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Theorem. (I.V. Latkin & S., 2015) The next problem is N P-complete.
Given a cubic form of the type

f= oz,,%_'_l(ozoazg’ + ...+ ozna:;o;) — (agro+ ...+ anazn)?’

over Z. Does the projective hypersurface defined by the equation f = 0
contain any singular point whose coordinates belong to the set {—1,1}7

The set partition problem, which is NP-complete, can be reduced to this
problem.

Thus, if NP #= coNP, then there does not exist any nondeterministic
polynomial time machine recognizing the existence of a real singular point
in the worst case.

A cubic hypersurface in CP"™ contains a singular point iff its discriminant
vanishes. The discriminant is a polynomial of degree (n + 1)2".

Over the field of complex numbers C, to check smoothness seems as hard
as to compute the discriminant. It is very hard.

There are more tools to check whether a polynomial vanishes over reals.



Let us consider the graph of a multivariate polynomial f over reals. A
point of the graph is said to be elliptic if the Hessian matrix (whose entries

2

are second partial derivatives ag?-afa:k) is definite. Roughly speaking, in a
J

sufficiently small analytic neighborhood of an elliptic point, the surface

looks like an ellipsoid.

The surface is the graph of the polynomial (1 —-0.921) - (x1+z2) (1 —x5).
Its vanishing locus consist of three straight lines.



Theorem. Given a third degree multivariate polynomial. If the graph of
the polynomial contains an elliptic point, then the projective closure of
the vanishing locus of the polynomial does not contain any real singular
point on the hyperplane at infinity.

Let polynomials over R be identified with sequences of their coefficients
using some monomial order. For a positive integer k, the term “almost
all k-tuples” means “all k-tuples but a set covered by a vanishing locus of
a nonzero polynomial in k variables with integer coefficients'.

Theorem. For almost all inhomogeneous bivariate third degree polyno-
mials, the graph of the polynomial contains an elliptic point.

Remark. The cubic form f = x3 — z1 (2% — 3z3) defines a smooth plane
curve. But the graph of the polynomial z1(z%—3x3) is the monkey saddle;
it has no elliptic point.



Example. Let us consider the symmetric matrix

( ary  A(z1,2) ) |

l(z1,22)  Bxo
where ¢ is a linear function, o« 2 0, 8 # 0, and £(0,0) # 0.

In one of two cases, the matrix is positive definite at the point P.

In another typical case, the matrix is negatively defined at a point.



Remark. The theorem does not impose any restriction on singular points
over the field of complex numbers that are not real.

So, the projective surface defined by the form z3 + zo(2% + z3) + 23
contains no real singular points. But the same form defines the complex
surface containing two complex conjugate singular points (0 : 1 : 47 : 0)
and (0:1:—i:0), where i2 = —1. The Hessian matrix of the polynomial
1 + 22 + x5 4+ 23 is equal to the diagonal matrix diag(2,2,6x3). It is
positive definite in the affine half-space 3 > 0. Thus, each point P of
the half-space corresponds to the elliptic point P of the graph of the
polynomial.



Example. Let us consider a cuspidal cubic that is the vanishing locus of
the polynomial f = a:% —I—x%. The curve contains a singular point at the
origin. But its projective closure does not contain any singular point at
infinity. The Hessian matrix
< 6x1 O )
0O 2

IS positive definite inside the half-plane 1 > 0.
On the other hand, the projective closure of the vanishing locus of the

polynomial g = a:% + x5 contains a singular point at infinity. The Hessian
matrix is degenerate
6xqy O
O 0/

But these curves are projectively equivalent to each other.



Example. Let us consider the trident of Newton. An affine trident
curve is defined by an equation of the type x1z>+ g(x1), where g denotes
a univariate polynomial of degree three. The projective curve has the
ordinary double point (0:0: 1), that is, the singular point at straight line
at infinity. The Hessian matrix of the polynomial 12>+ g(x1) is equal to

( g"(x1) 1 )
1 O

For all values of the coordinate xzq, it is neither positive nor negative
definite. Thus, the graph of the polynomial z1xo + g(x1) has no elliptic
point.



New Results

Theorem. For almost every reducible multivariate third degree polyno-

mial over the field of real numbers, its Hessian matrix is semidefinite at
some real point.

Theorem. For almost every reducible multivariate third degree polyno-
mial over the field of real numbers, its Hessian matrix is definite at some
real point if and only if the projective closure of the vanishing locus of
the polynomial does not contain any real singular point at infinity.



Theorem. For almost every reducible multivariate third degree polyno-
mial over the field of real numbers, its Hessian matrix is semidefinite at
some real point.

Let us consider a quadratic polynomial ¢(x1,...,zn) and a linear function
¢(xq,...,xn) Over reals. Without loss of generality, one can assume ¢ = x1.
So,
92 (gt 02 o %,
o) _ O 11+ 01 + 01,

where 45, = 1 and if j = k, then 0;, = 0. The point P is a solution to
the system of linear equations

X1
0q
axj

The system consists of n equations in n variables. For almost every
polynomial g, there exists a solution to the system. Moreover, if there is
no solution, then there vanishes some auxiliary polynomial in coefficients
of both polynomials ¢ and £. At the point P, at most one entry of the
Hessian matrix is nonzero. Thus, the matrix is semidefinite.

