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Theorem. (I.V. Latkin & S., 2015) The next problem is NP -
omplete.

Given a 
ubi
 form of the type

f = α2
n+1(α0x

3
0 + . . .+ αnx

3
n)− (α0x0 + . . .+ αnxn)

3

over Z. Does the proje
tive hypersurfa
e de�ned by the equation f = 0


ontain any singular point whose 
oordinates belong to the set {−1,1}?

The set partition problem, whi
h is NP -
omplete, 
an be redu
ed to this

problem.

Thus, if NP 6= coNP , then there does not exist any nondeterministi


polynomial time ma
hine re
ognizing the existen
e of a real singular point

in the worst 
ase.

A 
ubi
 hypersurfa
e in CPn 
ontains a singular point i� its dis
riminant

vanishes. The dis
riminant is a polynomial of degree (n+1)2n.

Over the �eld of 
omplex numbers C, to 
he
k smoothness seems as hard

as to 
ompute the dis
riminant. It is very hard.

There are more tools to 
he
k whether a polynomial vanishes over reals.



Let us 
onsider the graph of a multivariate polynomial f over reals. A

point of the graph is said to be ellipti
 if the Hessian matrix (whose entries

are se
ond partial derivatives

∂2f
∂xj∂xk

) is de�nite. Roughly speaking, in a

su�
iently small analyti
 neighborhood of an ellipti
 point, the surfa
e

looks like an ellipsoid.

The surfa
e is the graph of the polynomial (1−0.9x1) ·(x1+x2) ·(x1−x2).

Its vanishing lo
us 
onsist of three straight lines.



Theorem. Given a third degree multivariate polynomial. If the graph of

the polynomial 
ontains an ellipti
 point, then the proje
tive 
losure of

the vanishing lo
us of the polynomial does not 
ontain any real singular

point on the hyperplane at in�nity.

Let polynomials over R be identi�ed with sequen
es of their 
oe�
ients

using some monomial order. For a positive integer k, the term �almost

all k-tuples� means �all k-tuples but a set 
overed by a vanishing lo
us of

a nonzero polynomial in k variables with integer 
oe�
ients�.

Theorem. For almost all inhomogeneous bivariate third degree polyno-

mials, the graph of the polynomial 
ontains an ellipti
 point.

Remark. The 
ubi
 form f = x30 − x1(x
2
1 − 3x22) de�nes a smooth plane


urve. But the graph of the polynomial x1(x
2
1−3x22) is the monkey saddle;

it has no ellipti
 point.



Example. Let us 
onsider the symmetri
 matrix

(

αx1 ℓ(x1, x2)
ℓ(x1, x2) βx2

)

,

where ℓ is a linear fun
tion, α 6= 0, β 6= 0, and ℓ(0,0) 6= 0.

In one of two 
ases, the matrix is positive de�nite at the point P .
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In another typi
al 
ase, the matrix is negatively de�ned at a point.



Remark. The theorem does not impose any restri
tion on singular points

over the �eld of 
omplex numbers that are not real.

So, the proje
tive surfa
e de�ned by the form x30 + x0(x
2
1 + x22) + x33


ontains no real singular points. But the same form de�nes the 
omplex

surfa
e 
ontaining two 
omplex 
onjugate singular points (0 : 1 : i : 0)

and (0 : 1 : −i : 0), where i2 = −1. The Hessian matrix of the polynomial

1 + x21 + x22 + x33 is equal to the diagonal matrix diag(2,2,6x3). It is

positive de�nite in the a�ne half-spa
e x3 > 0. Thus, ea
h point P of

the half-spa
e 
orresponds to the ellipti
 point P̌ of the graph of the

polynomial.



Example. Let us 
onsider a 
uspidal 
ubi
 that is the vanishing lo
us of

the polynomial f = x31 + x22. The 
urve 
ontains a singular point at the

origin. But its proje
tive 
losure does not 
ontain any singular point at

in�nity. The Hessian matrix

(

6x1 0
0 2

)

is positive de�nite inside the half-plane x1 > 0.

On the other hand, the proje
tive 
losure of the vanishing lo
us of the

polynomial g = x31 + x2 
ontains a singular point at in�nity. The Hessian

matrix is degenerate

(

6x1 0
0 0

)

.

