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Talk outline

1 Motivation: analysis of anomalous values of time series with rapidly
changing smooth data. An important example: outliers and jumps in
the “official” orbits (ephemeris) of GPS and GLONASS satellites.

2 The methodology for finding anomalies is formally standard: removing
polynomial trends (least squares polynomial fitting, LSPF).

3 Problems:

instability of algorithms for constructing discrete orthogonal
polynomials (DOP) of high degrees;
boundary effects: fast attenuation of high-order DOP near the
boundary of the interval.

4 A link to linear recurrencies: a second-order linear recurrency with
polynomial coefficient for DOP =⇒ interesting effects and instabilities
in their solutions!

Theory and details:
S.P.Tsarev, A.A.Kytmanov, https://arxiv.org/abs/2004.00414

+ a paper in preparation for JSC.
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Talk outline 2

Continuous orthogonal polynomials and DOP:
more differences than similarities for high degrees!

New Results:
1 DOP: fast attenuation on the lattice near the boundary;

2 DOP: huge values between lattice points near the boundary;

3 DOP: proximity of roots to lattice points near the boundary.

4 General Corollary: Sensitivity loss for arbitrary stable linear
polynomial filters near the boundary!

5 Problems of adequate interpolation near the boundary of the interval.

For comparison: polynomial filter sensitivity inside the approximation
interval allows detecting anomalies with an amplitude of the order of
10−11 relative to typical values of the analyzed time series.
Julia code available at:
https://github.com/sptsarev/high-deg-polynomial-fitting
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Applied Motivation. Object of study

Final GPS Satellite Ephemerides (final orbits) offered by IGS (International
GNSS Service) :

Provide coordinates for all GPS and GLONASS satellites in text
format (SP3 format) on every day with a 15-minute time step
(∼ 3500 km between points!);

claimed accuracy (RMSE): ∼ 3 cm;

formal accuracy: published coordinates deviate from averaged
calculated orbits by no more than 0.5 mm (rounded to 1 mm).

— A typical graph of one of the coordi-

nates of a GPS satellite (terrestrial rotat-

ing Cartesian coordinate system).

Horizontal axis: time (in hours).

Vertical axis: coordinate (in meters).
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Study Results

In the final IGS orbits (for example, from 12/27/2009 to 01/01/2011) the
following anomalies are observed:

“jumps” (breaks) at the day boundaries of almost all days of
the order of 1 cm

near 25 anomalously large “jumps” (up to 100 m) on day
boundaries for some days,

“abnormal outliers” not at the end of the day,

as well as rare (1-2 per year) “jumps”of order 1 km.

More detailed statistics of anomalies for 2010-2018 is also available.
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Method for detection of anomalous values

The proposed research methodology is based on polynomial approximation
of the orbits using discrete orthogonal polynomials.

Despite the rather sparse source data (time step of 15 minutes ∼=
3,500 km), we are able to recognize both jumps and abnormal outliers
of order 5 mm or more.

This is due to smoothness of the data itself and the relative rarity of
these abnormal values.

It is essential to find stable numerical methods for constructing
discrete orthogonal polynomials of high degrees.

An important effect is theoretically proved — fast attenuation of the
residual of approximation near the boundary of the studied interval.
Experimentally discovered:
A.F.Nikiforov, M.V.Skachkov, Orthogonal Hahn polynomials in
regression models, Matem. Mod., 17:4 (2005), pp. 125–128.
(in Russian).
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LSPFs and DOP

Why DOPs are so useful for finding the best LSPF of a time series?

Why is it not enough to use LSPF directly finding the coefficients of the
polynomial p(x) = a0 + a1x + . . .+ anx

n of best approximation?

Answer: VERY large condition number of the LSPF matrix!
Monomials:

The condition number of the Vandermond matrix:
C (W 10

11) > 108 C (W 30
31) > 1019
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“Stitching” two data series with a small shift = “jump”

Take a jump of 1 mm in a data
series of 100 points.

