
 

ISSN 1054-6618, Pattern Recognition and Image Analysis, 2006, Vol. 16, No. 3, pp. 298–328. © Pleiades Publishing, Inc., 2006.

 

Operations of Descriptive Image Algebras with One Ring

 

I. B. Gurevich and V. V. Yashina

 

Dorodnicyn Computing Center, Russian Academy of Sciences, ul. Vavilova 40, GSP-1, Moscow, 119991 Russia
e-mail: igourevi@ccas.ru, werayashina@mail.ru

 

Abstract

 

—The work is devoted to the description of a new class of image algebras—descriptive image alge-
bras (DIA). These algebras are intended for the structural description of possible algorithms for image analysis
and understanding. Definitions of DIA and basic DIA are introduced. The choice of the algebra for refinement
of the concept of DIA with one ring is discussed. Examples of operations, both resulting and not resulting in
construction of DIA with one ring, are presented. Possible interpretations of operations of DIA are considered.
By results of investigation of the standard Ritter’s image algebra used in construction of DIA with one ring are
formulated. An illustrative example of an algorithmic scheme is described with the help of DIA.
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INTRODUCTION

In this paper, a new mathematical object, namely,
descriptive image algebras (DIAs), is described. This
object is studied in developing a mathematical appara-
tus for analysis and estimation of information repre-
sented in the form of images. For a structural descrip-
tion of possible algorithms for solving these problems,
we need a formal instrument that allows us to describe
and justify the chosen way of solution. As formalization
tools, we chose the algebraic approach, which should
provide a unique form of procedures for describing the
objects–images and transformations of these objects–
images.

The need to develop a mathematical language that
ensures that solutions of problems of image processing,
analysis, and understanding may be uniformly
described by structural algorithmic schemes is justified
by the following factors:

(1) there are many algorithms (designed and intro-
duced into practice) for analysis, estimation, and under-
standing of information represented in the form of
images;

(2) the set of algorithms is neither structured nor
ordered;

(3) as a rule, methods for image analysis and under-
standing are designed on the basis of intuitive princi-
ples, because the information represented in the form of
images is hardly formalized;

(4) the efficiency of these methods is estimated (as
is usual in experimental sciences) by the success in
solving actual problems—as a rule, the problem of rig-
orous mathematical justification of an algorithm is not
considered.

1. ALGEBRAIZATION

 

1.1. Justification of Actuality of Algebraization

 

“Algebraization” is one of the most topical and
promising directions of fundamental research in image
analysis and understanding. The main goal of the alge-
braic approach is the development of a theoretical basis
for representations and transformations of images in
the form of algebraic structures that enable one to use
methods from different areas of mathematics in image
analysis and understanding. The idea of constructing a
unified theory for different concepts and operations
employed in image and signal processing was first put
forward by Unger [29], who suggested parallelizing
algorithms for image processing and analysis on com-
puters with cellular architecture. The basis for the
development of parallel architectures for image pro-
cessing arose from the idea that a wide class of image
transformations may be described by a small set of
standard rules.

The general foundation of the algebraic approach to
synthesis and analysis of recognition algorithms was
laid down in papers by Yu.I. Zhuravlev [5, 6]. The
Zhuravlev algebra is a tool for realization of an alge-
braic approach to pattern recognition and is used for
systematization of separated heuristic algorithms, each
one designed for solving a classification problem. The
Zhuravlev algebra is intended to solve problems with
incompletely formalized and partially contradictory
data. The idea of the algebraic approach to problems of
recognition and classification is the following. There
are no rigorous mathematical models for weakly for-
malized sciences such as geology, biology, medicine,
and sociology. However, in many cases, nonstrict meth-
ods based on heuristic arguments are very efficient in
applications. Therefore, it is sufficient to construct a
family of such heuristic algorithms for solving appro-
priate problems and, then, to construct the algebraic
closure of this family, which contains the required solu-
tion.
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The problem of image understanding is a classical
example of a problem with incompletely formalized
and partially contradictory information. This allows us
to hope that the application of the algebraic approach to
image recognition may result in significant achieve-
ments.

Image analysis and understanding have a certain
peculiarity, due to which the use of the Zhuravlev alge-
braic approach in the general form is inconvenient. The
reasons are the following:

(1) the character of the considered problem is not
taken into account if algebraic methods are applied to
the information represented in the form of images;

(2) the results of application of the theory cannot
always be simply interpreted;

(3) there are many natural transformations of
images which are easily interpreted from the user’s
point of view (for instance, rotation, contraction,
stretching, color inversion, etc.) but are hardly repre-
sentable by standard algebraic operations.

The necessity arises of using algebraic tools to
record natural transformations of images. Moreover,
the algebraization of image analysis and understanding
must include the construction of algebraic descriptions
of both the images themselves and algorithms for their
processing, analysis, and recognition.

Analyzing the publications related to applications of
algebraic methods to image analysis and understand-
ing, we distinguish the following advantages of unified
representation of images and algorithms for their pro-
cessing and analysis:

(1) construction of unified representations for
descriptions of images;

(2) efficiency of transition from input data in the
form of images to different formal models of the
images;

(3) naturalness of uniting the algebraic representa-
tion of the information with the developed algebraic
tools for pattern recognition, which has been success-
fully employed;

(4) the possibility of using the methods of mathe-
matical modeling employed in applied domains to
which the processed images belong;

(5) the possibility of using the image descriptions in
the form of group-theoretic representations;

(6) naturalness of uniting the methods of structural
analysis of images with tools of probabilistic analysis;

(7) the possibility of a formalized description for
problems of parallelizing with due regard for the spe-
cifics of particular computational architectures.

 

1.2. Survey of Image Algebras

 

To a great extent, attempts to develop a formal appa-
ratus for uniform and compact representation of proce-
dures for image processing and analysis are stem from
applied requirements for effective realization of algo-

rithmic tools for image processing and analysis on
computers with specialized architectures, in particular,
cellular and parallel.

Mathematical morphology [26], proposed by
Minkowski and Hadwiger and developed by Matheron
and Serra, seems to be the first attempt to create a the-
oretical apparatus that allows one to describe many
widespread operations of image processing in the com-
position of a rather small set of standard simple local
operations. Such representations allow one to formalize
the choice of procedures for image processing and are
convenient for implementation on parallel architec-
tures. It might have been the success of mathematical
morphology that initiated numerous attempts of alge-
braization both in the domain of algorithm representa-
tions and in closed domains. Mathematical morphology
is an efficient tool for uniform representation of local
operations of image processing, analysis, and under-
standing in terms of algebras over sets. It makes it pos-
sible to describe algorithms for image transformations
in terms of four basic local operations, namely, those of
erosion, dilatation, opening, and closing; moreover, any
two of these operations form a basis, in terms of which
the other two operations may easily be expressed. This
is very convenient for the development of software sys-
tems, in which the user can quickly design particular
algorithms from basic blocks.

On the basis of mathematical morphology, Stern-
berg [27] introduced the concept of an image algebra.
The image algebra made it possible to represent algo-
rithms for image processing in the form of algebraic
expressions, where variables are images and operations
are geometrical and logical transformations of the
images.

It is known that the possibilities of mathematical
morphology are very limited. In particular, many
important and widely used operations of image pro-
cessing (feature extraction based on the convolution
operation, Fourier transforms, use of the chain code,
equalization of a histogram, rotations, recording, and
nose elimination), except for the simplest cases, can
hardly (if ever) be realized in the class of morphologi-
cal operations.

The impossibility of constructing a universal alge-
bra for tasks of image processing on the basis of the
morphological algebra may be explained by the limita-
tion of the basis consisting of the set-theoretical opera-
tions of addition and subtraction in Minkowski’s sense.
It is known that this basis has the following drawbacks
[25]:

(1) complicated realization of widely used opera-
tions of image processing;

(2) impossibility of establishing a correspondence
between the operations of mathematical morphology
and linear algebra;

(3) impossibility of using mathematical morphology
for transformations between different algebraic struc-
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tures, in particular, sets including real and complex
numbers and vector quantities.

These problems have been solved in the standard
image algebra (IA) by G. Ritter [25] on the basis of a
more general algebraic representation of operations of
image processing and analysis. Image algebra general-
izes the known local methods for image analysis, in
particular, mathematical morphology, and provides the
following advantages as compared with mathematical
morphology:

(1) it makes it possible to work with both real and
complex quantities;

(2) it allows one to include both scalar and vector
data into the input information;

(3) it makes image-algebra structures consistent
with linear structures;

(4) it provides a more accurate and complete
description of its operations and operands;

(5) with the help of a special structure “template,”
composite operations of image processing are divided
into a number of parallel simplest operations.

 

1

 

The bottleneck in applications of methods of image
algebra to image recognition is the choice of the
sequence of algebraic operations and templates for rep-
resentation of composite operations of image process-
ing. At present, this choice is based, as a rule, on gen-
eral representations of the character of images and
tasks. Deficiencies of this approach are obvious: first, it
is subjective and its success depends to a great extent on
the user’s experience and, second, it is intended to solve
a specific narrow class of problems.

The most general approach to the algebraic descrip-
tion of information for recognition algorithms is
Grenander’s general pattern theory [2, 13], which
unites metric theory with probability theory for certain
universal algebras of combinatorial type. The main
attention is given to the investigation of the structure of
recognizing elements. The idea that underlies
Grenander’s theory is that knowledge about patterns
may be expressed in terms of regular structures.

 

2

 

 The
theory is based on three principles, namely, atomism,
combinatority, and observability. By atomism, we
mean that the structures are composed of certain basic
elements. Combinatority means that explicit rules are
formulated for definition of admitted and prohibited
structures. The third principle is related to the search
for identification rules for determining equivalence
classes. It should be noted that Grenander used the
notion of image algebra: however, he was dealing with
a different algebraic construction.

 

1

 

Let 

 

F

 

 be a homogeneous algebra and 

 

X

 

 a topological space. By a
template, we mean an image whose set of values is a set of
images. In particular, an 

 

F

 

-valued template from a set 

 

Y

 

 into set 

 

X

 

is a function 

 

t
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-valued image on set 
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.
An image in Ritter’s sense (
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2

 

Regular structures are structures constructed by certain rules.

 

1.3. Descriptive Approach 
to Image Analysis and Understanding

 

Despite the existence of a series of significant pub-
lications in the area of algebraization of problems of
image processing, understanding, and analysis and
image evaluation, we can state that, at present, there is
no unique theoretical frame for problems in this enter-
prise. In the late 1980s and in 1990s, I.B. Gurevich [3,
14, 15] specialized for the first time a general algebraic
approach to solving problems of recognition, classifica-
tion, and prediction [5, 6] to the case of representation
of the initial data in the form of images—the descrip-
tive approach to image analysis and understanding.

This approach has been developed for formulation
and solution of the following problems:

(1) problems related to obtaining a formal descrip-
tion of a recognition object;

(2) problems related to developing procedures for
image analysis and understanding.

These problems belong to the descriptive theory of
image analysis, because they are connected with the
study of the internal structure of images depending on
the operations by which the image may be obtained
from other images and objects of a simpler nature. This
is why the word “descriptive” appears in the name of
this approach. The key problems of the descriptive the-
ory of image analysis are image models and transfor-
mations defined on equivalence classes of images.
Thus, the realization of the descriptive approach is the
special descriptive theory of image analysis.

In the descriptive approach, the following mathe-
matical foundations for solving problems of image
analysis and understanding may be distinguished:

(1) specialization of the Zhuravlev algebra to the
case of image understanding;

(2) standardization of representation of problems of
image analysis and understanding;

(3) standardization of the language for description
of procedures for image analysis and understanding;

(4) application of algebraic tools to transformations
of algorithms for image analysis and understanding and
of image models.

Thus, the algebraic formalism should provide the
following possibilities:

(1) construction of algebraic structures such that
methods from other areas of mathematics may be used
in image processing, analysis, and understanding;

(2) construction of precise and compact descriptions
of images, which are convenient both from the point of
view of interpreting the actions performed and from the
point of view of developing of new methods;

(3) creation of a language for a standard description
of image transformations;

(4) description of operations on images in the form
of a compact collections of simple transformations.
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In the general case, such an algebraic formalism
should be a formal system for image representations
and transformations, which satisfy the following condi-
tions:

(1) each object of transformations is a hierarchical
structure constructed of elementary objects with the
help of operations of the image algebra;

(2) as the objects, one may use points, sets, models,
operations, and morphisms;

(3) each transformation is a hierarchical structure
constructed of a collection of basic transformations
with the help of operations of the image algebra.

 

1.4. Descriptive Image Algebras

 

Investigations in the area of algebraization and
image analysis (see Subsections 2.2, 2.3) of the 1970–
1980s represent a source of development of the descrip-
tive image algebra (DIA) [4, 16, 18, 19, 20, 21, 22, 23].

An object that lies most closely to the developed
mathematical object is the image algebra proposed and
developed by Ritter [24]. Ritter’s main goal in develop-
ing the image algebra is the design of a standardized
language for description of algorithms for image pro-
cessing intended for parallel execution of operations. A
key difference in the new image algebra from the stan-
dard Ritter image algebra is that DIA is developed as a
descriptive tool, i.e., as a language for description of
algorithms and images rather than a language for algo-
rithm parallelizing.

The conceptual difference of the algebra under
development from the standard image algebra is that
objects of this algebra are (along with algorithms)
descriptions of input information. DIA generalizes the
standard image algebra and allows one to use (as ring
elements) basic models of images and operations on
images or the models and operations simultaneously. In
the general case, a DIA is the direct sum of rings whose
elements may be images, image models, operations on
images, and morphisms. As operations, we may use
both standard algebraic operations and specialized
operations of image processing and transformations
represented in an algebraic form. In more detail, the
definition of the standard image algebra and that of DIA
are considered below (Subsection 3.2 

 

Image Algebras

 

).

To use DIA actively, it is necessary to investigate its
possibilities and to attempt to unite all possible alge-
braic approaches, for instance, to use the standard
image algebra as a convenient tool for recording certain
algorithms for image processing and understanding or
to use Grenander’s concepts for representation of input
information.

In the present paper, the main attention is given to
DIAs with one ring, which form the main subclass of
basic DIAs. We consider the possibility of using the
standard image algebra without the template notion in

constructing the DIA. In future, we are going to con-
sider DIAs based on superalgebras (see Definition 7)
and investigate other possibilities of application of
other algebraic concepts in the theory being developed.

2. PLACE OF DESCRIPTIVE IMAGE ALGEBRAS 
AMONG OTHER KNOWN

IMAGE ALGEBRAS

 

2.1. Algebras

 

Recall the definition of an algebra and a multivalued
algebra, which are needed below in order to define the
image algebras.

Modern algebra, rooted in works of Hilbert, was
formed, in general, in the 1920s. Algebra studies sets
endowed with specified algebraic operations, more
exactly, the operations themselves. Up to the mid-
1930s, only a few types of such sets were systemati-
cally studied. These sets (groups, rings, and vector
spaces) were inherited from algebra of XIX century
(see the monograph by van der Waerden [1]).

