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Quasigroups

Definition

Quasigroup is a (nonempty) set Q with a binary operation on it:

◦ : Q × Q → Q,

which obeys the following property: for each a, b ∈ Q there exist unique x , y ∈ Q such that:

a ◦ x = b, y ◦ a = b.

Equivalently, operations of left and right multiplication

La : Q → Q, La(x) = a ◦ x ,

Ra : Q → Q, Ra(y) = y ◦ a,

are bijections on Q.
Essentially, “a group” without associativity and identity.
We are interested in finite quasigroups Q.
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Latin squares

Informally: square table of size k × k filled with numbers {0, . . . , k − 1}, such that each number occurs
exactly once in each row and each column.

Example: 5× 5 latin square


0 1 2 3 4
1 0 3 4 2
2 3 4 0 1
3 4 1 2 0
4 2 0 1 3


Latin squares are multiplication tables of quasigroups.
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d-Quasigroups

Definition

A pair (Q, g), where g : Qd → Q is invertible in any variable, d ≥ 2, Q is a nonempty finite set is called
a d-quasigroup; g is called d-quasigroup operation.

Multiplication “tables” of d-quasigroups are latin cubes.

Remark
“Usual” quasigroup is a d-quasigroup with d = 2.

Quasigroup operation: example

Q = Ek , g(x1, . . . , xd) = x1 + . . .+ xd + const.
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Notations to be used

Q a set or quasigroup with a binary operation ◦
k size of a “basic” set k = |Q|
Ek a set {0, . . . , k − 1} (usually equipped with + operation modulo k)
F Family of functions F : Qn → Qn

fi i-th function of a family F
n size of a family

Func(Q) a set of functions f : Q → Q
Perm(Q) a set of bijections on Q
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Shannon encryption

Encrypting with one-time pad is perfectly secret:

mi → mi ⊕ ki .

Any quasigroup-based mapping is also OK:

mi → mi ◦ ki ,

where ◦ is some quasigroup operation.

Drawback: long keys.
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More practical constructions

Asymmetric primitives (DH-protocols, PKE schemes, FHE schemes, etc.) over non-associative
structures, such as quasigroups / quasigroup rings1.

Stream-cipher-like constructions over quasigroups: Edon802, quasigroup string transformation3.

Hash functions4.

ZK-protocols, authentication schemes, . . .

1Gribov, Zolotykh, and Mikhalev, “A construction of algebraic cryptosystem over the quasigroup ring”; Katyshev, Markov, and Nechaev, “Application of non-associative groupoids to the
realization of an open key distribution procedure”; Katyshev, Zyazin, and Baryshnikov, “Application of non-associative structures for construction of homomorphic cryptosystems”; Markov,
Mikhalev, and Nechaev, “Nonassociative Algebraic Structures in Cryptography and Coding”.

2Gligoroski, Markovski, and Knapskog, “The stream cipher Edon80”.

3Markovski and Bakeva, “Quasigroup string processing: Part 4”.

4Gligoroski, Markovski, and Kocarev, “Edon-R, An Infinite Family of Cryptographic Hash Functions.”; Gligoroski, Mihajloska, and Otte, “GAGE and InGAGE”; Gligoroski et al., “Cryptographic
hash function Edon-R”’.
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Algebraic structure and properties

Hidden additional algebraic structure of quasigroups can drastically decrease the security of the
cipher5.

Quasigroup is shapeless6, if it is non-commutative, non-associative, it does not have neither left nor
right unit, it does not contain proper sub-quasigroups, etc.

In7 quasigroups of sizes 2ω are used, where ω is the length of the “word” to be processed (256 bit
for the “usual” hash function).

5Slaminková and Vojvoda, “Cryptanalysis of a hash function based on isotopy of quasigroups”; Vojvoda, “Cryptanalysis of one hash function based on quasigroup”.

6Gligoroski, Markovski, and Kocarev, “Edon-R, An Infinite Family of Cryptographic Hash Functions.”

7Gligoroski, Markovski, and Kocarev, “Edon-R, An Infinite Family of Cryptographic Hash Functions.”; Gligoroski et al., “Cryptographic hash function Edon-R”’.
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Bottom line: what do we need?

Moderately large quasigroups . . .