After calculating LSPF (in this
case for degree 50) and calculating
the difference with the source data
we get the approximation residue:
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Outlier in a series of smooth data = “spike”

We take the outlier at one point
(1 mm) in a series of 100 zero
data:

Graph of residuals when approxi-
mated by a polynomial of the 50th
degree:
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Gibbs phenomenon 1

Both cases (“jumps” and “outliers”) illustrate the well-known “Gibbs
phenomenon”, widely known for approximation by the Fourier series:
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Gibbs phenomenon 9
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Gibbs phenomenon 10

Both cases (“jumps” and “outliers”) illustrate the well-known “Gibbs
phenomenon”, widely known for approximation by the Fourier series:

Kytmanov, Tsarev (MIREA, SFU) Discrete orthogonal polynomials 13.12.2023 19 / 1



A typical example of jumps of the order of 1 cm at the day
boundaries

The approximation residue for LSPF of 200th degree and the X-coordinate
of the final orbit of satellite G08 from 12:00:00 30-12-2009 to 12:00:00
03-01-2010 (4 days) at 386 points from SP3 files:
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Continuous and discrete orthogonal polynomials

Legendre polynomial of degree 50:

Hahn (Chebyshev) polynomial
p30(x) of degree 30 on a lattice of
31 points:

Values near the ends:
x p30(x)

0 2.9079 · 10−9

1 −8.7236 · 10−8

2 1.2649 · 10−6

3 −0.000011806
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Discrete orthogonal polynomials

Hahn (Chebyshev) polynomial of
degree 30 on a lattice of 31 points:

The same polynomial at intermedi-
ate points:
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Discrete orthogonal polynomials in log-scale

Hahn (Chebyshev) polynomial of degree 75 on a lattice of 101 points:
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Discrete orthogonal polynomials in log-scale

Hahn (Chebyshev) polynomial of degree 100 on a lattice of 101 points:
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DOP — General

For simplicity, we study only equidistant lattices of points:
X = {0, 1, . . . ,N} and equal weights at all points.

Hahn (Chebyshev) DOPs pNm(x):
N∑
j=0

pNm(j)p
N
s (j) = δms . (1)

Properties:

They satisfy a 2nd-order recurrency;
all their roots are in [0,N], not more than one root between lattice
points.

pNm(j) =

min{j ,m}∑
k=0

(−1)k(m)−k(m + 1)k(j)−k

(k!)2(N)−k
, (2)

where (a)k are the Pochhammer symbols:

(a)k =


a(a+ 1) . . . (a+ k − 1), if k > 0,

1, if k = 0,

a(a− 1) . . . (a+ k + 1), if k < 0.

(3)
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Hahn polynomials: the 2nd-order recurrency etc.

1 Baik, J., Kriecherbauer, T., McLaughlin, K. D. R., Miller, P. D.
Discrete Orthogonal Polynomials. Princeton University Press, 2007,
170 p.

2 Olver, F. W. J., Lozier, D. W., Boisvert, R. F., Clark, C. W.
NIST Handbook of Mathematical Functions. Cambridge University
Press, New York, NY, 2010.

More general case:

Qn(x ;α, β,N) = 3F2

(
−n, n + α+ β + 1,−x

α+ 1,−N
; 1

)
, (4)

n = 0, 1, . . . ,N, with weights w(x) =
(α+1)x (β+1)N−x

x!(N−x)! for x = 0, 1, . . . ,N.

We need α = β = 0 for w(x) ≡ 1, then pNn (x) = Qn(x , 0, 0,N)/||Qn||.
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Hahn polynomials: the 2nd-order recurrency etc. (2)

With pn(x) = Qn(x ;α, β,N),

−xpn(x) = Anpn+1(x)− (An + Cn)pn(x) + Cnpn−1(x), (5)

where

An =
(n + α+ β + 1)(n + α+ 1)(N − n)

(2n + α+ β + 1)(2n + α+ β + 2)
,

Cn =
n(n + α+ β + N + 1)(n + β)

(2n + α+ β)(2n + α+ β + 1)
.