 

Definition 1

 

 [1]. 

 

An algebra

 

 is a ring 

 

U

 

 endowed
with a structure of a finite-dimensional vector space
over a field.

 

Definition 2

 

 [1]. 

 

A ring

 

 is a system with a double
composition such that the operations on elements of
this system satisfy the following rules:

I. Rules of addition:
(1) Associative rule: 
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 + 
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(2) Commutative rule: 

 

a

 

 + 

 

b

 

 = 

 

b

 

 + 

 

a

 

.
(3) Solvability of the equation 
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.
II. Rules of multiplication:
(1) Associative rule: 
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 · (
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 · 
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 · 
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.
III. Distributive rules:
(1) 
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 · 

 

b

 

 + 

 

a

 

 · 
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;
(2) (
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 · 
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.
If the multiplication satisfies commutative rule II (b)
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 · 
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 = 

 

b

 

 · 

 

a

 

, then the ring is called 

 

commutative

 

.
By a system with a double composition, we mean an

arbitrary set of elements 

 

a

 

, 
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, …, in which, for any two
elements 

 

a

 

 and 

 

b

 

, their sum 

 

a

 

 + 
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 and product 

 

a

 

 · 
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 are
uniquely defined and belong to the same set.

 

Definition 3

 

 [1]. A ring is a 

 

skewfield

 

 (a division
ring) if:

(1) it contains at least one element different from
zero;

(2) the equations

(1)

are solvable for any 

 

a

 

 

 

≠

 

 0.
If, moreover, the ring is commutative, then it is a

 

field

 

 or a rational ring.

a x⋅ b,=

y a⋅ b= ⎭
⎬
⎫
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Definition 4 [1]. Suppose that the following are
given: (1) a skewfield K whose elements a, b, … are
referred to as coefficients or scalars; (2) an additive
Abelian group M whose elements x, y, … are referred
to as vectors; and (3) a multiplication x · a of vectors by
scalars such that

(1) x · a belongs to M;
(2) (x + y) · a = x · a + y · a;
(3) x · (a + b) = x · a + x · b;
(4) x · (a · b) = (x · a) · b;
(5) x · 1 = x.
In this case, M is a vector space over K; more

exactly, a right K-vector space, because coefficients a
stands to the right of the vectors. The notion of a left
K-vector space is introduced similarly. In the case of a
commutative skewfield K, these concepts coincide.

Thus, any algebra possesses the following proper-
ties.

Properties of an algebra:
Properties of a field P(α, β, γ ∈ P)
(1) ∀α, β ∈ P, ∃!(α + β) ∈ P
(a) α + (β + γ) = (α + β) + γ;
(b) α + β = β + α;
(c) ∃0 ∈ P, ∀α ∈ P, α + 0 = α;
(d) ∀α ∈ P, ∃(–α), α + (–α) = 0;
(2) ∀α, β ∈ P, ∃!(α · β) ∈ P;
(a) α · (β · γ) = (α · β) · γ;
(b) α · β = β · α;
(c) ∃1 ∈ P, ∀α ∈ P, 1 · α = α;
(d) α · (β + γ) = α · β + α · γ
(this is a property of a ring being a field of vectors)
Properties of a ring U(a, b, c ∈ U)
(1) ∀a, b ∈ U, ∃!(a + b) ∈ U;
(a) a + (b + c) = (a + b) + c;
(b) a + b = b + a;
(c) ∃0 ∈ U, ∀a ∈ U, a + 0 = a;
(d) ∀a ∈ U, ∃(–a), a + (–a) = 0;
(2) ∀a, b ∈ U, ∃!(a · b) ∈ U;
(a) a · (b · c) = (a · b) · c;
(b) (α · a + β · b) · c = α · a · c + β · b · c;
Properties of a vector space (∀α ∈ P, a ∈ U: α · a ∈ U)
(1) α · (β · a) = (α · β) · a;
(2) (α + β) · a = α · a + β · a;
(3) α · (a + b) = α · a + α · b;
The next stage in algebra began in the mid-1930s,

when Birkhoff [12] began a study of arbitrary universal
algebras.

Definition 5 [12]. An algebra (in the sense of Lip-
son and Birkhoff) is a system A = [Φ, F] such that

(1) Φ = {Si} is a nonempty set of different types of
elements. Each type is referred to as a type of algebra
A. The sets Si are indexed by a set I, i.e., Si ∈ Φ for i ∈ I.

(2) F = {fα} is a set of finitary operations; each oper-
ation fα is a mapping fα:

(2)

for a nonnegative integer-valued function n(α),
where iα: k  i(k, α) are functions from n(α) = {1,
2, …, n(α)} into the set I and r(α) ∈ I. Operations fα are
indexed by a set Ω, i.e., fα ∈ F for α ∈ Ω.

Another complex generalization of algebras is rep-
resented by graded algebras, in particular, Z2-graded
algebras (superalgebras).

Definition 6 [7]. A graded algebra is an algebra A
whose additive group is represented in the form of a
(weak) direct sum of groups Ai, i = 0, 1, 2, …, such that
AiAj ⊆ Ai + j for any i, j. The additive group of a graded
algebra (considered as a module over the ring of inte-
gers) is a positively graded module.

The following is an example of a graded algebra: the
algebra A = F[x] of polynomials over a field F, where
Ai is the subspace generated by monomials of degree i

(A0 = F). A = .

Definition 7 [8]. A superalgebra is a Z2-graded alge-
bra, i.e., a superspace A over K endowed with an even
linear mapping A ⊗ A  A. A superspace is a k-vector
space endowed with a Z2-grading V =  ⊕ .

A.I. Mal’tsev [9] laid the foundation of another gen-
eral theory that borders on mathematical logics,
namely, the theory of algebraic systems.

2.2. Image Algebra

At the present time, by image algebra, we mean a
mathematical theory describing image transformations
and analysis in continuous and discrete domains. Ini-
tially, image algebra was understood as a tool for
description of image transformations created for the
convenience of parallelizing computations on comput-
ers. In the 1980s, Sternberg formalized this notion and
introduced the following definition.

Definition 8 [27]. Image algebra is the representa-
tion of algorithms for image processing on a cellular
computer in the form of algebraic expressions whose
variables are images and whose operations are proce-
dures for constructing logical and geometrical combi-
nations of images.

This image algebra is described on the basis of
mathematical morphology and is identified by the
author with mathematical morphology. In 1985, Stern-
berg [28] noted that the languages for image processing

Si 1 α,( ) Si 2 α,( ) … Si n α( ) α,( ) Sr α( )×××

Ai

i 0≥
∑

V
0

V
1



PATTERN RECOGNITION AND IMAGE ANALYSIS      Vol. 16      No. 3      2006

OPERATIONS OF DESCRIPTIVE IMAGE ALGEBRAS WITH ONE RING 303

were being developed for each processor architecture
and none of them has been created for one computer
and run on another. However, there are explicit lan-
guage structures that satisfy the same principles. It is
for description of these structures that image algebra
(or mathematical morphology) appeared.

Ritter’s image algebra generalizes mathematical
morphology, unites the apparatus of local methods for
image analysis with linear algebra, and generates more
complex structures. Examples of such structures are
templates and morphological algorithms. In [25], vari-
ous operations and operands of standard image algebra
are described, as well as applications of these structures
to actual problems. Since the standard image algebra
does not just generalize mathematical morphology, but
is a wider and more convenient structure, the language
of image algebra admits both implementation of known
algorithms and design of new algorithms. The structure
of the standard image algebra may be extended by
introducing new operations. Hence, it may be success-
fully applied in the cases where a satisfactory result
cannot be obtained with the help of morphology and
linear algebra.

Definition 9 [25]. A standard image algebra is a het-
erogeneous (or multivalued) algebra (see Definition 5 in
this section) with a complex structure of operands and
operations if the basic operands are images (sets of
points) and values and characteristics related to these
images (sets of values related to these points).

Analyzing the existing algebraic apparatus, we
came to the statement of the following requirements on
the language designed for recording algorithms for
solving problems of image processing and understand-
ing:

(1) the new algebra must make possible processing
of images as objects of analysis and recognition;

(2) the new algebra must make possible operations
on image models, i.e., arbitrary formal representations
of images, which are objects and, sometimes, a result of
analysis and recognition; introduction of image models
is a step in the formalization of the initial data of the
algorithms;

(3) the new algebra must make possible operations
on main models of procedures for image transforma-
tions; it is convenient to use the procedures for image
modifications both as operations of the new algebra and
as its operands for construction of compositions of
basic models of procedures.

Definition 10 [4, 20]. An algebra is called a descrip-
tive image algebra if its operands are either image mod-
els (for instance, as a model, we may take the image
itself or a collection of values and characteristics
related to the image) or operations on images, or mod-
els and operations simultaneously.

Definition 11 [4, 20]. A descriptive image algebra is
a basic descriptive image algebra if its operands are
either only image models or only operations on images.

It should be noted that, due to the variety of “alge-
bras” (several versions of definitions are given in Sub-
section 3.1 Algebras), we should indicate which alge-
bra is meant in Definition 10.

For the generality of the results and extension of the
domain of applications of the new algebra, to define
DIA with one ring, we use the definition of the classical
algebra of Van der Waerden (Definition 1 in Subsection
3.1).

Definition 12. A ring U, which is a finite-dimen-
sional vector space over a field P, is a descriptive image
algebra with one ring if its operands are either image
models or operations on images.

Thus, a DIA with one ring must satisfy the proper-
ties of classical algebras. A DIA with one ring is a basic
DIA, because it contains a ring of elements of the same
nature, i.e., either a ring of image models or a ring of
operations on images.

2.3. The Place of Descriptive Algebra 
of Images in Algebraic Structure

In Subsection 2.1, we presented definitions of differ-
ent algebras, which are far from their entirety. The
goals of this subsection are, first, to indicate the place
chosen for DIA in the structure of an algebra and, sec-
ond, the variety of algebras. Figure 1 presents a classi-
fication reflecting the authors’ point of view on the con-
temporary hierarchy of algebras and the place of DIA
in this hierarchy.

3. DESCRIPTIVE IMAGE ALGEBRAS 
WITH ONE RING

3.1. Operands and Operations of DIA with One Ring

To design efficient algorithmic schemes for image
analysis and understanding, it is necessary to investi-
gate different types of operands and different types of
operations applicable to the chosen operands, which
generate the DIA. In this subsection, we present three
types of operands of a DIA with one ring and five com-
binations of operations over these operands which
either generate or do not generate a DIA.

By virtue of constraints imposed by the chosen def-
inition of an algebra (Definition 1), it is not every oper-
ation of image processing and analysis that generates a
DIA with one ring. The main goal of these examples is
to demonstrate a method for attesting that operations
and operands belong to the class of DIA with one ring.

Without loss of generality, in constructing the exam-
ples, we use the formal definition of an image in Ritter’s
sense [24, 25] and operations of standard image algebra
as an element of formalization of the notion of an
image.

Let F be a set of values and X a set of points.
Recall that an image according to Ritter whose val-
ues on set X belong to F is a mapping from the set X
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into the set F (an element of the set FX): I = {(x, a(x)),
x ∈ X, a(x) ∈ F}.

In examples of DIA with one ring described below,
as operands, we use the following:

(1) arbitrary images Ii = {(x, fi(x)), x ∈ X, fi(x) ∈ Fi},
i = 1, 2, …, of the same shape and size (constructed on
the same set X);

(2) images Ij = {(x, fj(x)), x ∈ X, fj(x) ∈ X}, j = 1, 2,
…, constructed on the same initial set X with the set of
values X coinciding with the initial set;

(3) operations of the standard image algebra [25].
As operations over these operands, we take both the

standard algebraic operations (addition, subtraction,
multiplication, and division) and superpositions of
these operations with other operations whose particular
form is considered below in detail. The choice of pre-
cisely these operations is justified by the operands
being used and the main goal of the examples of DIA,
namely, to demonstrate the method for testing that the
sets with these operations belong to the class of DIAs
with one ring.

3.2. Interpretability of Operations of DIA

Note that, since the main goal of investigation of
DIAs is the application of algebraic methods for
designing algorithmic schemes of solving applied prob-

lems of image analysis and understanding in practice,
the question as to the real meaning of the proposed con-
structions arises. In the formal construction of DIA,
algebraic structures may appear that cannot be inter-
preted in the context of image analysis and understand-
ing. The question about the interpretability of the
obtained formal constructions arises.

For the first time, the problem of formal construc-
tion of examples of SIA appeared in papers [4, 19, 20],
where examples of operations were considered, which
have a certain physical sense; however, the question on
the physical interpretation of these operation was not
uniquely answered. Further investigation of this prob-
lem results in the following formalization.

Definition 13. By the physical sense of an opera-
tion, we mean a semantic description of the process of
transforming an initial image (initial images) into a
final image (final images) or a description of endowing
an initial image with a collection of characteristics.

For the further formalization, we introduce defini-
tions of an image representation and an image model.

Definition 14. By an image representation, we
mean any description of the image obtained by acting
on this image either with formal (mathematical) tools
or with transformations admissible for this image. An
image model is any formal image representation.
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Definition 15. An operation on an image (images),
its fragments, or image representation (representations)
is called a physically interpretable operation in the con-
text of image analysis and understanding if

(1) the result of its application is an image or its
fragments;

(2) the result of its application is an image represen-
tation such that the semantically substantial geometri-
cal objects, brightness characteristics and configura-
tions obtained due to regular repetitions of geometrical
objects and brightness characteristics of the initial
image can be reconstructed starting from this represen-
tation; or

(3) the result of its application is an image character-
istic (characteristics), which may be put into unique
correspondence with geometrical objects, brightness
characteristics or configurations obtained due to regular
repetitions of geometrical objects and brightness char-
acteristics of the initial image.

Definition 16. An operation over certain objects is
called visually interpretable in the context of image
analysis and understanding if, as a result of the opera-
tion, we obtain an image (images) such that, starting
from this image, we can reconstruct a bijective corre-
spondence between semantically substantial geometri-
cal objects, brightness characteristics, and configura-
tions obtained due to regular repetitions of geometrical
objects and brightness characteristics on the obtained
image (images) and on initial objects.

Proposition 1. Any visually interpretable operation
is physically interpretable.

Corollary. If an operation is not physically inter-
pretable, then this operation is not visually interpret-
able.

One can distinguish the physical interpretability in
the strong and weak sense.

Definition 17. A operation is physically interpret-
able in the strong sense if it is also visually interpret-
able.

Definition 18. An operation is physically interpret-
able in the weak sense if it is physically interpretable
but not visually interpretable.

For example, visually interpretable operations are
the rotation of the image, shift of the image, increase in
image contrast ratio, increase in image brightness,
noise elimination in the image, image smoothing, con-
tour extraction in the image, and other operations of
image processing. As examples of visually interpret-
able operations, we can also mention the operations of
image construction by a certain rule from a set of initial
objects, for instance, image reconstruction from equa-
tions specifying the image shape.

