducible system of support sets is

reducible to  ⊆   if condition (2.24) is fulfilled, or

to  ⊆  , if condition (2.25) is fulfilled. All this
and assertion 2.4 imply that absolutely reducible sys-
tem of support sets is 2-ideal.

Definition 2.23 [9]. (1.4)-type system of support
sets is called absolutely symmetrical.

In the above-considered example, we show that ∆-rank
of absolutely symmetrical system of support sets does
not exceed 2; i.e., an absolutely symmetrical system of
support sets is 2-ideal.

Absolute reducibility and absolute symmetry are
independent properties of the system of support sets.
Let us consider it on the following example. For n = 4,

ΩA*

ΩA*

t̃ C ΩA( )( ) 1, t∀ N ,∈≥ˆ

t̃ C ΩA( )( ) ΩA 1, t∀– N .∈≤ˆ

ΩA* En
1

ΩA* En
n 1–

C ΩA
1( )

1 0 0 0

0 1 0 0

0 0 1 0

, C ΩA
2( )

1 1 0 0

1 0 1 0

1 0 0 1

0 1 1 0

0 1 0 1

0 0 1 1

.= =

System  is absolutely reducible but not absolutely

symmetrical, and system  is absolutely symmetrical
but not absolutely reducible.

It turned out that a class of all 2-ideal systems of
support sets is exhausted by absolutely reducible and
absolutely symmetrical systems.

Theorem 2.15 [9]. Let ΩA be a 2-ideal system of
support sets. Then, either ΩA is absolutely symmetrical
or ΩA\{(0, 0, …,0), (1, 1, …,1)} is absolutely reducible.

2.6. Atomic Systems of Support Sets

In [29], the systems of support sets called atomic
were considered. For atomic systems of support sets
and a (2.2)-type proximity function, an expression was

obtained for calculating the estimate of function Vt( ).

Definition 2.24 [29]. Atomic set A(N0; N1; (M1, k1);
(M2, k2); …; (Mv , kv)) is a set of all vectors  = (ω1,
ω2, …, ωn) from En such that

(1) ωi = 0, ∀ i ∈  N0,

(2) ωi = 1, ∀ i ∈  N1, and

(3)  = kj , j = 

are valid for the partitioning of the set N of the form

N = N0 ∪  N1 ∪  , N0 ∩ N1 = N0 ∩ Mi = N1 ∩

Mi = Mi ∩ Mj = ∅ , ∀ i, j ∈  {1, 2, …, v}, i ≠ j, where each
subset Mi corresponds to the integer ki : 0 < ki < |Mi |,
i = .

Obviously, any atomic set is a part of a vector layer

of a Boolean cube of the weight |N1| + .

Here are the examples of atomic sets:

—The kth layer of a Boolean cube is atomic set A((N, k))
(N0 = N1 = ∅ , M1 = N, k1 = k);

—Atomic set A(N0; N1; (M1, k)), where N0 = {i1, i2, …, is},
N1 = {j1, j2, …, jt}, N0 ∩ N1 = ∅ , M1 = N\(N0 ∪  N1), is
the intersection of the interval specified by conjunction

of … …  with the cube layer .

An expansion of a sphere, ball, and several other
sets in En into atomic subsets is considered. By using
efficient formulas for estimate calculation over some
atomic subsets, this expansion allows one to obtain effi-
cient formulas of estimate calculations for the given
system of support sets.

ΩA
1

ΩA
2

δ̃

ω̃

ωi

i M j∈
∑ 1 v,

Mi
i 1=

v

∪ 
 

1 v,

ki

i 1=

v

∑

xi1
xi2

xis
x j1

x j2
x jt

En
k N1+
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Theorem 2.16 [29]. Let a system of support sets be
atomic set A(N0; N1; (M1, k1); (M2, k2); …; (Mv, kv)).
Then,

(2.26)

where (a) vector  is partitioned into subvectors (N0),

(N1), (M1), (M2), …, (Mv); (X) is a vector with
components whose indices are contained in X, d(X) =

|| (X)||, |N1| = s, |Mi | = mi , i = , εeff = ε – s + d(N1)
(ε is a parameter of the (2.2)-type proximity function)

and ε0 = ( , , …, ); and

Vt δ̃( )

0, t N0∈

Cmu d Mu( )–
εu
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Cd Mu( )
ku εu
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, t
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max 0 ku d Mu( )–,( ) εu
0 min ku mu d Mu( )–,( ),≤ ≤

u 1 v, } ,=

C2 p( ) ε0 εu
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u 1=

v

∑ εeff, εp
0 1,≥≤
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max 0 ku d Mu( )–,( ) εu
0 min ku mu d Mu( )–,( ),≤ ≤

u 1 v, } ,=

The proof of the theorem consists in the consideration

of three cases t ∈  N1, t ∈  Mp, and ( )t = 0, t ∈  N1, ( )t =1,

and in the direct calculation of the value Vt( ) for each
of the cases. 

Some of the sets in En reducible into atomic subsets
are considered. A notion of a ball sector introduced in
Section 1 is used for constructing these expansions. For
other details, see [29].

(1) A sphere with a center α and radius r are set.
Sections of this sphere with the cube’s layers of the

weigh k, k = . The layers of
this type are called sectors of the sphere. M1 = {i | i ∈  N,
(α)i = 1}, M2 = N\M1. A sector of sphere located in the
kth layer is prove to be an atomic set A((M1, k1); (M2, k2))
where k1 = (k + ||α|| – r)/2 and k2 = (k – ||α|| + r)/2. If at
least one of the numbers (k + ||α|| – r)/2, (k – ||α|| + r)/2
is not an integer, then the intersection of the sphere and
the kth layer is an empty set.

Since different sectors of the sphere are mutually
disjoint, Theorem 2.16 and the additivity of the esti-
mate Γj(S) over the union of disjoint systems of the sup-
port sets are used for constructing efficient formulas of
estimate calculations over the system of support sets in
the form of a sphere in a Boolean cube.

(2) A ball. The expansion into the atomic subsets is
reduced to the expansion into the sectors of the spheres
constituting this ball. Then, obtained expansion con-
sists of mutually disjoint atomic subsets.

(3) Nonempty intersection of two arbitrary balls.
(4) Nonempty intersection of m balls of the same

radius with the center αi in one layer, such that scalar
product (αi , αj) = 0 for any i ≠ j, 1 ≤ j ≤ m (orthogonal-
ity of centers).

(5) Nonempty intersection of the two groups of balls
of the same radius; the balls in every group satisfy con-
dition (4); the centers of the balls of different groups are
also mutually orthogonal.

Thus, analysis of the works concerning deriving
efficient formulas for estimate calculation shows that
—the system of support sets and the type of proximity
function are the AEC parameters defining complexity
of formulas for estimate calculation
—reduction of computational complexity of Eq. (1.11)
for the estimate Γj(S) is defined by the choice of AEC
parameters which set particular recognition algorithm
or a family of such algorithms.

Main results of setting restrictions on the system of
support sets are presented in the table in the order of
presentation.

C3 p( ) ε0 εu
0

u 1=

v

∑ εeff, εp
0 kp 1,–≤ ≤





=

max 0 ku d Mu( )–,( ) εu
0 min ku mu d Mu( )–,( ),≤ ≤

u 1 v, } .=

δ̃ δ̃
δ̃

max α r– 0,( ) α, r+

Table

System
of support sets

Proximity function, 
additional
restrictions

Result

(2.2)-type, feature 
weights equal

Formulas for Γj(S)
En\{(0, 0, …, 0)} (2.2)-type, feature 

weights equal to 1
Absolutely
symmetrical

(2.3)-type R∆(ΩA) ≤ 2

Atomic set (2.2)-type for ε = 0 Formula for 

En
k

Vt δ̃( )
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By using these results, the efficient formulas for
estimate calculations based on the system of support
sets may be obtained which are the unions of disjoint
systems of the support sets shown in the table.