But these 
urves are proje
tively equivalent to ea
h other.



Example. Let us 
onsider the trident of Newton. An a�ne trident


urve is de�ned by an equation of the type x1x2+ g(x1), where g denotes

a univariate polynomial of degree three. The proje
tive 
urve has the

ordinary double point (0 : 0 : 1), that is, the singular point at straight line

at in�nity. The Hessian matrix of the polynomial x1x2+ g(x1) is equal to

(

g′′(x1) 1
1 0

)

.

For all values of the 
oordinate x1, it is neither positive nor negative

de�nite. Thus, the graph of the polynomial x1x2 + g(x1) has no ellipti


point.



New Results

Theorem. For almost every redu
ible multivariate third degree polyno-

mial over the �eld of real numbers, its Hessian matrix is semide�nite at

some real point.

Theorem. For almost every redu
ible multivariate third degree polyno-

mial over the �eld of real numbers, its Hessian matrix is de�nite at some

real point if and only if the proje
tive 
losure of the vanishing lo
us of

the polynomial does not 
ontain any real singular point at in�nity.



Theorem. For almost every redu
ible multivariate third degree polyno-

mial over the �eld of real numbers, its Hessian matrix is semide�nite at

some real point.

Let us 
onsider a quadrati
 polynomial q(x1, . . . , xn) and a linear fun
tion

ℓ(x1, . . . , xn) over reals. Without loss of generality, one 
an assume ℓ = x1.

So,

∂2(qℓ)

∂xj∂xk
=

∂2q

∂xj∂xk
x1 +

∂q

∂xj
δ1k +

∂q

∂xk
δ1j,

where δkk = 1 and if j 6= k, then δjk = 0. The point P is a solution to

the system of linear equations







x1 = 0
∂q
∂xj

= 0, 2 ≤ j ≤ n

The system 
onsists of n equations in n variables. For almost every

polynomial q, there exists a solution to the system. Moreover, if there is

no solution, then there vanishes some auxiliary polynomial in 
oe�
ients

of both polynomials q and ℓ. At the point P , at most one entry of the

Hessian matrix is nonzero. Thus, the matrix is semide�nite.



Theorem. For almost every redu
ible multivariate third degree polyno-

mial over the �eld of real numbers, its Hessian matrix is de�nite at some

real point if and only if the proje
tive 
losure of the vanishing lo
us of

the polynomial does not 
ontain any real singular point at in�nity.

Let us 
onsider a quadrati
 polynomial q and a linear fun
tion ℓ.

If lo
i of the hypersurfa
e qℓ = 0 bounds a 
ompa
t of full dimension,

then the Hessian matrix is de�nite at some real point inside the 
ompa
t.

For every real number α, both polynomials qℓ and (q+α)ℓ have the same

Hessian matrix.

If the equation q = 0 de�nes an imaginary ellipsoid, then some equation

of the type q + α = 0 de�nes a real ellipsoid.

If the equation q = 0 de�nes a two-sheeted hyperboloid, then an equation

of the type q + α = 0 de�nes a one-sheeted hyperboloid. Moreover,

another equation q + β = 0 de�nes a 
one.



Both surfa
es are vanishing lo
i of polynomials with the same Hessian

matrix.
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If the set of all forms having some �xed rank 
ontains a nonempty open

subset, then the rank is 
alled typi
al. The typi
al real rank of ternary


ubi
 forms is equal to four a

ording to a result by De Paolis published

in 1886, but in the general 
ase, there are several typi
al real ranks.

Both values two and three are typi
al real ranks of binary 
ubi
 forms

(Bernardi A., Blekherman G., Ottaviani G. 2018). For example, the real

rank of the monomial x0x
2
1 is equal to three (Carlini E., Kummer M.,

Oneto A., Ventura E. 2017). For 
ubi
 forms in four variables, both

values �ve and six are typi
al real ranks.

To show the di�eren
e between the Waring de
ompositions over the �elds

of real and 
omplex numbers, one 
an 
onsider the equality

4x30 − (x0 + x1)
3 − (x0 − x1)

3 = (x0 + ix1)
3 + (x0 − ix1)

3,

where i2 = −1.

