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Обозначения:
K – поле характеристики 0,
x – независимая переменная,
E – оператор сдвига по переменной x (Ef(x) = f(x+ 1)),
Проблема неопределенного суммирования:
по данному выражению F (x) найти G(x), являющуюся
решением

(E − 1)G(x) = F (x). (1)

G(x) =
∑

x

F (x) + c
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Если у (1) решения не существует, рассматривается проблема
аддитивной декомпозиции:
по данному F (x) найти такие R(x), H(x), что

F (x) = (E − 1)R(x) +H(x), (2)

и H(x) в некотором смысле проще, чем F (x). Если G(x),
удовлетворяющее (1) существует, пара R(x) = G(x) и H(x) = 0

рассматривается как решение проблемы аддитивной
декомпозиции.

F (x) = R(x) +
∑

x

H(x)
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side. Ž. Vyčisl. Mat. i Mat. Fiz., 15(4):1035–1039, 1090, 1975.

[3] S. A. Abramov. Indefinite sums of rational functions. In
Proceedings of the 1995 International Symposium on Symbolic
and Algebraic Computation, ISSAC ’95, pages 303–308, New
York, NY, USA, 1995. ACM.

[4] S. A. Abramov, M. Bronstein, and M. Petkovšek. On
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minimal decompositions of hypergeometric terms. Journal of
Symbolic Computation, 33(5):521–543, 2002. Computer
algebra (London, ON, 2001).

[6] O. Bachmann, P. S. Wang, and E. V. Zima. Chains of
recurrences — a method to expedite the evaluation of
closed-form functions. In Proceedings of the International
Symposium on Symbolic and Algebraic Computation, ISSAC
’94, pages 242–249, New York, NY, USA, 1994. ACM.

[7] G. Boole. A Treatise on the Calculus of Finite Differences.
Cambridge Library Collection. Cambridge University Press,
Cambridge, 2009. Reprint of the 1860 original.

[8] A. Bostan, B. Salvy, and E. Schost. Power series composition
and change of basis. In Proceedings of the International

5



Symposium on Symbolic and Algebraic Computation, ISSAC
’08, pages 269–276, New York, NY, USA, 2008. ACM.

[9] Euler. Foundations of Differential Calculus. Springer-Verlag,
New York, 2000. Translated from the Latin by John D.
Blanton.

[10] J. V. Z. Gathen and J. Gerhard. Modern Computer Algebra.
Cambridge University Press, New York, NY, USA, 2 edition,
2003.

[11] J. Gerhard. Modular Algorithms in Symbolic Summation and
Symbolic Integration, volume 3218 of Lecture Notes in
Computer Science. Springer, 2004.

[12] J. Gerhard, M. Giesbrecht, A. Storjohann, and E. V. Zima.
Shiftless decomposition and polynomial-time rational
summation. In Proceedings of the 2003 International
Symposium on Symbolic and Algebraic Computation, pages

6



119–126 (electronic), New York, 2003. ACM.

[13] C. Jordan. Calculus of Finite Differences. Hungarian Agent
Eggenberger Book-Shop, Budapest, 1939.

[14] C. Jordan. Calculus of Finite Differences. Third Edition.
Introduction by Harry C. Carver. Chelsea Publishing Co., New
York, 1965.

[15] M. Karr. Summation in finite terms (preliminary version).
Technical Report CA-7602-2911, Massachusetts Computer
Associates Inc., 1976.

[16] J. C. Lafon. Summation in finite terms. In B. Buchberger,
G. E. Collins, R. Loos, and R. Albrecht, editors, Computer
algebra. Symbolic and algebraic computation, pages 71–77.
Springer, Vienna, 1983.

[17] Y.-K. Man. On computing closed forms for indefinite
summations. Journal of Symbolic Computation, 16(4):355–376,

7



Oct. 1993.

[18] R. Moenck. On computing closed forms for summations. In
Proceedings of the 1977 MACSYMA Users’ Conference, pages
225–236, 1977.