Some systems of support sets considered above are
generalizations, or they can be obtained by combining
other systems of support sets. These relations are
shown in Fig. 2.1.

The notation A  B in the figure means that a set
of the form A can be described in the form B. Thus, for
example, the kth layer of the Boolean cube is a sphere
with the center at the point (0, 0, …, 0) and radius k. It
is obvious, that relation  is transitive; i.e., a ball can
be obtained by the union of spheres.

Figure 2.1 shows that, generally, formulas for esti-
mate calculations for the atomic systems of support sets
may serve as a basis for constructing formulas for esti-
mate calculation for the systems of the support sets of
any type represented in the figure.

3. SUPPORT SETS IN THE ALGORITHMS
OF ESTIMATE CALCULATIONS

USING 2D INFORMATION

Most of the computationally efficient algorithms of
image recognition are designed for the work with feature
descriptions or image models. To maximally use informa-
tion contained in images, it is necessary to overcome the
principal discrepancy between the image nature and the
techniques for information extraction based on symbol
models of images. This dictates a practical need in effi-
cient recognition algorithms directly applied to images
and their fragments.

This class of algorithms—algorithms based on esti-
mate calculations using two-dimensional information
(2D-AEC)—was defined as a special case of AEC. The
model of AEC, in the general case, allows processing
the information which reflects a spatial (two-dimen-
sional) image structure. The principal property of the
2D-AEC class is the use of two-dimensional support sets,
i.e., images and their fragments, for calculation of proxim-
ity estimates of images under recognition. The range of the
problems of 2D-AEC includes enumeration and investiga-
tion of the spatial support sets and definition of the sub-
classes of the algorithms (corresponding to the types of
the support sets), which allow one to produce efficient
formulas that model the work of the algorithms.

In contrast to AEC, in 2D-AEC, a matrix of feature
values (pixels) is a primary description of the object
and a set of double indices, which code places in the
description matrix, is a support set.

In practice, the choice of support sets adequate to
the problem at hand is of great importance here. In most
cases, the use of support sets popular in AEC models
does not make sense, particularly, due to the extremely
high computational complexity of the correspondent
procedures. Thus, matching two images according to
all possible k pixels is a priori senseless whatever the

proximity function may be. Both the informational
nature of the wide class of images encountered in rec-
ognition problems and the content of these problems
make the matching of images or their fragments by sep-
arate arbitrary isolated pixels impractical. On the other
hand, the informational regions (segments, contours,
lines, etc.) are naturally extracted in images. It is rea-
sonable to perform the matching on the level of these
regions. During construction of the support sets, these
regions can be considered as a sort of image primitives
which are unreasonable or impossible to divide.

Thus, 2D-AEC are based on the region-matching
principle—images are matched by some local neigh-
borhoods (connected group of pixels) and not by the
separate individual pixels. In this context, a local neigh-
borhood, connected group of pixels of power m (m ≥ 2),
is considered as a minimum potential information-car-
rier for matching information images.

Let the description of the image be a rectangular
matrix u × v, u > 1, v  > 1. Similar to the one-dimen-
sional case, the two-dimensional support set Ω can be
represented by the characteristic matrix  = (ωij)u × v ,

The characteristic matrix  can be considered as a
binary image on the raster u × v, where zeros corre-
spond to the color of a background (e.g., white) and uni-
ties, to the color of figures (e.g., black). For the conve-
nience, we call the characteristic matrix  a support set.

A technique of extracting and matching local neigh-
borhoods determines the following necessary stages of
constructing two-dimensional support sets:
(1) The number k (k ≥ 1) of connected components of
the support set  is specified.

(2) In , k rectangles are fixed; i.e., an upper left posi-
tion is chosen along with the side length of each of the
k rectangles.
(3) A connected component tangent to all sides is
inscribed in each rectangle; several connected compo-
nents should not constitute a new component.

As the connected components, we may choose arbi-
trary geometrical figures (circles, ellipses, triangles,
squares, etc.) and lines.

ω̂

ωij

1, i j,( ) Ω∈
0, i j,( ) Ω.∉




=

ω̂

ω̂

ω̂
ω̂

kth layer Sphere
U disjoint atomic

sets

En Ball U disjoint spheres

U disjoint balls

Absolutely
symmetrical

set

Fig. 2.1. Relations between different systems of support sets.
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This description also allows one to structure an
admissible two-dimensional support set. This set con-
sists of k connected components, and the position of
each connected component is determined by the posi-
tion of the upper left vertex of the circumscribed rect-
angle.

Definition 3.1. Configuration made by all con-
nected components of the support set  is called a gen-
erative element of the support set  (GESS). It is a sub-

matrix  of k × s matrix  and is generated by
the elements of this matrix located at the intersections
of the rows i1, i2, …, ik and the columns j1, j2, …, js.

If (i1, j1), (i1, j2), …, (ik, jk) are the positions of the k
connected components of the support set ω and p1 =

, p2 = , q1 = , and q2 =

, then GESS generating this support set is

described by the submatrix  of the form .

Definition 3.2. The position (p1, q1) of the upper left
vertex of the circumscribed rectangle is called a posi-
tion of GESS on the raster.

Definition 3.3. A number of black points of GESS
is called its area.

Among all possible systems of support sets, the sys-
tems are distinguished which are generated by one
GESS and differ only in its position on the matrix u × v.
Correspondingly, different systems of two-dimensional
support sets are generated by different GESS (each by
its own).

In addition, there is one more possibility to specify
a system of support sets generated by GESS in a differ-
ent way—by GESS-close support sets. These support
sets are formed by the following procedure.

Let us fix k connected components on the raster u × v
and transfer each component along the raster, so that
they do not intersect. All allowable transfers of such
kind generate a system of two-dimensional support
sets, of no more than k connected components per set.
This family of two-dimensional support sets can be
considered as an analog of the family of one-dimen-
sional support sets representing the kth layer of the
Boolean cube.

4. EFFICIENT FORMULAS OF ESTIMATE 
CALCULATIONS USING 2D INFORMATION

The problem of constructing efficient formulas for
estimate calculations using 2D information is caused,
first of all, by the irrationality of using 2D-AEC in the
application problems without adequate formulas. There
are two important factors connected with this problem:
—in 2D-AEC, the type of formula (1.11) defining esti-
mate Γj(S) is not changed;

ω̂
ω̂

M j1 j2 … js, , ,
i1 i2 … ik, , ,

ω̂

it
t 1 2 … k, , ,=

min it
t 1 2 … k, , ,=

max jt
t 1 2 … k, , ,=

min

jt
t 1 2 … k, , ,=

max

ω̂ Mq1 q1 1+ … q2, , ,
p1 p1 1 … p2, ,+,

—systems of support sets considered in the model of
2D-AEC have a great power and substantially differ
from the systems of one-dimensional support sets
which are already supplied with efficient formulas.

Generally, an arbitrary system of two-dimensional
support sets  = (ωij)u × v may be represented as a set of
vertices of the Boolean cube Euv. Knowing the expansion
of the system of support sets into intervals in Euv, we can
use Eq. (2.13) to calculate the estimate Γj(S). However, as
was said before, Eq. (2.13) is efficient not for any expan-
sion of the system of support sets

The simplest way of specifying the 2D-AEC class is
the following:

In a standard classification problem, let a set of
allowable objects be a set of u × v  matrices with the ele-
ments from the set D; i.e.,

The parameters of the 2D-AEC family are defined
as follows:

(1) A system of support sets ΩA is a collection of

rectangles  = {(i, j), (i, j + 1), …, (i, j + R2 – 1),
(i + 1, j), …, (i + 1, j + R2 – 1), …, (i + R1 – 1, j + R2 – 1)}
with the sides R1, R2, 1 ≤ R1 ≤ u, 1 ≤ R2 ≤ v, 2 ≤ R1R2.

