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Theorem. (I.V. Latkin & S., 2015) The next problem is NP -omplete.

Given a ubi form of the type

f = α2
n+1(α0x

3
0 + . . .+ αnx

3
n)− (α0x0 + . . .+ αnxn)

3

over Z. Does the projetive hypersurfae de�ned by the equation f = 0

ontain any singular point whose oordinates belong to the set {−1,1}?

The set partition problem, whih is NP -omplete, an be redued to this

problem.

Thus, if NP 6= coNP , then there does not exist any nondeterministi

polynomial time mahine reognizing the existene of a real singular point

in the worst ase.

A ubi hypersurfae in CPn ontains a singular point i� its disriminant

vanishes. The disriminant is a polynomial of degree (n+1)2n.

Over the �eld of omplex numbers C, to hek smoothness seems as hard

as to ompute the disriminant. It is very hard.

There are more tools to hek whether a polynomial vanishes over reals.



Let us onsider the graph of a multivariate polynomial f over reals. A

point of the graph is said to be ellipti if the Hessian matrix (whose entries

are seond partial derivatives

∂2f
∂xj∂xk

) is de�nite. Roughly speaking, in a

su�iently small analyti neighborhood of an ellipti point, the surfae

looks like an ellipsoid.

The surfae is the graph of the polynomial (1−0.9x1) ·(x1+x2) ·(x1−x2).

Its vanishing lous onsist of three straight lines.



Theorem. Given a third degree multivariate polynomial. If the graph of

the polynomial ontains an ellipti point, then the projetive losure of

the vanishing lous of the polynomial does not ontain any real singular

point on the hyperplane at in�nity.

Let polynomials over R be identi�ed with sequenes of their oe�ients

using some monomial order. For a positive integer k, the term �almost

all k-tuples� means �all k-tuples but a set overed by a vanishing lous of

a nonzero polynomial in k variables with integer oe�ients�.

Theorem. For almost all inhomogeneous bivariate third degree polyno-

mials, the graph of the polynomial ontains an ellipti point.

Remark. The ubi form f = x30 − x1(x
2
1 − 3x22) de�nes a smooth plane

urve. But the graph of the polynomial x1(x
2
1−3x22) is the monkey saddle;

it has no ellipti point.



Example. Let us onsider the symmetri matrix

(

αx1 ℓ(x1, x2)
ℓ(x1, x2) βx2

)

,

where ℓ is a linear funtion, α 6= 0, β 6= 0, and ℓ(0,0) 6= 0.

In one of two ases, the matrix is positive de�nite at the point P .

❅
❅
❅
❅
❅

❅

❅
❅
❅
❅
❅
❅
❅

❅

t

P

ℓ = 0

�
�
�
�
�
�

�
�
�
�
�
�
�

�

t P

ℓ = 0

In another typial ase, the matrix is negatively de�ned at a point.



Remark. The theorem does not impose any restrition on singular points

over the �eld of omplex numbers that are not real.

So, the projetive surfae de�ned by the form x30 + x0(x
2
1 + x22) + x33

ontains no real singular points. But the same form de�nes the omplex

surfae ontaining two omplex onjugate singular points (0 : 1 : i : 0)

and (0 : 1 : −i : 0), where i2 = −1. The Hessian matrix of the polynomial

1 + x21 + x22 + x33 is equal to the diagonal matrix diag(2,2,6x3). It is

positive de�nite in the a�ne half-spae x3 > 0. Thus, eah point P of

the half-spae orresponds to the ellipti point P̌ of the graph of the

polynomial.



Example. Let us onsider a uspidal ubi that is the vanishing lous of

the polynomial f = x31 + x22. The urve ontains a singular point at the

origin. But its projetive losure does not ontain any singular point at

in�nity. The Hessian matrix

(

6x1 0
0 2

)

is positive de�nite inside the half-plane x1 > 0.

