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Plan:

I Introduction: factorization of LODOs. Examples and
motivation.

I Basic facts about LODO factorization.
I LODO factorization: interpretation in terms of left ideals in

the ring of LODOs (Loewy-Ore theory).
I Lattice of right divisors of a LODO (RDL).

Lattices as posets.
I Distributive and modular lattices.

Every RDL is modular!
I Characterization of distributive RDLs.
I Construction of distributive RDLs.
I RDL of Loewy blocks (i.e. all factors are interchangeable).
I Modular RDLs: height 3 list.
I Unsolved problems.
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Introduction

Factorization of linear ordinary differential operators:

L = Dn + a1(x)Dn−1 + a2(x)Dn−2 + . . . + +an−1(x)D + an(x),

ai ∈ F; D is a differentiation in F.

Alternatively, D = d
dx , ai = ai(x).

Factorization:
L = L1 · L2 · . . . · Lk (usually with irreducible over F factors Li ).

Note: if F is differentially closed, then k = n and Li = D + φi ,
φi ∈ F.

Algorithms for factorization, F = Q̄(x): E.Beke (1894),
M.Bronstein, F.Schwarz, M.van Hoej, . . .
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Introduction

Question: is factorization L = L1 · L2 · . . . · Lk into irreducible
factors “unique” in some sense?

Example:

D2 = D · D =
(

D + 1
x+c

)
·
(

D − 1
x+c

)
= L1(c) · L2(c)

(D2 has no other factorizations!).

Algorithm for enumeration of all possible factorization of a given
LODO: S.Ts. (ISSAC-1996)

Main open question: can we mathematically describe the
structure of the answers, given by the enumeration algorithm?
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Basic facts about LODO factorization

Theorem (E.Landau, 1902, A.Loewy, 1902–1903) Any two
different decompositions of a given LODO L into products of
irreducible LODOs L = L1 · . . . · Lk = L1 · . . . · Lp have the same
number of factors (k = p) and the factors are pairwise similar
(in some transposed order).

Definition. Two (irreducible for simplicity) operators L and M
are called similar (or operators of the same type) if one can find
operators A and B such that ord(A) = ord(B) < ord(L) = ord(M)
and A · L = M · B.

Similarity is an equivalence relation; the problems of solution of
the corresponding LODE’s Ly = 0, Mz = 0 are equivalent.
For example, if y is a solution of Ly = 0, then z = By is the
corresponding solution of Mz = 0 and one can find another
operator C such that y = Cz.
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Two irreducible factors, case 1

Case 1: L = L1 · L2,
and this factorization is unique.

u
u
u (L1 · L2 = L)

(L2)

L1

L2

1
Fig. 1

In this case L1 and L2 are called not interchangeable.
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Two irreducible factors, case 2

Case 2:
L = L1 ·L2 = L2 ·L1,
and L has no other
factorizations.

v v
v

v
�
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@
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�
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�

(L1 · L2 = L2 · L1 = L)

(L2) (L1)

L1

L2

L2

L1

1
Fig. 2

In this case the irreducible factors L1, L2 are called
interchangeable; they are not similar.
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Two irreducible factors, case 3

Case 3:
L = L1(c) · L2(c).
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. . . . . .

1

(L2(c))

L2(c)

L1(c)

(L = L1(c) · L2(c))

In this case the irreducible factors L1(c), L2(c) are called
interchangeable; they are similar.

Theorem (A.Loewy, 1903) If the subfield of constants of F is
algebraically closed, then the cases 1–3 are the only possible
cases for a LODO which is factorizable into two irreducible
factors.
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factors.
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Loewy-Ore theory

Loewy, A. Über reduzible lineare homogene
Differentialgleichungen. Math. Annalen (1903-1906).

Ore, O. Theory of non-commutative polynomials. Annals of
Mathematics 34 (1933).

N. Jacobson “The theory of rings” 1943.

Right (left) division:
for any LODOs L, M, there exist unique LODOs Q, R, Q1, R1,
such that:

L = Q ·M + R, L = M ·Q1 + R1.