[19] P. Paule. Greatest factorial factorization and symbolic
summation. J. Symb. Comput., 20(3):235–268, Sept. 1995.

[20] R. Pirastu. On combinatorial identities: symbolic summation
and umbral calculus. PhD thesis, Johannes Kepler Universität,
Linz, Austria, 1996.

[21] C. Tweedie. Nicole’s contribution to the foundations of the
calculus of finite differences. Proceedings of the Edinburgh
Mathematical Society, 36:22–39, 2 1917.

8



Процесс обращения оператора взятия разности в классической
литературе назывался “конечным интегрированием” или просто
“интегрированием”:
“The operation of integration is therefore by definition the inverse
of the operation denoted by the symbol ∆. As such it may with
perfect propriety be denoted by the inverse form ∆−1. It is usual
however to employ for this purpose a distinct symbol, Σ, the origin
of which, as well as of the term integration by which its office is
denoted, it will be proper to explain.” — George Boole (1860) [7]

9



Поскольку здесь Буль не дает ссылки на раннее употребление
знака суммирования, будет уместным упомянуть, что
обозначение Σ для операции неопределенного сумирования
было введено Эйлером:
“Just as we used the symbol ∆ to signify a difference, so we use the
symbol Σ to indicate a sum.” — Leonard Euler (1755) [9]
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1st Form. Factorial expressions of the form
x(x− 1) . . . (x−m+ 1) = x(m). We have

∆x(m+1) = (m+ 1)x(m);

therefore Σx(m) =
x(m+1)

(m+ 1)
+ C.

Thus also, if u(x) = ax+ b, we have

Σu(x)u(x−1) . . . u(x−m+1) =
u(x)u(x− 1) . . . u(x−m)

(m+ 1)a
+C. (3)
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2nd Form. Rational and integral function of x. a

For, by Chap. II. Art. 5, any such function is reducible to a series of
factorials of the preceding form, each of which may be integrated
separately. We find for Σu(x) the general theorem

Σu(x) = C + u(0)x+∆u(0)
x(2)

1 · 2 +∆2u(0)
x(3)

1 · 2 · 3 + &c. (4)

which terminates when u(x) is rational and integral. b

It is obvious that a rational and integral function of x may also be
integrated by assuming for its integral a similar function of a degree
higher by unity but with arbitrary coefficients whose values are to be
determined by the condition that the difference of the assumed
integral shall be equal to the function given.

aТермин целая рациональная функция употреблялся вместо термина по-
лином в 18-м и 19-м веке.

bЗдесь ∆ku(0) – это k-я разность u(x) в 0.
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3rd Form. Factorial expressions of the form

1

u(x)u(x+ 1) . . . u(x+m)
,

where u(x) is of the form ax+ b.

We have corresponding to the above form of u(x)

∆
1

u(x)u(x+ 1) . . . u(x+m− 1)
=

−am

u(x)u(x+ 1) . . . u(x+m)
.

Hence Σ
1

u(x)u(x+ 1) . . . u(x+m)
= − 1

am(u(x)u(x+ 1) . . . u(x+m− 1))
.

(5)

It will be observed that there must be at least two factors in the
denominator of the expression to be integrated. No finite expression for
Σ 1

ax+b exists.

13



To the above form certain more general forms are reducible. Thus we can
integrate any rational fraction of the form

φ(x)
u(x)u(x+ 1) . . . u(x+m)

,

u(x) being of the form ax+ b, and φ(x) a rational and integral function of
x of a degree lower by at least two unities than the degree of the
denominator. For, expressing φ(x) in the form

φ(x) = Au(x)+Bu(x)u(x+1)+Cu(x)u(x+1)u(x+2)+· · ·+Eu(x)u(x+1) · · ·u(x+m−2)

A, B ... being constants to be determined by equating coefficients, or by an
obvious extension of the theorem of Chap. II. Art. 5, we find

Σ
φ(x)

u(x)u(x+ 1) . . . u(x+m)
= AΣ

1
u(x+ 1)u(x+ 2) · · ·u(x+m)