On the other hand, the projetive losure of the vanishing lous of the

polynomial g = x31 + x2 ontains a singular point at in�nity. The Hessian

matrix is degenerate

(

6x1 0
0 0

)

.

But these urves are projetively equivalent to eah other.



Example. Let us onsider the trident of Newton. An a�ne trident

urve is de�ned by an equation of the type x1x2+ g(x1), where g denotes

a univariate polynomial of degree three. The projetive urve has the

ordinary double point (0 : 0 : 1), that is, the singular point at straight line

at in�nity. The Hessian matrix of the polynomial x1x2+ g(x1) is equal to

(

g′′(x1) 1
1 0

)

.

For all values of the oordinate x1, it is neither positive nor negative

de�nite. Thus, the graph of the polynomial x1x2 + g(x1) has no ellipti

point.



New Results

Theorem. For almost every reduible multivariate third degree polyno-

mial over the �eld of real numbers, its Hessian matrix is semide�nite at

some real point.

Theorem. For almost every reduible multivariate third degree polyno-

mial over the �eld of real numbers, its Hessian matrix is de�nite at some

real point if and only if the projetive losure of the vanishing lous of

the polynomial does not ontain any real singular point at in�nity.



Theorem. For almost every reduible multivariate third degree polyno-

mial over the �eld of real numbers, its Hessian matrix is semide�nite at

some real point.

Let us onsider a quadrati polynomial q(x1, . . . , xn) and a linear funtion

ℓ(x1, . . . , xn) over reals. Without loss of generality, one an assume ℓ = x1.

So,

∂2(qℓ)

∂xj∂xk
=

∂2q

∂xj∂xk
x1 +

∂q

∂xj
δ1k +

∂q

∂xk
δ1j,

where δkk = 1 and if j 6= k, then δjk = 0. The point P is a solution to

the system of linear equations







x1 = 0
∂q
∂xj

= 0, 2 ≤ j ≤ n

The system onsists of n equations in n variables. For almost every

polynomial q, there exists a solution to the system. Moreover, if there is

no solution, then there vanishes some auxiliary polynomial in oe�ients

of both polynomials q and ℓ. At the point P , at most one entry of the

Hessian matrix is nonzero. Thus, the matrix is semide�nite.



Theorem. For almost every reduible multivariate third degree polyno-

mial over the �eld of real numbers, its Hessian matrix is de�nite at some

real point if and only if the projetive losure of the vanishing lous of

the polynomial does not ontain any real singular point at in�nity.

Let us onsider a quadrati polynomial q and a linear funtion ℓ.

If loi of the hypersurfae qℓ = 0 bounds a ompat of full dimension,

then the Hessian matrix is de�nite at some real point inside the ompat.

For every real number α, both polynomials qℓ and (q+α)ℓ have the same

Hessian matrix.

If the equation q = 0 de�nes an imaginary ellipsoid, then some equation

of the type q + α = 0 de�nes a real ellipsoid.

If the equation q = 0 de�nes a two-sheeted hyperboloid, then an equation

of the type q + α = 0 de�nes a one-sheeted hyperboloid. Moreover,

another equation q + β = 0 de�nes a one.



Both surfaes are vanishing loi of polynomials with the same Hessian

matrix.
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If the set of all forms having some �xed rank ontains a nonempty open

subset, then the rank is alled typial. The typial real rank of ternary

ubi forms is equal to four aording to a result by De Paolis published

in 1886, but in the general ase, there are several typial real ranks.

Both values two and three are typial real ranks of binary ubi forms

(Bernardi A., Blekherman G., Ottaviani G. 2018). For example, the real

rank of the monomial x0x
2
1 is equal to three (Carlini E., Kummer M.,

Oneto A., Ventura E. 2017). For ubi forms in four variables, both

values �ve and six are typial real ranks.

To show the di�erene between the Waring deompositions over the �elds

of real and omplex numbers, one an onsider the equality

4x30 − (x0 + x1)
3 − (x0 − x1)

3 = (x0 + ix1)
3 + (x0 − ix1)

3,

where i2 = −1.