(2) Let a metric (semimetric) ρ(x, y) be defined in

the set D, the values εij > 0, (i = , j = , ε ≥ 0, ε
is an integer), and Ω =  are specified. Consider
the following system of inequalities:

and denote the number of unsatisfied inequalities by γ.
Suppose that

(4.1)

This proximity function is the analog of the (2.2)-type
proximity function for two-dimensional object descrip-
tions.

(3) The feature weights (defined by the matrix P =
(pij)u × v , pij > 0), the precedent weights, and the deci-
sion rule are all arbitrary.

This concludes the description of the 2D-AEC family.

Similar to the characteristic proximity vector (S, S'),
the characteristic proximity matrix C = C(S, S') = (cij)u × v :

(4.2)

is introduced.

ω̂

S I S( ) aij( )u v× , S ' I S '( ) bij( )u v× .= = = =

ΠR1 R2×
ij

1 u, 1 v,
ΠR1 R2×

ij

ρ aij bij,( ) εij,≤

ρ ai j 1+, bi j 1+,,( ) εi j 1+, …,,≤

ρ ai R1 1–+ j R2 1–+, bi R1 1–+ j R2 1–+,,( ) εi R1 1–+ j R2 1–+, ,≤

Bω̂ S S ',( )
1, γ ε≤
0, γ ε.>




=

δ̃

cij

1, ρ aij bij,( ) εij≤
0, ρ aij bij,( ) εij.>




=
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As before, a problem of efficient calculation of the
value of Eq. (2.1) can be reduced to the problem of effi-
cient calculation of the value of the following expres-
sion:

(4.3)

where Vij(S, S ') is the number of support sets Ω from ΩA

such that (S, S ') = 1.

The author of [17] suggested the estimate calcula-
tion technique in AEC for (2.2)-type proximity func-
tion and for the system of support sets being a collec-
tion of rectangles of definite size. The algorithm imple-
mented by operators A1 and A2 was proposed for
calculating the values of Vij(S, S '). First, the case was
considered when ε = 0 in Eq. (4.1). The following pro-
cedures were executed for each position (i, j) of matrix
C such that cij = 1:

(1) Using position (i, j) of matrix the C, operator A1
constructs a figure Φ(i, j) which is a union of all maximum
rectangles comprised from the unities of the matrix C that
contain unity in the position (i, j). Here, a maximum
rectangle is a rectangle with the sides that cannot be
increased.

(2) Using figure Φ(i, j), operator A2 calculates the
value of Vij(S, S ').

Now, let 0 < ε < R1R2. The following procedures are
executed for each position (i, j) of matrix C:

(1) Operator A1 constructs a figure Φ(i, j) which is a
union of all maximum rectangles comprised from zeros
and unities of the matrix C that contain zero and unity
in the position (i, j); here, Φ(i, j) contains no more than
ε zeros.

(2) Using figure Φ(i, j), operator A2 calculates the
value of Vij(S, S ').

The operators A1 and A2 are implemented for the
cases when ε = 0 and ε > 0. However, the efficiency of
the proposed technique was not estimated.

Now, we proceed to the new approach to the effi-
cient estimate calculation in 2D-AEC for the system of
rectangular support sets and proximity function (4.1)
for ε = 0.

Let the weights of all features be the same and equal
to p > 0. Then,

(4.4)

The value of the sum in Eq. (4.4) is no more than the
number of rectangles of the size R1 × R2 formed by the
unities of the matrix C(S, S ').

The essence of this approach consists in providing the
efficient (sped up) calculation of value (4.4) by prelimi-
nary calculation of some characteristics of the matrix C

pijVij S S ',( ),
j 1=

v

∑
i 1=

u

∑

Bω̂

ΦΩA
S S ',( ) pR1R2 Bω̂ S S ',( ).

ω̂ ΩA∈
∑=

which allow us to check whether the necessary conditions
are fulfilled: the matrix contains the rectangles of the
given size that contain unities.

Suppose

(4.5)

(4.6)

Obviously, h1, i = 1 (h2, j = 1) if and only if there is a
continuous sequence of at least R2 (R1) unities in the ith
row (jth column) of matrix C (see Fig. 4.1).

Let

(4.7)

H1 = 1 if and only if the following conditions for the
matrix C are simultaneously fulfilled (see Fig. 4.1):

—at least one row contains a continuous sequence of at
least R2 unities;

—at least one column contains a continuous sequence
of at least R1 unities.

Therefore, if H1(S ') = 0, matrix C a priori does not
have the rectangle that contains unities with the sides R1

and R2; thus, (S, S ') = 0.

The following assertion is proven:

Assertion 4.1.

(4.8)

h1 i,  = ci j, ci j 1+, … ci j R2 1–+, , i = 1 u, ,⋅ ⋅ ⋅
j 1=

v R2– 1+

∑∨
h2 j,  = ci j, ci 1+ j, … ci R1 1–+ j, , j = 1 v, .⋅ ⋅ ⋅

i 1=

u R1– 1+

∑∨

H1 C S S ',( )( ) H1 S '( ) h1 i,

i 1=

u

∑ 
 
 

h2 j,

j 1=

v

∑ 
 
 

.= = ∨ ∨

ΦΩA

Γ j S( ) pR1R2 γ S '( ) Bω̂ S S ',( ),
ω̂ ΩA∈
∑

S ' W j∈

H1 S '( ) 1=

∑=

j 1 l, .=

1

2
3

4
5

1 2 3 4 5

1

1

1 1 1

1 1 1

1 1 1

1 1

1

1

1

1

1

1

1 1 1 1

h1, i

h2, j H1 = 1, H2 = 1,
H3 = 2

Fig. 4.1. Matrix C and corresponding values of H1, H2, H3,
u = v  = 5, R1 = R2 = 3, empty sells are zeros.
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Let

(4.9)

H2 = 1 if and only if the following conditions for the
matrix C are simultaneously fulfilled (see Fig. 4.1):

—there is a sequence of R2 unities situated in R1 adja-
cent rows at least;

—there is a sequence of R1 unities situated in R2 adja-
cent columns at least.

Therefore, if H2(S ') = 0, then (S, S ') = 0. Note
also that (i) if H2(S ') = 1, then H1(S ') = 1 and (ii) if
H1(S ') = 0, then H2(S ') = 0.

Thus, the following assertion is proven:

Assertion 4.2.

(4.10)

Consider matrices C1 =  and

C2 =  defined as follows:  =

ci, j  · ci, j + 1 · … · ,  = ci, j  · ci + 1, j  · … ·

, i = , j = . If  = 1

(  = 1), then it means that in the ith row (jth column) of
matrix C, a sequence of at least R2 (R1) unities begins.

Let C' =  = C1C2, H3(C'(S, S')) =
H3(S ') = ||C ' ||, where C1C2 is a coordinatewise product
of matrices C1 and C2 and ||C ' || is a number of unities in

the matrix C'. Let  = 1; this means that in the position
(i, j) of the matrix C, a vertex of a right angle is situated
with the sides located in the ith row and jth column (the
length of the side is no less than R1 unities). For the
matrix C presented in Fig. 4.1, the matrix C ' contains
unities in positions (2, 2) and (3, 2).

Hence, if H3(S ') = 0, then (S, S ') = 0. Therefore,
the following assertion is valid.

