Proper families of discrete functions: equivalent definitions and properties

K. Tsaregorodtsev ${ }^{1,2}$

${ }^{1}$ Lomonosov Moscow State University
Moscow, Russia
${ }^{2}$ JSC "NPK Kryptonite"
Seminar on Computer Algebra, May 16, 2023

Outline

1. Algebraic excursion
2. Motivation: some examples of quasigroup-based cryptography
3. Proper families of functions
4. Properness-preserving transformations
5. Geometry: unique sink orientations
6. Geometry-2: HUFP Boolean networks
7. Algebra: proper permutations
8. Some facts outside the general narrative

Table of Contents

(1) Algebraic excursion
(2) Motivation: some examples of quasigroup-based cryptography
(3) Proper families of functions

4 Properness-preserving transformations
(5) Geometry: unique sink orientations
(6) Geometry-2: HUFP Boolean networks
(7) Algebra: proper permutations
(8) Some facts outside the general narrative

Quasigroups

Definition

Quasigroup is a (nonempty) set Q with a binary operation on it:

$$
\circ: Q \times Q \rightarrow Q
$$

which obeys the following property: for each $a, b \in Q$ there exist unique $x, y \in Q$ such that:

$$
a \circ x=b, \quad y \circ a=b .
$$

Equivalently, operations of left and right multiplication

$$
\begin{aligned}
& L_{a}: Q \rightarrow Q, L_{a}(x)=a \circ x, \\
& R_{a}: Q \rightarrow Q, R_{a}(y)=y \circ a,
\end{aligned}
$$

are bijections on Q.
Essentially, "a group" without associativity and identity.
We are interested in finite quasigroups Q.

Latin squares

Informally: square table of size $k \times k$ filled with numbers $\{0, \ldots, k-1\}$, such that each number occurs exactly once in each row and each column.

Example: 5×5 latin square

$\left[\begin{array}{lllll}0 & 1 & 2 & 3 & 4 \\ 1 & 0 & 3 & 4 & 2 \\ 2 & 3 & 4 & 0 & 1 \\ 3 & 4 & 1 & 2 & 0 \\ 4 & 2 & 0 & 1 & 3\end{array}\right]$

Latin squares are multiplication tables of quasigroups.

d-Quasigroups

Definition

A pair (Q, g), where $g: Q^{d} \rightarrow Q$ is invertible in any variable, $d \geq 2, Q$ is a nonempty finite set is called a d-quasigroup; g is called d-quasigroup operation.

Multiplication "tables" of d-quasigroups are latin cubes.

Remark

"Usual" quasigroup is a d-quasigroup with $d=2$.

Quasigroup operation: example

$Q=\mathbb{E}_{k}, g\left(x_{1}, \ldots, x_{d}\right)=x_{1}+\ldots+x_{d}+$ const.

Notations to be used

Q	a set or quasigroup with a binary operation \circ
k	size of a "basic" set $k=\|Q\|$
\mathbb{E}_{k}	a set $\{0, \ldots, k-1\}$ (usually equipped with + operation modulo k)
F	Family of functions $F: Q^{n} \rightarrow Q^{n}$
f_{i}	i-th function of a family F
n	size of a family
$\operatorname{Func}(Q)$	a set of functions $f: Q \rightarrow Q$
$\operatorname{Perm}(Q)$	a set of bijections on Q

Table of Contents

(1) Algebraic excursion
(2) Motivation: some examples of quasigroup-based cryptography
(3) Proper families of functions

4 Properness-preserving transformations
(5) Geometry: unique sink orientations
(6) Geometry-2: HUFP Boolean networks
(7) Algebra: proper permutations
8. Some facts outside the general narrative

Shannon encryption

- Encrypting with one-time pad is perfectly secret:

$$
m_{i} \rightarrow m_{i} \oplus k_{i} .
$$

- Any quasigroup-based mapping is also OK:

$$
m_{i} \rightarrow m_{i} \circ k_{i},
$$

where \circ is some quasigroup operation.

- Drawback: long keys.

More practical constructions

- Asymmetric primitives (DH-protocols, PKE schemes, FHE schemes, etc.) over non-associative structures, such as quasigroups / quasigroup rings ${ }^{1}$.
- Stream-cipher-like constructions over quasigroups: Edon80², quasigroup string transformation ${ }^{3}$.
- Hash functions ${ }^{4}$.
- ZK-protocols, authentication schemes, ...

[^0]
Algebraic structure and properties

- Hidden additional algebraic structure of quasigroups can drastically decrease the security of the cipher ${ }^{5}$.
- Quasigroup is shapeless ${ }^{6}$, if it is non-commutative, non-associative, it does not have neither left nor right unit, it does not contain proper sub-quasigroups, etc.
- $\ln ^{7}$ quasigroups of sizes 2^{ω} are used, where ω is the length of the "word" to be processed (256 bit for the "usual" hash function).

