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1. Intro
K – field of characteristic zero,
x – an independent variable,
E – shift operator with respect to x, i.e.

Ef(x) = f(x + 1)

for an arbitrary expression f(x),
all f/g ∈ K(x), with f, g ∈ K[x] \ {0} coprime and deg f < deg g

(i.e., proper),
ρ – the dispersion of f/g (Abramov 1971), the maximal integer
distance between roots of the denominator g, and∑

and
∑

x are the same everywhere



The problem of indefinite summation in general is:
given a closed form expression F (x) to find a closed form expression
G(x), which satisfies the first order linear difference equation

(E − 1)G(x) = F (x). (1)

If found, write
∑

F (x) = G(x) + c, where c is an arbitrary constant
or any periodic function of x with period 1.

F (x) = (E − 1)[G(x) + c],
∑

F (x) =
∑

(E − 1)[G(x) + c],

and since
∑

x(E − 1) = (E − 1)
∑

x = 1
∑

F (x) = G(x) + c.



If not found one can try to solve the additive decomposition
problem:
construct two closed form expressions R(x) and H(x), such that

F (x) = (E − 1)R(x) + H(x), (2)

where H(x) is simpler than F (x) is some sense (or as variation, as
simple as possible), and write result of summation as

∑
x

F (x) = R(x) +
∑

x

H(x)

The measure of simplicity can be different for different classes of
functions. For example if F (x) is a rational function over K one
requires both R(x) and H(x) to be rational with H(x) having the
denominator of the lowest possible degree (ρ = 0).



2. Factorial Polynomials
Following Moenck (1977) define the factorial polynomial (a
generalization of the falling factorial) for p(x) ∈ K[x] as

[p(x)]k = p(x) · p(x− 1) · . . . · p(x− k + 1) (3)

for k > 0 and [p(x)]0 = 1.

Note, that the left hand side of (3) offers succinct (most compact)
representation of the product in the right hand side for large values
of k, as it requires Θ(log k) bits to represent the polynomial
p(x) · p(x− 1) · . . . · p(x− k + 1) assuming the degree of p(x) is fixed.



Factorial polynomials satisfy many obvious identities, which
capture their multiplicative nature and allow manipulate them
without expanding. We list only few of them for illustration
purposes:

[p(x)]k = [p(x)]k−1 · p(x− k + 1),

[p(x + 1)]k = p(x + 1) · [p(x)]k−1 , for k > 0,

[p1(x) · p2(x)]k = [p1(x)]k [p2(x)]k

Based on these it is easy to implement lazy evaluation rules, such
as for example,

A·[p(x)]k±B·[p(x + 1)]k = [A · p(x− k + 1)±B · p(x + 1)]·[p(x)]k−1 ,

(4)
which holds for arbitrary expressions A and B.



Another set of rules involves computation of gcd and cancelations.
For example, given natural h, k, and l:

gcd([p(x)]k , [p(x + h)]l) =





1 if l − h ≤ 0,

[p(x)]min(k,l−h) otherwise.

. . .

The ultimate goal of lazy manipulation rules is to avoid complete
expansion of the involved factorial polynomials as much as possible.



3. Simple application (Polynomial Normal Forms)

Consider R ∈ K(x). If z ∈ K and monic polynomials A, B,C ∈ K[x]
satisfy
(i) R = z · A

B · EC
C ,

(ii) A⊥EkB for all k ∈ N,
then (z, A,B,C) is a polynomial normal form (PNF) of R. If in
addition,
(iii) A⊥C and B⊥EC,
then (z, A,B,C) is a strict (PNF) of R (see S. A. Abramov and
M. Petkovšek, 2002 for details).

For example, for the rational function x+1000
x+1 PNF is

1, 1, 1, (x + 999) · (x + 998) · (x + 997) · · · · · (x + 2) · (x + 1),

with polynomial C of degree 999.



The notion of Rational Normal Form (RNF) was introduced in the
context of hypergeometric summation (see S. A. Abramov and
M. Petkovšek, 2002 for details). The main steps in computation of
RNF for a given rational function R ∈ K(x) involve construction of
two PNFs, computation of gcd, and divisions:

(z,a,b,c) := PolynomialNormalForm(R,n);

(z1,a1,b1,c1) := PolynomialNormalForm(b/a,n);

g := gcd(c,c1);

return (z,b1,a1,c/g,c1/g)



The gain from using succinct representation is transparent from the
following example: for R = x(x+1000)

(x+3)(x+1003) the first call to
PolynomialNormalForm produces (1, x, x + 1003, [x + 999]997) with
polynomial c of degree 997, the second call produces
(1, 1, 1, [x + 1002]1003) with polynomial c1 of degree 1003, and
gcd(c, c1) = [x + 999]997. The RNF for R is

(1, 1, 1, 1, (x + 1001) (x + 1002) (x + 1) (x + 2) x (x + 1000)),

with most of the terms from PNFs cancelled. Our prototype
produces this result in 0.012 seconds, while standard Maple
implementation requires 3.5 second on the same computer.



4. Two Gosper’s methods for indefinite hypergeometric
summation

Recall that a nonzero expression F (x) is called a hypergeometric
term over K if there exists a rational function r(x) ∈ K(x) such
that F (x + 1)/F (x) = r(x). Usually r(x) is called the rational
certificate of F (x).

The problem of indefinite hypergeometric summation
(anti-differencing) is: given a hypergeometric term F (x) to find a
hypergeometric term G(x), which satisfies the first order linear
difference equation

(E − 1)G(x) = F (x). (5)



Gosper’s approach is based on simple observation that if a given
hypergeometric term F (x) is summable, then the terms G(x) and
F (x) are similar: i.e., there exists Y (x) ∈ K(x) such that
G(x) = Y (x)F (x).