+

+BΣ
1

u(x+ 2)u(x+ 3) · · ·u(x+m)
+ · · ·+ EΣ

1
u(x+m− 1)u(x+m)

,

(6)
and each term can now be integrated by (5).
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As all that is known of the integration of rational functions is virtually
continued in the two primary theorems of (3) and (5), it is desirable to
express these in the simplest form. Supposing then u(x) = ax+ b, let

u(x)u(x− 1) . . . u(x−m+ 1) = (ax+ b)(m),

1

u(x)u(x+ 1) . . . u(x+m− 1)
= (ax+ b)(−m),

then

Σ(ax+ b)(m) =
(ax+ b)(m+1)

a(m+ 1)
+ C, (7)

whether m be positive or negative. a The analogy of this result with
the theorem ∫

(ax+ b)m =
(ax+ b)m+1

a(m+ 1)
+ C,

is obvious.
aВ предположении, что m != −1
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4th Form. Functions of the form axφ(x) in which φ(x) is rational and
integral. Since ∆ax = (a− 1)ax, we have

Σax =
ax

a− 1
+ C.

Applying integration by parts we have

Σaxφ(x) =
1

a− 1
{φ(x)ax − aΣax∆φ(x)} . (8)

Thus the integration of axφ(x) is made to depend upon that of
ax∆φ(x); this again will by the same method depend upon that of
ax∆2φ(x), and so on. Hence φ(x) being by hypothesis rational and
integral, the process may be continued until the function under the
sign Σ vanishes. This will happen after n+ 1 operations if φ(x) be of
the nth degree; and the integral will be obtained in finite terms.a

aЗдесь, по существу, представлен рекурсивный алгоритм суммирования
квази-полиномов, в предположении a != 1.
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Метод неопределенного суммирования полиномов обычно
приписывается Стирлингу. Однако, согласно Твиди [21]:
"While engaged in a study of the Methodus Differentialis of Jas. Stirling
(1730) I have been struck by the fact that Nicole’s papers on the same
subject, printed in the Memoires de l’Academie Royale des Sciences (Paris),
appear to form a fitting prelude to the work published by Stirling. The dates
of Nicole’s Papers are 1717, 1723, 1724, 1727, and it is almost certain that
Stirling was well acquainted with their contents...” После описания
четырех работ Николе, Твиди заключает: “From the foregoing it
seems natural to infer that Nicole was the first to introduce the Inverse
Factorial Series. His first Memoir bears the date 30th January 1717. In the
Philosophical Transactions for the months of July, August, and September
1717 (No. 353), there was published a Memoir entitled De Seriebus Infinitis
Tractatus. Pars Prima. Auctore Petro Remundo de Monmort, R.S.S. Una
cum Appendice et Additamento per D. Brook Taylor, R.S. Sec.

From this Memoir it is clear that both Montmort and Brook Taylor had at
the same time been busy with similar ideas.”
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Montmort in particular shows how to find Σφ(x)/(x+ n)...(x+ (p− 1)n) in
the same way as Nicole, i.e., by writing φ(x) in the form
A0 +A1x+A2x(x+ n) + . . . . He also shows how to sum
Σ1/(x+ a)(x+ b)(x+ c) . . . , where a, b, c . . . are positive integers, by
multiplying the numerator and denominator by the product
(x+ a+ 1)(x+ a+ 2) . . . (x+ b− 1)(x+ b+ 1) . . . , etc., and then
proceeding as above. He also gives an expansion of 1/(x+ a) in the form
A/x+B/x(x+ 1)+ etc., commonly described as Stirling’s Series.