The smallest typial real rank oinides with the generi rank over the

�eld of omplex numbers. For ubi forms in n+1 variables, the generi

rank is equal to

⌈

1
6(n+2)(n+3)

⌉

, exept for n = 4 when the generi

rank is equal to eight (J. Alexander and A. Hirshowitz, 1995).



Theorem. For almost every ubi form f(x0, . . . , xn) of real rank n + 1,

the Hessian matrix of the inhomogeneous polynomial f(1, x1, . . . , xn) is

semide�nite at some real point.

Cf. the ase of bivariate polynomials.

Hypothesis. For almost every ubi form f(x0, . . . , xn) of real rank n+2,

the Hessian matrix of the inhomogeneous polynomial f(1, x1, . . . , xn) is

semide�nite at some real point.



Look from the other side

Let us onsider generalized register mahines over the �eld of reals

(R,0,1,+,−,×, <)

or over another real losed �eld. They are losely related to the mahines

de�ned by L. Blum, M. Shub, and S. Smale (1989).

Eah register ontains an element of R.

There exist index registers ontaining nonnegative integers.

The running time is said polynomial when the total number of operations

performed before the mahine halts is bounded by a polynomial in the

number of registers oupied by the input.

Initially, this number is plaed in the zeroth index register.

One an also de�ne a nondeterministi generalized register mahine that

reeives a few hints over R.



The generi omputational omplexity had been de�ned by I. Kapovih,

A. G. Myasnikov, P. Shupp, and V. Shpilrain (2003) and extensively stud-

ied by A. N. Rybalov. The mahine never makes mistakes, but it an warn

there is no way to aept or rejet some input. These rare inputs are alled

vague. This onept is appliable over R.

De�nition. Let us onsider a generalized register mahine over R with

three halting states: ACCEPT, REJECT, and VAGUE. The mahine is said

to be generi when both onditions hold:

(1) the mahine halts on every input and

(2) for every positive integer k and for almost all inputs that oupy

exatly k registers, the mahine does not halt at the VAGUE state.



A hypersurfae in RP
n

is the vanishing lous of a form, i.e., a homogeneous

polynomial in n+1 variables.

It is hard to reognize whether a given ubi hypersurfae is smooth.

But a nondeterministi generalized register mahine over R an reognize

in polynomial time whether a given hypersurfae ontains a real singular

point.

Theorem. There exists a generi generalized register mahine over R

that reognizes whether a given projetive ubi hypersurfae de�ned by

a form over R of the type x30 + . . .+ x3n + (α0x0 + . . .+ αnxn)3 is smooth

at every real point of the intersetion with a given projetive hyperplane

de�ned by a linear form of the type x0 + βxn, where β ∈ R. The running

time of the mahine is polynomial in n.



Theorem. There exists a nondeterministi generi generalized register

mahine over R that reognizes whether a given reduible projetive ubi

hypersurfae is smooth at every real point of the intersetion with a

given projetive hyperplane over R. The running time of the mahine is

polynomial.

Let an a�ne hypersurfae is de�ned by the equation f = 0 over reals. If

its projetive losure does not ontain any real singular point at in�nity,

then the hint is a point, where the Hessian matrix Hjk(f) = ∂2f
∂xj∂xk

is

de�nite.

The inputs resulted in the vague output belong to a semialgebrai set.

The set an be embedded into a hypersurfae whose degree is bounded by

a polynomial in the number of variables. The set an also be embedded

into another high degree algebrai variety of small dimension.



Example. If all entries of a matrix are non-negative and its determinant

is nonzero, then its permanent is positive.

Thus, non-negative matries with positive permanent an be aepted in

generi polynomial time by a generalized register mahine over R.

But in the worst ase, the permanent is hard. In aordane with Valiant's

theorem, the problem of omputing the permanent of a (0,1)-matrix is

#P -hard.
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