. . . with some desirable properties, such as: polynomial completeness, minimal number of
subquasigroups, quadraticity, small number of associative triples, etc.

We are interested in functional representation of quasigroup operation: memory efficiency is needed.
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Proper family

A family of functions

Let Q be a finite nonempty set. A tuple of functions F :

F = (f1(x1, . . . , xn), . . . , fn(x1, . . . , xn)),

where fi : Qn → Q is called a family of functions on Qn.

Family F can be seen as a map F : Qn → Qn.

Proper family

A family F is propera if for any α 6= β ∈ Qn it holds that

∃i : αi 6= βi , fi (α) = fi (β).

aNosov, “Constructing a parametric family of Latin squares in the vector database”, “Constructing Parametric Families of Latin Squares in the Boolean Database”.
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Example: constants

Proper family

A family F is proper if for any α 6= β ∈ Qn it holds that

∃i : αi 6= βi , fi (α) = fi (β).

Essential (in)dependence

fi does not depend essentially on xi .

Constant family

fi ≡ consti is proper.
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Example: triangular family

Triangular family

Triangular family of size n is a family F such that
f1
f2
f3
...
fn

 =


const
f2(x1)

f 3(x1, x2)
...

fn(x1, . . . , xn−1)

 .

Triangular families are proper8.

8Nosov and Pankratiev, “Latin squares over Abelian groups”.
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Example: orthogonal families

Orthogonal families

Two functions f , g : En
k → Ek are orthogonal, if for any x ∈ En

k it holds that either f (x) = 0 or
g(x) = 0.

Family of orthogonal functions

Let F = (f1, . . . , fn) be a family of pairwise orthogonal functions such that fi does not depend essentially
on xi . Then F is propera. For instance the family

f1 = x̄2x3 · · · xn−1xn,

f2 = x̄3x4 · · · xnx1,

...

fn = x̄1x2 · · · xn−2xn−1

(1)

on En
2 is proper.

aNosov and Pankratiev, “On functional representation of Latin squares”.
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Boolean case example

Quadratic family

The following Boolean familya is proper for any n ≥ 1:
0
x1

x1 ⊕ x2

...
x1 ⊕ x2 ⊕ . . .⊕ xn−1


⊕



⊕n
i<j, i,j 6=1 xixj⊕n
i<j, i,j 6=2 xixj⊕n
i<j, i,j 6=3 xixj

...⊕n
i<j, i,j 6=n xixj

 ; (2)

aTsaregorodtsev, “Properties of proper families of Boolean functions”.
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Multivariate quasigroup representation

Assume that |Q| = kn for some k , n ∈ N;

elements of Q can be represented by n-tuples (x1, . . . , xn), xi ∈ Ek ,

quasigroup operation ◦ : Q → Q can be treated as a 2n-ary vector function from the k-valued
logic; z = x ◦ y can be written in the form:

z1 = f1(x1, . . . , xn, y1, . . . , yn)
z2 = f2(x1, . . . , xn, y1, . . . , yn)

...
zn = fn(x1, . . . , xn, y1, . . . , yn)

(3)

with fi ∈ P2n
k ;

in practice the most interesting case is k = 2t for some t ∈ N, in particular k = 2 (Boolean
representation).
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Proper families specify quasigroups

Assume that h1, . . . , hn are 3-quasigroup operations on Ek , g1, . . . , gn are n-ary k-valued functions,
π1, . . . , πn are k-valued functions of arity 2;

consider a particular case of the relations (3):

z1 = h1(x1, y1, g1(π1(x1, y1), . . . , πn(xn, yn)))
z2 = h2(x2, y2, g2(π1(x1, y1), . . . , πn(xn, yn)))

...
zn = hn(xn, yn, gn(π1(x1, y1), . . . , πn(xn, yn)))

(4)

Theorem

The relations (4) specify a quasigroup operation for any choice of the internal functions π1, . . . , πn if
and only if the family (g1, . . . , gn) is propera.

aGalatenko, Nosov, and Pankratiev, “Latin squares over quasigroups”.
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Benefits of proper family-based specification

Transition from specification (3) to proper family-based specification may reduce generality, however
there are several essential advantages:

unlike many existing constructions proper families can be used to generate d-quasigroups for any
d ≥ 2;

transition from Cayley tables to proper families significantly decreases memory load;

still the number of quasigroups and d-quasigroups generated is large (depends on the cardinality of
the image of the corresponding proper family9).