Physically interpretable operations are also certain
operations of constructing of image models and opera-
tions on images such as calculation of the histogram of
the image and calculation of statistical features of the
image.

Proposition 2. An operation is not physically inter-
pretable in the context of image analysis and under-
standing if

(1) its operands are different from images, image
representations, and fragments of images;

(2) applying the operation to an image (images), we
obtain an image model such that, on its basis, it is
impossible to reconstruct semantically substantial geo-
metrical objects, brightness characteristics, or configu-
rations, which appear due to a regular repetition of geo-
metrical objects and brightness characteristics, of the
initial image;

(3) applying the operation to the image, we calculate
characteristics such that we cannot uniquely associate
of geometrical objects, brightness characteristics, or
configurations, which appear due to a regular repetition
of geometrical objects and brightness characteristics, of
the initial image with these characteristics of proper-
ties;

(4) the operation cannot be applied to images, image
representations, and fragments of images.

In examples below, a special attention is given to the
interpretability (in the sense of Definitions 15 and 16)
of the operations introduced.

3.3. Description Scheme of Examples

All examples presented in this section are described
by the same scheme: we introduce operands (I) and
operations (II) of the proposed algebra, present the
results of investigation of the physical and visual inter-
pretability of the operation introduced (III), formulate
certain conditions (IV), and, on the basis of items I–IV,
prove a theorem (V).

I. Elements of a set U whose nature corresponds to
the nature of objects described with the help of DIA.
Recall that operands of a DIA are either image models
(as a model, for instance, we can take both the image
itself and a collection of quantities and characteristics
related to the image) or an operation on images, or
models and operations simultaneously. The set U,
together with introduced operations, is treated as a can-
didate for the basic descriptive image algebra.

II. Operations introduced on the set U.
III. Interpretation of the introduced operations.
IV. Conditions necessary for statement and proof of

the theorem in item V.
V. Statement and proof of the theorem on valid-

ity/invalidity of properties of DIA for the construction
considered in the example.

3.4. Examples of Operations Generating Descriptive 
Image Algebras

3.4.1. Description of examples

This subsection contains three examples.
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In the first example, as operands of the set U, we
consider images defined on a fixed set X with different
fixed range domains Fi, i = 1, 2, …: Ii = {(x, fi(x)), x ∈
X, fi(x) ∈ Fi}. As the operation of addition of two
images I1 and I2, we use the operation producing the
function, which determines the resulting image, by
adding the functions f1(x) and f2(x) describing the
images I1 and I2, respectively, at each point of the set X.
As the operation of multiplication of two images I1 and
I2, we use the operation producing the function, which
determines the resulting image, by multiplying the
functions f1(x) and f2(x) describing the images I1 and I2,
respectively, at each point of the set X. As the operation
of multiplication of an image I by an element of the
field, we use the operation producing the function,
which determines the resulting image, by multiplying
the function f describing the image I by the element of
the field at each point of the set X.

In the second example, as operands of the set U, we
consider images defined on a fixed set X with the range
domain X: Ii = {(x, fi(x)), x ∈ X, fi(x) ∈ X}, i = 1, 2, ….
As the operation of addition of two images I1 and I2, we
use the operation producing the function, which deter-
mines the resulting image, by adding functions f1(x) and
f2(x) describing the images at each point of the set X. As
the operation of multiplication of two images I1 and I2,
we use the operation producing the function, which
determines the resulting image, by superposition of
functions f1(x) and f2(x) describing the images at each
point of the set X. As the operation of multiplication of
an image I by an element of the field, we use the oper-
ation producing the function, which determines the
resulting image, by multiplying function f describing
the image by the element of the field at each point of the
set X.

In the third example, as operands of the set U, we
consider standard binary operations on images. On
these operands, specialized operations of addition of
two operands and multiplication of two operands, as
well as an operation of multiplication by an element of
the field, are introduced.

All three examples demonstrate operands and oper-
ations generating a DIA with one ring.

3.4.2. Example 1

I. Elements of the set U

Images defined on a fixed set X with different fixed
range domains Fi , i = 1, 2, …: Ii = {(x, fi(x)), x ∈ X,
fi(x) ∈ Fi}, …i = 1, 2, .

As examples of functions fi(x) and sets Fi , X speci-
fying the image, we can take:

* X = [0…N; 0…N] is a square in the two-dimen-
sional plane;

* fi(x) = (ri(x), gi(x), bi(x)), here ri(x), gi(x), and
bi(x) are three components of colors, respectively, red,
green, and blue;

* sets Fi ⊂ R3 are some sets bounded the color
gamma of images, for instance, corresponding to the
gamma of black–white images, red images, green
images, yellow images, etc.

II. Operations on set U.
Let I1 = {(x, a(x)), x ∈ X, a(x) ∈ F1}, I2 = {(x, b(x)),

x ∈ X, b(x) ∈ F2}.
* Operation of addition of two images I1 and I2:

(3)

* Operation of multiplication of two images I1 and I2:

(4)

* Operation of multiplication of image I by an ele-
ment of the field of real numbers α ∈ R:

(5)

III. Interpretation of these operations
III.1 Operation of addition of two elements of the set
The physical sense of the operation corresponds to

the pointwise addition of two images.
Proposition 3. The operation of addition of two ele-

ments of the set introduced in (3) is physically inter-
pretable but, in the general case not visually interpret-
able; i.e., it is a physically interpretable operation in the
weak sense.

Proof.
1. Physical interpretability of the operation: by Def-

inition 15, the operation is physically interpretable if,
applying it, we obtain an image.

2. Visual interpretability of the operation: this oper-
ation is not, in the general case, visually interpretable,
because, applying it to two arbitrary images, we obtain
a semantically meaningless image (Definition 16).

The proposition is proved.
An example of the use of this operation is that it can

be used in the problem of overlapping of certain images
(construction of a face from objects such as eyes, nose,
mouth).

III.2 Operation of multiplication of two elements of
the set

The physical sense of the operation corresponds to
the pointwise multiplication of two images.

Proposition 4. The operation of multiplication of
two elements of the set introduced in (4) is physically
interpretable but, in the general case not visually inter-
pretable, i.e., it is a physically interpretable operation in
the weak sense.

Proof.
1. Physical interpretability of the operation: by Def-

inition 15, the operation is physically interpretable if,
applying it, we obtain an image.

I1 I2+ x a x( ), b x( )+( ) x, X∈{ };=

I1 I2⋅ x a x( ), b x( )⋅( ) x, X∈{ };=

α I⋅ x α f x( )⋅,( ) x, X∈{ }.=
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2. Visual interpretability of the operation: this oper-
ation is not, in the general case, visually interpretable,
because, applying it to two arbitrary images, we obtain
a semantically meaningless image (Definition 16).

The proposition is proved.
An example of the use of this operation is that it can

be used in working with binary images, namely, in mul-
tiplication of an image by a mask represented in the
form of a binary image.

III.3 Operation of multiplication of an element of set
U by an element of the field of real numbers

The physical sense of the operation: the operation
corresponds to the pointwise multiplication of an image
by a real number.

Proposition 5. The operation of multiplication of an
element of set U by an element of the field of real num-
bers introduced in (5) is physically interpretable and
visually interpretable; i.e., it is a physically interpret-
able operation in the strong sense.

Proof.
1. Physical interpretability of the operation: by Def-

inition 15, the operation is physically interpretable if, in
applying it, we obtain an image.

2. Visual interpretability of the operation: this oper-
ation results in a proportional increase or decrease in
the brightness of the image (if the image is represented
as a function of pixel brightness) or just a change in the
color. Therefore, by Definition 16, this operation is
visually interpretable.

The proposition is proved.
An example of the use of this operation is that it may

be used in tasks where the brightness of the image must
be proportionally increased or decreased.

IV. Necessary conditions for stating and proving the
theorem in item V.

Let a set of sets  be given; i.e.,

* an operation of the addition of two elements from
Fi, Fj ⊂ Rn: i, j = 1, 2, …, ∀a ∈ Fi, b ∈ Fj: ∃! a + b ∈
Fk, k = 1, 2, …, Fk ⊂ Rn, be given with the following
properties (∀a ∈ Fi, b ∈ Fj , c ∈ Fy, i, j, y = 1, 2, …):

1.1. a + (b + c) = (a + b) + c; (6)

1.2. a + b = b + a; (7)

1.3. ∀i: ∀a ∈ Fi , ∃0 ∈ Fi: a + 0 = a; (8)

1.4. ∀i: ∀a ∈ Fi , ∃(–a) ∈ Fi: a + (–a) = a; (9)

* an operation of multiplication of two elements
from Fi, Fj: i, j = 1, 2, …, a ∈ Fi, b ∈ Fj: ∃! a · b ∈ Fk,
k = 1, 2, …, Fk ⊂ Rn, be given with the following prop-
erties (∀a ∈ Fi, b ∈ Fj , c ∈ Fy, i, j, y = 1, 2, …):

1.5. a · (b · c) = (a · b) · c; (10)

* on the set Fi (i = 1, 2, …), an operation of multi-
plication by elements of the field of real numbers R:
∀α ∈ R, a ∈ Fi: ∃!α · a ∈ Fi (i = 1, 2, …), be given with

Fi{ }1
∞

the following properties (∀a ∈ Fi, b ∈ Fj , c ∈ Fy.
i, j, y = 1, 2, …, ∀α, β ∈ R):

1.6. (α · a + β · b) · c = α · a · c + β · b · c; (11)

1.7. α · (β · a) = (α · β) · a; (12)

1.8. (α + β) · a = α · a + β · a; (13)

1.9. α · (a + b) = α · a + α · b. (14)

If all Fi ≡ F ⊂ Rn, then the set F with these opera-
tions is an algebra over the field of real numbers. The
sets considered above in item I as examples of sets Fi

satisfy conditions 1.1–1.9.
V.Statement and proof of the theorem on valid-

ity/invalidity of properties of DIA for the construction
considered in the example.

Theorem 1.
Let
* R be the field of real numbers;

* I = {(x, f(x)), x ∈ X, f(x) ∈  F} (F ∈ , where
F is a set of values of image I on set X) be elements of
set U;

* I1 = {(x, a(x)), x ∈ X, a(x) ∈ F1}, I2 = {(x, b(x)),

x ∈ X, b(x) ∈ F2}, (F1, F2 ∈ ).

We introduce
* an operation of addition of two images I1 and I2:

* an operation of multiplication of two images I1 and
I2:

* an operation of multiplication of image I by an ele-
ment of the field of a real number α ∈ R:

Then, the set U with these operations of addition,
multiplication, and multiplication by a real number is a
basic descriptive image algebra over the field of real
numbers.

Proof.
The proof is based on verification of the properties

of algebras (see Section 3, Definition 1) for the set U
with the above operations of addition, multiplication,
and multiplication by a real number.

I. By condition of the theorem, R is the field of real
numbers.

II. Verification of the properties of ring U (I1, I2, I3 ∈
U, I1 = {(x, a(x)), x ∈ X, a(x) ∈ F1}, I2 = {(x, b(x)), x ∈
X, b(x) ∈ F2}, I3 = {(x, c(x)), x ∈ X, c(x) ∈ F3}).

1. Verification of the properties of the operation of
addition.

∀I1, I2 ∈ U, ∃!(I1 + I2) ∈ U.

Fi{ }1
∞

Fi{ }1
∞

I1 I2+ x a x( ), b x( )+( ) x, X∈{ };=

I1 I2⋅ x a x( ), b x( )⋅( ) x, X∈{ };=

α I⋅ x α f x( )⋅,( ) x, X∈{ }.=
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(a) Verification of the associative property:

I1 + (I2 + I3) = I1 + {(x, b(x) + c(x)), x ∈ X}

= {(x, a(x) + (b(x) + c(x))), x ∈ X};
(I1 + I2) + I3 = {(x, a(x) + b(x)), x ∈ X} + I3

= {(x, (a(x) + b(x)) + c(x)), x ∈ X}
= {by property 1.1 of item IV in this example}

= {(x, a(x) + (b(x) + c(x))), x ∈ X};
hence, I1 + (I2 + I3) = (I1 + I2) + I3.
(b) Verification of the commutative property:

I1 + I2 = {(x, a(x) + b(x)), x ∈ X};
I2 + I1 = {(x, b(x) + a(x)), x ∈ X}

= {by property 1.2 of item IV in this example}
= {(x, a(x) + b(x)), x ∈ X};

hence, I1 + I2 = I2 + I1.
(c) Verification of the existence of zero:
Zero of the set U has the form O = {(x, 0), x ∈ X}.

Let us prove this.
I1 + O = {(x, a(x) + 0), x ∈ X}

= {by property 1.3 of item IV in this example}
= {(x, a(x)), x ∈ X} = I1;

hence, ∃O ∈ U, ∀I1 ∈ U, I1 + O = I1.
(d) Verification of the existence of an opposite ele-

ment.
For an image I1, the opposite element is (–I1) = {(x,

–a(x)), x ∈ X}. Let us prove this.
I1 + (–I1) = {(x, a(x) – a(x)), x ∈ X}

= {by property 1.4 of item IV in this example}
= {(x, 0), x ∈ X} = O;

hence, ∀I1 ∈ U, ∃(–I1), I1 + (–I1) = 0.
2. Verification of the properties of the operation of

multiplication.
∀I1, I2 ∈ U, ∃!(I1 · I2) ∈ U.

(a) Verification of the associative property:
I1 · (I2 · I3) = I1 · ({(x, b(x) · c(x)), x ∈ X})

= {(x, a(x) · (b(x) · c(x))), x ∈ X};
(I1 · I2) · I3 = ({(x, a(x) · b(x)), x ∈ X}) · I3

= {(x, (a, (x) · b(x)) · c(x)), x ∈ X}
= {by property 1.5 of item IV in this example}

= {(x, a(x) · (b(x) · c(x))), x ∈ X};
hence, I1 · (I2 · I3) = (I1 · I2) · I3.
3. Verification of the distributive property:
For any α, β ∈ R, (α · I1 + β · I2) · I3 = ({(x, α · a(x)

+ β · b(x)), x ∈ X}) · I3 = {(x, (α · a(x) + β · b(x)) · c(x)),
x ∈ X} = {by property 1.6 of item IV in this example} =
{(x, α · a(x) · c(x) + β · b(x) · c(x)), x ∈ X};

α I1 I3 βI2 I3⋅+⋅ ⋅ x α a x( ) c x( )⋅ ⋅,( ) x X∈,{ }=

+ x β b x( ) c x( )⋅ ⋅,( ) x, X∈{ }
=  x α a x( ) c x( )⋅ ⋅, β b x( ) c x( )⋅ ⋅+( ) x X∈,{ };

hence, (α · I1 + β · I2) · I3 = α · I1 · I3 + β · I2 · I3.
Thus, the operations of addition and multiplication

satisfy the properties of a ring.
III. Verification of the properties of a ring being a

vector space over field R (∀α ∈ P, I ∈ U, I = {(x, f(x)),
x ∈ X}: α · I ∈ U).