For a fixed x we have a 2nd-order recurrency in the parameter n.
Since we have the known ”starting” p0(x) = const, p1(x) = ax + b for
some definite constants, we obtain all (non-normalized!) Hahn
polynomials. Their norms are:

N∑
j=0

(pNn )
2 = hn =

(−1)n(n + α+ β + 1)N+1(β + 1)nn!

(2n + α+ β + 1)(α+ 1)n(−N)nN!
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Practical construction of Hahn-Chebyshev DOP
of high degrees

Possible methods:

By explicit formulas (2)

- :(

By recurrence relations - :(

Standard Gram-Schmidt orthogonalization - :(

Apply multiple precision calculations - OK, but VERY slow

non-standard Gram-Schmidt orthogonalization - (!)

There is a tested code in Julia programmimg language.

It is possible to reliably construct Hahn-Chebyshev DOP using standard
accuracy (doule, 8-byte) on thousands of points, for degrees up to several
hundred.

It is possible to build DOP for lattices with a (slightly) uneven step
(missing values of the time series, etc.)
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DOP - known asymptotic results

Nikiforov A.F., Suslov S.K., Uvarov V.B., Classical orthogonal
polynomials of a discrete variable. Springer, 1991.

Baik, J., Kriecherbauer, T., McLaughlin, K.D.R., Miller, P.D. Discrete
Orthogonal Polynomials. Princeton University Press, 2007, 170 p.

Sharapudinov, I.I. Asymptotic properties of orthogonal Hahn
polynomials of a discrete variable, Mat. Sb., (1989), p. 1259-1277.
(Asymptotics is limited by degrees m compared to the number of
lattice points N: m < α

√
N)

Aptekarev, A.I., Van Assche, W. Asymptotics of discrete orthogonal
polynomials and the continuum limit of the Toda lattice. Journal of
Physics A: Mathematical and General, 2001, v. 34 (48), No.10627.
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High-degree DOP behavior near the boundary for
equidistant lattices with equal weights

Theorem

Hahn (Chebyshev) polynomials of high degree take values at lattice points
that are close to zero when approaching the ends of the lattice.

Theorem

Hahn (Chebyshev) polynomials of high degree take values close to 1
ϵ

between the lattice points when approaching the ends of the lattice.

Theorem

The roots of high degree Hahn (Chebyshev) polynomials close to the ends
of the lattice are separated from the lattice points by a distance of the
order of ϵ2.

(here ϵ is the value of the polynomial at the nearest lattice point).
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Is it possible to avoid suppression of anomalies near the boundary using for
example:

DOPs with suitably selected weights wj :

N∑
j=0

pNm(j)p
N
s (j)wj = δms ? (6)

Approximation by nonorthogonal polynomial systems
(example: discrete Chebyshev polynomials)?

Wavelets?

Alas, no . . .

From the above resuts on Hahn polynomials it is easy to obtain a general
result on suppression of anomalies near the boundaries for arbitrary stable
linear polynomial filters.
Wavelets also have boundary effects.
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Linear polynomial filters
Example: Hahn-Chebyshev polynomial filters

Let fj = f (tj), j = 0, . . . ,N be a time series of (scalar) data.

Consider its expansion in Hahn-Chebyshev polynomials:

f̄ = (f0, f1, . . . , fN)
T , fj =

N∑
k=0

ckp
N
k (j).

Make a matrix M = (mjk), 0 ⩽ j , k ⩽ N, with mjk = pNk (j). Then

c̄ = (c0, c1, . . . , cN)
T = M−1f̄ .

Taking the first m + 1 (m < N) coefficients (c0, c1, . . . , cm), we obtain

f̂j =
m∑

n=0

cnp
N
n (tj)

— ‘smoothed series’ fj
and ‘filtered perturbation’ = the residue f̃ = f̄ − f̂ .
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Linear polynomial filter matrix

Denote by Dm the diagonal (N + 1)× (N + 1) matrix with first m + 1
zeros on the diagonal and ones on the rest of the diagonal. Then the
‘filtered perturbation’ of the time series is

f̃ = MDmM
−1f̄ ,

Definition

We call Fm = MDmM
−1 the matrix of a linear polynomial

Hahn-Chebyshev filter of degree m.