H2 C S S ',( )( H2 S '( )=

=  h1 i,

i 1=

u R1– 1+

∑ h1 i 1+, … h1 i R1 1–+,⋅ ⋅ ⋅
 
 
 ∨

× h2 j,

j 1=

v R2– 1+

∑ h2 j 1+, … h2 j R2 1–+,⋅ ⋅ ⋅
 
 
 

.∨

ΦΩA

Γ j S( ) pR1R2 γ S '( ) Bω̂ S S ',( ),
ω̂ ΩA∈
∑

S ' W j∈

H2 S '( ) 1=

∑=

j 1 l, .=

cij
1( ) u R1– 1+( ) v R2– 1+( )×

cij
2( ) u R1– 1+( ) v R2– 1+( )× cij

1

ci j R2 1–+, cij
2

ci R1 1–+ j, 1 u R1– 1+, 1 v R2– 1+, cij
1

cij
2

cij'( ) u R1– 1+( ) v R2– 1+( )×

cij'

ΦΩA

Assertion 4.3.

(4.11)

If H2(S ') = 1, H3(S ') ≥ 1, then for calculating the
value of Eq. (4.4) (which may be zero), it is sufficient

to search for  =  ∈  ΩA, such that  = 1.

Thus, a method of fast calculation of estimate (1.11)
consists in the following steps:

1. Construct the matrix C = C(S, S ') for the current
object S ' ∈  Wj .

2. Calculate the value H1(C); if H1(C) = 0, proceed to
the next object S ' ∈  Wj .

3. Calculate the value H2(C); if H2(C) = 0, proceed to
the next object S ' ∈  Wj .

4. Construct the matrix C '; calculate the value H3(C ');
if H3(C ') = 0, proceed to the next object S ' ∈  Wj; other-
wise, for calculating the value of (4.4), sum up all  =

 ∈  ΩA, such that  = 1.

5. SEARCH PROBLEM:
MULTISTEP SEARCH PROCEDURE

Let us consider a subclass of DAEC with the follow-
ing parameters:

(1) Some GESS Φ of the area µ is set. A system of sup-
port sets ΩA = { , , …, } is generated by k parallel
transitions of GESS Φ along the raster u × v. Let (it, jt) be

a position of GESS Φ in the support set , t = .

(2) A proximity function has a form of Eq. (4.1) for ε = 0.

(3) Feature weights are equal to some quantity p > 0.

(4) Object weights and a decision rule are arbitrary.

This concludes the description of 2D-AEC class.

We have

(5.1)

The value of  is the number of occur-

rences of GESS Φ in the characteristic proximity
matrix C(S, S ') such that a position of GESS (i, j)
belongs to the set {(i1, j1), (i2, j2), …, (ik, jk)}. If Φ does

Γ j S( ) pR1R2 γ S '( ) Bω̂ S S ',( ),
ω̂ ΩA∈
∑

S ' W j∈

H2 S '( ) 1=

H3 S '( ) 1≥

∑=

j 1 l, .=

ω̂ ΠR1 R2×
ij cij'

ω̂
ΠR1 R2×

ij cij'

ω̂1 ω̂2 ω̂k

ω̂t 1 k,

ΦΩA
S S ',( ) pµ Bω̂ S S ',( ).

ω̂ ΩA∈
∑=

Bω̂ S S ',( )
ω̂ ΩA∈
∑
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not enter into the matrix C or (i, j) ∈  {(i1, j1), (i2, j2), …,

(ik, jk)}, then  = 0.

Thus, in the considered subclass of 2D-AEC, the
problem of calculating the value of the function (5.1) is
equivalent to the problem of the search for GESS Φ in
the matrix C. This means that the task of developing a
technique of efficient calculation of the value of the
function (5.1) is equivalent to the task of constructing
an efficient search procedure in the framework of some
formalism that describes such procedures.

Consider the statement of the problem of search for
GESS on the raster and the formalism describing the
procedure of searching for the solution to this problem.

Denote a set of all matrices of the size u × v  (u, v  are
natural numbers) with the elements from the set {0, 1}
by Eu × v. Let C = (cij) ∈  Eu × v .

Consider the matrix GESS Φ = (ϕpq) ∈  ,
where 1 ≤ R1 ≤ u, 1 ≤ R2 ≤ v. There are numbers p1, p2,
q1, and q2, such that  =  =  =  = 1.

S is an area of GESS: S = |MΦ|, where MΦ = {(p, q)  = 1,

1 ≤ p ≤ R1, 1 ≤ q ≤ R2}.

Definition 5.1. GESS Φ is correctly superimposed
on the matrix C in the position (i, j), 1 ≤ i ≤ u – R1 + 1,
1 ≤ j ≤ v  – R2 + 1, if  = 1, ∀ (p, q) ∈  MΦ.

Figures 5.1a and 5.1b exemplify the matrix C and
GESS Φ. Cells with unities are colored black, and cells
with zeros, white. In this example, GESS Φ is correctly
superimposed on the matrix C in the position (2, 2)
only.

Definition 5.2. To find a GESS Φ on the matrix C
means to put a pair (C, Φ) into correspondence with the

matrix  = (C, Φ) =  ∈  ,

where  = 1, if a GESS Φ is correctly superimposed

on the matrix C in the position (i, j) and  = 0 other-
wise.

Note that for R1 = 1 and R2 = 1,  = C; therefore,
hereinafter we consider R1R2 > 1 (and, therefore, S ≥ 2).

In our example, the matrix (C, Φ) has the form
presented in Fig. 5.1c.

Let us fix a natural number n and consider a
sequence of matrices

(5.2)

Bω̂ S S ',( )
ω̂ ΩA∈
∑

E
R1 R2×

ϕ p11 ϕ p2R2
ϕ1q1

ϕR2q2

ϕ pq

ci p 1–+ j q 1–+,

C̃ C̃ c̃ij( ) E
u R1– 1+( ) v(× R2– 1 )+

c̃ij

c̃ij

C̃

C̃

C0 cij
0( )u0 v 0× ,=

C1 cij
1( )u1 v 1× … Cn, , cij

n( )un v n× ,= =

where C0 ∈  , Ck ∈  , Ck = fk(Ck – 1), and the
function fk is defined by the relation

(5.3)

S(i, j, k) ⊆  {1, 2, …, uk – 1}× {1, 2, …, v k – 1}, i = ,

j = , k = .
Definition 5.3. A set S(i, j, k) is called a domain of

dependence of the (i, j)th element of the matrix Ck or
the (i, j)th connection of the matrix Ck, and the power
of this set |S(i, j, k)| is called the power of the (i, j)th
connection of the matrix Ck.

Obviously, the function fk is completely defined by

specifying a set of connections {S(i, j, k)| i = , j =

} of the matrix Ck.
Further, we suppose that u0 = u, v 0 = v.
Definition 5.4. A set of functions Fn = (f1, f2, …, fn)

is called an n-step procedure of the search for GESS Φ
if the following conditions are specified:

(1) Cn = (C0, Φ), ∀ C0 ∈  ;

(2) |S(i, j, k)| ≥ 2, i = , j = , k = ;
(3) S(i1, j1, k) Ü S(i2, j2, k) for all admissible (i1, j1), (i2, j2):

(i1, j1) ≠ (i2, j2), k = ;

(4) (i, j, k) = {1, 2, …, uk – 1} × {1, 2, …, vk – 1},

k = .
Condition (1) implies that

(a) un = u – R1 + 1, v n = v  – R2 + 1; and

(b) (i, j, 1) = (i + p – 1, j + q – 1)|

(p, q) ∈  MΦ}; i.e., the connections of the matrix C1
should cover only those positions of the matrix C0,
where the unities of GESS Φ may occur.