The smallest typi
al real rank 
oin
ides with the generi
 rank over the

�eld of 
omplex numbers. For 
ubi
 forms in n+1 variables, the generi


rank is equal to

⌈

1
6(n+2)(n+3)

⌉

, ex
ept for n = 4 when the generi


rank is equal to eight (J. Alexander and A. Hirs
howitz, 1995).



Theorem. For almost every 
ubi
 form f(x0, . . . , xn) of real rank n + 1,

the Hessian matrix of the inhomogeneous polynomial f(1, x1, . . . , xn) is

semide�nite at some real point.

Cf. the 
ase of bivariate polynomials.

Hypothesis. For almost every 
ubi
 form f(x0, . . . , xn) of real rank n+2,

the Hessian matrix of the inhomogeneous polynomial f(1, x1, . . . , xn) is

semide�nite at some real point.



Look from the other side

Let us 
onsider generalized register ma
hines over the �eld of reals

(R,0,1,+,−,×, <)

or over another real 
losed �eld. They are 
losely related to the ma
hines

de�ned by L. Blum, M. Shub, and S. Smale (1989).

Ea
h register 
ontains an element of R.

There exist index registers 
ontaining nonnegative integers.

The running time is said polynomial when the total number of operations

performed before the ma
hine halts is bounded by a polynomial in the

number of registers o

upied by the input.

Initially, this number is pla
ed in the zeroth index register.

One 
an also de�ne a nondeterministi
 generalized register ma
hine that

re
eives a few hints over R.



The generi
 
omputational 
omplexity had been de�ned by I. Kapovi
h,

A. G. Myasnikov, P. S
hupp, and V. Shpilrain (2003) and extensively stud-

ied by A. N. Rybalov. The ma
hine never makes mistakes, but it 
an warn

there is no way to a

ept or reje
t some input. These rare inputs are 
alled

vague. This 
on
ept is appli
able over R.

De�nition. Let us 
onsider a generalized register ma
hine over R with

three halting states: ACCEPT, REJECT, and VAGUE. The ma
hine is said

to be generi
 when both 
onditions hold:

(1) the ma
hine halts on every input and

(2) for every positive integer k and for almost all inputs that o

upy

exa
tly k registers, the ma
hine does not halt at the VAGUE state.



A hypersurfa
e in RP
n

is the vanishing lo
us of a form, i.e., a homogeneous

polynomial in n+1 variables.

It is hard to re
ognize whether a given 
ubi
 hypersurfa
e is smooth.

But a nondeterministi
 generalized register ma
hine over R 
an re
ognize

in polynomial time whether a given hypersurfa
e 
ontains a real singular

point.

Theorem. There exists a generi
 generalized register ma
hine over R

that re
ognizes whether a given proje
tive 
ubi
 hypersurfa
e de�ned by

a form over R of the type x30 + . . .+ x3n + (α0x0 + . . .+ αnxn)3 is smooth

at every real point of the interse
tion with a given proje
tive hyperplane

de�ned by a linear form of the type x0 + βxn, where β ∈ R. The running

time of the ma
hine is polynomial in n.



Theorem. There exists a nondeterministi
 generi
 generalized register

ma
hine over R that re
ognizes whether a given redu
ible proje
tive 
ubi


hypersurfa
e is smooth at every real point of the interse
tion with a

given proje
tive hyperplane over R. The running time of the ma
hine is

polynomial.

Let an a�ne hypersurfa
e is de�ned by the equation f = 0 over reals. If

its proje
tive 
losure does not 
ontain any real singular point at in�nity,

then the hint is a point, where the Hessian matrix Hjk(f) = ∂2f
∂xj∂xk

is

de�nite.

The inputs resulted in the vague output belong to a semialgebrai
 set.

The set 
an be embedded into a hypersurfa
e whose degree is bounded by

a polynomial in the number of variables. The set 
an also be embedded

into another high degree algebrai
 variety of small dimension.



Example. If all entries of a matrix are non-negative and its determinant

is nonzero, then its permanent is positive.

Thus, non-negative matri
es with positive permanent 
an be a

epted in

generi
 polynomial time by a generalized register ma
hine over R.

But in the worst 
ase, the permanent is hard. In a

ordan
e with Valiant's

theorem, the problem of 
omputing the permanent of a (0,1)-matrix is

#P -hard.
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