Brook Taylor in his Appendix shows in a masterly manner how to deduce by
his method of Increments the conclusions obtained by Montmort. In the
summation of Σφ(x)/(x+ a)(x+ b) . . . he points out that the degree of
φ(x) must be less by 2 than that of the denominator. He then represents the
fraction φ(x)/(x+ a)(x+ b) . . . as a sum of partial fractions

A
x+ a

+
B

x+ b
+ . . . (9)

where
A+B + · · · ≡ 0. (10)
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35. We should observe this method carefully, since sums of differences of
this kind cannot be found by the previous method. If the difference has a
numerator or the denominator has factors that do not form an arithmetic
progression, then the safest method for finding sums is to express the
fraction as the sum of partial fractions. Although we may not be able to find
the sum of an individual fraction, it may be possible to consider them in
pairs. We have only to see whether it may be possible to use the formula

Σ
1

x+ (n+ 1)ω
− Σ

1
x+ nω

=
1

x+ nω
. (11)

Although neither of these sums is known, still their difference is known.

36. In these cases the problem is reduced to finding the partial fractions,
and this is treated at length in a previous book. a

aHere ω is an increment of independent variable x and can be replaced by 1.
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Пример:

Σ
3

x(x+ 3)
= Σ

1

x
− Σ

1

x+ 3
= Σ

1

x+ 1
− Σ

1

x+ 3
− 1

x
=

= Σ
1

x+ 2
− Σ

1

x+ 3
− 1

x
− 1

x+ 1
= − 1

x
− 1

x+ 1
− 1

x+ 2
.

Эти идеи могут быть легко распространены на более сложные
выражения:

Σ
ax+1

x+ 1
− Σ

ax

x
=

ax

x
,

или
Σ

x+ 1

x3 + 3x2 + 4x+ 3
− Σ

x

x3 + x+ 1
=

x

x3 + x+ 1
.
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Пусть F = f/g ∈ K(x), с взаимно простыми f, g ∈ K[x] \ {0} и
deg f < deg g.

Обозначим ρ дисперсию F – максимальное целое расстояние
между корнями знаменателя g.

Если ρ = 0, то в (2) можно взять R = 0 и H = F

(Сергей Александрович Абрамов, 1971).

Пусть теперь ρ > 0.
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Хорошо известно, что битовая длина суммы G(x) в (1) может
экспонециально зависеть от битовой длины сумманда F (x).

F (x) =
1

x2 + ρx

G(x) = −1

ρ

(
1

x
+

1

x+ 1
+ · · ·+ 1

x+ ρ− 1

)
,
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Имеется два вида зависимости времени выполнения алгоритмов
суммирования от дисперсии в случаях, когда ρ имеет значение,
экспоненциально зависящее от размера входа:

• существенная (неустраняемая) зависимость: алгоритм по
меньшей мере линеен по ρε для некотрого 0 < ε ≤ 1 и ответ
имеет битовую длину также линейную по ρε;

• несущественная (потенциально устраняемая) зависимость:
алгоритм по меньшей мере линеен по ρε для некотрого
0 < ε ≤ 1, но ответ имеет битовую длину полиномиально
зависящую от размера входа.

Существенная зависимость является свойством конкретной
задачи суммирования.
Несущественная зависимость является свойством конкретного
алгоритма решения задачи суммирования.
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∑

x

−2x+ 999

(x+ 1) (x− 999)x (x− 1000)
=

1

x (x− 1000)
, (12)

∑

x

x3 − 1998x2 + 996999x+ 999999

(x+ 1) (x− 999)x (x− 1000)
=

1

x (x− 1000)
+
∑

x

1

x
. (13)

Дисперсия в этих примерах равна 1001.
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Абрамов

In his classical work [1] Sergei Abramov first introduced the notion
of dispersion, and described an algorithm for rational indefinite
summation. The algorithm was implemented in Lisp and used
author’s own polynomial arithmetic package. He later provided an
algorithm to solve problem P1 [2]. This result was somehow
unknown for some period of time.

It is worthwhile to mention here the work of Moenck [18] in which
he tries to generalize (6) to the case of denominators with factors of
arbitrary degree. Moenck’s algorithm was used in Maple for some
period of time until some serious flaw was discovered in it.

Abramov’s work becomes popular and widely adopted by computer
algebra systems two decades later.
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• Iterative (Hermite reduction analogous) algorithms will start
with R = 0 and H = F and decrease the dispersion of H by
one at each iteration, reducing the non-rational part H and
growing the rational part R. The number of iterations is equal
to ρ, see [2].