[^1]
Bottom line: what do we need?

- Moderately large quasigroups ..
- ... with some desirable properties, such as: polynomial completeness, minimal number of subquasigroups, quadraticity, small number of associative triples, etc.
- We are interested in functional representation of quasigroup operation: memory efficiency is needed.

Table of Contents

(1) Algebraic excursion
(2) Motivation: some examples of quasigroup-based cryptography
(3) Proper families of functions

4 Properness-preserving transformations
(5) Geometry: unique sink orientations
(6) Geometry-2: HUFP Boolean networks
(7) Algebra: proper permutations

8 Some facts outside the general narrative

Proper family

A family of functions

Let Q be a finite nonempty set. A tuple of functions F :

$$
F=\left(f_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, f_{n}\left(x_{1}, \ldots, x_{n}\right)\right),
$$

where $f_{i}: Q^{n} \rightarrow Q$ is called a family of functions on Q^{n}.
Family F can be seen as a map $F: Q^{n} \rightarrow Q^{n}$.

Proper family

A family F is proper ${ }^{a}$ if for any $\alpha \neq \beta \in Q^{n}$ it holds that

$$
\exists i: \quad \alpha_{i} \neq \beta_{i}, f_{i}(\alpha)=f_{i}(\beta) .
$$

[^2]
Example: constants

Proper family

A family F is proper if for any $\alpha \neq \beta \in Q^{n}$ it holds that

$$
\exists i: \quad \alpha_{i} \neq \beta_{i}, f_{i}(\alpha)=f_{i}(\beta)
$$

Essential (in)dependence

f_{i} does not depend essentially on x_{i}.
Constant family
$f_{i} \equiv$ const $_{i}$ is proper.

Example: triangular family

Triangular family

Triangular family of size n is a family F such that

$$
\left[\begin{array}{c}
f_{1} \\
f_{2} \\
f_{3} \\
\vdots \\
f_{n}
\end{array}\right]=\left[\begin{array}{c}
\text { const } \\
f_{2}\left(x_{1}\right) \\
f 3\left(x_{1}, x_{2}\right) \\
\vdots \\
f_{n}\left(x_{1}, \ldots, x_{n-1}\right)
\end{array}\right]
$$

Triangular families are proper ${ }^{8}$.

Example: orthogonal families

Orthogonal families

Two functions $f, g: \mathbb{E}_{k}^{n} \rightarrow \mathbb{E}_{k}$ are orthogonal, if for any $x \in \mathbb{E}_{k}^{n}$ it holds that either $f(x)=0$ or $g(x)=0$.

Family of orthogonal functions

Let $F=\left(f_{1}, \ldots, f_{n}\right)$ be a family of pairwise orthogonal functions such that f_{i} does not depend essentially on x_{i}. Then F is proper ${ }^{a}$. For instance the family

$$
\begin{align*}
& f_{1}=\bar{x}_{2} x_{3} \cdots x_{n-1} x_{n} \\
& f_{2}=\bar{x}_{3} x_{4} \cdots x_{n} x_{1} \tag{1}
\end{align*}
$$

$$
f_{n}=\bar{x}_{1} x_{2} \cdots x_{n-2} x_{n-1}
$$

on \mathbb{E}_{2}^{n} is proper.

[^3]
Boolean case example

Quadratic family

The following Boolean family ${ }^{a}$ is proper for any $n \geq 1$:

$$
\left[\begin{array}{c}
0 \tag{2}\\
x_{1} \\
x_{1} \oplus x_{2} \\
\vdots \\
x_{1} \oplus x_{2} \oplus \ldots \oplus x_{n-1}
\end{array}\right] \bigoplus\left[\begin{array}{cc}
\bigoplus_{i<j, i, j \neq 1}^{n} & x_{i} x_{j} \\
\bigoplus_{i<j, i, j \neq 2}^{n} & x_{i} x_{j} \\
\bigoplus_{i<j, i, j \neq 3}^{n} & x_{i} x_{j} \\
\vdots & \\
\bigoplus_{i<j, i, j \neq n}^{n} & x_{i} x_{j}
\end{array}\right] ;
$$

[^4]
Multivariate quasigroup representation

- Assume that $|Q|=k^{n}$ for some $k, n \in \mathbb{N}$;
- elements of Q can be represented by n-tuples $\left(x_{1}, \ldots, x_{n}\right), x_{i} \in \mathbb{E}_{k}$,
- quasigroup operation $\circ: Q \rightarrow Q$ can be treated as a $2 n$-ary vector function from the k-valued logic; $z=x \circ y$ can be written in the form:

$$
\begin{align*}
z_{1} & =f_{1}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right) \\
z_{2} & =f_{2}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right) \tag{3}\\
& \vdots \\
z_{n} & =f_{n}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)
\end{align*}
$$

with $f_{i} \in P_{k}^{2 n}$;

- in practice the most interesting case is $k=2^{t}$ for some $t \in \mathbb{N}$, in particular $k=2$ (Boolean representation).