1. Verification of property 1 of a ring being a vector
space over field R:

α · (β · I) = α · {(x, β · f(x)), x ∈ X}

= {(x, α · (β · f(x))), x ∈ X}

= {by property 1.7 of item IV in this example}

= {(x, α · β · f(x)), x ∈ X};

(α, β) · I = {(x, α · β · f(x)), x ∈ X};

hence, α · (β · I) = (α · β) · I.
2. Verification of property 2 of a ring being a vector

space over field R:

(α + β) · I = {(x, (α + β) · f(x)), x ∈ X}

= {by property 1.8 of item IV in this example}

= {(x, α · f(x) + β · f(x)), x ∈ X};

α · I + β · I = {(x, α · f(x)), x ∈ X} + {(x, β · f(x)), x ∈ X}

= {(x, α · f(x) + β · f(x)), x ∈ X};

hence, (α + β) · I = α · I + β · I.
3. Verification of property 3 of a ring being a vector

space over field R:

α · (I1 + I2) = α · {(x, a(x) + b(x)), x ∈ X}

= {(x, α · (a(x) + b(x))), x ∈ X}

= {by property 1.9 of item IV in this example}

= {(x, α · a(x) + α · b(x)), x ∈ X};

α · I1 + α · I2 = {(x, α · a(x)), x ∈ X}

+ {(x, α · b(x)), x ∈ X} = {(x, α · a(x) + α · b(x)), x ∈ X};

hence, α · (I1 + I2) = α · I1 + α · I2.
Thus, all the properties of a ring being a vector space

are fulfilled.
Hence, the set U with the introduced operations of

addition, multiplication, and multiplication by real
numbers is an algebra over the field of real numbers. By
virtue of the nature of elements of the set U, this algebra
is a basic descriptive image algebra.

The theorem is proved.

3.4.3. Example 2

I. Elements of set U
Images defined on a fixed set X with the domain of

values X: I = {(x, f(x)), x ∈ X, f(x) ∈ X}.
As examples of such functions and sets specifying

images, we can consider the following:
* set X = R3;
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* function f(x) of image I of a three-dimensional
scene is defined at a point (x, y) of the space and takes
into account the distance from a source of light l, i.e.,
x = (x, y, l);

* function f(x) is equal to (r(x), g(x), b(x)), where
r(x), g(x), and b(x) are three components of the color,
respectively, red, green, and blue.

II. Operations introduced on the set U
Let I1 = {(x, a(x)), x ∈ X, a(x) ∈ X}, I2 = {(x, b(x)),

x ∈ X, b(x) ∈ X}.
* Operation of addition of two images I1 and I2:

(15)

* Operation of multiplication of two images I1 and
I2:

(16)

* Operation of multiplication of image I by a real
number α ∈ R:

(17)

III. Interpretation of the introduced operations
III.1. Operation of addition of two elements of the

set
The physical sense of the operation corresponds to

the pointwise addition of two images.
The representation of images in Example 2 is a par-

ticular case of the image representation in Example 1.
Therefore, we claim that, by Proposition 3, this opera-
tion of addition of two elements of the set is physically
interpretable but, in the general case, not visually inter-
pretable.

An example of this operation is that it may be used
in the problem of overlapping of certain images (con-
struction of a face from objects such as eyes, nose,
mouth). If an image is specified by the function
described in item I of the example, then this operation
may be used for addition of two images of the same
scene with different illumination intensities of objects
in the scene. Addition of such images allows one to
obtain an image with all objects of the scene or most of
them being illuminated.

III.2. Operation of multiplication of two elements of
the set

The physical sense of the operation: definition of an
image on the set specified by another image.

Proposition 6. The operation, introduced in (15), of
multiplication of two elements of the set is physically
interpretable but, in the general case, not visually inter-
pretable; i.e., this operation is physically interpretable
in the weak sense.

Proof.
1. Physical interpretability of the operation: by Def-

inition 15, the operation is physically interpretable if,
applying it, we obtain an image.

I1 I2+ x a x( ), b x( )+( ) x, X∈{ };=

I1 I2⋅ x a b x( )( ),( ) x, X∈{ };=

α I⋅ x α, f x( )⋅( ) x, X∈{ }.=

2. Visual interpretability of the operation: in the gen-
eral case, this operation is not visually interpretable,
because, applying it to two arbitrary images, we obtain
a semantically meaningless image (Definition 16).

The proposition is proved.
Example of the use of this operation. If an image is

specified by the function described in item I of the
example, then this operation may be applied in the fol-
lowing case. Suppose that we know the value f (x, y,
∞) ={r(x, y, ∞), g(x, y, ∞), b(x, y, ∞)}; i.e., we know the
colors of the scene with a light source at infinity. Then,
if the position of the light source relative to the same
three-dimensional scene is known, then the image of
this scene under illumination may be specified as the
function g(x, y, l) = g(f(x, y, ∞), l).

* Operation of multiplication of an element of set U
by a real number.

The physical sense of the operation: the operation
corresponds to pointwise multiplication by a real num-
ber.

The image representation in Example 2 is a particu-
lar case of the image representation in Example 1.
Therefore, we may say that, by Proposition 5, the intro-
duced operation of multiplication of an element of the
set U by a real number is physically and visually inter-
pretable.

IV. Necessary conditions for stating and proving the
theorem in item V

Suppose that a set X and a set of functions Φ on this
set are given such that ∀f ∈ Φ, f: X  X:

* an operation of addition of two functions from set
Φ is defined: ∀a(x), b(x) ∈ Φ: ∃!(a + b)(x) ≡ a(x) +
b(x) ∈ Φ, with the following properties (∀a(x), b(x),
c(x) ∈ Φ):

2.1. a(x) + (b(x) + c(x)) = (a(x) + b(x)) + c(x); (18)

2.2. a(x) + b(x) = b(x) + a(x); (19)

2.3. ∀a(x) ∈ Φ, ∃(–a(x)) ∈ Φ: a(x) + (–a(x)) = 0; (20)

2.4. ∀a(x) ∈ Φ, ∃0 ∈ Φ: a(x) + 0 = a(x); (21)

* an operation of superposition of two functions
from Φ is defined: ∀a(x), b(x) ∈ Φ: ∃!(ab)(x) ≡
a(b(x)) ∈ Φ;

* on the set Φ, an operation of multiplication by ele-
ments of the field of real numbers R is defined: ∀α ∈ R,
a(x) ∈ Φ: ∃!α · a(x) ∈ Φ, with the following properties
(∀a(x), b(x), c(x) ∈ Φ, ∀α, β ∈ R):

2.5. (α · a(x) + β · b(x)) · c(x) = α · a(c(x)) + β · b(c(x)); (22)

2.6. α · (β · a(x)) = α · β · a(x); (23)

2.7. (α + β) · a(x) = α · a(x) + β · a(x); (24)

2.8. α · (a(x) + b(x)) = α · a(x) + α · b(x). (25)

For example, in the case X ≡ R, as elements of the set
X, we may take polynomials of all degrees.
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V. Statement and proof of the theorem on valid-
ity/invalidity of the properties of DIA for the construc-
tion considered in the example.

Theorem 2.
Let
* R be the field of real numbers;
* I = {(x, f(x)), x ∈ X, f(x) ∈ X} (f(x) ∈ Φ) be ele-

ments of a set U;
* I1 = {(x, a(x)), x ∈ X, a(x) ∈ X}, I2 = {(x, b(x)), x ∈

X, b(x) ∈ X} (a(x), b(x) ∈ Φ);
We introduce
* an operation of addition of two images I1 and I2:

* an operation of multiplication of two images I1 and
I2:

(when the multiplication is introduced in this way, the
result of application of this operation does not go
beyond the set U of images considered);

* an operation of multiplication of image I by real
numbers α ∈ R:

Then, the set U with these operations of addition,
multiplication, and multiplication by real numbers is a
descriptive image algebra over the field of real num-
bers.

Proof.
The proof is based on verification of the properties

of an algebra (see Section 3, Definition 1) for the set U
with the introduced operations of addition, multiplica-
tion, and multiplication by real numbers.

I. By condition of the theorem, R is a field of real
numbers.

II. Verification of the properties of ring U (I1, I2, I3 ∈
U, I1 = {(x, a(x)), x ∈ X, a(x) ∈ X}, I2 = {(x, b(x)), x ∈
X, b(x) ∈ X}, I3 = {(x, c(x)), x ∈ X, c(x) ∈ X}).

1. Verification of the properties of the operation of
addition.

(a) Verification of the associative property:

I1 + (I2 + I3) = I1 + {(x, b(x) + c(x)), x ∈ X}

= {(x, a(x) + (b(x) + c(x))), x ∈ X};

(I1 + I2) + I3 = {(x, a(x) + b(x)), x ∈ X} + I3

= {by property 2.1 of item IV in this example}

= {(x, a(x) + (b(x) + c(x))), x ∈ X};

hence, I1 + (I2 + I3) = (I1 + I2) + I3.

I1 I2+ x a x( ), b x( )+( ) x, X∈{ };=

I1 I2⋅ x a b x( )( ),( ) x, X∈{ };=

α I⋅ x α f x( )⋅,( ) x X∈,{ }.=

I1∀ I2, U , ! I1 I2+( )∃ U .∈ ∈

(b) Verification of the commutative property:

I2 + I1 = {(x, b(x) + a(x)), x ∈ X}

= {by property 2.2 of item IV in this example}

= {(x, a(x) + b(x)), x ∈ X};

hence, I1 + I2 = I2 + I1.
(c) Verification of the existence of zero.
Zero of the set U has the form O = {(x, 0), x ∈ X}.

Let us prove this.
I1 + O = {(x, a(x) + 0), x ∈ X}

= {by property 2.3 of item IV in this example}

= {(x, a(x)), x ∈ X} = I1;

hence, ∃O ∈ U, ∀I1 ∈ U, I1 + O = I1.
(d) Verification of the existence of an opposite ele-

ment.
For an image I1 the opposite element is (–I1) = {(x,

–a(x)), x ∈ X}. Let us prove this fact.
I1 + (–I1) = {(x, a(x) – a(x)), x ∈ X}

= {by property 2.4 of item IV in this example}

= {(x, 0), x ∈ X} = O;

hence, ∀I1 ∈ U, ∃(–I1), I1 + (–I1) = 0.
2. Verification of the property of the operation of

multiplication.

(a) Verification of the associative property:
I1 · (I2 · I3) = I1 · ({(x, b(c(x))), x ∈ X})

= {(x, a(b(c(x)))), x ∈ X};

(I1 · I2) · I3) = ({(x, a(b(x))), x ∈ X}) · I3

= {(x, a(b(c(x))), x ∈ X};

hence, I1 · (I2 · I3) = (I1 · I2) · I3.
3. Verification of the distributive property:
For any α, β ∈ R, (αI1 + βI2) · I3 = ({(x, αa(x) +

βb(x)), x ∈ X}) · I3 = {(x, (αa(c(x)) + βb(c(x)))), x ∈ X};

αI1 · I3 + βI2 · I3 = {(x, αa(c(x))), x ∈ X}

+ {(x, βb(c(x))), x ∈ X}

= {(x, (αa(c(x)) + βb(c(x)))), x ∈ X};

hence, (αI1 + βI2) · I3 = αI1 · I3 + βI2 · I3.
Thus, the operation of addition and multiplication

satisfy the properties of rings.
III. Verification of the properties of a ring being a

vector space over the field R (∀α ∈ P, I ∈ U, I = {(x,
f(x)), x ∈ X}: αI ∈ U).

1. Verification of property 1 of a ring being an
R-vector space:
α(βI) = α{(x, βf(x)), x ∈ X} = {(x, α(βf(x))), x ∈ X}

= {by property 2.6 of item IV in this example}

I1 I2+ x a x( ), b x( )+( ) x X∈,{ };=

I1∀ I2, U , ! I1 I2⋅( )∃ U .∈ ∈
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= {(x, αβf(x)), x ∈ X};
(αβ)I = {(x, αβf(x)), x ∈ X};

hence, α(βI) = (αβ)I.
2. Verification of property 2 of a ring being an R-

vector space:
(α + β)I = {(x, (α + β)f(x)), x ∈ X}

= {by property 2.7 of item IV in this example}
= {(x, αf(x) + βf(x)), x ∈ X};

hence, (α + β)I = αI + βI.
3. Verification of property 3 of a ring being an R-

vector space:
α(I1 + I2) = α{(x, a(x) + b(x)), x ∈ X}

= {(x, α(a(x) + b(x))), x ∈ X}
= {by property 2.8 of item IV in this example}

= {(x, αa(x) + αb(x)), x ∈ X};
αI1 + αI2 = {(x, αa(x)), x ∈ X}

+ {(x, ab(x)), x ∈ X} = {(x, αa(x) + αb(x)), x ∈ X};
hence, α(I1 + I2) = αI1 + αI2.
Thus, all the properties of a ring being an R-vector

space hold.
Hence, the set U with the introduced operations of

addition, multiplication, and multiplication by real
numbers is an algebra over the field of real numbers. By
virtue of nature of the elements of the set U, this algebra
is a basic descriptive image algebra.

The theorem is proved.

3.4.4. Example 3
I. Elements of set U
Standard binary operations on images.
* If A, B, and C… are images defined on a fixed set

X with the range domain X, then the following opera-
tions on images can be introduced [25]:

A + B = {(x, c(x)): c(x) = a(x) + b(x), x ∈ X}; (26)

(27)

(28)

(29)

(30)

(31)

αI βI+ x αf x( ),( ) x X∈,{ }=

+ x β f x( ),( ) x X∈,{ } = x α f x( ), β f x( )+( ) x X∈,{ };

A B⋅ x c x( ),( ): c x( ) a x( ) b x( )⋅ x X∈,={ };=

A B∨  = x c x( ),( ): c x( ) a x( ) b x( )∨ x X∈,={ };

A B∧  = x c x( ),( ): c x( ) a x( ) b x( )∧ x X∈,={ };

A
B
--- x c x( ),( ): c x( ) a x( )

b x( )
-----------,=

⎩
⎨
⎧

=

if b x( ) 0, otherwise c x( )≠ 0; x X∈=
⎭
⎬
⎫

;

AB x c x( ),( ): c x( ) a x( )b x( ),={=

if a x( ) 0, otherwise c x( )> 0 x, X };∈=

(32)

* We may say that r1, r2, … ∈ {+, *, ∨, ∧, –, \, AB…}
are standard binary operations on two images;

* r(A, B) is the image obtained by applying an oper-
ation r to images A and B.

II. Operations introduced on the set U
Let r1, r2, … ∈ {+, *, ∨, ∧, –, \, AB}; i.e., r1, r2, …

are operations on two images.
* Operation of addition of two operations r1 and r2:

(33)

* Operation of multiplication of two operations r1
and r2:

(34)

* Operation of multiplication of operation r by a real
number α ∈ R:

(35)

(the right-hand side denotes multiplication of an image
by an element of the field).