=⇒ right (left) GCDs and LCMs:
rGCD(L, M) = G ⇐⇒ L = L1 ·G, M = M1 ·G

(the order of G is maximal);
rLCM(L, M) = K ⇐⇒ K = M · L = L ·M

(the order of K is minimal).
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Relation to solution spaces:

Relation to solution spaces:

rGCD(L, M) = G is nontrivial (G 6= 1)
⇐⇒ Sol(L) ∩ Sol(M) 6= {0}

In general, Sol(L) ∩ Sol(M) = Sol(G).

rLCM(L, M) = K
⇐⇒ 〈Sol(L), Sol(M)〉 = {u + v |Lu = 0, Mv = 0} = Sol(K )
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Def. LODO L is (right) transformed into L1 by an operator
(B is not necessarily monic), and we’ll write

L B−→ L1

iff rGCD(L, B) = 1 and rLCM(L, B) = L1 · B = B1 · L
for some B1.

=⇒ any solution of Lu = 0 is mapped by B into a solution
v = Bu of L1v = 0.

One may find with rational algebraic & diff. operations an
operator C such that L1

C−→ L, C · B = 1(modL),
B · C = 1(modL1).

Operators L, L1 will be also called similar or of the same kind
(in the given differential field k ). They have equal orders.

=⇒ For similar operators the problem of solution of the
corresponding LODE’s Lu = 0, L1v = 0 are equivalent.

Q.: How one can find out if two given LODOs are similar?
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Ring-theoretic interpretation:

Euclid algorithm =⇒ the ring k [D] of LODOs is left-principal
and right-principal (no nontrivial two-sided ideals!).

=⇒ Landau theorem.

L ∈ k [D] generates the left ideal |L〉;

L1 divides L on the right ⇔ |L〉 ⊂ |L1〉

Landau theorem: for L = L1 · · ·Lk = L1 · · ·Lr we have two
maximal chains of ascending left principal ideals
|L〉 ⊂ |L2 · · ·Lk 〉 ⊂ |L3 · · ·Lk 〉 ⊂ . . . ⊂ |Lk 〉 ⊂ |1〉 = k [D]
and |L〉 ⊂ |L2 · · ·Lr 〉 ⊂ |L3 · · ·Lr 〉 ⊂ . . . ⊂ |Lr 〉 ⊂ |1〉 = k [D]
=⇒ k = r

Jordan-Hölder theorem
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Lattice L of right divisors of a LODO ( RDL)

Let us fix some LODO L. It has some (possibly infinite) set of
right divisors L1: L = L2 · L1 · . . . · Lk = L2 · L1 · . . . · Lk = . . ..

We introduce the following natural partial order in the set
L = {R : R divides L, L = N ·R} of all possible right divisors of
L:

R ≥ R if R is divisible by R on the right: R = M · R.

Then instead of factorizations L = L1 · . . . · Lk we will consider
chains L > L2 · . . . · Lk > . . . > Lk > 1 in this poset.

Irreducibility of factors ⇔ maximality of this chain.

Sergey P. Tsarev Lattice of right divisors of a LODO



Lattice L of right divisors of a LODO ( RDL)

Let us fix some LODO L. It has some (possibly infinite) set of
right divisors L1: L = L2 · L1 · . . . · Lk = L2 · L1 · . . . · Lk = . . ..

We introduce the following natural partial order in the set
L = {R : R divides L, L = N ·R} of all possible right divisors of
L:

R ≥ R if R is divisible by R on the right: R = M · R.

Then instead of factorizations L = L1 · . . . · Lk we will consider
chains L > L2 · . . . · Lk > . . . > Lk > 1 in this poset.

Irreducibility of factors ⇔ maximality of this chain.

Sergey P. Tsarev Lattice of right divisors of a LODO



Lattice L of right divisors of a LODO ( RDL)

Let us fix some LODO L. It has some (possibly infinite) set of
right divisors L1: L = L2 · L1 · . . . · Lk = L2 · L1 · . . . · Lk = . . ..

We introduce the following natural partial order in the set
L = {R : R divides L, L = N ·R} of all possible right divisors of
L:

R ≥ R if R is divisible by R on the right: R = M · R.

Then instead of factorizations L = L1 · . . . · Lk we will consider
chains L > L2 · . . . · Lk > . . . > Lk > 1 in this poset.

Irreducibility of factors ⇔ maximality of this chain.

Sergey P. Tsarev Lattice of right divisors of a LODO



Lattice L of right divisors of a LODO ( RDL)

Let us fix some LODO L. It has some (possibly infinite) set of
right divisors L1: L = L2 · L1 · . . . · Lk = L2 · L1 · . . . · Lk = . . ..