Proper families specify quasigroups

- Assume that h_{1}, \ldots, h_{n} are 3 -quasigroup operations on $\mathbb{E}_{k}, g_{1}, \ldots, g_{n}$ are n-ary k-valued functions, π_{1}, \ldots, π_{n} are k-valued functions of arity 2 ;
- consider a particular case of the relations (3):

$$
\begin{align*}
z_{1} & =h_{1}\left(x_{1}, y_{1}, g_{1}\left(\pi_{1}\left(x_{1}, y_{1}\right), \ldots, \pi_{n}\left(x_{n}, y_{n}\right)\right)\right) \\
z_{2} & =h_{2}\left(x_{2}, y_{2}, g_{2}\left(\pi_{1}\left(x_{1}, y_{1}\right), \ldots, \pi_{n}\left(x_{n}, y_{n}\right)\right)\right) \tag{4}\\
& \vdots \\
z_{n} & =h_{n}\left(x_{n}, y_{n}, g_{n}\left(\pi_{1}\left(x_{1}, y_{1}\right), \ldots, \pi_{n}\left(x_{n}, y_{n}\right)\right)\right)
\end{align*}
$$

Theorem

The relations (4) specify a quasigroup operation for any choice of the internal functions π_{1}, \ldots, π_{n} if and only if the family $\left(g_{1}, \ldots, g_{n}\right)$ is proper ${ }^{a}$.

[^5]
Benefits of proper family-based specification

Transition from specification (3) to proper family-based specification may reduce generality, however there are several essential advantages:

- unlike many existing constructions proper families can be used to generate d-quasigroups for any $d \geq 2$;
- transition from Cayley tables to proper families significantly decreases memory load;
- still the number of quasigroups and d-quasigroups generated is large (depends on the cardinality of the image of the corresponding proper family ${ }^{9}$).

[^6]
Table of Contents

(1) Algebraic excursion
(2) Motivation: some examples of quasigroup-based cryptography
(3) Proper families of functions

4 Properness-preserving transformations
(5) Geometry: unique sink orientations
(6) Geometry-2: HUFP Boolean networks
(7) Algebra: proper permutations
(8) Some facts outside the general narrative

Properness-preserving transformations: shifts

Theorem

For any $\alpha=\left(a_{1}, \ldots, a_{n}\right) \in Q^{n}$ let us define the shift transformations ${ }^{a}$:

$$
\begin{aligned}
& x \in Q^{n} \rightarrow L_{\alpha}(x)=\left(a_{1} \circ x_{1}, \ldots, a_{n} \circ x_{n}\right), \\
& x \in Q^{n} \rightarrow R_{\alpha}(x)=\left(x_{1} \circ a_{1}, \ldots, x_{n} \circ a_{n}\right) .
\end{aligned}
$$

If $F(x)=\left(f_{1}(x), \ldots, f_{n}(x)\right)$ is proper, then $T_{\alpha}\left(F\left(T_{\beta}(x)\right)\right)$ is proper, where $T \in\{L, R\}, \alpha, \beta \in Q^{n}$.

[^7]
Properness-preserving transformations: reencoding

Theorem

For any $\psi=\left(\psi_{1}, \ldots, \psi_{n}\right) \in \operatorname{Func}(Q, Q)^{n}$ let us define the reencoding transformations:

$$
x \in Q^{n} \rightarrow \Psi(x)=\left(\psi_{1}\left(x_{1}\right), \ldots, \psi_{n}\left(x_{n}\right)\right) .
$$

Let $\Phi \in \operatorname{Func}(Q)^{n}, \Psi \in \operatorname{Perm}(Q)^{n}$. If $F(x)=\left(f_{1}(x), \ldots, f_{n}(x)\right)$ is proper, then $\Phi(F(\Psi(x)))$ is proper.
If $\Phi, \Psi \in \operatorname{Perm}(Q)^{n}$, then this transformation is called "reencoding".

Remark

Shifts are special case of these transformations.

Properness-preserving transformations: renumbering

Theorem

For any $\sigma \in \operatorname{Perm}(n)$ let us define the renumbering transformation:

$$
\begin{aligned}
F & \rightarrow \sigma(F), \\
f_{i}\left(x_{1}, \ldots, x_{n}\right) & \rightarrow f_{\sigma(i)}\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right) .
\end{aligned}
$$

If $F(x)$ is proper, then $\sigma(F)$ is proper ${ }^{3}$.

