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Abstract

 

—Within the framework of the algebraic approach to the synthesis of correct algorithms, a
class of problems is described and analyzed in which, for each element of the initial-information space,
a corresponding subset of the final-information set (problems with set-theoretic constraints) is defined.
The concept of completeness is introduced for models of algorithms and algorithmic operators and for
decision rule classes and correcting operations. Relevant completeness criteria are derived and proved.
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Within the framework of the algebraic approach to the synthesis of correct algorithms for pattern recog-
nition, classification, and prediction [1, 2], we consider a class of problems characterized by explicit set-
theoretic constraints imposed on the admissible output space of an algorithm.

Following [3–6], the classification problem is described as the problem of designing a data-transforma-
tion algorithm. Consider a set 
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Consider the problem of designing algorithms 
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 that implement mappings from 
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 to a final-information
space 
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. In what follows, we do not distinguish algorithms and the mappings they implement. A solu-
tions is synthesized within the framework of a model 
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. An
individual problem is defined by structural information 
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 that singles out from 
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 a subset of admissible
mappings, designated as 
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. Any algorithm 
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 implementing an arbitrary admissible mapping is called
correct for the problem defined by 
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S

 

 and is its solution.

Constructions based on the algebraic approach to the synthesis of correct algorithms make use of an esti-
mate space 
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e
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}

 

 that is intermediate between 
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 and 
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f

 

. Correct algorithms are synthesized on the basis
of heuristic information models, i.e., parametric classes of mappings from 
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i

 

 to 
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, which are special super-

positions of algorithmic operators (mappings from 
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 to 
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) and decision rules (mappings from 
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,
where 

 

p

 

 is the arity of a decision rule).
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[4]. For an arbitrary mapping 
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 with 
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, diagonalization is a map-
ping 

 

u
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 from 

 

�

 

 to 

 

�

 

 such that 

 

u∆(U) = u(U, …, U) for any U from �.

The models � are defined by models of algorithmic operators �
0
, where

and by decision rules �
1
, where

�e
p

�0 �*⊆ B  B : �i �e{ },=
df
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C  C : �e

p � f{ },
p 0=
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as follows:

In the synthesis of correct algorithms, we also use sets � of correcting operations defined over the set of

mappings �∗. The correcting operations F considered in this paper are induced by operations  over �e:

where Ii ranges over �i; the algorithmic operators B1, …, Bp are arbitrary mappings from �i to �e; and  is
an operation over �e.

The construction scheme for an algorithm model � is shown in the following commutative diagram (see
[3–6]):

.

For the problems with set-theoretic constraints considered here, algorithm models � are constructed on
the basis of parametric classes of models of algorithmic operators and correcting operations. It is assumed

that �0 = {  | λ ∈ L, ω ∈ W(λ)} and � = {�λ | λ ∈ L}, where W(λ) and L are sets of structural indices.
A model � is constructed in the form

where

for all λ ∈ L and ω ∈ W.
To formalize the concept of set-theoretic constraints, we introduce a set Π = {π1, …, πk} of predicates πi :

�i × �f  {0, 1}.

Let Ii be an arbitrary element of �i. Let

be the set of all admissible values of correct algorithms for the initial information Ii.

A set Π is called covering if Π(Ii) ≠ ∅ for any Ii in �i, i.e., if for any element, there exists at least one
admissible value.

In what follows, we consider an arbitrary fixed covering set Π.
Denote the set of positive integers by �, and let �0 = � ∪ {0}.

Definition 1. The set

is called the set of collections of admissible precedents.

For an arbitrary set � and q ∈ �, the symbol (�
q
)* stands for the set {(I1, …, Iq)(I1, …, Iq) ∈ �q, Ik ≠ Ij

for k ≠ j}.

� �1
 ° �

0
C ° B1 … Bp××( )∆  C �1

B1 … Bp �0∈, , ,∈{ }.= =

F̃

F B1 … Bp, ,( ) Ii( ) F̃ B1 Ii( ) … Bp Ii( ), ,( ),=
df

F̃

�i � f
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�

�
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 ° �
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Note that

Definition 2. A model � is called Π-complete if

(1)

(2)

Note that conditions (1) and (2) are independent. Moreover, under condition (2), condition (1) is equiv-
alent to

The goal of this study is to characterize the conditions on �
1
, �, and �

0
 under which the model

(3)

is complete.

It can easily be seen that the completeness problem for � can be analyzed under the assumption that

q = 1. Indeed, to this end, it suffices to proceed from �i to , from �f to , from �e to

, and from the original mappings (say, A ∈ �, A : �i  �f) to

Definition 3. A decision rule class �1 is called Π-complete if there exists a model of algorithmic oper-
ators �0 and a class of correcting operations � such that model (3) is Π-complete.