Thus, the n-step procedure of searching for Fn per-
forms a search for a given GESS Φ on the arbitrary
matrix C0 of the size u0 × v 0. The procedure is specified

E
u0 v 0×

E
uk v k×

cij
k cpq

k 1– ,
p q,( ) S i j k, ,( )∈

∑= &
1 uk,

1 v k, 1 n,

1 uk,

1 v k,

C̃ E
u0 v 0×

1 uk, 1 v k, 1 n,

1 n,

S
j 1=

v k

∪
i 1=

uk

∪
2 n,

S
j 1=

v 1

∪
i 1=

u1

∪ {
j 1=

v R2– 1+

∪
i 1=

u R1– 1+

∪

1
2
3
4
5
6

1 2 3 4 5 6

C6 × 6

(‡)
1 2 3

(b)

Φ3 × 3

1 2 3 4

C
~

(C, Φ)

(c)

Fig. 5.1. Matrices C, Φ, and (C, Φ).C̃
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by the set of parameters ((u1, v 1), (u2, v 2), …, (un – 1,
v n – 1), (S(i, j, 1) , (S(i, j, 2) , …, (S(i, j,

n) , where (S(i, j, k)  denotes a
matrix of the size uk × v k whose elements are the sets
S(i, j, k).

Definition 5.5. The quantity

(5.4)

is called a complexity of the function fk.
The complexity of the function fk coincides with the

number of conjunctions necessary for its implementa-
tion and is a measure of its computational complexity.

Definition 5.6. The quantity

(5.5)

is called a complexity of the procedure Fn.
Definition 5.7. A procedure F of searching for

GESS Φ is called optimal in the class K of the searching
procedures Φ if it has the least complexity among all
procedures of the class K. A procedure F of searching
for GESS Φ is called optimal if it is optimal in the class
of all procedures of searching for Φ.

Let us consider some properties of searching proce-
dures.

The one-step procedure of searching for arbitrary
GESS Φ is uniquely defined by

(5.6)

Here,

(5.7)

If the area of the GESS is equal to 2, then only one-
step procedure exists for its search.

Theorem 5.1. The following equations are valid for
an n-step procedure Fn of the searching GESS Φ:
(1) S(i, j, n) = {(i + p – 1, j + q – 1)|(p, q) ∈  MΦ},

i =  , j =  where S(i, j, n) =

…

(i1, j1, 1);

(2) |S(i, j, k)| ≤ S, i = , j = , k = ; |S(i, j, k)| =
S ⇔ n = 1;

(3)  ≤ ukv k, k = ; and

(4) n ≤ S – 1.

)u1 v 1× )u2 v 2×

) u R1– 1+( ) v R2– 1+( )× )uk v k×

fk S i j k, ,( ) 1–( )
j 1=

v k

∑
i 1=

uk

∑=

Fn fk

k 1=

n

∑=

S i j 1, ,( ) i p 1–+ j q 1–+,( ) p q,( ) MΦ∈{ } ,=

i 1 u R1– 1+, , j 1 v R2– 1+, .= =

F1 f1 u R1– 1+( ) v R2– 1+( ) S 1–( ).= =

1 u R1– 1+, 1 v R2– 1+,

  

i

 

n

 

2–

 

j

 

n

 

2–

 
,( )

 

S i

 

n

 

1–

 

j

 

n

 

1–

 

n

 

1–

 
, ,( )∈

 ∪ 

i

 

n

 

1–

 

j

 

n

 

1–

 
,( )

 

S i j n

 
, ,( )∈

 ∪

S
i1 j1,( ) S i2 j2 2, ,( )∈

∪
1 uk, 1 v k, 1 n,

uk 1– v k 1–

S
---------------------- 1 n,

 

Proof.

 

The relations (1)–(3) obviously follow from the def-
inition of 

 

F

 

n

 

. To prove relation (4), note that, in carrying
out a transition from the matrix 

 

C

 

k

 

 to matrix 

 

C

 

k 

 

+ 1

 

,
1 

 

≤

 

 

 

k

 

 

 

≤

 

 

 

n 

 

– 1, at least one position of the matrix 

 

C

 

0

 

 falls

in the domain of dependence of each element ,
whereas in carrying out a transition from the matrix 

 

C

 

0

 

 to
matrix 

 

C

 

1

 

, minimum two positions of the matrix 

 

C

 

0

 

 fall in

the domain of dependence of the element . Hence,
2 + (

 

n

 

 – 1) 

 

≤

 

 

 

S

 

.
The ultimate aim in the considered case of the two-

dimensional support sets is a construction of an optimal
procedure of searching for GESS which is a rectangle

 

R

 

1

 

 

 

×

 

 

 

R

 

2

 

. The first result in this respect was the construc-
tion of the two-step procedure of the special search. It
is shown that the complexity of this procedure is less
than that of one-step searching procedure implement-
ing the exhaustive search for rectangle and, thus, its
efficiency is established. The optimality of this proce-
dure is proven for some class 

 

K

 

1

 

 of searching proce-
dures, which is a subset of class {

 

F

 

2

 

} of all two-step
procedures of searching for a rectangle.

Now, let us proceed to the description of this two-
step procedure of searching for a rectangle and give an
account of the results connected to its efficiency and
optimality.

Consider a problem of searching for GESS 

 

Φ

 

 =

(

 

ϕ

 

pq

 

, 

 

ϕ

 

pq

 

 = 1, 

 

p

 

 = , 

 

q

 

 =  on the raster

 

u

 

 

 

×

 

 

 

v

 

, and

(5.8)

Let us define a one-step procedure 

 

F

 

 of searching
for 

 

Φ

 

:

(5.9)

The complexity of the procedure 

 

F

 

 is

(5.10)

 

Definition 5.8.

 

 An operator f

 

1

 

(

 

r

 

1

 

) which transfers

the matrix  C  u    ×    v   into the matrix  C  1   = ,

where  = 

 

c

 

i

 

, 

 

j

 

 · 

 

c

 

i

 

 + 1, 

 

j

 

 · … · , 1 < 

 

r

 

1

 

 

 
≤

 

 

 

u

 

, is called
an operator of columns compression.

 

Definition 5.9.

 

 An operator f

 

2

 

(

 

r

 

2

 

) which transfers a

matrix 

 

C

 

u

 

 

 

×

 

 

 

v

 

 into the matrix 

 

C

 

2

 

 = , where

 = 

 

c

 

i

 

, 

 

j

 

 · 

 

c

 

i

 

, 

 

j

 

 + 1

 

 · … · , 1 < r2 ≤ v, is called an
operator of rows compression.

Figure 5.2 shows the example where the operator of
columns compression is applied to the matrix C and,

cij
k

cij
1

)R1 R2× 1 R1, 1 R2,

1 R1 u, 1≤ R2 v .≤< <

cij
1 ci p 1–+ j q 1–+, ,

p q,( ) MΦ∈
∑=

i 1 u R1– 1+, , j 1 v R2– 1+, .= =

&

F u R1– 1+( ) v R2– 1+( ) R1R2 1–( ).=

cij
1( ) u r1– 1+( ) v×

cij
1 ci r1 1–+

cij
2( )u v(× r2 1+ )–

cij
2 ci r2 1–+
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then, the operator of rows compression is applied to the
obtained result. An example shows that the introduced
operators may be used for constructing two-step proce-
dures of searching for a rectangle.

Let us define two two-step operations of searching
for Φ by setting

(5.11)

It is evident that

(5.12)

(5.13)

Note that |F2| – |F1| = (R1 – 1)(R2 – 1)(v  – R2 – u + R1) >
0 ⇔ v  – R2 > u – R1, i.e., for v  – R2 > u – R1, F1 is a less
complex procedure than F2.