[^8]
Properness-preserving transformations: "projections"

Theorem

For any $i \in\{1, \ldots, n\}$ and any $a \in Q$ the family F^{\prime} obtained from proper family F by substituting the value a for the variable x_{i} and cancelling the function f_{i} is a proper family ${ }^{a}$ of size $(n-1)$ (projection):

$$
F^{\prime}\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right)=\Pi_{a}^{i}(F)=\left[\begin{array}{c}
f_{1}\left(x_{1}, \ldots, x_{i-1}, a, x_{i+1}, \ldots, x_{n}\right) \\
\vdots \\
f_{i-1}\left(x_{1}, \ldots, x_{i-1}, a, x_{i+1}, \ldots, x_{n}\right) \\
f_{i+1}\left(x_{1}, \ldots, x_{i-1}, a, x_{i+1}, \ldots, x_{n}\right) \\
\vdots \\
f_{n}\left(x_{1}, \ldots, x_{i-1}, a, x_{i+1}, \ldots, x_{n}\right)
\end{array}\right]
$$

[^9]
General type of bijective transformations

- Let Φ, Ψ be bijective transformations of $Q^{n}: \Phi, \Psi \in \operatorname{Perm}\left(Q^{n}\right)$.
- Consider the stabilizer of the set of all proper families in $\operatorname{Perm}\left(Q^{n}\right)$, i.e.

$$
\left\{(\Phi, \Psi) \in \operatorname{Perm}\left(Q^{n}\right) \mid \Phi(F(\Psi(x))) \text { is proper for any proper } F: Q^{n} \rightarrow Q^{n}\right\} .
$$

- Then Φ and Ψ must be isometries of \mathbb{E}_{k}^{n} (Hamming metric).
- Isometries of \mathbb{E}_{k}^{n} are reencodings and renumberings.
- These two classes preserve properness.
- Hence, no other transformations in the stabilizer of the set of proper functions: only reencodings and renumberings.

Table of Contents

(1) Algebraic excursion
(2) Motivation: some examples of quasigroup-based cryptography
(3) Proper families of functions

4 Properness-preserving transformations
(5) Geometry: unique sink orientations
(6) Geometry-2: HUFP Boolean networks
(7) Algebra: proper permutations

8 Some facts outside the general narrative

Boolean cube \mathbb{B}_{n} and USO

Boolean cube \mathbb{B}_{n} :

- vertices: $\boldsymbol{V}=\left\{\alpha \in \mathbb{E}_{2}^{n}\right\}$;
- edges: $\{\alpha, \beta\} \in E$ iff $\rho(\alpha, \beta)=1$ (Hamming distance).

Definition

Unique sink orientation (USO) ${ }^{a}$ of \mathbb{B}_{n} is an orientation of the edges of \mathbb{B}_{n} such that in every subcube of \mathbb{B}_{n} there is exactly one vertex for which all adjoining edges are oriented inward (i.e. towards that vertex).
${ }^{a}$ Szabo and Welzl, "Unique sink orientations of cubes"

USO: example

Figure: USO of a 3d-cube \mathbb{B}_{3}

Graph of a family $\Gamma(F)$

The graph of a family

Given a Boolean family F, we can construct the graph (the family graph $\Gamma(F)$).

- Vertices: $V=\left\{\alpha \in \mathbb{E}_{2}^{n}\right\}$.
- Given $\alpha \neq \beta, \rho(\alpha, \beta)=1, \alpha_{i} \neq \beta_{i}$, we add an edge $(\beta, \alpha) \in E$ iff $f_{i}(\alpha)=\alpha_{i}$.

Fixed points

- What if α is a fixed point of the mapping $x \rightarrow F(x)$?
- Then $f_{i}(\alpha)=\alpha_{i}$ for any $1 \leq i \leq n$.
- Hence, α is a sink of $\Gamma(F)$.

Geometric characterization

Theorem

Graph $\Gamma(F)$ of a Boolean family F is USO iff F is proper ${ }^{2}$.
${ }^{a}$ Tsaregorodtsev, "One-to-one correspondense between proper families of boolean functions and unique sink orientations of cubes".

- One-to-one correspondence between algebraic and geometric objects.
- "Translate" results from one language to another: randomized algorithms for proper families generation (MCMC) ${ }^{10}$, estimates for the number of boolean proper families ${ }^{11}$, construction of new classes of proper families.

[^10]
Example of "translation"

Recursively combed cube orientation

An orientation of \mathbb{B}_{n} is recursively combed if there is at least one dimension along which all the edges go into the same direction and the two ($n-1$)-dimensional cube orientations resulting from the removal of all edges along that dimension are again recursively combed.

Recursively triangle families

$F: \mathbb{E}_{k}^{n} \rightarrow \mathbb{E}_{k}^{n}$ is recursively triangle, if there exists i, such that $f_{i} \equiv$ const $_{i}$, and $\Pi_{a}^{i}(F)$ are recursively triangle for any $a \in \mathbb{E}_{k}$.

Theorem

Recursively triangle families are proper.