III. Interpretation of the introduced operations
III.1. Operation of addition of two elements of the

set.
The physical sense of the operation is as follows: the

operation corresponds to successive application of
operations r1 and r2 accompanied by addition of the
images obtained by applying operations r1 and r2 to the
image.

Proposition 7. The operation introduced in (33) of
addition of two elements of the set is neither physically
nor visually interpretable.

Proof.
1. Physical interpretability of the operation: by

Proposition 2, the operation is not physically interpret-
able in the context of image analysis and understanding
if its operands are not images, image representations, or
fragments of images.

2. Visual interpretability of the operation: by the
corollary of Proposition 1, if an operation is not physi-
cally interpretable, it is not visually interpretable.

The proposition is proved.
An example of this operation is that it may be used

for combining operations on images.
III.2. Operation of multiplication of two elements of

the set.
The physical sense of the operation is that it corre-

sponds to the following sequence of actions. The sec-
ond operation r2 is applied to both images; as the first
and second operands of the first operation r1, the results
of applying the second operation r2 are taken.

Similarly to the operation of addition of two ele-
ments of the set, the operation of multiplication of two

A B– x c x( ),( ): c x( ) a x( ) b x( ) x X∈,–={ }.=

r1 r2⊕( ) A B,( ) r1 A B,( ) r2 A B,( );+=

r1 r2⊗( ) A B,( ) r1 r2 A B,( ) r2 A B,( ),( );=

αr( ) A B,( ) αr A B,( )=
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elements of the set is also neither physically nor visu-
ally interpretable.

An example of this operation is that it may be used
for combining operations on images.

III.3. Operation of multiplication of an element of
set U by a real number

The physical sense of the operation is this: the oper-
ation corresponds to the pointwise multiplication of the
image obtained as a result of operation r by a real num-
ber.

Similarly to the operation of addition of two ele-
ments of the set, the operation of multiplication of an
element of the set U by a real number is also neither
physically not virtually interpretable.

An example of this operation is as follows: it may be
applied for correcting the brightness and color of the
image obtained as a result of operation r.

IV. Necessary conditions for formulating and prov-
ing the theorem in item V

Set X satisfies the conditions described in Example 2.
V. Statement and proof of the theorem on valid-

ity/invalidity of properties of DIA for the construction
considered in the example

Theorem 3.
Let
* R be a field of real numbers;
* elements of set U: r1, r2, … ∈ {+, *, ∨, ∧, –, \, AB,

…}, i.e., r1, r2, … – are operations on two images
defined on a fixed set X with the range domain X.

We introduce
* an operation of addition of two operations r1 and

r2:

* an operation of multiplication of two operations r1
and r2:

* an operation of multiplication of operation r by a
real number α ∈ R:

(the right-hand side denotes multiplication of an image
by an element of the field).

Then, the set U with these operations of addition,
multiplication, and multiplication by real numbers is a
basic descriptive image algebra over the field of real
numbers.

Proof.
The proof is based on verification of the properties

of algebras (see Section 3, Definition 1) for the set U
with the introduced operations of addition, multiplica-
tion, and multiplication by real numbers.

I. By assumption of the theorem, R is the field of real
numbers.

r1 r2⊕( ) A B,( ) r1 A B,( ) r2 A B,( );+=

r1 r2⊗( ) A B,( ) r1 r2 A B,( ) r2 A B,( ),( );=

αr( ) A B,( ) αr A B,( )=

II. Verification of the properties of ring U (r1, r2, r3 ∈
U, r1  r1(A, B), r2  r2(A, B), r3  r3(A, B)).

1. Verification of the properties of the operation of
addition.

(a) Verification of the associative property:

(r1 ⊕ (r2 ⊕ r3))(A, B) = r1(A, B) + (r2(A, B) + r3(A, B))

= {the associative property for addition

of images (Theorem 2)} = (r1(A, B) + r2(A, B)) + r3(A, B);

hence, (r1 ⊕ (r2 ⊕ r3))(A, B) = ((r1 ⊕ r2) ⊕ r3)(A, B).
(b) Verification of the commutative property:

(r2 ⊕ r1)(A, B) = r2(A, B) + r1(A, B)

= {ring property 1b in Theorem 2} = r1(A, B) + r2(A, B);

hence, (r1 ⊕ r2)(A, B) = (r2 ⊕ r1)(A, B).
(c) Verification of the existence of zero.
Zero of the set U has the form O(A, B) = I0, where I0

is the zero element of the ring of images. By the ring
property 1c in Theorem 2, I0 = O(A, B). Let us prove
this:

hence, ∃O ∈ U, ∀r1 ∈ U, (r1 ⊕ O)(A, B) = r1(A, B).
(d) Verification of the existence of the opposite ele-

ment.
For element r1 of the set U, the opposite element is

(–r1)(A, B) = –r1(A, B), where –r1(A, B) is the opposite
element for r1(A, B) in the ring of images. Let us prove
this:

(r1 ⊕ (–r1))(A, B) = r1(A, B) + (–r1(A, B))

={ring property 1d in Theorem 2} = O(A, B);

hence, ∀r2 ∈ U ∃(–r1), (r1 ⊕ (–r1))(A, B) = O(A, B).
2. Verification of the properties of the operation of

multiplication.

(a) Verification of the associative property:

r1∀ r2 U , ! r1 r2+( )∃ U .∈ ∈,

r1 r2⊕( ) r3⊕( ) A B,( )
=  r1 A B,( ) r2 A B,( )+( ) r3 A B,( );+

r1 r2⊕( ) A B,( ) r1 A B,( ) r2 A B,( );+=

r1 O⊕( ) A B,( ) r1 A B,( ) O A B,( )+ r1 A B,( );= =

r1∀ r2, U , ! r1 r2⊗( )∃ U .∈ ∈

r1 r2 r3⊗( )⊗( ) A B,( )
=  r1 r2 r3 A B,( ) r3 A B,( ),( )( )⊗( ) A B,( )

=  r1 r2 r3 A B,( ) r3 A B,( ),( ) r2 r3 A B,( ) r3 A B,( ),( ),( )( );

r1 r2⊗( ) r3⊗( ) A B,( )
=  r1 r2 A B,( ) r2 A B,( ),( )( ) r3⊗( ) A B,( )

=  r1 r2 r3 A B,( ) r3 A B,( ),( ) r2 r3 A B,( ) r3 A B,( ),( ),( );
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hence, (r1 ⊗ (r2 ⊗ r3))(A, B) = ((r1 ⊗ r2) ⊗ r3)(A, B).

3. Verification of the distributive property.

For any α, β ∈ R, we have 

hence, ((αr1 ⊕ βr2) ⊗ r3) = ((αr1 ⊗ r3) ⊕ (βr2 ⊗
r3))(A, B).

Thus, the operations of addition and multiplication
satisfy the properties of a ring.

III. Verification of the properties of a ring being an
R-vector space (∀α ∈ P, r ∈ U, r  r(A, B): αr ∈ U).

1. Verification of property 1 of a ring being an R-
vector space:

hence, (α(βr))(A, B) = ((αβ)r)(A, B).

2. Verification of property 2 of a ring being an R-
vector space:

hence, ((α + β)r)(A, B) = (αr ⊕ βr)(A, B).

3. Verification of property 3 of a ring being an R-
vector space:

hence, (α(r1 ⊕ r2))(A, B) = (αr1 ⊕ αr2)(A, B).

Thus, all the properties of a ring being an R-vector
space hold.

Hence, the set U with the introduced operations of
addition, multiplication, and multiplication by real
numbers is an algebra over the field of real numbers. By
virtue of nature of elements of the set U, this algebra is
a basic descriptive image algebra.

The theorem is proved.

αr1 βr2⊕( ) r3⊗( ) A B,( )
=  αr1 A B,( ) βr2 A B,( )+( ) r3⊗( ) A B,( )

=  αr1 r3 A B,( ) r3 A B,( ),( ) βr2 r3 A B,( ) r3 A B,( ),( );+

αr1 r3⊗( ) βr2 r3⊗( )⊕( ) A B,( )
=  αr1 r3 A B,( ) r3 A B,( ),( )( )(

⊕ βr2 r3 A B,( ) r3 A B,( ),( )( ) ) A B,( )
=  αr1 r3 A B,( ) r3 A B,( ),( ) βr2 r3 A B,( ) r3 A B,( ),( );+

α βr( )( ) A B,( ) = α βr A B,( )( )( ) A B,( ) = αβr A B,( );

αβ( )r( ) A B,( ) αβ( )r A B,( ) αβr A B,( );= =

α β+( )r( ) A B,( ) α β+( )r A B,( )=

=  αr A B,( ) βr A B,( );+

αr βr⊕( ) A B,( ) αr A B,( ) βr A B,( );+=

α r1 r2⊕( )( ) A B,( ) α r1 A B,( ) r2 A B,( )+( )=

=  αr1 A B,( ) αr2 A B,( );+

αr1 αr2⊕( ) A B,( ) αr1 A B,( ) αr2 A B,( );+=

3.5. Examples of Operations
That Do not Generate Descriptive Image Algebras

3.5.1. Description of examples

This subsection contains two examples (Example 4
and Example 5).

As operands of set U in Example 4, we consider
images defined on a fixed set X with different fixed
range domains Fi , i = 1, 2, …: Ii = {(x, fi(x)), x ∈ X, fi(x)
∈ Fi}. As the operation of addition of two images I1 and
I2, we use the operation that produces the function
determining the resulting image, which is the pointwise
sum (at each point of set X) of functions f1(x) and f2(x)
describing the images. As the operation of multiplica-
tion of two images I1 and I2, we use the operation pro-
ducing the function determining the resulting image,
which is the pointwise superposition (at each point) of
functions f1(x) and f2(x) describing the images. At the
points where the value of function f2(x) ∉ X ⊂ F2,
instead of the superposition, we take the value of func-
tion f2(x). As the operation of multiplication of image I
by an element of the field, we use the operation produc-
ing the function determining the resulting image by
multiplying function f describing the image by the ele-
ment of the field at each point of set X.

As operands of set U in Example 5, we consider
images defined on fixed sets Xi with different fixed
range domains Fi , i = 1, 2, …: Ii = {(x, fi(x)), x ∈ Xi ,
fi(x) ∈ Fi}. As the operation of addition of two images
I1 and I2, we use the operation producing the function
determining the resulting image, which is the pointwise
sum (at each point of the intersection of sets X1 and X2)
of functions f1(x) and f2(x) determining the images; at
the points of sets X1 and X2 where only one image is
defined, this image is treated as the result of the opera-
tion. As the operation of multiplication of two images
I1 and I2, we use the operation producing the function
determining the resulting image, which is the pointwise
product (at each point of the intersection of sets X1 and
X2) of functions f1(x) and f2(x) describing the images; at
the points of sets X1 and X2 where only one image is
defined, this image is treated as the result of the opera-
tion. As the operation of multiplication of image I by an
element of the field, we use the operation producing the
function determining the resulting image, which is the
pointwise product (at each point of set X) of function f
determining the image by the element of the field.

These examples demonstrate operands and opera-
tions, which do not generate a DIA with one ring.

3.5.2. Example 4

I. Elements of set U
Images defined on a fixed set X with different fixed

range domains Fi , i = 1, 2, …: I = {(x, f(x)), x ∈ X,
f i(x) ∈ Fi}.
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II. Operations on the set U
Let I1 = {(x, a(x)), x ∈ X, a(x) ∈ F1} and I2 = (x,

b(x)), x ∈ X, b(x) ∈ F2}.
* Operation of addition of two images I1 and I2:

(36)

* Operation of multiplication of two images I1
and I2:

(37)

* Operation of multiplication of image I by a real
number α ∈ R:

(38)

III. Interpretation of the introduced operations 
III.1. Operation of addition of two elements of the

set (see Example 1).
III.2. Operation of multiplication of two elements of

the set.
The physical sense of the operation is as follows:

definition of an image on a set specified by another
image (if this operation is undefined (F ⊄ X), as the
result of the operation of multiplication, we take the
value of the second operand).

Proposition 8. The operation introduced in (37) of
multiplication of two elements of the set is physically
interpretable but not visually interpretable, i.e., a phys-
ically interpretable operation in the weak sense.

Proof.
1. Physical interpretability of the operation: by Def-

inition 15, an operation is physically interpretable if,
applying this operation, we obtain an image.

2. Visual interpretability of the operation: in the gen-
eral case, this operation is not visually interpretable,
because, applying it to two arbitrary images, we obtain
a semantically meaningless image (Definition 16).

The proposition is proved.
This operation is similar to the notion of Ritter’s

template [24, 25].
III.3. Operation of multiplication of an element of

set U by a real number (see Example 1).
IV. Necessary conditions for formulating and prov-

ing the theorem in item V

Let a set of sets  be given. Suppose that, on
each set Fi , a set of function Φi is specified such that
∀i = 1, 2, …, ∀f ∈ Φi: f: X  Fi:

* an operation of addition of two functions from Φi ,
Φj ⊂ Rn: i, j = 1, 2, …, ∀a(x) ∈ Φi , b(x) ∈ Φj: ∃!(a +
b)(x) ≡ b(x) ∈ Φk, k = 1, 2, …, is introduced with the
following properties (∀a(x) ∈ Φi , b(x) ∈ Φj , c(x) ∈ Φy,
i, j, y = 1, 2, …):

4.1. a(x) + (b(x) + c(x)) = (a(x) + b(x)) + c(x); (39)

I1 I2+ x a x( ), b x( )+( ) x, X∈{ };=

I1 I2⋅
x a b x( )( ),( ), b x( ) X∈
x b x( ),( ), b x( ) X∉⎩

⎨
⎧

;=

α I⋅ x α f x( )⋅,( ) x X∈,{ }.=

Fi{ }1
∞

4.2. a(x) + b(x) = b(x) + a(x); (40)

4.3. ∀i: ∀a(x) ∈ Φi , ∃0 ∈ Φi: a(x) + 0 = a(x); (41)

4.4. ∀i: ∀a(x) ∈ Φi, ∃(–a(x)) ∈ Φi: a(x) + (–a(x)) = 0; (42)

* an operation of superposition of two elements
from Φi , Φj: i, j = 1, 2, …, ∀a(x) ∈ Φi , b(x) ∈ Φj is
introduced; at the points where b(x) ∈ X: ∃!(ab)(x) ≡
a(b(x)) ∈ Φk , k = 1, 2, …;

* on the set of functions Φi , i = 1, 2, …, an operation
of multiplication by elements of field R is introduced:
∀α ∈ R, a(x) ∈ Φi , i = 1, 2, …: ∃!αa(x) ∈ Φi , i = 1, 2,
…, with the following properties: (∀a(x) ∈ Φi , b(x) ∈
Φj , c(x) ∈ Φy, i, j, y = 1, 2, …, ∀α, β ∈ R):

(43)

(44)

(45)

(46)

V. Statement and proof of the theorem on valid-
ity/invalidity of the properties of DIA for the construc-
tion considered in the example

Theorem 4.
Let
* R be the field of real numbers;

* I = {(x, f(x)), x ∈ X, f(x) ∈ F} (F ∈ , where

F is the set of values of image I on set X, f(x) ∈ )
are elements of set U;

* I1 = {(x, a(x)), x ∈ X, a(x) ∈ F1}, I2 = {(x, b(x)),

x ∈ X, b(x) ∈ F2}, (F1, F2 ∈ , a(x), b(x) ∈

).