Definition 4. For a fixed Π-complete decision rule class �
1
, a family � of correcting operations is

called �
1
-Π-complete if there exists a model of algorithmic operators �

0
 such that model (3) is Π-com-

plete.

Definition 5. For a fixed Π-complete decision rule class �
1
 and a fixed �

1
-Π-complete family � of

correcting operations, a model of algorithmic operators �
0
 is called � – �

1
-Π-complete if model (3) is

Π-complete.

Consider a nonempty decision rule class �
1
 = , where  ⊆ {C | C :   �f} for any

p in �0 . For any X ⊆ �e, it turns out that

Definition 6. Let p ∈ �0 . For an arbitrary Ii in �i, the set αp(�
1
, Ii) is defined as the intersection, in the

pth Cartesian power of �e, of all complete preimages of Π(Ii) with respect to the decision rules of arity p:

Prec Ii
1 … Ii

q, ,( ) Π Ii
1( ) … Π Ii

q( )××,{ }.
Ii

1 … Ii
q, ,( ) �i

q( )*∈

∪
q �∈
∪=

Ii : � Ii( )
�i

∩ A Ii( )  A �∈{ } Π Ii( ),⊆=∀
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�
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Definition 7. Let p ∈ �0 . For a class �
1
 and an element Ii of �i, a subset X(Ii) of �e is called an admis-

sible p projection if

The set of all admissible p projections for �
1
 and Ii is denoted by ξp(�

1
, Ii).

For an arbitrary Ii in �i, we introduce the set Φ(�
1
, Ii) of choice functions of admissible projections:

where Β(�e) is the set of all subsets of �e.

For each choice function of admissible projections ϕ in Φ(�
1
, Ii), we set

Note that

Let (�
1
, Ii) = {ϕ | ϕ ∈ Φ(�

1
, Ii), X(Ii, ϕ) ≠ ∅}.

Theorem 1. For all Ii in �i,

(4)

Proof. For an arbitrary Ii in �i, any ϕ in (�
1
, Ii), and any p in �0 , if ((X(Ii, ϕ))p) is empty, then

 is obviously empty as well. However, if  is not empty, then ((X(Ii, ϕ))p) ⊆ (ϕ(p)) because

X(Ii, ϕ) = (p). Since ϕ(p) for a nonempty  belongs to ξp(�
1
, Ii), it follows from the definitions

of αp(�
1
, Ii) and ξp(�

1
, Ii) that ((X(Ii, ϕ))p) ⊆ Π(Ii). Therefore,

Since this holds true for all ϕ, we conclude that (4) is always true, which was to be proved.

Theorem 2 (Π-completeness criterion for decision rule classes). A decision rule class �1 is Π-complete
if and only if

(5)

for any Ii in �i.

X Ii( )( )p αp �1
Ii,( ),⊆

Z∃¬ �e : X Ii( ) Z⊂( ) Z p αp �1
Ii,( )⊆( ).∧⊆

Φ �1
Ii,( ) ϕ  ϕ : �0 Β �e( ) p : �p

1 ∅=( ) ϕ p( ) �e=( )⇒( ) ∧
�0

∪,




=

---∧ �p
1 ∅≠( ) ϕ p( ) ξp �1

Ii,( )∈( )⇒( )




,

∀

X Ii ϕ,( ) ϕ p( ).
p 0=

∞

∩=

�1
X Ii ϕ,( )( ) C ϕ p( )

p 0=

∞

∩ 
 

r

 
  .

C �r
1∈

∪
r 0=

∞

∪=

Φ̃

�1
X Ii ϕ,( )( ) Π Ii( ).⊆

ϕ Φ̃ �1
Ii,( )∈

∪

Φ̃ �p
1

�p
1 �p

1 �p
1 �p

1

ϕ
p 0=
∞∩ �p

1

�p
1

�1
X Ii ϕ,( )( ) �p

1
X Ii ϕ,( )( )p( )

p 0=

∞

∪ Π Ii( ).⊆=

�1
X Ii ϕ,( )( )

ϕ Φ̃ �1
Ii,( )∈

∪ Π Ii( )=
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Proof. Necessity. Assume that (X(Ii, ϕ)) does not coincide with Π(Ii). Then, there exists

 such that

At the same time, let model (3) be Π-complete. Then a p0-ary decision rule C0 ∈ �
1
; parameter values λ ∈

L and ω(1), …, ω(p0) ∈ W(λ) correcting F1, …,  ∈ �λ; and algorithmic operators , …,  ∈

, …, , …,  ∈  exist such that

Let  = (F1( , …, )(Ii), …, ( , …, )(Ii)) ∈ . Then C0( ) = .