This reduces the original summation problem to the problem of
finding a rational solution of

Y (x + 1)r(x)− Y (x) = 1, (6)

where r(x) is the rational certificate of the summand.



5. Two Gosper’s methods...

1. R. W. Gosper, Jr. Indefinite hypergeometric sums in
MACSYMA. In Proceedings of the 1977 MACSYMA Users’
Conference, pages 237–251, 1977.

2. R. W. Gosper, Jr. Decision procedure for indefinite
hypergeometric summation. Proc. Nat. Acad. Sci. U.S.A.,
75(1):40–42, 1978.
Comminicated by Donald E. Knuth, September 26, 1977



In order to solve (6), the rational certificate is transformed to
so-called Gosper form a , i.e. one finds polynomials P,Q, R such
that

r(x) =
P (x + 1)Q(x)

P (x)R(x)
,

where Q(x) and R(x + h) are co-prime for all non-negative integers
h. This reduces the search for a rational solution of (6) to the
search of a polynomial y(x) solving the key equation:

Q(x)y(x + 1)−R(x− 1)y(x) = P (x). (7)

aSometimes also called Gosper-Petkovšek form, if an extra conditions on

P,Q,R is used in this step. Modern term for this representation – Polynomial

Normal Form – can be found for example in [1].



If y(x) is found, then the rational multiple of the summand is
Y (x) = R(x−1)y(x)

P (x) and

G(x) = F (x)
R(x− 1)y(x)

P (x)
. (8)



5. Factorial Polynomials in Gosper’s algorithm

Example. Consider the application of Gosper’s algorithm to the
following hypergeometric summand

F (x) =

(
27 x3 + 819 x2 + 246 x− 194

)
(2x)!

(3 x + 91) (3 x + 1) (x + 1) (3 x + 94) (3 x + 4) (x!)2
. (9)

The rational certificate of F (x) is

r(x) = 2
(3x + 1) (3 x + 91) (2 x + 1)

(
27 x3 + 900 x2 + 1965 x + 898

)

(27x3 + 819 x2 + 246 x− 194) (3 x + 7) (3 x + 97) (x + 2)
,

which has dispersion of the numerator and the denominator equal
to 32.



After computing the Gosper-Petkovšek form the key equation
becomes

4 (x + 1/2) (x + 1/3) y (x + 1)− (x + 94/3) (x + 1) y (x) =

=
(

x3 +
91
3

x2 +
82
9

x− 194
27

)[
x +

88
3

]

28

with the right-hand side of degree 31.



This equation has a polynomial solution y(x) of degree 29:

1
3

[
x +

88
3

]

29

,

which after substitution in (8) forces the denominator P (x) to
cancel completely, and final result of summation is

∑
x

(
27 x3 + 819 x2 + 246 x− 194

)
(2x)!

(3 x + 91) (3 x + 1) (x + 1) (3 x + 94) (3 x + 4) (x!)2
=

=
(2 x)!

(3x + 91) (3 x + 1) (x!)2
.



In what follows let [p(x)]k be one of the factors of P (x) in (7). Our
approach is based on a succinct representation of the factorial
polynomials appearing in the Gosper-Petkovšek form, lazy
evaluation of consecutive values of y(x) in (7) and very simple
properties of the components of the equation (7):

1. Polynomial Normal Form (PNF) has a “local” property [4]:
PNF of the product of polynomials from different shift
equivalence classes is the product of PNFs of those polynomials.

2. Factorial polynomials appear only in the right-hand side of the
key equation (7) and they are the only candidates for
cancelation. Moreover, the number of these factorial
polynomials is bounded by the degrees of the numerator and
the denominator of the rational certificate r(x) and does not
depend on the value of the dispersion. On the other hand, each
term of the form [p(x)]k contributes the value of k towards the
upper bound of the degree of the solution y(x), which can be as



large as the value of the dispersion.

3. The term [p(x)]k vanishes at any root α of p(x) and also at
α + 1, . . . , α + k − 1.

4. If a solution y(x) of (7) is equal to zero at any of
α, α + 1, . . . , α + k (where α is a root of p(x)), then y(x) is
equal to zero at all these points. This means that [p(x)]k+1 is a
factor of y(x) and the factorial polynomial term [p(x)]k in P (x)
cancels after substituting y(x) into (8).

5. Any shift equivalent to p(x) factor of Q(x) or R(x− 1) from (7)
provides initial value for a solution of y(x) at a root β of this
factor. If neither Q(x) nor R(x− 1) contains a factor shift
equivalent to p(x), then the term [p(x)]k is present in the
summand F (x).

6. The evaluations required to detect equality or non-equality of
y(x) to zero at the consecutive points starting at β can be done



lazily using (4). The expanded form of [p(x)]k is not required
for this test. Moreover, every nonzero value of y(x), computed
at the consecutive points β, β + 1, ... (or β, β − 1, ...) during the
test, is represented by a nontrivial factor in the rational
certificate r(x).



These properties allow us to incorporate simple and efficient
changes into Gosper’s decision procedure, which do not worsen the
total asymptotic complexity of the procedure, but can lead to
tremendous savings in the running time for summable terms with
large dispersion of the rational certificate. Returning to the
example above, two evaluation points (x = −91/3 and x = −88/3)
are sufficient to find out that the term

[
x + 88

3

]
28

will cancel, and
the substitution of y(x) =

[
x + 88

3

]
29

y(x) into the key equation
gives reduced key equation:

4 (x + 1/2) (x + 1/3) (x + 91/3) y (x + 1)−(x + 94/3) (x + 4/3) (x + 1) y (x) =

=

(
x3 +

91

3
x2 +

82

9
x− 194

27

)

with the degree of the solution < 3. The solution y(x) = 1/3 of the
last equation produces the desired result in reduced form.
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