Table of Contents

(1) Algebraic excursion
(2) Motivation: some examples of quasigroup-based cryptography
(3) Proper families of functions

4 Properness-preserving transformations
(5) Geometry: unique sink orientations
(6) Geometry-2: HUFP Boolean networks
(7) Algebra: proper permutations
8. Some facts outside the general narrative

Fixed points of proper families

Fixed points, boolean case

Boolean family F is proper iff for F and any of its projections there exists a unique fixed point.
This "fixed point" characterization gives rise to another alternative characterization, known as HUFP (hereditarily unique fixed point) Boolean networks.
There exist a generalization to the case of k-valued $\operatorname{logic}{ }^{12}$:

Fixed points

Family $F: \mathbb{E}_{k}^{n} \rightarrow \mathbb{E}_{k}^{n}$ is proper iff for any reencoding $x \rightarrow \Phi(F(\Psi(x)))$ (i.e., $\left.\Phi, \Psi \in \operatorname{Perm}(Q)^{n}\right)$ any of its projections has a unique fixed point.

[^11]
Boolean network

- Essentially the same object as Boolean family of functions (i.e., $F: \mathbb{E}_{2}^{n} \rightarrow \mathbb{E}_{2}^{n}$).
- HUFP (hereditarily unique fixed point) Boolean network: F and all of its projections has unique fixed point.
- i.e., HUFP Boolean networks $=$ Boolean proper families.
- i.e., yet another language for the same object.

Global interaction graphs

Let F be a Boolean family of size n. Let us define the global interaction graph $G(F)$:

- Vertices: $V=\{1, \ldots, n\}$.
- Edges: $i \rightarrow j$ iff f_{j} depends essentially on x_{i}.
- Equivalently: discrete derivative of f_{j} w.r.t. x_{i} is not zero.

Theorem
 If $G(F)$ is acyclic, then F is HUFP Boolean network.

Equivalently: if F is triangle Boolean family, then F is proper.

Local interaction graphs

Let F be a Boolean family of size n. Let us define local interaction graph $G(F, \alpha)$, where $\alpha \in \mathbb{E}_{2}^{n}$:

- Vertices: $V=\{1, \ldots, n\}$.
- Edges: $i \rightarrow j$ iff f_{j} depends essentially on x_{i} "locally in α ":

$$
f_{j}\left(\alpha_{1}, \ldots, \alpha_{i}, \ldots, \alpha_{n}\right) \neq f_{j}\left(\alpha_{1}, \ldots, \alpha_{i} \oplus 1, \ldots, \alpha_{n}\right) .
$$

Theorem

If $G(F, \alpha)$ is acyclic for every $\alpha \in \mathbb{E}_{2}^{n}$, then F is HUFP Boolean network.

Local interaction graphs-2

Using the notion of local interaction graphs, we can introduce a class of locally triangle families (for any $k \geq 2$):

Definition

$F: \mathbb{E}_{k}^{n} \rightarrow \mathbb{E}_{k}^{n}$ is locally triangle, if $G(F, \alpha)$ is acyclic for every $\alpha \in \mathbb{E}_{k}^{n}$, where local dependence of f on x_{i} in α is interpreted as:

$$
\exists b: f\left(\alpha_{1}, \ldots, \alpha_{i}, \ldots, \alpha_{n}\right) \neq f\left(\alpha_{1}, \ldots, b, \ldots, \alpha_{n}\right) .
$$

Theorem

Locally triangle families are proper.

Remark

Each recursively triangular family is locally triangle.

Local interaction graphs-3

```
Theorem
If for any t,1\leqt\leqn there are at most 2t - 1 points \alpha such that G(F,\alpha) has a cycle of length at most \(t\), then \(F\) is HUFP Boolean network.
```

- It is not known whether this fact is a criterion.
- The intuitive interpretation / "translation" to the proper family language is yet to be discovered.

Table of Contents

(1) Algebraic excursion
(2) Motivation: some examples of quasigroup-based cryptography
(3) Proper families of functions

4 Properness-preserving transformations
(5) Geometry: unique sink orientations
(6) Geometry-2: HUFP Boolean networks
(7) Algebra: proper permutations

8 Some facts outside the general narrative

Proper permutations

Let $F: Q^{n} \rightarrow Q^{n}$ be proper, $(Q,+)$ is a quasigroup. Then

$$
\sigma_{F}(x): x \rightarrow x+F(x), \quad\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right] \rightarrow\left[\begin{array}{c}
x_{1}+f_{1}\left(x_{1}, \ldots, x_{n}\right) \\
\vdots \\
x_{n}+f_{n}\left(x_{1}, \ldots, x_{n}\right)
\end{array}\right]
$$

is a permutation: $\sigma_{F} \in \operatorname{Perm}\left(Q^{n}\right)$.

Proper permutations-2

Let $F: Q^{n} \rightarrow Q^{n}$ be proper. Consider $\sigma_{F}^{-1} \in \operatorname{Perm}\left(Q^{n}\right)$.