9Galatenko et al., “Generation of n-quasigroups with the use of proper families of functions”.
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Properness-preserving transformations: shifts

Theorem

For any α = (a1, . . . , an) ∈ Qn let us define the shift transformationsa:

x ∈ Qn → Lα(x) = (a1 ◦ x1, . . . , an ◦ xn),

x ∈ Qn → Rα(x) = (x1 ◦ a1, . . . , xn ◦ an).

If F (x) = (f1(x), . . . , fn(x)) is proper, then Tα(F (Tβ(x))) is proper, where T ∈ {L,R}, α, β ∈ Qn.

aNosov and Pankratiev, “Latin squares over Abelian groups”.
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Properness-preserving transformations: reencoding

Theorem

For any Ψ = (ψ1, . . . , ψn) ∈ Func(Q,Q)n let us define the reencoding transformations:

x ∈ Qn → Ψ(x) = (ψ1(x1), . . . , ψn(xn)).

Let Φ ∈ Func(Q)n, Ψ ∈ Perm(Q)n. If F (x) = (f1(x), . . . , fn(x)) is proper, then Φ(F (Ψ(x))) is proper.

If Φ,Ψ ∈ Perm(Q)n, then this transformation is called “reencoding”.

Remark
Shifts are special case of these transformations.
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Properness-preserving transformations: renumbering

Theorem

For any σ ∈ Perm(n) let us define the renumbering transformation:

F → σ(F ),

fi (x1, . . . , xn)→ fσ(i)(xσ(1), . . . , xσ(n)).

If F (x) is proper, then σ(F ) is propera.

aNosov and Pankratiev, “Latin squares over Abelian groups”.
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Properness-preserving transformations: “projections”

Theorem

For any i ∈ {1, . . . , n} and any a ∈ Q the family F ′ obtained from proper family F by substituting the
value a for the variable xi and cancelling the function fi is a proper familya of size (n − 1) (projection):

F ′(x1, . . . , xi−1, xi+1, . . . , xn) = Πi
a(F ) =



f1(x1, . . . , xi−1, a, xi+1, . . . , xn)
...

fi−1(x1, . . . , xi−1, a, xi+1, . . . , xn)
fi+1(x1, . . . , xi−1, a, xi+1, . . . , xn)

...
fn(x1, . . . , xi−1, a, xi+1, . . . , xn)


.

aNosov and Pankratiev, “Latin squares over Abelian groups”.
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General type of bijective transformations

Let Φ, Ψ be bijective transformations of Qn: Φ,Ψ ∈ Perm(Qn).

Consider the stabilizer of the set of all proper families in Perm(Qn), i.e.

{(Φ,Ψ) ∈ Perm(Qn) | Φ(F (Ψ(x))) is proper for any proper F : Qn → Qn}.

Then Φ and Ψ must be isometries of En
k (Hamming metric).

Isometries of En
k are reencodings and renumberings.

These two classes preserve properness.

Hence, no other transformations in the stabilizer of the set of proper functions: only reencodings
and renumberings.
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Boolean cube Bn and USO

Boolean cube Bn:

vertices: V = {α ∈ En
2};

edges: {α, β} ∈ E iff ρ(α, β) = 1 (Hamming distance).

Definition

Unique sink orientation (USO)a of Bn is an orientation of the edges of Bn such that in every subcube
of Bn there is exactly one vertex for which all adjoining edges are oriented inward (i.e. towards that
vertex).

aSzabo and Welzl, “Unique sink orientations of cubes”.
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USO: example

Figure: USO of a 3d-cube B3
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Graph of a family Γ(F )

The graph of a family

Given a Boolean family F , we can construct the graph (the family graph Γ(F )).

Vertices: V = {α ∈ En
2}.

Given α 6= β, ρ(α, β) = 1, αi 6= βi , we add an edge (β, α) ∈ E iff fi (α) = αi .
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Fixed points

What if α is a fixed point of the mapping x → F (x)?

Then fi (α) = αi for any 1 ≤ i ≤ n.