Let |F1| < |F2|. Then,

(5.14)

Eq. (5.14) indicates the difference in the computa-
tional complexities of the two procedures: the one-step
procedure of searching for the rectangle F and the pro-
posed two-step procedure F1. This difference remains
nonnegative even for |F1| > |F2|.

Now, let us show that for u – R1 < v  – R2 (u – R1 >
v  – R2), the procedure F1 (F2) is optimal in a certain
class K1 ⊂ {F2} of the two-step searching procedures.

Let us define this class. Let indices i1, i2, …, ik, j1,
j2, …, js: 1 ≤ i1 < i2 < … < ik ≤ u0, 1 ≤ j1 < j2 < … < js ≤
v 0 be chosen. A matrix of the size k × s made up of the
elements of the matrix C0, situated at the intersection of
the rows i1, i2, …, ik and columns j1, j2, …, js, is a sub-

matrix  of the matrix C0.

Let us fix the integers x and y such that

(5.15)

and define a two-step procedure F2 = (f1, f2) in the fol-
lowing way. Let us construct the cover of the submatrix

 of the matrix C0 by rectangles x × y so that it
is minimal with respect to the number of the rectangles
x × y used. Each rectangle we associate with a connec-
tion in a matrix C1. In the same manner, we construct

the cover of the submatrix  by the rectan-
gles x × y and define new connections in the matrix C1.

For the rest of the submatrices  of the
matrix C0, we make the similar construction: the mini-
mal coverings of these submatrices by the rectangles

F1 f1 R1( ) f2 R2( ),( ), F2 f2 R2( ) f1 R1( ),( ).= =

F1 u R1– 1+( )v R1 1–( )=

+ u R1– 1+( ) v R2– 1+( ) R2 1–( ),

F2 u v R2– 1+( ) R2 1–( )=

+ u R1– 1+( ) v R2– 1+( ) R1 1–( ).

F F1–

=  u R1– 1+( ) R1 1–( ) R2 1–( ) v R2–( ).

M j1 j2 … js, , ,
i1 i2 … ik, , ,

1 x R1, 1 y R2, 1 xy R1R2,< <≤ ≤ ≤ ≤

M1 2 … R2, , ,
1 2 … R1, , ,

M2 3 … R2 1+, , ,
1 2 … R1, , ,

M j j 1+ … j R2 1–+, , ,
i j 1+ … i R1 1–+, , ,

x × y are performed, and new connections in the matrix
C1 are defined. The function f1 is now defined.

Thus,

(5.16)

If the inequalities

(5.17)

are fulfilled, then the matrix C0 is covered by rectangles
x × y and the number of rectangles is (u – x + 1)(v  –
y + 1). Therefore, u1v 1 = (u – x + 1)(v  – y + 1).

The function f2 is defined in the following way. Con-
nection S(i, j, 2) of the matrix C2 consists of all posi-
tions (and only of them) of the matrix C1 which are con-
nected with the rectangles x × y covering the submatrix

 of the matrix C0.

Hence,

(5.18)

The procedure F2 = (f1, f2) is completely defined.
Integers x and y which satisfy the conditions (5.15) and
(5.17) are the parameters of this procedure. Note that if
x = R1, y = 1, then F2 = F1 and if x = 1, y = R2, then
F2 = F2.

The complexity of the procedure F2 is

(5.19)

The variation of the values of x and y in the range of
admissible values defined by conditions (5.15) and
(5.17) determines a class K1 of the two-step procedures
of searching for a rectangle R1 × R2.

S i j 1, ,( ) xy, i 1 u1, , j 1 v 1, .= = =

x 1– u R1, y– 1– v R2–≤ ≤

M j j 1+ … j R2 1–+, , ,
i j 1+ … i R1 1–+, , ,

S i j 2, ,( ) R1 x– 1+( ) R2 y– 1+( ),=

i 1 u R1– 1+, , j 1 v R2– 1+, .= =

F2 f1 f2+=

=  S i j 1, ,( ) 1–( )
j 1=

v 1

∑
i 1=

u1

∑ S i j 2, ,( ) 1–( )
j 1=

v 2

∑
i 1=

u2

∑+

=  u x– 1+( ) v y– 1+( ) xy 1–( ) u R1– 1+( )+

× v R2– 1+( ) R1 x– 1+( ) R2 y– 1+( ) 1–( ).

1
2
3
4
5
6

1 2 3 4 5 6

C6 × 6

(‡)
1 2 3 4

(b)

f 1(3)

1 2 3 4 5 6

f 2(3)

(c)

Fig. 5.2. Operators of column and row compression.
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Theorem 5.2. Let u – R1 ≤ v  – R1 (u – R1 ≥ v  – R2).
Then, the procedure with x = R1 and y = 1 (x = 1 and y =
R2) is optimal in the set K1 of searching procedures.

Proof. Let u – R1 ≤ v  – R2. Consider the function
f(x, y) = (u – x + 1)(v  – y + 1)(xy – 1) + (u – R1 + 1)(v  –
R2 + 1)((R1 – x + 1)(R2 – y + 1) – 1) of continuous argu-
ments x and y defined on a set Df = [1, R1] × [1, R2]\{(1, 1),
(R1, R2)}. Let us prove that the point (R1, 1) is a point of
minimum of this function in the area of its definition.
Note that

Therefore, at the fixed value of some of its argu-
ments, f(x, y) is a convex function of another argument.
Thus, a point of function minimum is among the points
(1, R2), (1, 2), (2, 1), (R1, 1), (R1, R2 – 1), and (R1 – 1, R2).

(1) Let us prove that f(R1, 1) ≤ f(1, R2).

We have

Then,

The last inequality is valid due to the assumption
made.

(2) Let us prove that f(R1, 1) ≤ f(1, 2).

∂2f

∂x2
-------- 2y v y– 1+( )– 0,<=

∂2f

∂y2
-------- 2x u x– 1+( )– 0, x y,( )∀ Df.∈<=

f R1 1,( ) u R1– 1+( )v R1 1–( )=

+ u R1– 1+( ) v R2– 1+( ) R2 1–( );

f 1 R2,( ) u v R2– 1+( ) R2 1–( )=

+ u R1– 1+( ) v R2– 1+( ) R1 1–( ).

f 1 R2,( ) f R1 1,( )–

=  u R1– 1+( ) v R2– 1+( ) R1 R2–( )

+ u v R2– 1+( ) R2 1–( ) u R1– 1+( )v R1 1–( )–

=  u R1– 1+( ) v R1 v R2–(

– R2 1–( ) R1 R2–( ) v R1– v )+

+ u v R2– 1+( ) R2 1–( )

=  u R1– 1+( ) R2 1–( ) v– R1– R2+( )

+ u v R2– 1+( ) R2 1–( )

=  R2 1–( ) uv– uR1– uR2 R1 1–( )v+ +(

+ R1 1–( ) R1 R2–( ) uv uR2– u )+ +

=  R2 1–( ) R1 1–( ) v R2– u– R1+( ) 0≥

⇔  v R2 u≥– R1.–

Set  = R1 – 1 and  = R2 – 1. By virtue of Eq. (5.8),

 ≥ 1 and  ≥ 1. Then,

We have

The last expression is a linear function g( ) of the

argument . Let us show that, for all admissible values

of the arguments  and parameters u and , this func-
tion takes nonnegative values. To do that, let us show that,
for all admissible u and , the coefficient u + u2  –

2u  +  – u  +  of the argument of linear
function is positive and the function’s value at the point

 = 1 is nonnegative.

We have

Dividing the last expression by  > 0, we obtain

u2 – u(1 + 2 ) +  + . The last expression is a
quadratic trinomial relative to u; it takes nonnegative
values for u ≥ 1 +  = R1, which is valid for any allow-

able values of u and .