If ( ) is not a subset of Π(Ii), then �(Ii) is also not a subset of Π(Ii), so � is not Π-complete.

It remains to consider the case where ( ) ⊆ Π(Ii), which is equivalent to  ∈ (�
1
, Ii).

For any vector  = ( , …, ) ∈ , we set Q( ) = { , …, }.

Suppose that there exists p such that (Q( ))p is not a subset of αp(�
1
, Ii). Then, there exists C0 in 

and an index set (i1, …, ip) ∈ {1, 2, …, p0}p such that

so that �(Ii) is not a subset of Π(Ii).

Finally, let either  = ∅ or (Q( ))p ⊆ αp(�
1
, Ii) for all p. Then, for each p,  is either empty or

there exists Xp in ξp(�
1
, Ii) such that Q( ) ⊆ Xp. Consequently, there is a function ϕ0 in (�

1
, Ii) such

that Q( ) ⊆ ϕ0(p) for all p, so that Q( ) ⊆ X(Ii, ϕ). Therefore,

which contradicts the assumption that

The necessity is proved.
Sufficiency. Let condition (5) be fulfilled. We set

As a class of correcting operations, we use the singleton set � consisting of the identity mapping of �e

into itself. For notational definiteness, we set L = {0}.

The models  are defined as

�1

ϕ Φ̃ �1
Ii,( )∈

∪
I f

0

I f
0 Π Ii( ) �1

X Ii ϕ,( )( )
ϕ Φ̃ �1

Ii,( )∈

∪ .–∈

Fp0
B1

1 Br 1( )
1

�λ ω 1( ),
0

B1
p0 Br p0( )

p0 �λ ω p0( ),
0

C0 ° F1 B1
1 … Br 1( )

1, ,( ) … Fp0
B1

p0 … Br p0( )
p0, ,( )××( )∆ Ii( ) I f

0 .=

Ie
0

B1
1 Br 1( )

1 Fp0
B1

p0 Br p0( )
p0 �e

p0 Ie
0

I f
0

�p0

1
Ie

0

�p0

1
Ie

0
Ie

0 αp0

Ie
p

Ie
1 Ie

p �e
p

Ie
p

Ie
1 Ie

p

Ie
0

�p
1

C0 ° Fi1
B1

i1 … Br i1( )
i1, ,( ) … Fip

B1
ip … Br ip( )

ip, ,( )××( )∆ Π Ii( ),∉

�p
1

Ie
0

�p
1

Ie
0 Φ̃

Ie
0

Ie
0

�1
Q Ie

0( )( ) �1
X Ii ϕ,( )( ),

ϕ Φ̃ �1
Ii,( )∈

∪⊆

C0 Ie
0( ) I f

0 �1
X Ii ϕ,( )( ).

ϕ Φ̃ �1
Ii,( )∈

∪∉=

W Φ̃ �1
Ii,( )

Ii �i∈
∏ ω ω : �i Φ̃ �1

Ii,( ), Ii : ω Ii( ) Φ̃ �1
Ii,( )∈

�i

∩
Ii �i∈
∪

 
 
 

.= = ∀df

�0 ω,
0

�0 ω,
0

B  B : �i �e, Ii : B Ii( ) X Ii ω Ii( ),( )∈
�i

∪
 
 
 

.= ∀



334

COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS      Vol. 45     No. 2      2005

RUDAKOV, CHEKHOVICH

Let ( , ) be an arbitrary admissible precedent. The assumption made implies that there exist p0 ∈ �0

and ϕ0 ∈ (�
1
, ) that satisfy  ∈ ((X( , . Therefore, there exists C0 ∈  such that, for

some ( , …, ) ∈ (X( , , we have C0( , …, ) = .

Let ω for  be an arbitrary function satisfying ω( ) = ϕ0. In , there are operators B1, …, 

such that Bk( ) =  ∈ X( , ϕ0) for all k = 1, 2, …, p0. Thus, we have C0(B1 × … × )∆( ) = , which
completes the proof of the theorem.

In what follows, we assume that �
1
 is an arbitrary fixed Π-complete decision rule class.

Definition 8. Let Ii ∈ �i . The system of subsets G(Ii) = {X(Ii, γ) | X(Ii, γ) ⊆ �e, γ ∈ Γ(Ii)}, where Γ(Ii) is

an index set, is called �
1
-complete for Ii if

(6)

Now, we consider classes of correcting operators � = {�λ | λ ∈ L}, assuming that �λ =  for

all λ in L. Here,  is defined as  = �λ ∩ {F | F :   �e} for all p in �0 .