We introduce
* an operation of addition of two images I1 and I2:

* an operation of multiplication of two images I1 and I2:

* an operation of multiplication of image I by real
number α ∈ R:

Then, the resulting construction is not an algebra but
is an additive group.

Proof.
The proof is based on testing whether the set U with

the introduced operations of addition, multiplication,
and multiplication by real numbers satisfies the proper-

4.5. αa x( ) βb x( )+( )c x( )
=  αa x( )c x( ) βb x( )c x( );+

4.6. α βa x( )( ) αβa x( );=

4.7. α β+( )a x( ) αa x( ) βa x( );+=

4.8. α a x( ) b x( )+( ) αa x( ) αb x( ).+=

Fi{ }1
∞

Φi{ }1
∞

Fi{ }1
∞

Φi{ }1
∞

I1 I2+ x a x( ), b x( )+( ) x, X∈{ };=

I1 I2⋅
x a b x( )( ),( ), b x( ) X∈
x b x( ),( ), b x( ) X∉⎩

⎨
⎧

;=

α I⋅ x α f x( )⋅,( ) x, X∈{ }.=
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ties of an algebra (see Section 3, Definition 1) and whether
the set U with the operation of addition satisfies the prop-
erties of a group (see Section 3, Definition 2).

I. By assumption of the theorem, R is the field of real
numbers.

II. Verification of the properties of ring U (I1, I2, I3 ∈
U, I1 = {(x, a(x)), x ∈ X, a(x) ∈ F1}, I2 = {(x, b(x)), x ∈
X, b(x) ∈ F2}, I3 = {(x, c(x)), x ∈ X, c(x) ∈ F3}).

1. Verification of the properties of the operation of
addition.

(a) Verification of the associative property.

= {by property 4.1 of item IV in this example}

= {(x, a(x) + (b(x) + c(x))), x ∈ X};

hence, I1 + (I2 + I3) = (I1 + I2) + I3.
(b) Verification of the commutative property.

I2 + I1 = {(x, b(x) + a(x)), x ∈ X}

I1∀ I2, U , ! I1 I2+( )∃ U .∈ ∈

I1 I2 I3+( )+ I1 x b x( ), c x( )+( ) x X∈,{ }+=

=  x a x( ), b x( ) c x( )+( )+( ) x X∈,{ };

I1 I2+( ) I3+ x a x( ), b x( )+( ) x X∈,{ } I3+=

=  x a x( ) b x( )+( ), c x( )+( ) x X∈,{ }

I1 I2+ x a x( ), b x( )+( ) x X∈,{ };=

= {by property 4.2 of item IV in this example}

= {(x, a(x) + b(x)), x ∈ X};

hence, I1 + I2 = I2 + I1.
(c) Verification of the existence of zero.
Zero of the set U has the form O = {(x, 0), x ∈ X}.

Let us prove this.

I1 + O = {(x, a(x) + 0), x ∈ X}

= {by property 4.3 of item IV in this example}

= {(x, a(x)), x ∈ X} = I1;

hence, ∃O ∈ U, ∀I1 ∈ U, I1 + O = I1.
(d) Verification of the existence of an opposite ele-

ment.
For image I1, the opposite element is (–I1) = {(x, –

a(x)), x ∈ X}. Let us prove this.

I1 + (–I1) = {(x, a(x) – a(x)), x ∈ X}

= {by property 4.4 of item IV in this example}

= {(x, 0), x ∈ X} = O;

hence, ∀I1 ∈ U, ∃(–I1), I1 + (–I1) = 0.
2. Verification of the properties of the operation of

multiplication.

(a) Verification of the associative property.

I1∀ I2, U , ! I1 I2⋅( )∃ U .∈ ∈

I1 I2 I3⋅( )⋅ I1

x b c x( ),( ),( ), c x( ) X∈
x c x( ),( ), c x( ) X∉⎩

⎨
⎧

⎝ ⎠
⎜ ⎟
⎛ ⎞

⋅
x a b c x( )( )( ),( ), b c x( )( ) X∈
x b c x( )( ),( ), b c x( )( ) X∉⎩

⎨
⎧

x c x( ),( ), c x( ) X∉⎩
⎪
⎨
⎪
⎧

c x( ) X∈= =

=  

x a b c x( )( )( ),( ), b c x( )( ) X , c x( ) X∈ ∈
x b c x( )( ),( ), b c x( )( ) X , c x( )∉ X∈
x c x( ),( ), c x( ) X∉⎩

⎪
⎨
⎪
⎧

;

I1 I2⋅( ) I3⋅
x a b x( )( ),( ), b x( ) X∈
x b x( ),( ), b x( ) X∉⎩

⎨
⎧

⎝ ⎠
⎜ ⎟
⎛ ⎞

I3⋅=

=  

x a b c x( )( )( ),( ), b c x( )( ) X , c x( ) X∈ ∈
x b c x( )( ),( ), b c x( )( ) X , c x( ) X∈∉
x c x( ),( ), c x( ) X∉⎩

⎪
⎨
⎪
⎧

b x( ) X∈( )

x b c x( )( ),( ), c x( ) X∈
x c x( ),( ), c x( ) X∉⎩

⎨
⎧

b x( ) X∉

⎩
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎧
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=  

x a b c x( )( )( ),( ), b x( ) X , b c x( )( ) X , c x( ) X∈ ∈ ∈
x b c x( )( ),( ), b c x( )( ) X , c x( ) X , b x( ) X∈ ∈∉
x c x( ),( ), c x( ) X∉⎩

⎪
⎨
⎪
⎧

or c x( ) X , b x( ) X .∉∈

Consider a point x ∈ X such that b(x) ∉ X, b(c(x)) ∈
X, c(x) ∈ X:

hence, I1 · (I2 · I3) ≠ (I1 · I2) · I3.
The operation of multiplication is not associative;

i.e., not all properties of rings hold for elements of the
set U. The properties of a group hold for the operation
of addition. Without additional constraints, with these
definitions of the operations of addition and multiplica-
tion, we have constructed only a group with respect to
the operation of addition.

The theorem is proved.

3.5.3. Example 5
I. Elements of set U
Images defined on fixed sets Xi with different fixed

range domains Fi, i = 1, 2, …: I = {(x, f(x)), x ∈ Xi ,
f(x) ∈ Fi}.

II. Operations introduced on the set U
Let I1 = {(x, a(x)), x ∈ X1, a(x) ∈ F1} and I2 = {(x,

b(x)), x ∈ X2, b(x) ∈ F2}.
* Operation of addition of two images I1 and I2:

(47)

* Operation of multiplication of two images I1 and
I2:

(48)

* Operation of multiplication of images I by real
number α ∈ R:

(49)

III. Interpretation of the introduced operations
III.1. Operation of addition of two elements of the

set.
The physical sense of the operation: the picture of

total brightness of two images on the intersection of
sets these images are specified on; at the points of sets

I1 I2 I3⋅( )⋅ x a b c x( )( )( ),( ){ };=

I1 I2⋅( ) I3⋅ x b c x( )( ),( ){ };=

I1 I2+

x a x( ), b x( )+( ), x X1 X2∩∈
x a x( ),( ), x X1\X2∈
x b x( ),( ), x X2\X1∈⎩

⎪
⎨
⎪
⎧

;=

I1 I2⋅

x a x( ), b x( )⋅( ), x X1 X2∩∈
x a x( ),( ), x X1\X2∈
x b x( ),( ), x X2\X1∈⎩

⎪
⎨
⎪
⎧

;=

α I⋅ x α f x( )⋅,( ) x, X∈{ }.=

X1 and X2 where only one image is specified, this image
is treated as the result of the operation.

Proposition 13. The operation introduced in (47) of
addition of two elements of the set is physically inter-
pretable but not visually interpretable; i.e., this opera-
tion is physically interpretable in the weak sense.

Proof.
1. Physical interpretability of the operation: by Def-

inition 15, an operation is physically interpretable if,
applying this operation, we obtain an image.

2. Visual interpretability of the operation: in the gen-
eral case, this operation is not visually interpretable,
because, applying it to two arbitrary images, we obtain
a semantically meaningless image (Definition 16).

The proposition is proved.
An example of this operation is as follows: it can be

used in the problem of overlapping of certain images
(composition of a face of the objects such as eyes, nose,
mouth).

III.2. Operation of multiplication of two elements of
the set.

The physical sense of the operation is this: point-
wise multiplication of two images under the condition
that, at the points of the set X where only one image is
defined (the first or second operand); this image (the
first or second operand, respectively) is the result of the
operation of multiplication.

Proposition 9. The operation introduced in (48) of
multiplication of two elements of the set is physically
interpretable but not visually interpretable; i.e., it is a
physically interpretable operation in the weak sense.

Proof.
1. Physical interpretability of the operation: by Def-

inition 15, an operation is physically interpretable if,
applying this operation, we obtain an image.

2. Visual interpretability of the operation: in the gen-
eral case, this operation is not visually interpretable,
because, applying it to two arbitrary images, we obtain
a semantically meaningless image (Definition 16).

The proposition is proved.
An example of this operation is as follows: it may be

used in processing of binary images, namely, in multi-
plying an image by a mask represented as an image.

III.3. Operation of multiplication of an element of
set U by a real number.

See Example 1.
IV. Necessary conditions for formulating and prov-

ing the proposition in item V
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Suppose that a set of sets  and a set of sets

 are given and, on each set Fi , a set of functions
Φi is given such that ∀i = 1, 2, …, ∀f ∈ Φi: f: Xi 

Fi , the sets  are not necessarily disjoint; neither

are the sets .

* an operation of addition of two functions from Φi ,
Φj: i, j = 1, 2, …, ∀a(x) ∈ Φi for x ∈ Xi , b(x) ∈ Φj for
x ∈ Xj: ∀x ∈ Xi ∩ Xj , ∃!(a + b)(x) ≡ a(x) + b(x) ∈ Φk,
k = 1, 2, …, is introduced with the following properties
(∀a(x) ∈ Φi , b(x) ∈ Φj , c(x) ∈ Φy, i, j, y = 1, 2, …, on
the common definition set X):

(50)

(51)

(52)

(53)

* an operation of multiplication of two functions
from Φi , Φj: i, j = 1, 2, …, ∀a(x) ∈ Φi for x ∈ Xi ,
b(x) ∈ Φj for x ∈ Xj: ∀x ∈ Xi ∩ Xj , ∃!a(x) · b(x) ∈ Φk,
k = 1, 2, …, is introduced with the following properties
(∀a(x) ∈ Φi , b(x) ∈ Φj , c(x) ∈ Φy, i, j, y = 1, 2, …, on
the common definition set X):

(54)

* on the set of functions Φi , i = 1, 2, …, an operation
of multiplication by elements of field R is introduced
∀α ∈ R, a(x) ∈ Φi for x ∈ Xi , i = 1, 2, …: ∃!αa(x) ∈ Φi

for x ∈ Xi , i = 1, 2, …, with the following properties
(∀a(x) ∈ Φi , b(x) ∈ Φj , c(x) ∈ Φy, i, j, y = 1, 2, …, on
the common definition set X, ∀α, β ∈ R):

(55)

(56)

(57)

(58)

V. Statement and proof of the theorem on valid-
ity/invalidity of the properties of DIA for the construc-
tion considered in the example

Proposition 5.

Let

* R be the field of real numbers;

Xi{ }1
∞

Fi{ }1
∞

Xi{ }1
∞

Fi{ }1
∞

5.1. a x( ) b x( ) c x( )+( )+  = a x( ) b x( )+( ) c x( );+

5.2. a x( ) b x( )+ b x( ) a x( );+=

5.3. i: a x( )∀∀ Φi, 0∃ Φi: a x( ) 0+∈ ∈ a x( );=

5.4. i: a x( )∀∀ Φi, a x( )–( )∃ Φi:∈ ∈
a x( ) a x( )–( )+ 0;=

5.5. a x( ) b x( ) c x( )⋅( )⋅ a x( ) b x( )⋅( ) c x( );⋅=

5.6. αa x( ) βb x( )+( )c x( )
=  αa x( )c x( ) βb x( )c x( );+

5.7. α βa x( )( ) αβa x( );=

5.8. a β+( )a x( ) αa x( ) βa x( );+=

5.9. α a x( ) b x( )+( ) αa x( ) αb x( ).+=

* I = {(x, f(x)), x ∈ X, f(x) ∈ F} (X ∈ , F ∈

, where F is the set of values taken by of image I

on set X and f(x) ∈ ) are elements of the set U;

* I1 = {(x, a(x)), x ∈ X1, a(x) ∈ F1}, I2 = {(x, b(x)),

x ∈ X2, b(x) ∈ F2}, (F1, F2 ∈ , X1, X2 ∈ ,

a(x), b(x) ∈ ).

We introduce

* an operation of addition of two images I1 and I2:

* an operation of multiplication of two images I1 and
I2:

* an operation of multiplication of image I by real
number α ∈ R:

Then, the set U with these operations is neither alge-
bra nor group with any one of these operations.

Proof.

The proof is based on testing whether the set U with
the introduced operations of addition, multiplication,
and multiplication by real numbers satisfies the proper-
ties of an algebra (see Section 3, Definition 1) and
whether the set U with the operation of addition sat-
isfies the properties of a group (see Section 3, Defi-
nition 2).

I. By assumption of the theorem, R is the field of real
numbers.

II. Verification of the properties of ring U (I1, I2, I3 ∈
U, I1 = {(x, a(x)), x ∈ X, a(x) ∈ X}, I2 = {(x, b(x)), x ∈
X, b(x) ∈ X}, I3 = {(x, c(x)), x ∈ X, c(x) ∈ X}).