Theorem

If $(Q,+)$ is a group (i.e., + is associative), then $G: Q^{n} \rightarrow Q^{n}$ of the form

$$
G(x)=(-x)+\sigma_{F}^{-1}(x)
$$

is also proper.
I.e., for the proper F there exists G "dual" to F in the sense that

$$
\sigma_{F}^{-1}(x)=\sigma_{G}(x)
$$

Proper permutations-3

- The set of all proper permutations $\mathcal{S}^{\text {prop }}$ is not a subgroup of $\operatorname{Perm}\left(Q^{n}\right)$.
- It acts transitively on Q^{n}.
- In the case $Q=\mathbb{E}_{2}$ it is known ${ }^{13}$ that σ_{F} generates $\operatorname{Perm}\left(\mathbb{E}_{2}^{n}\right)$.

Theorem

Let $F=\left(f_{1}, \ldots, f_{n}\right)$ be a proper family of Boolean functions. Then for any $A \in\{0,1\}^{n}$ the number of solutions of the equation $F(x)=A$ is even ${ }^{a}$.
${ }^{a}$ Tsaregorodtsev, "Properties of proper families of Boolean functions"

Number of fixed points of π_{F}

From the theorem above it follows that $\pi_{F}(x)=x+F(x)$ has an even number of fixed points.

[^12]
Table of Contents

(1) Algebraic excursion
(2) Motivation: some examples of quasigroup-based cryptography
(3) Proper families of functions

4 Properness-preserving transformations
(5) Geometry: unique sink orientations
(6) Geometry-2: HUFP Boolean networks
(7) Algebra: proper permutations

8 Some facts outside the general narrative

Recognizing properness

Theorem

Given a Boolean family F by its CNF, the problem of recognizing properness is coNP-complete ${ }^{\text {a }}$.
${ }^{a}$ Nosov, "Constructing Parametric Families of Latin Squares in the Boolean Database".

- Hence, no generic fast algorithm for deciding properness so far.
- This is also true for $k \geq 3$.
- Some special algorithms for the classes of families, e.g.:
- linear families ${ }^{14}$;
- monotonic functions ${ }^{15}$;
- ...

[^13]
Recognizing properness-2

Let F be a Boolean family of size n.

- Algorithm "by definition": $\mathcal{O}\left(4^{n}\right)$ operations of calculating $F(x)$ (count $F(x)$ and $F(y)$ for each pair $x, y \in \mathbb{E}_{2}^{n}$).
- Optimized version (algorithm ${ }^{16}$ for recognizing USO property): $\mathcal{O}\left(3^{n}\right)$ operations.

[^14]
Number of proper families

Size n	$\Delta(n)$	$\Delta^{\text {rec }}(n)$	$\Delta^{\text {loc }}(n)$	$T(n)$
$n=1$	2	2	2	2
$n=2$	12	12	12	12
$n=3$	488	680	680	744
$n=4$	481776	3209712	3349488	5541744

Table: Number of triangle, recursively/locally triange and proper Boolean families of size n.

Number of proper families-2

Theorem

Let $T(n)$ be the number of Boolean proper families of size n. Then ${ }^{a}$ there exist $B \geq A>0$ such that for $n \geq 2$:

$$
n^{A \cdot 2^{n}} \leq T(n) \leq n^{B \cdot 2^{n}} .
$$

[^15]
Alternative characterization of triangular families

$\Delta(n)$ is A250110-oeis sequence.

Alternative characterization of triangular families

There is a bijection between Triangular Boolean families of size n and Conditional Preference networks (CP-nets) of size n.

CP-net

Conditional Preference Network (CP-net) is a graphical model to represent user's conditional ceteris paribus (all else being equal) preference statements.

The result can be generalized to the case of k-valued logic.

Almost all Boolean proper families are not triangular

Theorem

Let $\Delta(n)$ be the number of triangular Boolean families of size n. Then it holds that

$$
\frac{\Delta(n)}{T(n)}=o\left(\frac{1}{n^{D \cdot 2^{n}}}\right) \text { as } n \rightarrow \infty
$$

for some $D>0$.

Recurrence for the number of recursively triangle proper families

Theorem

Let $\Delta^{\mathrm{rec}}(n)$ be the number of recursively triange families of size n over k-valued logic. Then it holds that

$$
\Delta^{\mathrm{rec}}(n)=\sum_{j=1}^{n}(-1)^{j+1} \cdot k^{j} \cdot\binom{n}{j} \Delta^{\mathrm{rec}}(n-j)^{k^{j}}
$$

Self-duality and properness

Theorem
 F is proper iff any of the projections $\Pi_{i_{1}, \ldots, i_{k}}^{a_{1}, \ldots, a_{k}}(F)$ is not self-dual.