• Linear algebra based (Ostrogradsky analogous) algorithms
first build universal denominators u and v such that the
denominator of R will divide u and the denominator of H will
divide v. Then, the problem is reduced to solving a system of
linear equations with size deg u+ deg v, see [19, 3, 20]. Since
deg u ≥ ρ the choice of u of the lowest possible degree is
obviously crucial here. The idea to build an universal
denominator here is essentially the same as multiplying the
numerator and denominator of the summand by missing factors
in Boole’s description above.
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Госпер

28



Прямые методы:
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Any given proper reduced rational function f(x)/g(x)

(f(x), g(x) ∈ K[x]) can be uniquely represented as

f(x)

g(x)
=

v∑

i=1

mi∑

j=1

nij∑

k=0

fijk

Ekgji
, (14)

where:
(i) gi are monic distinct factors, irreducible over K , or
(ii) gi are monic distinct factors, irreducible over K, or
(iii) gi are monic distinct factors, shiftless over K.
Here v is the number of different shift equivalence classes
(components) in the denominator of the summand; mi is the
highest multiplicity of a factor in class i; nij – the largest shift of a
factor of multiplicity j in class i. All polynomials fijk have
deg fijk < deg gi. This means in particular that in case (i)
deg fijk = 0 and fijk ∈ K.
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For the simplicity of description of the direct algorithm, (14) can
be rewritten in the form

f(x)

g(x)
=

v∑

i=1

mi∑

j=1

Mij(E)
1

gji
, (15)

where Mij(E) is a linear difference operator with coefficients in K
or in K[x]. This representation is unique in each of the cases (i) –
(iii). If f(x)

g(x) is summable, the summable part R(x) can be also
uniquely written in a form analogous to (15):

v∑

i=1

mi∑

j=1

Lij(E)
1

gji
, (16)

and therefore
(E − 1)Lij(E) = Mij(E), (17)

i.e., every operator Mij(E) in (15) is left-divisible by E − 1.

31



Let Mij(E) = apEp + ap−1Ep−1 + . . .+ a1E + a0. Then the
remainder from the left division of Mij(E) by E − 1 is simply

rij = E−pap + E−(p−1)ap−1 + . . .+ E−1a1 + a0. (18)

The summability criterion states that the polynomials rij in (18)
must be identically equal to zero for all i, j in order for the input
rational function to be summable.
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Observe that
(i) requires factorization of the denominator into linear factors,
(ii) requires factorization in K[x] but does not require computation
of the dispersion of the denominators, and
(iii) does not require factorization in K[x] but does require the
knowledge of the so-called dispersion set (the set of all integer
distances between the roots of the denominator).

The first description of direct rational summation algorithm is due
to Karr [15] (see also popular survey of Lafon [16], where
above-mentioned summability criterion is formulated explicitly
with proper reference to Karr’s work). Because – at that time –
factorization was considered time-consuming it was effectively
forgotten, and factorization-free (gcd-based) algorithms were used
in computer algebra systems for years.
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Decomposition (i) was used in [3] to establish a summability
criterion and to describe the structure of a universal denominator.
This criterion is the same as (10) since a linear difference operator
with constant coefficients is left-divisible by E − 1 if and only if the
sum of coefficients is equal to 0. This is also equivalent to the
classical condition of summability which is that the degree of the
numerator is at least 2 less than the degree of the denominator.