Definition 9. Let p ∈ �0. Given arbitrary λ in L, Ii in �i, and ϕ in (�
1
, Ii), the set (Ii, ϕ) is defined

as the intersection, in the pth Cartesian power of �e, of all the complete preimages of X(Ii, ϕ) with respect

to correcting operations in :

(7)

Definition 10. Let p ∈ �0. Given arbitrary λ in L, Ii in �i, and ϕ in (�
1
, Ii), the subset Y(Ii, ϕ, λ) of

�e is called an �λ – �1-admissible p projection if

The set of all �λ – �
1
-admissible p projections for λ ∈ L, Ii ∈ �i, and ϕ in (�

1
, Ii) is denoted by ζp(Ii,

ϕ, λ).

For arbitrary λ ∈ L in L, Ii in �i, and ϕ in (�
1
, Ii), the set Ψ(Ii, ϕ, λ) of choice functions of �λ – �

1
-

admissible projections is defined as

Ii
0 I f

0

Φ̃ Ii
0 I f

0 �p0

1
Ii

0 ϕ0 ) )
p0 ) �p

1

Ie
1 Ie

p0 Ii
0 ϕ0 ) )

p0 Ie
1 Ie

p0 I f
0

�0 ω,
0

Ii
0 �0 ω,

0
Bp0

Ii
0 Ie

k Ii
0 Bp0

Ii
0 I f

0

γ ϕ : X Ii γ,( ) X Ii ϕ,( ),⊆
Φ̃ �1

Ii,( )

∪
Γ Ii( )
∪

�1
X Ii γ,( )( )

γ Γ Ii( )∈
∪ Π Ii( ).=

∀ ∃

�p
λ

p 0=
∞∪

�p
λ �p

λ �e
p

Φ̃ βp
λ

�p
λ

βp
λ Ii ϕ,( ) F 1– X Ii ϕ,( )( )

F �p
λ∈

∩ Ie  Ie �e
p
, F : F Ie( ) X Ii ϕ,( )∈

�p
λ

∪∈
 
 
 

.= = ∀

Φ̃

Y Ii ϕ λ, ,( )( )p βp
λ Ii ϕ,( ),⊆

Z∃¬ �e : Y Ii ϕ λ, ,( ) Z⊂( ) Z p βp
λ Ii ϕ,( )⊆( ).∧⊆

Φ̃

Φ̃

Ψ Ii ϕ λ, ,( ) ψ  ψ : �0 Β �e( ) p : �p
λ ∅=( ) ψ p( ) �e=( )⇒( ) ∧

�0

∪,




=

---∧ �p
λ ∅≠( ) ψ p( ) ζp Ii ϕ λ, ,( )∈( )⇒( )





.
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For each choice function of �λ – �
1
-admissible projections ψ in Ψ(Ii, ϕ, λ), we set Y(Ii, ϕ, λ, ψ) =

. Note that

Let (Ii, ϕ, λ) = {ψ | ψ ∈ Ψ(Ii, ϕ, λ), Y(Ii, ϕ, λ, ψ) ≠ ∅}.

Theorem 3 (�
1
–Π-completeness criterion for classes of correcting operations). A class of correcting

operations � ={�λ | λ ∈ L} is �
1
-complete if and only if, for any Ii in �i, there exists an �

1
-complete

system of subsets G(Ii) = {X(Ii, γ) | X(Ii, γ) ⊆ �e, γ ∈ Γ(Ii)} such that, for any γ in Γ(Ii), one can find λ in L
for which

(8)

Remark. It follows from (6) and (7) that

for all Ii in �i, λ in L, ϕ in (�1, Ii), and ψ in (Ii, ϕ, λ). Indeed, for all λ ∈ L, all ϕ ∈ (�
1
, Ii), all ψ ∈

(Ii, ϕ, λ), and all p in �0 , we either have  = ∅ or ψ(p) ∈ ζp(Ii, ϕ, λ). In the former case, naturally,

((Y(Ii, ϕ, λ, ψ))p) = ∅. In the latter case, Y(Ii, ϕ, λ, ψ) ⊆ ψ(p), so ((Y(Ii, ϕ, λ, ψ))p) ⊆ (ψ(p)). Since

ψ(p) ∈ ζp(Ii, ϕ, λ), we have (ψ(p))p ∈ (Ii, ϕ), which implies that (ψ(p)) ⊆ X(Ii, ϕ) and ((Y(Ii, ϕ, λ,
ψ))p) ⊆ X(Ii, ϕ).