We introduce the following natural partial order in the set
L = {R : R divides L, L = N ·R} of all possible right divisors of
L:

R ≥ R if R is divisible by R on the right: R = M · R.

Then instead of factorizations L = L1 · . . . · Lk we will consider
chains L > L2 · . . . · Lk > . . . > Lk > 1 in this poset.

Irreducibility of factors ⇔ maximality of this chain.

Sergey P. Tsarev Lattice of right divisors of a LODO



Lattice L of right divisors of a LODO ( RDL)

Let us fix some LODO L. It has some (possibly infinite) set of
right divisors L1: L = L2 · L1 · . . . · Lk = L2 · L1 · . . . · Lk = . . ..

We introduce the following natural partial order in the set
L = {R : R divides L, L = N ·R} of all possible right divisors of
L:

R ≥ R if R is divisible by R on the right: R = M · R.

Then instead of factorizations L = L1 · . . . · Lk we will consider
chains L > L2 · . . . · Lk > . . . > Lk > 1 in this poset.

Irreducibility of factors ⇔ maximality of this chain.

Sergey P. Tsarev Lattice of right divisors of a LODO



Lattice L of right divisors of a LODO ( RDL)

This partially ordered set L has the following two properties:

(a) ∀A, B ∈ L one can find a unique C = sup(A, B):
C ≥ A, C ≥ B, and ∀X ∈ L, (X ≥ A, X ≥ B) ⇒ X ≥ C.
Analogously there exist a unique D = inf(A, B).
sup(A, B) and inf(A, B) correspond to the (left) least
common multiple and the (right) greatest common divisor
of the corresponding right factors of L.

For simplicity we denote
sup(A, B) ≡ A + B, inf(A, B) ≡ A · B;

(b) ∀A, B, C ∈ L, (A · C + B) · C = A · C + B · C
(the modular identity).
⇐⇒ if (!) A ≤ C, (A + B) · C = A · C + B · C

Poset with (a) is called lattice;
if (b) also holds, it is called modular lattice.
If ∀A, B, C ∈ L, (A + B) · C = A · C + B · C, it is called
distributive lattice.
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If ∀A, B, C ∈ L, (A + B) · C = A · C + B · C, it is called
distributive lattice.
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RDLs of height 2
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All these examples illustrate Loewy’s theorem on possible
cases of factorizations into two irreducible factors: L = L1 · L2.
Definition. RDL is the class of all possible RDLs (given F).
Definition. LOEWY is the class of all modular lattices of finite
height, such that all subintevals [A, B] = {C : A ≤ C ≤ B} of
height 2 are given on Fig. 1–3 (with the constant in L1(c) in
const(F) ).
Note: on Fig. 3 one should fix a correspondence between the
elements of height 1 and the constant c in the parametric
factorizations L = L1(c) · L2(c).
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Distributive RDLs

Distributive RDLs ⇔ modular lattices without Fig. 3 (“diamond”).

Theorem (A.V.Purgin, 2007) RDL of a given operator L is
distributive ⇔ there are no parameters in the factors in any
possible factorization of L.

Theorem (A.V.Purgin, 2008) Any distributive lattice of finite
height is realizable as a RDL of a d’Alembertian LODO L with
F = Q̄(x).

How large is the class of distributive lattices of height n? How
can one describe this class?
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Finite distributive lattices

Theorem There exists a natural functorial isomorphism
between the category FDISTR of finite distributive lattices and
the category FPOSET of all finite posets. The height n of a
distributive lattice from FDISTR is equal to the cardinality of the
corresponding element in FPOSET .

Figure: Distributive lattices of height 3
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RDL of Loewy blocks

Definition. The (first) Loewy block of a LODO L is the lLCM of
all possible irreducible right factors of L:
Loewy1 = lLCM(Lk , Lk , Lk , . . .).

Theorem (A.V.Purgin, 2007) RDL of the Loewy block is direct
product of a finite number of 2-chains (for non-similar divisors)
and the lattices of subspaces of ki -dimensional linear space
over const(F).
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RDLs of height 3
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Open problems

Does any modular RDL have a “distributive skeleton”?

If so, can we reconstruct the original RDL using its “distributive
coloured skeleton”?

Are the classes RDL and LOEWY different? So far the known
classifications suggest that RDL = LOEWY.

Reformulate lattice-theoretic results about RDLs into the
language of factorization of LODOs.
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