Representation (iii) with a fast algorithm to compute dispersion
set was used in [12]. It provided the first polynomial time rational
function summability test, and avoided any intermediate expression
swell. If the output is exponentially large in the input size, the only
part of the algorithm that exponentially depends on the input size
is writing the result in expanded form. This was the first rational
indefinite summation algorithm with only essential dependency of
the running time on dispersion of the input for the case of
summable input.
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Example 1. Consider the following two summation problems:
∑

x

T (x) =
5x

(x+ 1)(x+ 200)
, (19)

where T (x) =
2(2x2 + 401x+ 299)5x

(x+ 1)(x+ 2)(x+ 200)(x+ 201)
and

∑

x

(
9x4 + 1434x3 + 70075x2 + 1017440x− 252800

)
5x

(x+ 40) (x+ 80) (x+ 79) (x+ 1)x
= (20)

5x (2x+ 79)

(x+ 79)x
+
∑

x

5x

x+ 40
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For the sum (19) the Gosper-Petkovšek form of the certificate of
the summand consists of polynomials Q(x) = 5(x+ 1),
R(x) = x+ 202 and
P (x) =

(
x2 + 401

2 x+ 299
2

)
(x+ 199) (x+ 198) · · · (x+ 3).

This last polynomial has degree one less than the dispersion of the
input (199 in this case), and is saturated. After finding a
polynomial solution U(x) (with degree bound 199) of the Gosper
equation

Q(x)U(x+ 1)−R(x− 1)U(x) = P (x),

one forms the final result as

Q(x− 1)U(x)

P (x)
T (x) =

5x

(x+ 1) (x+ 200)
,

and most of the terms of P (x) and U(x) cancel.
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For the sum (20) Gosper’s algorithm will not return any answer
(since the input is non-summable), so the general additive
decomposition method from [5] is used. It is worthwhile to mention
that this algorithm uses a number of steps at least linear in the
dispersion of the input (which is 80 in this particular case), and
returns the result, whose summable part has the numerator of
degree 40, the denominator of degree 41, and the non-summable
part is

∑

x

9094947017729282379150390625
5x

x+ 80
.

Unlike traditional algorithms, our direct algorithms are based on a
change of representation of the summand.
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0.1 Polynomials and quasi-polynomials

In the calculus of finite differences it is always advantageous to
express polynomials by Newton’s formula. – Charles Jordan (1939)

In case of indefinite summation of (quasi-)polynomials special
representation means just change of basis. The change from
monomial basis to the falling factorial basis is a common place in
many sources to provide algorithms for polynomial summation,
that involves either computation of Stirling numbers, or Bernoulli
polynomials (see for example [16, 10]). However, the binomial basis(x
i

)
, i = 0, 1, . . . , n happens to be the most suitable in this context.

Indeed, assume all polynomials are given in the binomial basis, i.e.,
a polynomial Pn(x) of degree n is represented by a list
ϕ0,ϕ1, . . . ,ϕn ∈ K such that

[ϕ0,ϕ1, . . . ,ϕn](x) = ϕ0

(
x

0

)
+ ϕ1

(
x

1

)
+ . . .+ ϕn

(
x

n

)
(21)
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Addition, subtraction and multiplication by a constant in binomial
basis are componentwise (similarly to the monomial basis). Note
that ϕ0,ϕ1, . . . ,ϕn in (21) are just finite forward differences
(elements of the Newton series, or pure-plus chains of recurrences)
of Pn(x) taken at x = 0 with step 1.Recall

E[ϕ0,ϕ1, . . . ,ϕn] = [ϕ0 + ϕ1,ϕ1 + ϕ2, . . . ,ϕn−1 + ϕn,ϕn]

(E − 1)[ϕ0,ϕ1, . . . ,ϕn] = [ϕ1,ϕ2, . . . ,ϕn]
∑

x

[ϕ1,ϕ2 . . . ,ϕn] = [ϕ0,ϕ1,ϕ2, . . . ,ϕn]

for an arbitrary constant ϕ0.
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This suggests a constant time indefinite summation algorithm in
binomial basis, which can be expressed in Maple (assuming that
input polynomial is represented by the list of coefficients in
binomial basis and summation variable is implicit) as:

poly_sum := y->[0,op(y)];

This is probably the shortest and fastest algorithm for indefinite
summation, and it is not surprising that it was known long before
the first computer algebra system was even prototyped (see the
example on page 103 of [14], which is the third edition of the
original book published in 1939). However we are not aware of any
implementation of this algorithm in a computer algebra system.
Although, even for manual manipulation of the problem the formula
∑

x

(
x

m

)
=

(
x

m+ 1

)
+C is better than the popular

∑

x

x(m) =
x(m+1)

(m+ 1)
+C.