Proof. Necessity. Suppose that there exists  in �i for which there is no �
1
-complete (for Ii) system of

subsets G(Ii) = {X(Ii, γ) | X(Ii, γ) ⊆ �e, γ ∈ Γ(Ii)} such that, for all γ in Γ(Ii), one can find λ in L for which
(8) holds.

At the same time, let the class of correcting operations � = {�λ | λ ∈ L} be �
1
-complete. This means

that there exists a model of algorithmic operators �
0
 such that model (3) is Π-complete, so that �( ) =

Π( ).

Consider the system G0( ) of subsets of �e defined as

where

and, for all λ ∈ L and ω ∈ W(λ),

Obviously, for all γ in Γ0( ), we have �λ( )( ) ⊆ X(Ii, ϕ) (for some ϕ in (�
1
, Ii)) and

Thus, G0( ) is �
1
-complete for , which contradicts the assumption made. The necessity is proved.
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Sufficiency. For each Ii in �i, suppose that there exists an �
1
-complete (for Ii) system of subsets G0(Ii) =

{X0(Ii, γ) | X0(Ii, γ) ⊆ �e, γ ∈ Γ0(Ii)} such that, for all γ in Γ(Ii), one can find λ in L for which (8) holds.

For each λ ∈ L, we set

The models  are defined as

For all Ii in �i, we have (Ii) = {Β(Ii) | Β ∈ } = Y(Ii, ϕ, λ, ω(Ii)), so that �λ( )(Ii) =
�λ(Y(Ii, ϕ, λ, ω(Ii))). It follows that

for all γ in Γ0(Ii).

Since G0 is �
1
-complete for Ii by assumption, we obtain

which completes the proof of the theorem.

In what follows, it is assumed that � = {�λ | λ ∈ L} is an arbitrary fixed �
1
 – Π-complete class of cor-

recting operations.

Definition 11. Let Ii ∈ �i, and let G(Ii) = {X(Ii, γ) | X(Ii, γ) ⊆ �e, γ ∈ Γ(Ii)} be a fixed �
1
-complete (for

Ii) system of subsets. A system of subsets H(Ii, G) = {Y(Ii, γ, λ, δ) | Y(Ii, γ, λ, δ) ⊆ �e, γ ∈ Γ(Ii), δ ∈ ∆(Ii, G)}

is called � – �
1
-complete for Ii if

Theorem 4 (� – �
1
-Π-completeness criterion for models of algorithmic operators). A model of algo-

rithmic operators �
0
 = {  | λ ∈ L, ω ∈ W(λ)} is � − �1 – Π-complete if and only if

(9)

for all Ii in �i and there exists an �
1
-complete system of subsets G(Ii) = {X(Ii, γ) | X(Ii, γ) ⊆ �e, γ ∈ Γ(Ii)}

and an � – �
1
-complete system of subsets H(Ii, G) = {Y(Ii, γ, λ, δ) | Y(Ii, γ, λ, δ) ⊆ �e, γ ∈ Γ(Ii), δ ∈ ∆(Ii, G)}
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such that

(10)

Proof. Necessity of condition (9). For some  in �i, λ0 ∈ L, and ω0 ∈ W(λ0), suppose that none of the

sets Y( , ϕ, λ0, ψ) with ϕ ∈ {�
1
, } and ψ ∈ ( , ϕ, λ0) covers ( ).

If there is no ϕ0 in (�
1
, ) such that ( ( )) ⊆ X( , ϕ0), then �

1
( ( ( ))) ⊆

Π( ) does not hold. However, if (�
1
, ) for some ϕ0 in ( ( )) ⊆ X( , ϕ0), then in ( ,

ϕ, λ0) there exists a choice function of  – �1-admissible projections ψ0 such that ( ) ⊆ Y( ,
ϕ, λ0, ψ), which proves the necessity of condition (9).

The necessity of condition (10) follows from the fact that { (Ii) | λ ∈ L, ω ∈ W(λ)} can be used as

an � – �
1
-complete system of subsets H(Ii, G) and {�λ( (Ii) | λ ∈ L, ω ∈ W(λ)} can be used as G(Ii).

Sufficiency of condition. Suppose that �
0
 satisfies (9) and (10). It follows from (9) that

�
1
 ° �λ( )(Ii) ⊆ Π(Ii) for all Ii ∈ �i, λ ∈ L, and ω ∈ W(λ).

It follows from (10) that, for any Ii and any If ∈ Π(Ii), there exist λ and ω such that If ∈ �1 °

�λ( )(Ii), which was to be proved. The proof of Theorem 4 is completed.
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