The fast decay of the Hahn-Chebyshev polynomials near the end points
implies the fast decay of the ‘filtered perturbation’ near the end points for
m ∼ N.

In terms of the filter matrix Fm = MDmM
−1 this means smallness (of the

order of ϵ) of its first few and last few rows and columns.
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General linear polynomial filters.
Stable filters

Let fj = f (tj), j = 0, . . . ,N be a time series of (scalar) data

and PN
k (tj), k = 0, . . . ,N — any system of polynomials of degrees

k = 0, . . . ,N, respectively.
Consider

M = (mjk), 0 ⩽ j , k ⩽ N c mjk = PN
k (tj),

Call the matrix
Fm = MDmM

−1 (7)

a linear polynomial filter matrix of degree m corresponding to the
system of polynomials PN

k .
For the subfamily

{
PN
k

}m

k=0
we obviously have:

FmP
N
k ≡ 0 for k ⩽ m
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General linear polynomial filters.
Stable filters

So the rows of Fm are orthogonal to PN
k (tj), k ⩽ m (with unit weights).

Because any polynomial of degree ≤ m is a linear combination of
{
PN
k

}m

k=0

=⇒ rows of Fm are orthogonal to Hahn-Chebyshev polynomials of degrees
≤ m,
=⇒ they are linear combinations of Hahn-Chebyshev polynomials of high
degrees k > m with some coefficients cs .
If cs are not too large, for sufficiently large m the rows of Fm have
elements close to zero near the ends.
Since cs are scalar products of the rows of Fm and the Hahn-Chebyshev
polynomials, it is reasonable to introduce the following definition:

Definition

A linear polynomial filter with the matrix Fm is called stable if all the
elements of Fm do not exceed some small constant.
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General linear polynomial filters.
Stable filters

The stability of the filter guarantees:

filter Fm is practically applicable to data containing small random
noise (otherwise small deviations will be amplified by the filter Fm);

cs is not too large and, therefore, the few border columns of Fm are
as small as in the case of the Hahn-Chebyshev filter.

Our main result:

Theorem

Any stable high-degree polynomial filter has the property of suppressing a
signal near the ends of the data segment, similar to Hahn-Chebyshev
filters.
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Linear polynomial filters. Extra infos

Note. For unstable linear polynomial filters this statement may not be
true. For example, for a monomial basis PN

k (t) = tk already for N = 20
and m = 17 the first and last columns of Fm have elements of the order of
109, other elements can reach the order of 1014.

The fast decay of several border columns of Fm (this matrix is not
symmetric in the general case) guarantees only suppression of the original
signal near the edges of the interval, the values of the ‘filtered
perturbation’ f̃ = f̄ − f̂ may not be small near the edge. Example: a stable
filter for the basis of discrete Chebyshev polynomials (non-orthogonal!).

Is it possible to choose a polynomial basis in such a way that several
border (not all!) columns of an unstable polynomial filter are not too
large?
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Digression — discrete Chebyshev polynomials

Discrete Chebyshev polynomials are polynomials constructed for a discrete
(finite) lattice and satisfying the Chebyshev-Markov alternance property on
this lattice:

Discrete Chebyshev polynomials are non-orthogonal, do not satisfy a
second-order recurrence, they are only computable by brute force (or
Remez algorithm).
A remarkable property (apparently not noted earlier): polynomial filters
based on them are stable — the matrix M−1 has elements that do not
exceed 1/2.
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Is it still possible to avoid the effect of signal suppression near the
boundaries?

Yes, if we use:

non-polynomial (linear) filters;
or

nonlinear filters.

Examples of such stable filters without suppression of small perturbations
near the boundary of the domain of the time series:
my talk “The concept of free interpolation for big data: how to increase
the accuracy 100 times with a simple formula”.

Linear free extrapolation allows us to identify the required small anomalies
near the boundary of the interval!

Nonlinear free interpolation allows us to identify anomalies in the orbits of
satellites using just 3 points (adaptability to this class of orbits)!
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Thank you for your attention!

Kytmanov, Tsarev (MIREA, SFU) Discrete orthogonal polynomials 13.12.2023 40 / 1