Just compare the right-hand sides to see how to save 6 symbols in
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the output. Note that in more general context the binomial basis
was used in [4] where it is shown why the binomial basis is the
basis of choice when solving linear difference equations with
polynomial coefficients. However Maple standard summation
routines ignore this fact.
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Representation of polynomials in binomial basis is especially
appealing, because it can be used as a standard dense
representation for polynomials. A lengthy chain of computations
involving ring operations, (nested) indefinite summation,
differencing, etc. can be performed in this basis from the beginning.
If output in standard basis is required, conversion may be
performed when necessary. On one hand, all ring operations have
the same asymptotic time complexity in both bases (see [11]). On
the other hand, operations of differencing and indefinite summation
have time complexity bounded by a constant (the best one can
hope for), and shift is performed in linear time.

We strongly agree with the old comment of Jordan on importance
of Newton’s formula for the statistician:
This is not yet sufficiently recognized, since nearly always the
statistician expands his polynomial in power series in spite of the
fact that he is generally concerned with the differences and sums of
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his functions, so that he is obliged to calculate these quantities
laboriously. In Newton’s expansion they would be given
immediately. (see [13])
This is especially true for Maple, because, for example, Newton
interpolation routines return the resulting interpolating polynomial
effectively in Newton form.
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Consider now a quasi-polynomial with polynomial part represented
in binomial basis:

q(x) = λx[ϕ0,ϕ1, . . . ,ϕn],

where λ %= 1, λ %= 0. It is well known (see for example [17]) that the
indefinite sum of q(x) has polynomial part of the same degree n,
i.e.: ∑

x

q(x) = r(x) = λx[ξ0, ξ1, . . . , ξn]. (22)

Now,

Er(x) = λx+1[ξ0 + ξ1, ξ1 + ξ2, . . . , ξn−1 + ξn, ξn] =

λx[λξ0 + λξ1, . . . ,λξn−1 + λξn,λξn],

(E − 1)r(x) = λx[(λ− 1)ξ0 + λξ1, . . . , (λ− 1)ξn−1 + λξn, (λ− 1)ξn],

and application of the operator (E − 1) to l.h.s. and r.h.s. of (22)
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gives

[ϕ0,ϕ1, . . . ,ϕn] = [(λ− 1)ξ0 + λξ1, . . . , (λ− 1)ξn−1 + λξn, (λ− 1)ξn],

i.e., the coefficients of the polynomial part of the indefinite sum can
be computed as

ξn =
ϕn

λ− 1
, ξi =

ϕi − λξi+1

λ− 1
, i = n− 1, n− 2, . . . , 0.

This gives a linear time algorithm for indefinite summation of
quasi-polynomials.

If the input is given in the monomial basis, then the running time
of summation is again dominated by the time to convert the input
to binomial basis and back. The current implementation in Maple is
at least quadratic in the degree of polynomial part of the summand.
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0.2 Rational and quasi-rational functions

The safest method for finding sums is to express the fraction as the
sum of partial fractions. Although we may not be able to find the
sum of an individual fraction, it may be possible to consider them
in pairs. — Leonard Euler (1742)

As a piece of computer algebra folklore we mention here that, to
our knowledge, one of the most popular computer algebra systems
has never used factorization-free algorithms for the rational
summation. It always proceeded with partial fraction
decomposition and used variations of Euler’s simplification (11).

Contrary to this, Maple system for a long time had an obsession
with factorization-free implementations of rational indefinite
summation. In some versions of Maple this obsession has led to
anecdotal situations. For example, Maple summation routine would
compute the dispersion set of the denominator of the input
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summand using factorization, and then “forget” about the fact that
the denominator was already factored to run factorization-free
implementation of Abramov’s algorithm, that requires dispersion
set as the input.
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0.3 Experiments

Polynomials

We are unaware of any implementation of fast basis conversion in
Maple, and also were unable to obtain NTL implementation from
authors of [8]. However Figure 4 in [8] gives a good idea of possible
speedup of indefinite summation of polynomials. It compares
timings of fast basis conversion with the naive basis conversion
(which is essentially the time for basis conversion in our old
implementation).