Hence, α is a sink of Γ(F ).
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Geometric characterization

Theorem

Graph Γ(F ) of a Boolean family F is USO iff F is propera.

aTsaregorodtsev, “One-to-one correspondense between proper families of boolean functions and unique sink orientations of cubes”.

One-to-one correspondence between algebraic and geometric objects.

“Translate” results from one language to another: randomized algorithms for proper families
generation (MCMC)10, estimates for the number of boolean proper families11, construction of new
classes of proper families.

10Galatenko et al., “Generation of proper families of functions”; Schurr, “Unique sink orientations of cubes”.

11Tsaregorodtsev, “Properties of proper families of Boolean functions”.
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Example of “translation”

Recursively combed cube orientation

An orientation of Bn is recursively combed if there is at least one dimension along which all the edges
go into the same direction and the two (n− 1)-dimensional cube orientations resulting from the removal
of all edges along that dimension are again recursively combed.

Recursively triangle families

F : En
k → En

k is recursively triangle, if there exists i , such that fi ≡ consti , and Πi
a(F ) are recursively

triangle for any a ∈ Ek .

Theorem
Recursively triangle families are proper.
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Fixed points of proper families

Fixed points, boolean case

Boolean family F is proper iff for F and any of its projections there exists a unique fixed point.

This “fixed point” characterization gives rise to another alternative characterization, known as HUFP
(hereditarily unique fixed point) Boolean networks.
There exist a generalization to the case of k-valued logic12:

Fixed points

Family F : En
k → En

k is proper iff for any reencoding x → Φ(F (Ψ(x))) (i.e., Φ,Ψ ∈ Perm(Q)n) any of its
projections has a unique fixed point.

12Galatenko et al., “Generation of proper families of functions”.
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Boolean network

Essentially the same object as Boolean family of functions (i.e., F : En
2 → En

2).

HUFP (hereditarily unique fixed point) Boolean network: F and all of its projections has unique
fixed point.

i.e., HUFP Boolean networks = Boolean proper families.

i.e., yet another language for the same object.
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Global interaction graphs

Let F be a Boolean family of size n. Let us define the global interaction graph G (F ):

Vertices: V = {1, . . . , n}.
Edges: i → j iff fj depends essentially on xi .

Equivalently: discrete derivative of fj w.r.t. xi is not zero.

Theorem

If G (F ) is acyclic, then F is HUFP Boolean network.

Equivalently: if F is triangle Boolean family, then F is proper.
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Local interaction graphs

Let F be a Boolean family of size n. Let us define local interaction graph G (F , α), where α ∈ En
2:

Vertices: V = {1, . . . , n}.
Edges: i → j iff fj depends essentially on xi “locally in α”:

fj(α1, . . . , αi , . . . , αn) 6= fj(α1, . . . , αi ⊕ 1, . . . , αn).

Theorem

If G (F , α) is acyclic for every α ∈ En
2, then F is HUFP Boolean network.
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Local interaction graphs-2

Using the notion of local interaction graphs, we can introduce a class of locally triangle families (for
any k ≥ 2):

Definition

F : En
k → En

k is locally triangle, if G (F , α) is acyclic for every α ∈ En
k , where local dependence of f on xi

in α is interpreted as:
∃b : f (α1, . . . , αi , . . . , αn) 6= f (α1, . . . , b, . . . , αn).

Theorem
Locally triangle families are proper.

Remark
Each recursively triangular family is locally triangle.
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Local interaction graphs-3

Theorem

If for any t, 1 ≤ t ≤ n there are at most 2t − 1 points α such that G (F , α) has a cycle of length at
most t, then F is HUFP Boolean network.

It is not known whether this fact is a criterion.

The intuitive interpretation / “translation” to the proper family language is yet to be discovered.
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Proper permutations

Let F : Qn → Qn be proper, (Q,+) is a quasigroup. Then

σF (x) : x → x + F (x),

x1

...
xn

→
x1 + f1(x1, . . . , xn)

...
xn + fn(x1, . . . , xn)


is a permutation: σF ∈ Perm(Qn).
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Proper permutations-2

Let F : Qn → Qn be proper. Consider σ−1
F ∈ Perm(Qn).

Theorem

If (Q,+) is a group (i.e., + is associative), then G : Qn → Qn of the form

G (x) = (−x) + σ−1
F (x)

is also proper.