Slight generalization of the Theorem ${ }^{17}$.

[^16]
Concluding remarks

What have we discussed today:

- the notion of proper family and some classes ((recursive/locally) triangle, orthogonal);
- how proper families helps in generating large classes of quasigroups;
- some "geometric" properties: isometries, alternative characterization via USO and HUPF for Boolean proper families;
- some "algebraic" properties: the set of "proper permutations" is closed under inversion; acts transitively; even number of fixed points in Boolean case;
- other properties: deciding properness is hard in general; bounds on the number of Boolean proper families.

Thank you for your attention!

Bibliography I

國 Bosshard，Vitor and Bernd Gärtner．Pseudo Unique Sink Orientations．2017．arXiv：1704．08481 ［math．CO］
國 Galatenko，A．V．，V．A．Nosov，and A．E．Pankratiev．＂Latin squares over quasigroups＂．In： Lobachevskii Journal of Mathematics 41 （2020），pp．194－203．
囯 Galatenko，A．V．et al．＂Generation of n－quasigroups with the use of proper families of functions＂． In：Discrete mathematics 35.1 （2023）．In russian，pp．35－53．
（1）Galatenko，A．V．et al．＂Generation of proper families of functions＂．In：Intellektual＇nye Sistemy． Teoriya i Prilozheniya（Intelligent Systems．Theory and Applications） 25.4 （2021）．In russian， pp．100－103．
（1．Gligoroski，D．，S．Markovski，and S．J．Knapskog．＂The stream cipher Edon80＂．In：New stream cipher designs．Springer，2008，pp．152－169．
盽 Gligoroski，D．，S．Markovski，and L．Kocarev．＂Edon－R，An Infinite Family of Cryptographic Hash Functions．＂In：International Journal of Security and Networks 8.3 （2009），pp．293－300．
國 Gligoroski，D．，H．Mihajloska，and D．Otte．＂GAGE and InGAGE＂．In：Submission to the NIST＇s Lightweight Standardization Process． 2019.

Bibliography II

围 Gligoroski，D．et al．＂Cryptographic hash function Edon－R＂＂．In： 2009 Proceedings of the 1st International Workshop on Security and Communication Networks．IEEE．2009，pp．1－9．
固 Gribov，Aleksei Viktorovich，Pavel Andreevich Zolotykh，and Aleksandr Vasil＇evich Mikhalev．＂A construction of algebraic cryptosystem over the quasigroup ring＂．In：Matematicheskie Voprosy Kriptografii［Mathematical Aspects of Cryptography］ 1.4 （2010），pp．23－32．
囯 Katyshev，Sergey Yu．，Viktor T．Markov，and Alexander A．Nechaev．＂Application of non－associative groupoids to the realization of an open key distribution procedure＂．In：Discrete Math．Appl． 25.4 （1 2015），pp．9－24．
凅 Katyshev，Sergey Yur＇evich，Andrey Valentinovich Zyazin，and Andrei Vladimirovich Baryshnikov． ＂Application of non－associative structures for construction of homomorphic cryptosystems＂．In： Matematicheskie Voprosy Kriptografii［Mathematical Aspects of Cryptography］ 11.3 （2020）， pp．31－39．
Markov，V．T．，A．V．Mikhalev，and A．A．Nechaev．＂Nonassociative Algebraic Structures in Cryptography and Coding＂．In：Journal of Mathematical Sciences 245.2 （2020），pp．178－197．
囲 Markovski，Smile and Verica Bakeva．＂Quasigroup string processing：Part 4＂．In：Contributions， Section of Natural，Mathematical and Biotechnical Sciences 27．1－2（2017）．

Bibliography III

Nosov, V. A. "Constructing a parametric family of Latin squares in the vector database". Russian. In: Intellektual'nye Sistemy. Teoriya i Prilozheniya (Intelligent Systems. Theory and Applications) 8.1-4 (2006). In russian, pp. 517-529. ISSN: 2075-9460; 2411-4448.

囯 - . "Constructing Parametric Families of Latin Squares in the Boolean Database". Russian. In: Intellektual'nye Sistemy. Teoriya i Prilozheniya (Intelligent Systems. Theory and Applications) 4.3-4 (1999). In russian, pp. 307-320. ISSN: 2075-9460; 2411-4448.

Nosov, V. A. and A. E. Pankratiev. "Latin squares over Abelian groups". In: Journal of Mathematical Sciences 149 (2008), pp. 1230-1234.
围 - . "On functional representation of Latin squares". In: Intellektual'nye Sistemy. Teoriya i Prilozheniya (Intelligent Systems. Theory and Applications) 12.1-4 (2008). In russian, pp. 317-332. ISSN: 2075-9460; 2411-4448.
: Richard, Adrien. "Fixed point theorems for Boolean networks expressed in terms of forbidden subnetworks". In: Theoretical Computer Science 583 (2015), pp. 1-26.
Rykov, D. O. "On the algorithms for checking the properness of a function family". In: Intellektual'nye Sistemy. Teoriya i Prilozheniya (Intelligent Systems. Theory and Applications) 14.1-4 (2010). In russian, pp. 261-276.