Here,

(3) Let us prove that f(R1, 1) ≤ f(2, 1).
We have

(5.20)

R1' R2'

R1' R2'

f R1 1,( ) u R1'–( )v R1' u R1'–( ) v R2'–( )R2' ,+=

f 1 2,( ) u v 1–( ) u R1'–( ) v R2'–( ) R1R2' 1–( ).+=

f 1 2,( ) f R1 1,( )– u u R1' R2'+– 1–( )≥

+ u R1'–( )2
R1' R2' 1–( ) u R1'–( ) u R1' R2'+–( )R1'–

=  u2 uR1'– uR2' u– u2R1' R2' u2– 2uR1'
2R2'–+ +

+ 2uR1' R1'
3R2' R1'

2
– u2R1'– 2uR1'

2
+ +

– R1'
3 uR1' R2'– R1'

2
R2'+

=  R2' u u2R1' 2uR1'
2

– R1'
3 uR1'– R1'

2
+ + +( )

– uR1' u– 2uR1' R1'
2

u2R1'– 2uR1'
2

R1'
3.–+–+

R2'

R2'

R2' R1'

R1' R1'

R1'
2 R1'

3 R1' R1'
2

R2'

u u2R1' 2uR1'
2– R1'

3 uR1'– R1'
2+ + +

> u2R1' 2uR1'
2– R1'

3 uR1'– R1'
2.+ +

R1'

R1' R1'
2 R1'

R1'

R1'

g 1( ) u u2R1' 2uR1'
2– R1'

3 uR1'– R1'
2+ + +=

– uR1' u– 2uR1' R1'
2 u2R1'– 2uR1'

2 R1'
3–+–+ 0.=

f 2 1,( ) u 1–( )v u R1'–( ) v R2'–( ) R1' R2 1–( );+=

f 2 1,( ) f R1 1,( ) = u 1–( )v u R1'–( ) v R2'–( )+–

× R2 R1' 1–( ) u R1'–( )v R1' .–
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Then,

By substituting the last expression into the Eq. (5.20)
and by reducing similar terms, we obtain

Estimating the expression (v  – u) from below

by the expression (  – ) (this estimation is valid
by virtue of the supposition we made in the beginning of
the proof) and reducing similar terms, we obtain

The right-hand part of the inequality is a linear function
g(u). Let us show that g(u) ≥ 0 for all admissible values
of the argument u and the parameters v, , and . To

do that, let us show that for all admissible v, , and ,

the coefficient v  – v  –  +  +  of the
argument of linear function is positive and the function’s
value at the point u = R1 =  + 1 is nonnegative.

Indeed,

In addition,

u R1'–( ) v R2'–( )R2 R1' 1–( )

=  u R1'–( )v u R1'–( )R2'–( )R2 R1' 1–( )

=  u R1'–( )v R2 R1' 1–( ) u R1'–( )R2' R2 R1' 1–( )–

=  u R1'–( )v R1' R2 u R1'–( )–

× R2 v R2' R1' 1–( )+( )

=  u R1'–( )v R1' u R1'–( )v R1' R2'+

– u R1'–( )R2 v R2' R1' 1–( )+( ).

f 2 1,( ) f R1 1,( )– u 1–( )v u R1'–( )v R1' R2'+=

– u R1'–( ) R2' 1+( ) v R1' 1–( )R2'+( )

=  uv v– uv R1' R2' v R1'
2
R2'– uv R2'–+

– uR1' R2'
2

uR2'
2

+

– uv uR1' R2'– uR2' v R1' R2' R1'
2
R2'

2
R1' R2'

2
–+ + +

+ v R1' R1'
2
R2'+  – R1' R2' .

R1' R2'

R1' R2' R2' R1'

f 2 1,( ) f R1 1,( )–

≥ u v R1' R2' v R2'– R1' R2'
2

– R2'
2

R2'+ +( )

– v v R1'
2
R2'– R1'

2
R2'

2
v R1' R1' R2' .–+ +

R1' R2'

R1' R2'

R1' R2' R2' R1' R2'
2

R2'
2

R2'

R1'

v R1' R2' v R2'– R1' R2'
2

– R2'
2

R2'+ +

=  R2' v R2'–( ) R1' 1–( ) 1+( ) 0.>

g R1' 1+( ) v R1' R2' R2'
2

v R2' 1+( )–+ +=

(4) Let us prove that f(R1, 1) ≤ f(R1, R2 – 1).
We have

 

By opening the brackets and by reducing similar terms
in the last expression, we obtain

The expression compared to zero is a linear function
g(R1) of the argument R1. Let us show that g(R1) ≥ 0 for
all admissible values of the argument R1 and parameters
v  and R2. To do that, let us show that for all admissible

v  and R2, the coefficient vR2 – 2v  –  + 3R2 – 2 of the
argument of the linear function and the function’s value
at the point R1 = 2 are nonnegative.

The expression v(R2 – 2) –  + 3R2 – 2 is itself a
linear function g1(v); in addition, R2 – 2 ≥ 0 and g1(R2) =
R2 – 2 ≥ 0. Here, g(2) ≥ g(1) = R2 – 2 ≥ 0.

(5) Let us prove that f(R1, 1) ≤ f(R1 – 1, R2).
We have

By opening the brackets, using the inequality
(v  – u) ≥ (  – ), and by reducing simi-

lar terms in the last expression, we obtain

=  v R1' R2'– 1–( ) R2' R2'
2

+ +

≥ u R1' R2'+–( ) R1' R2'– 1–( ) R2' R2'
2

+ +

=  u R1'–( ) R1' R2' 1––( ) R1' R2'+

≥ R1' R2'– 1– R1' R2'+ R1' 1–( ) R2' 1+( ) 0.≥=

f R1 R2 1–,( ) u R1'–( ) v R2'– 1+( ) R1R2' 1–( )=

+ u R1'–( ) v R2'–( ).

f R1 R2 1–,( ) f R1 1,( )–

=  u R1'–( ) v R2'– 1+( ) R1R2' 1–( )(

+ v R2'–( ) v R1'– v R2'–( )R2' )– 0 :∨ u R1'– 1.≥

R1 v R2 2v– R2
2– 3R2 2–+( )

+ 2v v R2– R2
2 2R2–+ 0.∨

R2
2

R2
2

f R1 1– R2,( ) u R1'– 1+( )=

× v R2'–( ) R1' R2 1–( ) u R1'–( ) v R2'–( ).+

f R1 1– R2,( ) f R1 1,( )–

=  u R1'– 1+( ) v R2'–( ) R1' R2 1–( )

+ u R1'–( ) v R2'–( ) u R1'–( )v R1'–

– u R1'–( ) v R2'–( )R2' .

R1'R2' R1' R2' R2' R1'

f R1 1– R2,( ) f R1 1,( )–
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The expression compared to zero is a linear function
g(v) of the argument v. Let us show that g(v ) ≥ 0 for all

≥ uv R1' R2' uR1' R2'
2– v R1'

2R2'– R1'
2R2'

2 v R1' v–+ +

– R1' R2' R2' uv R2'– uR2'
2 v R1' R2' R1' R2'

2–+ + +

≥ R2' uv R1' uR1' R2'– v R1'
2– R1'

2R2' R1'–+(

+ 1 uv– uR2' v R1' R1' R2' )–+ + 0 : R2'∨ 1;≥

v uR1' R1'
2– u– R1'+( ) uR1' R2'–

+ R1'
2R2' R1'– 1 uR2' R1' R2'–+ + 0.∨

admissible values of the argument v  and the parameters
u,  and . To do that, let us show that for all admis-

sible u,  and , the coefficient u  –  – u + 
of the argument of the linear function and the function’s
value at the point v  = R2 =  + 1 are nonnegative:

The theorem is proven.
The searching procedure may be considered as an

implementation of a morphological operation “erosion
by the structuring element Φ” and, hence, an efficient
procedure of searching for GESS Φ is an efficient
implementation of a morphological operation “erosion
by the structuring element Φ.” In addition, for several
types of GESS Φ, inversion of the searching procedure
allows one to perform the morphological operation of
“dilation by the structuring element Φ.”