I.e., for the proper F there exists G “dual” to F in the sense that

σ−1
F (x) = σG (x).
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Proper permutations-3

The set of all proper permutations Sprop is not a subgroup of Perm(Qn).

It acts transitively on Qn.

In the case Q = E2 it is known13 that σF generates Perm(En
2).

Theorem

Let F = (f1, . . . , fn) be a proper family of Boolean functions. Then for any A ∈ {0, 1}n the number of
solutions of the equation F (x) = A is evena.

aTsaregorodtsev, “Properties of proper families of Boolean functions”.

Number of fixed points of πF

From the theorem above it follows that πF (x) = x + F (x) has an even number of fixed points.

13Schurr, “Unique sink orientations of cubes”.
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Recognizing properness

Theorem
Given a Boolean family F by its CNF, the problem of recognizing properness is coNP-completea.

aNosov, “Constructing Parametric Families of Latin Squares in the Boolean Database”.

Hence, no generic fast algorithm for deciding properness so far.

This is also true for k ≥ 3.

Some special algorithms for the classes of families, e.g.:
I linear families14;
I monotonic functions15;
I . . .

14Nosov and Pankratiev, “Latin squares over Abelian groups”.

15Rykov, “On the algorithms for checking the properness of a function family”.
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Recognizing properness-2

Let F be a Boolean family of size n.

Algorithm “by definition”: O(4n) operations of calculating F (x) (count F (x) and F (y) for each
pair x , y ∈ En

2).

Optimized version (algorithm16 for recognizing USO property): O(3n) operations.

16Bosshard and Gärtner, Pseudo Unique Sink Orientations.

K. Tsaregorodtsev (MSU) Proper families Computer Algebra, 16.05.2023 48 / 60



Number of proper families

Size n ∆(n) ∆rec(n) ∆loc(n) T (n)
n = 1 2 2 2 2
n = 2 12 12 12 12
n = 3 488 680 680 744
n = 4 481776 3209712 3349488 5541744

Table: Number of triangle, recursively/locally triange and proper Boolean families of size n.
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Number of proper families-2

Theorem

Let T (n) be the number of Boolean proper families of size n. Thena there exist B ≥ A > 0 such that
for n ≥ 2:

nA·2
n

≤ T (n) ≤ nB·2
n

.

aTsaregorodtsev, “Properties of proper families of Boolean functions”.
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Alternative characterization of triangular families

∆(n) is A250110 -oeis sequence.

Alternative characterization of triangular families

There is a bijection between Triangular Boolean families of size n and Conditional Preference networks
(CP-nets) of size n.

CP-net

Conditional Preference Network (CP-net) is a graphical model to represent user’s conditional ceteris
paribus (all else being equal) preference statements.

The result can be generalized to the case of k-valued logic.
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Almost all Boolean proper families are not triangular

Theorem

Let ∆(n) be the number of triangular Boolean families of size n. Then it holds that

∆(n)

T (n)
= o

( 1

nD·2n

)
as n→∞,

for some D > 0.
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Recurrence for the number of recursively triangle proper families

Theorem

Let ∆rec(n) be the number of recursively triange families of size n over k-valued logic. Then it holds
that

∆rec(n) =
n∑

j=1

(−1)j+1 · k j ·
(
n

j

)
∆rec(n − j)k

j

.
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Self-duality and properness

Theorem

F is proper iff any of the projections Πa1,...,ak
i1,...,ik

(F ) is not self-dual.

Slight generalization of the Theorem17.

17Richard, “Fixed point theorems for Boolean networks expressed in terms of forbidden subnetworks”.

K. Tsaregorodtsev (MSU) Proper families Computer Algebra, 16.05.2023 54 / 60



Concluding remarks

What have we discussed today:

the notion of proper family and some classes ((recursive/locally) triangle, orthogonal);

how proper families helps in generating large classes of quasigroups;

some “geometric” properties: isometries, alternative characterization via USO and HUPF for
Boolean proper families;

some “algebraic” properties: the set of “proper permutations” is closed under inversion; acts
transitively; even number of fixed points in Boolean case;

other properties: deciding properness is hard in general; bounds on the number of Boolean proper
families.

K. Tsaregorodtsev (MSU) Proper families Computer Algebra, 16.05.2023 55 / 60



Thank you for your attention!
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