Bibliography IV

國 Schurr，Ingo A．＂Unique sink orientations of cubes＂．PhD thesis．ETH Zurich， 2004.
目 Slaminková，I．and M．Vojvoda．＂Cryptanalysis of a hash function based on isotopy of quasigroups＂． In：Tatra Mountains Mathematical Publications 45.1 （2010），pp．137－149．
園 Szabo，T．and E．Welzl．＂Unique sink orientations of cubes＂．In：Proceedings 42nd IEEE Symposium on Foundations of Computer Science．IEEE．2001，pp．547－555．
囯 Tsaregorodtsev，K．D．＂One－to－one correspondense between proper families of boolean functions and unique sink orientations of cubes＂．In：Applied discrete mathematics 48 （2020）．In russian， pp．16－21．
䡒－．＂Properties of proper families of Boolean functions＂．In：Discrete mathematics 33.1 （2021）．In russian，pp．91－102．
围 Vojvoda，M．＂Cryptanalysis of one hash function based on quasigroup＂．In：Tatra Mountains Mathematical Publications 29.173 （2004），pp．173－181．

[^0]: ${ }^{1}$ Gribov, Zolotykh, and Mikhalev, "A construction of algebraic cryptosystem over the quasigroup ring"; Katyshev, Markov, and Nechaev, "Application of non-associative groupoids to the realization of an open key distribution procedure"; Katyshev, Zyazin, and Baryshnikov, "Application of non-associative structures for construction of homomorphic cryptosystems"; Markov, Mikhalev, and Nechaev, "Nonassociative Algebraic Structures in Cryptography and Coding"
 ${ }^{2}$ Gligoroski, Markovski, and Knapskog, "The stream cipher Edon80"
 ${ }^{3}$ Markovski and Bakeva, "Quasigroup string processing: Part 4"
 ${ }^{4}$ Gligoroski, Markovski, and Kocarev, "Edon-R, An Infinite Family of Cryptographic Hash Functions."; Gligoroski, Mihajloska, and Otte, "GAGE and InGAGE"; Gligoroski et al., "Cryptographic hash function Edon-R" '

[^1]: ${ }^{5}$ Slaminková and Vojvoda, "Cryptanalysis of a hash function based on isotopy of quasigroups"; Vojvoda, "Cryptanalysis of one hash function based on quasigroup"
 ${ }^{6}$ Gligoroski, Markovski, and Kocarev, "Edon-R, An Infinite Family of Cryptographic Hash Functions."
 ${ }^{7}$ Gligoroski, Markovski, and Kocarev, "Edon-R, An Infinite Family of Cryptographic Hash Functions."; Gligoroski et al., "Cryptographic hash function Edon-R"'.

[^2]: ${ }^{\text {a }}$ Nosov, "Constructing a parametric family of Latin squares in the vector database", "Constructing Parametric Families of Latin Squares in the Boolean Database".

[^3]: ${ }^{a}$ Nosov and Pankratiev, "On functional representation of Latin squares"

[^4]: ${ }^{a}$ Tsaregorodtsev, "Properties of proper families of Boolean functions"

[^5]: ${ }^{a}$ Galatenko, Nosov, and Pankratiev, "Latin squares over quasigroups"

[^6]: ${ }^{9}$ Galatenko et al., "Generation of n-quasigroups with the use of proper families of functions"

[^7]: ${ }^{a}$ Nosov and Pankratiev, "Latin squares over Abelian groups"

[^8]: ${ }^{a}$ Nosov and Pankratiev, "Latin squares over Abelian groups"

[^9]: ${ }^{a}$ Nosov and Pankratiev, "Latin squares over Abelian groups"

[^10]: ${ }^{10}$ Galatenko et al., "Generation of proper families of functions"; Schurr, "Unique sink orientations of cubes"
 ${ }^{11}$ Tsaregorodtsev, "Properties of proper families of Boolean functions".

[^11]: 12 Galatenko et al., "Generation of proper families of functions"

[^12]: ${ }^{13}$ Schurr, "Unique sink orientations of cubes"

[^13]: ${ }^{14}$ Nosov and Pankratiev, "Latin squares over Abelian groups"
 ${ }^{15}$ Rykov, "On the algorithms for checking the properness of a function family"

[^14]: ${ }^{16}$ Bosshard and Gärtner, Pseudo Unique Sink Orientations.

[^15]: ${ }^{a}$ Tsaregorodtsev, "Properties of proper families of Boolean functions"

[^16]: ${ }^{17}$ Richard, "Fixed point theorems for Boolean networks expressed in terms of forbidden subnetworks".