6. APPLICATION EXAMPLE
OF THE INTRODUCED SUBCLASS OF 2D-AEC: 

CLASSIFICATION OF HEMOBLASTOSES

The proposed subclass of 2D-AEC with rectangular
support sets outlined here was used for compiling an
efficient algorithm with rectangular support sets. This
algorithm was employed for estimating initial data in
automated diagnosis of malignant growths in a human
hematogenic system (RFBR project no. 00-07-9004
“Knowledge-oriented system of automation of scien-
tific research in the area of morphology of blood-cells
and hematogenic organs”).

The photomicrographic images of nuclei of lym-
phocytes in the preparations of lymphatic tissues of the
patients were the objects of our analysis. The photomi-
crographic images were obtained by the digital photo
camera with the lens ×100 combined with the micro-
scope; they were represented as 24-bite files in TIFF of
1500 × 1000 pixels in size. Each of the pictures con-
tained 3–40 nuclei of lymphocytes. Figure 6.1 shows
the reduced monochrome picture of the slide of lym-
phatic gland. This picture was additionally processed to
enhance contrast. The dark rounded regions against the
light background including the light streaks are the
nuclei of lymphocytes.

The hematologists indicated the nuclei suitable for
analysis (i.e., not smeared, without artifacts, uniformly
colored, etc.). The learning sample was formed of 639 of
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Fig. 6.1. Monochrome photomicrographic image of the
preparations of the lymphatic gland.
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Fig. 6.2. Matching pair of nuclei.
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such nuclei taken from 107 preparations (ten patients).
Each patient was classified into one of the three classes:
malignant growth, nonmalignant growth, and reactive
lymphatic gland.

To preliminarily estimate the quality of the source
material, first, we estimate the similarity of the cells for
different patients and different classes of patients.

The preprocessing of images compensates for dif-
ferent illumination conditions and different colors of
stain used for the preparations. After that, the mono-
chrome images with 256 intensity levels were obtained.
In these images, each nucleus from the learning sample
was matched with the rest of the nuclei from the learn-
ing sample over all possible local neighborhoods of the
rectangular shape of 10 × 10 pixel sizes.

Figure 6.2. exemplifies the process of nuclei match-
ing. A nucleus extracted in the monochrome image was
placed against some background and treated as a rect-
angular image with dimensions similar to those of the
circumscribed rectangle (see gray schematic images of
the nuclei against the white background). The sizes of
rectangular images constructed for different nuclei may
differ, as is seen in Fig. 6.2. In the case depicted in Fig. 6.2,
first, the image of the nucleus S (Fig. 6.2a) is matched with
the fragment of the image of the nucleus S' isolated by the
dotted line (Fig. 6.2b). In the image (a) and in the sepa-
rated image fragment (b), it is necessary to search for all
possible square neighborhoods of 10 × 10 pixel sizes
(one of these neighborhoods is depicted as a square)
and to calculate the value of the proximity function

(S, S ', Fr) for each of these neighborhoods (it is

coded by a matrix ). Here, the proximity function is
written with the additional argument Fr, which indi-
cates that it is necessary to take account of the separate
fragments of the image (b) of the nucleus S'. Apart from
the value of proximity function (S, S', Fr), it is neces-

sary to calculate the number of pixels (S, S', Fr)
which have the brightness level different from the level
of background both in the first and second images.

In the same manner, at the following steps of pro-
cessing, the remaining rectangular fragments of the
image of the nucleus S ' are searched and matched with
the image of the nucleus S over all possible neighbor-
hoods of 10 × 10 pixels. For example, at the second
step, one can choose a fragment of the image of nucleus
S ' bounded by a rectangle shifted by one pixel to the
right with respect to the first fragment (see Figs. 6.2c
and 6.2d); at the third step, a fragment bounded by a
rectangle shifted by one pixel to the right with respect
to the second fragment, etc. When the fragment in the
upmost right corner of the image of the nucleus S ' is
considered, the fragment bounded by a rectangle
shifted by one pixel down with respect to the first frag-
ment is chosen, etc.

Bω̂

ω̂

Bω̂

EffAreaω̂

After matching all fragments of the image (b) of the
nucleus S ' with the image (a) of the nucleus S has been
performed, the value of expression

(6.1)

is calculated.
For nuclei S ' from the learning set and fixed nucleus

S, vector Γ(S) = (Γ1(S), Γ2(S), …, Γ10(S)) of the esti-
mates of the nucleus S for different patients is calcu-
lated. Here, the estimate Γj(S) of the nucleus S for the
jth patient is determined by the formula

(6.2)

where Wj is a set of nuclei of the jth patient;
(S, S ', Fr) is the number of pixels for match-

ing nuclei S and S '; ΩA is a system of support sets: a
totality of 10 × 10 squares; (S, S ', Fr) is a proximity
function (4.1) with ε = 0 and εij = 8 for all i and j.

The value of the sum

(6.3)

was estimated by the following procedure of searching
for the square (further, we will omit the additional argu-
ment Fr):
(1) a characteristic proximity matrix C(S, S ') was calcu-
lated;
(2) a matrix C1 = f1(C) was constructed (or C1 = f2(C)
which depends on the ratio between the image lengths
S, S ' and the image heights r1 and r2);
(3) a matrix C2 = f2(C1) (C2 = f1(C1)) was constructed.

The value of the sought sum was equal to the num-
ber of unities in the matrix C2.

The results obtained testify that (i) the initial data
were substantially heterogeneous and (ii) a learning set
should be enlarged by adding new precedents from the
existing three classes and from the new class of “norm.”
This means that data presented cannot serve as a basis
for a reliable detection of diagnostic features of human
hematogenic system. In practice, it demands a substan-
tial extension of the initial data.

CONCLUSIONS

The problem of the construction of efficient algo-
rithm in one subclass of 2D-AEC is equivalent to the
problem of the construction of efficient procedure of
searching for GESS in the binary raster. We proposed a
formalism describing the multistep procedures of
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searching for solutions to these problems and a crite-
rion of efficiency for searching procedures related to
their computational complexity.

A large number of GESS generating the systems of
support sets which make sense in pattern recognition
can be represented by the union of the rectangles.
Therefore, our primary task is a construction of the
optimal procedure of searching for a rectangle. Here,
we propose an efficient two-step procedure of search-
ing for a rectangle and prove its optimality in a subclass
of all two-step procedures of searching for a rectangle
(Theorem 5.2).

The constructed two-step procedure of searching for
a rectangle served as a basis of the efficient algorithm
of the 2D-AEC class which was successfully used for
analysis of initial data in the problem of hemoblastoses
classification from the images of lymphocyte nuclei in
the histological preparations.

The introduced approach to the construction of the
efficient algorithm of the 2D-AEC class can be gener-
alized to the case where the three-dimensional matrices
are the object descriptions and the support sets are the
aggregates of the three-dimensional indices.

In the second part of this work, we plan to investi-
gate the possibility of constructing optimal procedures
of searching for a rectangle as well as efficient parallel
schemes of searching for arbitrary GESS constructed
from rectangles. The obtaining of the upper and lower
complexity estimates for the procedures of searching
for GESS, in particular, rectangular GESS, is also a
challenging problem. In the future research, we sup-
pose to construct efficient procedures for other spatial
systems of support sets.
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