1. Verification of the associative property of the
operation of addition.

Xi{ }1
∞

Fi{ }1
∞

Φi{ }1
∞

Fi{ }1
∞ Xi{ }1

∞

Φi{ }1
∞

I1 I2+

x a x( ), b x( )+( ), x X1 X2∩∈
x a x( ),( ), x X1\X2∈
x b x( ),( ), x X2\X1∈⎩

⎪
⎨
⎪
⎧

;=

I1 I2⋅

x a x( ), b x( )⋅( ), x X1 X2∩∈
x a x( ),( ), x X1\X2∈
x b x( ),( ), x X2\X1∈⎩

⎪
⎨
⎪
⎧

;=

α I⋅ x α f x( )⋅,( ) x, X∈{ }.=

I1∀ I2, U , ! I1 I2+( )∃ U;∈ ∈
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I1 I2 I3+( )+ I1

x b x( ), c x( )+( ), x X2 X3∩∈
x b x( ),( ), x X2\X3∈
x c x( ),( ), x X3\X2∈⎩

⎪
⎨
⎪
⎧

+=

=  

x a x( ), b x( ) c x( )+ +( ), x X1 X2 X3∩ ∩∈
x a x( ),( ), x X1\ X2 X3∩{ }∈
x b x( ), c x( )+( ), x X2 X3∩{ }\X1∈
x a x( ), b x( )+( ), x X1\ X2\X3{ }∈
x a x( ),( ), x X1 X2\X3{ }∩∈
x b x( ),( ), x X2\X3{ }\X1∈
x a x( ), c x( )+( ), x X1 X3\X2{ }∩∈
x a x( ),( ), x X1\ X3\X2{ }∈
x c x( ),( ), x X3\X2{ }\X1∈⎩

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧

=  

x a x( ), b x( ) c x( )+ +( ), x X1 X2 X3∩ ∩∈
x a x( ), b x( )+( ), x X1 X2\X3{ }∩∈
x b x( ), c x( )+( ), x X2 X3∩{ }\X1∈
x a x( ), c x( )+( ), x X1 X3\X2{ }∩∈
x a x( ),( ), x X1∈
x b x( ),( ), x X2\X3{ }\X1∈
x c x( ),( ), x X3\X2{ }\X1∈⎩

⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎧

;

I1 I2+( ) I3+

x a x( ), b x( )+( ), x X1 X2∩∈
x a x( ),( ), x X1\X2∈
x b x( ),( ), x X2\X1∈⎩

⎪
⎨
⎪
⎧

I3+=

=  

x a x( ), b x( ) c x( )+ +( ), x X1 X2 X3∩ ∩∈
x a x( ), b x( )+( ), x X1 X2∩{ }\X3 }∈
x c x( ),( ), x X3\ X1 X2∩{ }∈
x a x( ), c x( )+( ), x X1\X2{ } X3∩∈
x a x( ),( ), x X1\X2{ }\X3∈
x c x( ),( ), x X3\ X1\X2{ }∈
x b x( ), c x( )+( ), x X2\X1{ } X3∩∈
x b x( ),( ), x X2\X1{ }\X3∈
x c x( ),( ), x X3\ X2\X1{ }∈⎩

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧

One can easily see that the identity I1 + (I2 + I3) =
(I1 + I2) + I3 holds only if the condition X1 ∩ X2 = X2 ∩
X3 = X3 ∩ X1 = ∅ is satisfied. This contradicts the defi-
nition of the sum, because the sum is defined on the
union of the sets.

Similarly, the associative property does not hold for
the operation of multiplication.

The set is not a group for any one of the operations
introduced.

The proposition is proved.

3.6. Construction of Descriptive Image Algebras 
with the Help of Operations of Ritter’s Image Algebra

The above examples demonstrate that not every
operation generates a DIA with one ring. In this con-
nection, a question arises about the conditions that
should be imposed on the operations and operands in
order that these operations and operands may be used
for constructing algorithmic schemes based on DIA
with one ring.

In distinguishing the operations, which generate and
do not generate a DIA with one ring, we essentially
apply the apparatus of the standard image algebra (Rit-
ter’s image algebra) as an element of formalization of
an example. Since, in a certain sense, DIAs are more
specialized structures (because, along with the close-
ness condition imposed on operations of Ritter’s image
algebras, the conditions of a standard algebra are
imposed on the operations of DIAs), we may claim that
not every operation of Ritter’s image algebras generate
a DIA with one ring over images.

Consider in more detail the operations of the stan-
dard image algebra in the context of construction of a
DIA. The conditions determining the subsets of opera-
tions of the standard image algebra (described in [25]),
which make possible the construction of a DIA with
one ring, are established in Theorem 6.

Theorem 6.
Suppose that
* F is a field;
* elements of ring U are images in Ritter’s sense;

i.e., I = {(x, a(x)), x ∈ X, a(x) ∈ F}, where F is a set of
values and X is a set of points;

=  

x a x( ), b x( ) c x( )+ +( ), x X1 X2 X3∩ ∩∈
x a x( ), b x( )+( ), x X1 X2∩{ }\X3∈
x b x( ), c x( )+( ), x X2\X1{ } X3∩∈
x a x( ), c x( )+( ), x X1\X2{ }\X3∈
x a x( ),( ), x X1\X2{ }\X3∈
x b x( ),( ), x X2\X1{ }\X3∈
x c x( ),( ), x X3∈⎩

⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎧

.
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* operations ⊕, ⊗, and multiplication by elements
of the field are introduced. These operations belong to
the set of operations of the standard image algebra.

Then, the following conditions are necessary and
sufficient for construction of a basic DIA with one ring:

(1) I ∈ (RX) or I ∈ (Rn)X, then
* the role of operation ⊕ is played by the operation

of addition of two images;
* the role of operation ⊗ is played by the operation

of multiplication of two images;
* as multiplication by elements of the field, we take

the scalar multiplication of the element of set F and the
image;

(2) I ∈ (2F)X, then
* the role of operation ⊗ is played by the operation

of union of two images or the operation of intersection
of two images;

* as multiplication by elements of the field, we take
the scalar multiplication of the element of set F and the
image;

(3) I ∈ (R2)X, then, in addition to the operations
described in item (1),

* the role of operation ⊕ is played by the operation
of addition of two images;

* the role of operation ⊗ is played by the operation
of product of two images or the following operation:

Suppose that γ1 and γ2 are binary operations R2 ×
R2  R defined as follows:

(59)

(60)

if I1 and I2 ∈ (R2)X represent two complex-valued
images, then the product I3 = I1γI2 represents the com-
plex product

(61)

* as multiplication by elements of the field, we take
the scalar multiplication of the element of set F and the
image.

Proof.
The proof is based on verification of the properties

of an algebra (Definition 1 in Section 3) for the opera-
tions of the standard image algebra and their combina-
tions.

As the operation of multiplication by elements of
the field, we consider two operations induced by oper-
ations in the algebraic system F:

for k ∈ F and a ∈ FX,

(62)

and

(63)

x1 x2,( )γ 1 y1 y2,( ) x1y1 x2y2,–=

x1 x2,( )γ 2 y1 y2,( ) x1y2 x2y1,+=

I3 = x c x( ),( ) c x( ), a1 x( )b1 x( ) a2 x( )b2 x( ),–(={
a1 x( )b2 x( ) a2 x( )b1 x( ) )+ x, X };∈

Kγa x c x( ),( ): c x( ) kγa x( ) x X∈,={ }=

Aγk x c x( ),( ): c x( ) a x( )γk x X∈,={ }.=

Binary operations on images are also uniquely
determined by the operations of the algebraic system F.
For instance, if γ is a binary operation on the set F and
a, b ∈ FX, then

(64)

This operation may be considered as the operation
of addition in ring U only if it satisfies property 1 of a
ring and, together with the operations of multiplication
and multiplication by elements of the field, satisfies
property 3 of a ring and the properties of a vector space.

This operation may be considered as the operation
of multiplication in ring U only if it satisfies property 2
of a ring and, together with the operations of multipli-
cation and multiplication by elements of the field, sat-
isfies property 3 of a ring and the properties of a vector
space.

Let us test whether properties 1 and 2 of ring U hold
for the sets of operations of image algebra of Ritter.

* Let I1, I2 ∈ (RX).
Replacing γ with particular operations +, ·, ∨ (oper-

ation of taking the maximum), and ∧ (operation of tak-
ing the minimum) on real-valued images, we obtain the
following:

(65)

(properties 1 and 2 of a ring hold for the operation
of addition);

(66)

(properties 1 and 2 of a ring hold for the operation
of multiplication);

(67)

(the operation of taking the maximum satisfies prop-
erty 2 of a ring and does not satisfy properties 1(c),
1(d));

(68)

(the operation of taking the minimum satisfies prop-
erty 2 of a ring and does not satisfy properties 1(c),
1(d)).

* Let I1, I2 ∈ (2F)X.

Let 2X be the power set, i.e., the set of all subsets of
set X. Suppose that an image I is such that I: X  2F.
In this case, the following binary operations may be
introduced:

(69)

(the operation of union satisfies property 2 of a ring
and does not satisfy properties 1(c), 1(d));

(70)

(the operation of intersection satisfies property 2 of
a ring and does not satisfy properties 1(c), 1(d)).

Aγb x c x( ),( ): c x( ) a x( )γb x( ) x X∈,={ }.=

I1 I2+ x c x( ),( ): c x( ) a x( ) b x( )+ x, X∈={ }=

I1 I2⋅ x c x( ),( ): c x( ) a x( ) b x( )⋅ x X∈,={ }=

I1 I2∨ x c x( ),( ): c x( ) a x( ) b x( )∨ x X∈,={ }=

I1 I2∧ x c x( ),( ): c x( ) a x( ) b x( )∧ x X∈,={ }=

I1 I2∪  = x c x( ),( ): c x( ) a x( ) b x( )∪ x X∈,={ }

I1 I2∩  = x c x( ),( ): c x( ) a x( ) b x( )∩ x X∈,={ }
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* Let I1, I2 ∈ (R≥0)X

(71)

(the operation of exponentiation does not satisfy the
properties of associativity (1(a), 2)).

* Let I1, I2 ∈ (R+)X

(72)

(the operation of taking the logarithm does not sat-
isfy the properties of associativity (1(a), 2)).

* Let I1 ∈ (F)X, I2 ∈ (F)Y, X and Y be subsets of a
topological space.

By the extension A |b(x) of an image a ∈ FX with an
image b ∈ FY on a set Y, where X and Y are subsets of a
topological space, we mean:

(73)

We also introduce an operation of concatenation by

a series of images a ∈  and b ∈ :

(74)

Using the notion of matrix transpose, we similarly
introduce the column concatenation:

(75)

(the concatenation operations do not satisfy the
associative or commutative properties).

* Let I1, I2 ∈ (Rn)X

(76)

(properties 1 and 2 of a ring hold for the operation
of addition);

(77)

(properties 1 and 2 of a ring hold for the operation
of multiplication);

(78)

(the operation of taking the maximum satisfies prop-
erty 2 of a ring and does not satisfy properties 1(c),
1(d));

(79)

(the operation of taking the minimum satisfies prop-
erty 2 of a ring and does not satisfy properties 1(c),
1(d)).

Let a binary operation γ be such that γj: Rn × Rn  R,
where j = 1, …, n, and be defined as follows:

(80)

I1
I2 x c x( ),( ): c x( ) a x( )b x( ) x X∈,={ }=

I1I2
log x c x( ),( ): c x( ) a x( )b x( )log x X∈,={ }=

A b x( )
a x( ), if x X∈
b x( ), if x Y \X∈⎩

⎨
⎧

.=

F
Zm Zk×

F
Zm Zn×

a b( ) a b 0 k,( )+ .≡

a
b
---⎝ ⎠

⎛ ⎞ a b( ) '=

I1 I2+ I1
1 I2

1 … I1
n, , I2

n+ +( )=

I1 I2⋅ I1
1 I2

1 … I1
n, , I2

n⋅ ⋅( )=

I1 I2∨ I1
1 I2

1 … I1
n I2

n∨, ,∨( )=

I1 I2∧ I1
1 I2

1 … I1
n I2

n∧, ,∧( )=

I1γ I2 I1γ 1I2 … I1γ nI2, ,( ).=

For example, if γj: Rn × Rn  R are such that (x1,
…, xn)γ(y1, …, yn) = max{xi ∨ yj: 1 ≤ i ≤ j}, then, for I1,
I2 ∈ (Rn)X and I3 = I1γI2, the components c(x) = (c1(x),
…, cn(x)) have the values

(81)

(the operation does not satisfy the properties of
associativity (1(a), 2)).

Consider another example of a binary operation γ.
Let γ1 and γ2 be binary operations R2 × R2  R defined
as follows (see (77, 78)):

(82)

(83)

If I1, I2 ∈ (R2)X represent two complex-valued
images, then the product I3 = I1γI2 represents the com-
plex product c(x) = (a1(x)b1(x) – a2(x)b2(x), a1(x)b2(x) +
a2(x)b1(x))

(the operation satisfies properties 1 and 2 of a ring).

Consider several other examples of operations of
image algebra of Ritter (let I1, I2 ∈ (Rn)X, i.e., I1 = {(x,
a(x)): a(x) = (a1(x), a2(x), …, an(x))} and I2 = {(x, b(x)):
b(x) = (b1(x), b2(x), …, bn(x))}). For any subscript j, we
can introduce the following operations of taking the
maximum and taking the minimum in the jth compo-
nent of the image representation:

(84)

(the operation of taking the maximum in the jth
component satisfies property 2 of a ring and does not
satisfy properties 1(c), 1(d));

(85)

(the operation of taking the maximum in the jth
component satisfies property 2 of a ring and does not
satisfy properties 1(c), 1(d));

For the sake of visualization, we present operations
satisfying property 1 or property 2 of a ring in the table.
Columns 1 and 2 of this table show that properties 1 and
2 of a ring hold if this operation is used as the operation
of addition or multiplication, respectively, over the
given operands.

Considering different combinations of the opera-
tions, we conclude that property 3 of ring U and the
properties of a vector space over field F hold only for
operations mentioned in Theorem 1.

The proposition is proved.

c j x( ) a x( )γ jb x( )=

=  max ai x( ) a j x( ): 1∨ i j≤ ≤{ } for j 1 … n, ,=

x1 x2,( )γ 1 y1 y2,( ) x1y1 x2y2;–=

x1 x2,( )γ 2 y1 y2,( ) x1y2 x2y1.+=

I1 | j I2∨ x c x( ),( ): c x( ) a x( ),={=

if a j x( ) b j x( ), otherwise c x( )≥ b x( ) }=

I1 | j I2∧ x c x( ),( ): c x( ) a x( ),={=

if a j x( ) b j x( ), otherwise c x( )≤ b x( ) }=



PATTERN RECOGNITION AND IMAGE ANALYSIS      Vol. 16      No. 3      2006

OPERATIONS OF DESCRIPTIVE IMAGE ALGEBRAS WITH ONE RING 321

3.7. Example of Algorithmic Scheme

3.7.1. Scheme of description of the example

Since a DIA is intended to use as a language for
recording, comparing, and standardizing different algo-
rithms for image analysis, understanding, and process-
ing, we describe, using the apparatus of basic DIAs
with one ring, the algorithmic scheme of solving an
illustrative problem.

By an algorithmic scheme, we mean a sequence of
algorithmic procedures for passing from initial images
to the desired solution of the problem.