O
0, 2<j5<n



Theorem. For almost every reducible multivariate third degree polyno-
mial over the field of real numbers, its Hessian matrix is definite at some
real point if and only if the projective closure of the vanishing locus of
the polynomial does not contain any real singular point at infinity.

et us consider a quadratic polynomial ¢ and a linear function /4.

If loci of the hypersurface ¢g¢ = 0 bounds a compact of full dimension,
then the Hessian matrix is definite at some real point inside the compact.

For every real number «, both polynomials ¢¢ and (¢ + «)¢ have the same
Hessian matrix.

If the equation ¢ = 0 defines an imaginary ellipsoid, then some equation
of the type g + a = 0 defines a real ellipsoid.

If the equation ¢ = O defines a two-sheeted hyperboloid, then an equation
of the type ¢ + o = 0 defines a one-sheeted hyperboloid. Moreover,
another equation g + g = 0 defines a cone.



Both surfaces are vanishing loci of polynomials with the same Hessian
matrix.
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If the set of all forms having some fixed rank contains a nonempty open
subset, then the rank is called typical. The typical real rank of ternary
cubic forms is equal to four according to a result by De Paolis published
in 1886, but in the general case, there are several typical real ranks.
Both values two and three are typical real ranks of binary cubic forms
(Bernardi A., Blekherman G., Ottaviani G. 2018). For example, the real
rank of the monomial azox% is equal to three (Carlini E., Kummer M.,
Oneto A., Ventura E. 2017). For cubic forms in four variables, both
values five and six are typical real ranks.

To show the difference between the Waring decompositions over the fields
of real and complex numbers, one can consider the equality

423 — (w0 + ©1)° = (w0 — 21)® = (w0 + i21)® + (wo — iz1)?,

where 2 = —1.

The smallest typical real rank coincides with the generic rank over the
field of complex numbers. For cubic forms in n+ 1 variables, the generic
rank is equal to {%(n+2)(n—l—3)w, except for n = 4 when the generic
rank is equal to eight (J. Alexander and A. Hirschowitz, 1995).



Theorem. For almost every cubic form f(xq,...,xn) Of real rank n+ 1,
the Hessian matrix of the inhomogeneous polynomial f(1,x1,...,zn) IS
semidefinite at some real point.

Cf. the case of bivariate polynomials.

Hypothesis. For almost every cubic form f(xzq,...,zn) Of real rank n+ 2,
the Hessian matrix of the inhomogeneous polynomial f(1,x1,...,zn) IS
semidefinite at some real point.



Look from the other side

Let us consider generalized register machines over the field of reals

(R,O, 17+7 —, X, <)

or over another real closed field. They are closely related to the machines
defined by L. Blum, M. Shub, and S. Smale (1989).

Each register contains an element of R.

There exist index registers containing nonnegative integers.

The running time is said polynomial when the total number of operations
performed before the machine halts is bounded by a polynomial in the
number of registers occupied by the input.

Initially, this number is placed in the zeroth index register.

One can also define a nondeterministic generalized register machine that
receives a few hints over R.



The generic computational complexity had been defined by I. Kapovich,
A. G. Myasnikov, P. Schupp, and V. Shpilrain (2003) and extensively stud-
led by A. N. Rybalov. The machine never makes mistakes, but it can warn
there is no way to accept or reject some input. These rare inputs are called
vague. This concept is applicable over R.

Definition. Let us consider a generalized register machine over R with
three halting states: ACCEPT, REJECT, and VAGUE. The machine is said
to be generic when both conditions hold:

(1) the machine halts on every input and

(2) for every positive integer k and for almost all inputs that occupy
exactly k registers, the machine does not halt at the VAGUE state.



A hypersurface in RP" is the vanishing locus of a form, i.e., a homogeneous
polynomial in n 4+ 1 variables.

It is hard to recognize whether a given cubic hypersurface is smooth.
But a nondeterministic generalized register machine over R can recognize
in polynomial time whether a given hypersurface contains a real singular
point.

Theorem. There exists a generic generalized register machine over R
that recognizes whether a given projective cubic hypersurface defined by
a form over R of the type z3 + ...+ z3 + (agzo + ... + anzn)3 is smooth
at every real point of the intersection with a given projective hyperplane
defined by a linear form of the type xqg + Bxn, Where g € R. The running
time of the machine is polynomial in n.



Theorem. There exists a nondeterministic generic generalized register
machine over R that recognizes whether a given reducible projective cubic
hypersurface is smooth at every real point of the intersection with a
given projective hyperplane over R. The running time of the machine is
polynomial.

Let an affine hypersurface is defined by the equation f = 0 over reals. If
its projective closure does not contain any real singular point at infinity,
then the hint is a point, where the Hessian matrix H;,(f) = % is
definite.

The inputs resulted in the vague output belong to a semialgebraic set.
The set can be embedded into a hypersurface whose degree is bounded by
a polynomial in the number of variables. The set can also be embedded

into another high degree algebraic variety of small dimension.



Example. If all entries of a matrix are non-negative and its determinant
IS nonzero, then its permanent is positive.

Thus, non-negative matrices with positive permanent can be accepted in
generic polynomial time by a generalized register machine over R.

But in the worst case, the permanent is hard. In accordance with Valiant’s
theorem, the problem of computing the permanent of a (0, 1)-matrix is
# P-hard.
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