In order to show the potential gain from working with polynomials
in the binomial basis, we compare timings in Maple to evaluate the
following expression

V (x) =
∑

x

(
∑

x

P1 + (
∑

x

P2 + P1))
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with random polynomials P1, P2
a. The timing comparison is

presented in Table 1. Note that for basis conversion we use our
ancient implementation [6] of chains of recurrences which is
quadratic in the degree of the polynomials.

n Maple Prototype incl. Basis_conv

100 0.031 0.016 <0.016

200 0.140 0.047 0.031

400 0.578 0.312 0.272

800 4.617 1.794 1.698

1600 33.088 12.558 11.912

Таблица 1: Timings in seconds for V (x)

aAll random polynomials in our experiments have integer coefficients between
-99 and 99.
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According to the results in [8], the last column (in this range of
degrees) can be reduced by a factor between 2 and 6 if fast basis
conversion is used.
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Quasi-polynomials

The comparison (especially in the case of quasi-polynomials, and
quasi-polynomials whose coefficients depend on λ) is very favorable
for the direct algorithms. The following tables compare timings for
summation of quasi-polynomials with random polynomial part
performed by Maple 16 using SumTools[Indefinite],
SumTools[Hypergeometric] and our prototype. For the first and
the second tables random dense polynomials Pn(x) of degree n

were generated, for the third table random dense polynomials in
Pn(x,λ) of degree n were used. A dash in the table indicates that
Maple 16 did not return a result after 1000 seconds, and “Err”
indicates that Maple 16 returned an error. Most of the time
reported by our prototype was spent in basis conversion. As soon
as fast basis conversion is implemented in Maple, these timings will
improve tremendously (see Figure 4 in [8]).
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n Indefinite Hypergeometric Quasi_Poly

20 0.031 0.078 <0.016

40 0.156 0.078 <0.016

80 1.264 0.234 0.016

160 14.805 1.202 0.016

320 40.888 4.883 0.156

Таблица 2: Timings in seconds for 5xPn(x)
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n Indefinite Hypergeometric Quasi_Poly

20 0.078 0.484 <0.016

40 0.796 7.893 <0.016

80 9.516 442.965 0.016

160 81.105 – 0.031

320 Err – 0.218

Таблица 3: Timings in seconds for λxPn(x)
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n Indefinite Hypergeometric Quasi_Poly

20 0.109 0.687 <0.016

40 0.967 7.941 0.031

80 12.246 415.322 0.124

160 101.478 – 1.139

320 290.208 – 10.156

Таблица 4: Timings in seconds λxPn(x,λ)
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Quasi-rational functions

Example (19) takes 0.031 seconds with our implementation, 0.889
with
SumTools[IndefiniteSum][Indefinite] in Maple 16, and 0.265
seconds with
SumTools[Hypergeometric][SumDecomposition]. Example (20)
takes 0.031 seconds with our implementation and provides minimal
degree of the denominator of the summable part, 0.437 with
SumTools[IndefiniteSum][Indefinite] in Maple 16, and 0.390
seconds with
SumTools[Hypergeometric][SumDecomposition] and returns
summable part with the denominator of degree 41 with standard
Maple implementation.

Note that these examples have relatively small value of the
dispersion. The speedup can be made arbitrarily large, by
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increasing the value of the dispersion. For instance, the sum

∑

x

(
8x3 + 12006x2 + 4005998x− 1001000

)
5x

x4 + 2002x3 + 1003001x2 + 1001000x

is evaluated to

2
5x (x+ 500)

x (x+ 1000)

in 0.047 seconds by our code, and in 6.849 seconds by
SumTools[Hypergeometric][SumDecomposition].
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О роли дисперсии
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