In essence, the description of the scheme is reduced
to the description of a special DIA with one ring. An
example of the use of this DIA for design of an algo-
rithm for solving the stated problem is presented in the
subsection “Algorithmic Scheme.” To demonstrate that
the operations used in constructing the DIA can be written
in terms of Ritter’s image algebra, we have included a sub-
section “Description of This Operation in Terms of the
Standard Image Algebra” in the scheme description.

The scheme is described in accordance with the fol-
lowing stages.

1. Statement of the problem.
2. Description of the special DIA with one ring:
* elements of the special DIA with one ring;
* elements of the field;
* operations introduced in the ring of the special

DIA:

(1) operation of addition of two elements of set U
(description, interpretation of this operation, and
description of this operation in terms of the standard
image algebra);

(2) operation of multiplication (description, inter-
pretation of this operation, and description of this oper-
ation in terms of the standard image algebra);

(3) operation of multiplication by elements of the
field (description, interpretation of this operation, and
description of this operation in terms of the standard
image algebra).

3. Algebraic scheme:

Let us pass to a consideration of individual elements of
the scheme of description of the algorithmic example.

3.7.2. Statement of the problem

Suppose a distorted image I is given. It is required to
obtain, using some filtering, an image closest to the ideal
one, i.e., the visually most acceptable image (see Fig. 2).

Let I1 = Φ1(I), I2 = Φ2(I), I3 = Φ3(I), … be images
obtained by applying filters Φ1, Φ2, Φ3, to image I. The
choice of an acceptability criterion for selection of the
most appropriate filter depends on the problem and is
considered in this example in the general form.

Remark. Without loss of generality, we may take as
the filters, for instance, linear filters. Suppose that an
image is represented in the form of brightness of pixels

Operands and operations of the standard image algebra, which may be used in construction of DAIs with one ring

Operands Operations 1 2

I1, I2 ∈ (RX) I1 + I2 = {(x, c(x)): c(x) = a(x) + b(x), x ∈ X} + +

I1 · I2 = {(x, c(x)): c(x) = a(x) · b(x), x ∈ X} + +

I1 ∨ I2 = {(x, c(x)): c(x) = a(x) ∨ b(x), x ∈ X} – +

I1 ∧ I2 = {(x, c(x)): c(x) = a(x) ∧ b(x), x ∈ X} – +

I1, I2 ∈ (2F)X I1 ∪ I2 = {(x, c(x)): c(x) = a(x) ∪ b(x), x ∈ X} – +

I1 ∩ I2 = {(x, c(x)): c(x) = a(x) ∩ b(x), x ∈ X} – +

I1, I2 ∈ (Rn)X I1 + I2 = (  + , …,  + ) + +

I1 · I2 = (  · , …,  · ) + +

I1 ∨ I2 = (  ∨ , …,  ∨ ) – +

I1 ∧ I2 = (  ∧ , …,  ∧ ) – +

I1, I2 ∈ (R2)X Complex product + +

I1, I2 ∈ (Rn)X I1 ∨ |j I2 = {(x, c(x)): c(x) = a(x) if aj(x) ≥ bj(x), otherwise c(x) = b(x)} – +

I1 ∧ |j I2 = {(x, c(x)): c(x) = a(x) if aj(x) ≤ bj(x), otherwise c(x) = b(x)} – +

I1
1 I2

1
I1

n I2
n

I1
1 I2

1
I1

n I2
n

I1
1 I2

1
I1

n I2
n

I1
1 I2

1
I1

n I2
n
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with coordinates (x, y). If f(x, y) is the initial image,
then the image at the output of a linear filter takes the

form g(x, y) = (x, y, i, j)f(x + i, y + j), where

h(x, y, i, j) is a weight function.

3.7.3. Description of a special DIA with one ring
I. Elements of the special DIA with one ring (ele-

ments of set U)
Suppose that images are represented by a function

whose values are pixel intensities. Let U be the set of
operations of application of filters to the initial image I:
the operation of application of filter Φi to image I pro-
duces an image Ii represented as a function whose val-
ues are pixel intensities fi(x, y) (i = 1, 2, …).

II. Elements of the field
The set U is a DIA with one ring over the field of

real numbers.3

III. Operations in the ring of the special DIA.
Operation of addition of two elements of set U.
Description

(86)

Interpretation of this operation.
The physical meaning of the operation. By the

operation of addition of two operations of filter appli-
cation to the initial image I, we mean the half-sum of
two functions of pixel brightness of images obtained by
applying this filter. Note that the division (in the half-
sum) is integer (i.e., after dividing the brightness func-
tion by two, we take only the integer part of the result)
and the addition is modulo the maximal value of the
tone level plus 1. For instance, if the pixel brightness
varies from 0 to 255, then the addition is performed
modulo 256.

Addition introduced in this way does not go outside
the set of operations of filter application to the initial

3 Without loss of generality, we assume that there exist images
with negative brightness of pixels. These images are not used in
solving the problem, but they are necessary in order that the prop-
erties of classical algebras (see Definition 1 in Section 2) hold on
the operations introduced below.

h
j N–=

N

∑
i N–=

N

∑

Φ1 I( ) Φ2 I( )+ I1/2[ ] I2/2[ ]+( ).=

image I, because, adding two filtering operations, we
obtain a new filtering operation.

The goal of introduction of the operation. The
operation introduced in this way allows us to combine
several different filtering methods by applying different
filters to the initial image and averaging the results of
filtering.

This operation is neither physically nor visually
interpretable.

Description of the operation in terms of the stan-
dard image algebra.

In terms of the standard image algebra, any image is
represented in the form I = {(x, a(x)), x ∈ X, a(x) ∈ F};
i.e., the image is an element of the set FX. (Obviously,
this definition does not contradict the above definition
and representation of the image by a function of pixel
brightness.) On images represented in this form, we
may introduce so-called forced operations on images,
i.e., operations certainly induced by operations of alge-
braic system F (see (82)). (If γ is a binary operation on
set F and a, b ∈ FX, then aγb = {(x, c(x)): c(x) =
a(x)γb(x), x ∈ X}.)

In the case considered, F is the set of integers Z
(moreover, Z is bounded by the maximal value of the
pixel brightness plus 1; without loss of generality, F =
[0…255]).

Let I1 = {(x, g1(x)), x ∈ Z2} and I2 = {(x, g2(x)), x ∈
Z2}. Then,

(87)

The square brackets in the expression [(gi(x)/2] (i =
1, 2) denote the operation of taking the integer part of
function gi(x) divided by two.

Operation of multiplication of two elements of set
U.

Description:

(88)

I1 I2+ x c x( ),( ): c x( ){{=

=  g( 1 x( )/2[ ] g2 x( )/2[ ] )mod  256 x Z 
2 } } . ∈, +

Φ1 I( ) Φ2 I( )⋅ Compare Φ1 I( ) Φ2 I( ),( ),=

 

I

 

Φ

 

(I)

 

Φ

 

???

 

Fig. 2.

 

 To the statement of the problem: illustration of the filter choice.
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where the function Compare(

 

Φ

 

1

 

(

 

I

 

), 

 

Φ

 

2

 

(

 

I

 

)) = 

 

Φ

 

i

 

(

 

I

 

), 

 

i

 

 =
1, 2; the subscript 

 

i

 

 refers to the filter whose application
to image 

 

I gives the best result for this problem. Note
that this function is the acceptability criterion men-
tioned in the statement of the problem.

Interpretation of this operation.
The physical sense of the operation is as follows:

the operation of multiplication of two operations of fil-
tering of images is reduced to the comparison of the fil-
tering results. As has been said above, the choice of the
comparison criterion depends on the problem and is
considered in this example in the most general form.
The result of the multiplication operation is the filter
that gives the best result for this problem.

The multiplication introduced in this way does not
go outside the set of operations of filter application to
the initial image I, because, multiplying two filtering
operations, we obtain a new filtering operation.

The goal of introduction of the operation. The
operation introduced in this way allows us to evaluate
the quality of the filter applied and to choose automati-
cally the most appropriate filter.

This operation is neither physically nor visually
interpretable.

Description of the operation in terms of the stan-
dard image algebra.

In terms of image algebras, this operation is referred
to as the binary operation induced by the unary opera-
tion and has the following form.

Let I1 = {(x, g1(x)), x ∈ Z2} and I2 = {(x, g2(x)), x ∈
Z2}. Then,

(89)

Operation of multiplication of an element of set U
by an element of the field.

Description.
Suppose that Φ(I) = g(x, y) and, by applying the

operation of multiplication by a real number α ∈ R, we
obtain an image with a brightness function G(x, y). We
introduce the operation as follows:

(90)

Interpretation of this operation.
The physical sense of the operation is as follows:

the operation of multiplication by a real number cor-

I1 I2⋅ x c x( ),( ): c x( ) g1 x( ),={=

if Compare Φ1 I( ) Φ2 I( ),( ) Φ1 I( ),=

and c x( ) g2 x( ),=

if Compare Φ1 I( ) Φ2 I( ),( ) Φ2 I( ) x Z2 }.∈,=

αΦ I( )

=  

G x y,( ) 0, if α 0≤=

G x y,( ) αg x y,( )[ ], if αg x y,( )[ ] 256.<=

G x y,( ) 255, otherwise=⎩
⎪
⎨
⎪
⎧

responds to a proportional increase in the image
brightness after applying the corresponding filter. If
the multiplier is negative, then this operation is
meaningless, because the value of the pixel bright-
ness cannot be negative. Since the value of the pixel
brightness is an integer, it is necessary to take into
account only the integer part of the result obtained
after multiplication by a real number. If the increased
brightness of a pixel goes out the bounded set of
intensities, the result of the operation is equal to the
maximal value of brightness.

The multiplication introduced in this way does not
go outside the set of operations of filter application to
the initial image I, because, multiplying a filtering oper-
ation by a real number, we obtain a new filtering oper-
ation.

The goal of introduction of the operation is as fol-
lows: the operation introduced in this way allows us to
proportionally increase the image brightness after fil-
tering.

This operation is neither physically nor visually
interpretable and is not interpretable in the context of
image processing, because, applying it, we obtain a
new filtering function for the initial image.

Description of this operation in terms of the stan-
dard image algebra.

In terms of image algebras, this operation is referred
to as the unary operation induced by a unary operation
and has the following form. Let I = {(x, g(x)), x ∈ Z2},
α ∈ R. Then,

(91)

3.7.4. Algorithmic scheme

Operations of the described DIA with one ring are
used for solving the stated problem. The algorithmic
scheme of the solution is constructed by the following
principle: ∀α, β ∈ R,4 ∀i, j ∈ [1…n], where n is the
number of filters, and the best filter is chosen from the
combinations αΦi + βΦj of filters Φi and Φj with the
help of operation (38) of multiplication of two filters.
Note that such a combination of filters is constructed in
turn by operation (86) of addition of two filters and
operation (90) of multiplication of a filter by an element
of the field. The flow chart of the algorithm is presented
in Fig. 3.

4 In the algorithm written in the C language, α and β vary with a
certain step h and are bounded from above by a real number max-
Alpha.

αI {{ x c x( ),( ): c x( )=

=  

0, if α 0≤

αg x( )[ ], if αg x( )[ ] 256, x< Z2 }.∈
255, otherwise⎩

⎪
⎨
⎪
⎧
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Begin

Return Φ0

i = 1;
Φ0 = Φ1(I)

i < = N

j = i + 1

j < = N

α = 0;

no

yes

yes

no

no

no

β = 0;

α < = max(α)

β < = max(α)

α + β<>0

Φ0 is worse than αΦi(I) + βΦj(I)

Φ0 = αΦi(I) + βΦj(I);

yes

yes

β + = h;

β = 0;
α + = h;

j++;

i++;

yes

yes

Fig. 3. Flow chart of the solution of the problem.
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The algorithmic scheme is described in C++.

// An example of an algorithm using the DIA with one ring
// described above.
public class algorithm
{
// the step of application of operation (91)
double h;
// the maximal real number used in (91)
double maxAlpha;

// image
Image I;
// the number of input filters
int N;
// an array of input filters
ArrayList F0;
// constructor of the algorithm class
public algorithm()

{InitiateData();}
// data initialization
public void InitiateData()

{/*input of all data*/}
// Implementation of the operations
// Operation of addition
public Filter Plus(Filter F1, Filter F2)

{/*Implementation of the operation of addition */}
// Operation of multiplication (comparison of two filters)
public Filter Compare(Filter F1, Filter F2)

{/*Implementation of the operation of multiplication*/}
// Operation of multiplication of a filtering operation
// by a real number alpha
public Filter MultiplyByAlpha(double alpha, Filter F)
{/*Implementation of the operation of multiplication by a real number*/}
// main function: the choice of the best filter
public Filter TheBestFilter(int M)
{

double alpha, better;
Filter F = new Filter;
F(I)=F0[0](I);
// comparison of all linear combinations of input filters
for(int i=0;i<N;i++)
for(int j=i+1;j<N;j++)
{

alpha = 0;
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better = 0;
while(alpha<=maxAlpha)
{

while(better<=maxAlpha)
{

if(!((alpha=0)&(better=0)))
{

F(I) = Compare(F(I),Plus(MultiplyByAlpha(alpha, F0[i](I)), MultiplyByAlpha(better, F0[j](I)));
}
better+=h;

}
alpha+=h;

}
}
return F;
}

}

4. CONCLUSIONS
In this paper, we justify the choice of a new alge-

braic apparatus for description of algorithms for image
processing. Along with theoretical results on structur-
ing the concept of DIA and selection of operations of
the standard image algebra that generate the construc-
tion of a DIA with a ring from images, an example of
an algorithmic scheme of solving a problem of image
processing in terms of DIA is given.

The main results of the paper are the following:
* a hierarchical scheme of heterogeneous algebras is

constructed, which includes different versions of spe-
cialized image algebras;

* operands and operations of DIA with one ring are
introduced and investigated;

* a concept of interpretability of operations of DIA
is introduced and studied;

* examples of sets of operations generating DIA are
presented;

* examples of sets of operations, which do not gen-
erate DIA, are presented;

* conditions of generating DIA by operations of the
standard Ritter image algebra are obtained;

* an algorithmic scheme for the problem of image
filtering based on DIA with one ring is designed.

In the framework of the theory, the following stages
of investigation are planned.

(1) Investigation of possible image representations.
Construction of a DIA with one ring whose result or

operands are different special classes of image models.
The main practical value of the possibility of formaliza-
tion of different image representations (models) is the
extension of the algebraic concept of recognition to

images. This, in turn, leads to the design of a standard
language for description of algorithms for image pro-
cessing, understanding, and analysis.

(2) Continuation of the search for necessary and suf-
ficient conditions imposed on the set of operations of
image processing, which generate DIAs with one or
several rings.

(3) Continuation of the investigation of interpret-
ability of operations generating DIA.

(4) Investigation of DIAs with several rings (the use
of the apparatus of graded algebras).

(5) Construction of DIAs based on the properties of
equivalence and invariance in the explicit form.

(6) Design, investigation, and implementation of
algebraic schemes intended for solving model and
applied problems of analysis and evaluation of infor-
mation presented in the form of images.
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