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Motivation
A realistic quantum computer is still not available and the majority of studies in this field are theoreti-

cal ones. This stimulates development of classical simulators of quantum computation which help to 

understand better the existing quantum algorithms and can be used for searching and testing new 

effective algorithms. 

The main aim of this talk is to present a Mathematica package which enables to construct 

and analyze different quantum algorithms. We exploit the circuit model of quantum computation that 

is easiler to implement and widely used in simulation of quantum computation. The package 

enables to specify a general quantum circuit, to draw it, and to compute the corresponding unitary 

martix defined by the circuit that determines evolution of a state of quantum memory register. 

To be able to use the package QuantumCircuit.m we need to load it from the directory 

AuthorTools. Here we’ll use mostly two functions defined in the package, namely, circuit and 

matrixU which enable to draw quantum circuit and to calculate the corresponding unitary matrix, 

respectively.

In[1]:= Clear["Global`*"];

Get["AuthorTools`QuantumCircuit`"];

Off[General::spell, General::spell1];

Quantum circuits and their representation
Quantum computation is composed of three basic steps: 

(i) preparation of the input state of the memory register, 

(ii) implementation of the desired algorithm (or desired unitary transformation acting on the 

memory register), and 

(iii) measurement of the output state. 

Input state

An elementary unit of quantum information is a quantum bit or qubit. It is a quantum system that has 

two distinguishable states usually denoted as |0〉 and |1〉, which correspond to the states 0 and 1 for 

a classical bit. But in contrast to classical bits, qubit may exist not only in one of the states |0〉 or |1〉 

but also in the state x〉 being a superposition of these states 

x〉 = α 0〉 + β 1〉 =
α

β
, 0〉 =

1
0

,  1〉 =
0
1

,

where α and β are complex numbers constrained by the normalization condition α 2 + β 2 = 1. 

Thus, a general state x〉 of qubit is represented by a vector in the two-dimensional complex vector 

space, where the special states 0〉 and 1〉 form an orthonormal basis and are known as the 

computational basis states.  

A set of qubits forms a quantum memory register, where the input data and any intermediate 

results of computations are held. A state of the memory register containing n qubits is represented 

by a vector in the 2n-dimensional complex vector space with the basis states   

xn-1 xn-2 ... x1 x0〉 ≡ xn-1〉⊗ xn-2〉⊗ ...⊗ x1〉⊗ x0〉, where xj = 0, 1, j = 0, 1, ..., n - 1, and the 

sign ⊗ means a tensor product of the single qubit basis vectors xj〉. The set of numbers 

{xn-1, xn-2, ..., x0} corresponds to a binary representation of the integer 0 ≤ x < 2n and so the basis 

states of the n-qubit memory register are denoted also as 0〉n, 1〉n, ..., 2n - 1〉n . The basis 

state x〉n is represented by the 2n-dimensional vector with all components being equal to 0, except 

for the component with number (x + 1) that is equal to 1. So we can define the basis state as func-

tion 

In[4]:= basisState[x_, n_] := SparseArray[x + 1 → 1, 2^n]

Here we have taken into account that numbering of the basis states x〉n starts from 0, while the 

first element of a list in Mathematica has the number 1.  

In[5]:= {basisState[5, 3], basisState[FromDigits[{1, 0, 1}, 2], 3]} // Normal

Out[5]= {{0, 0, 0, 0, 0, 1, 0, 0}, {0, 0, 0, 0, 0, 1, 0, 0}}

Quantum circuit

Any unitary transformation of the memory register state may be decomposed into a sequence of 

unitary operators acting on the states of one or several qubits. Each such operator is assumed to be 

implemented by a single qubit or multi-qubit quantum gate. Therefore, using an appropriate nota-

tions, one can represent a quantum algorithm in the form of a diagram that is called a quantum 

circuit.

|x1〉

|x0〉

|y1〉

|y0〉

H

Quantum circuit consists of quantum gates and wires connecting the gates and showing evolution of 

qubit states, and it is to be read from left-to-right. Initial state of the memory register is shown in the 

left-hand side of the diagram as a column of qubits x1〉, x0〉. At first, qubit x1〉 is acted on by 

the Hadamard gate, while the state of qubit x0〉 doesn't change. Then the qubits interact with each 

other by means of the controlled-NOT gate (or CNOT gate), that is represented by two symbols ● 

and ⊕ connected with a vertical line. At last the state of qubit x1〉 is measured. Final state of the 

memory register is show in the right-hand side of the diagram as a column of qubits y1〉, y0〉. 

Note that usually numbering of qubits in a quantum circuit starts from the bottom.

To draw quantum circuit shown above it is sufficient to run the function circuit that has three 

arguments. 

In[58]:= mat1 = 
H C M
1 X 1

;

circuit[mat1, {x1, x0}, {y1, y0}]

Out[59]=

|x1〉

|x0〉

|y1〉

|y0〉

H

The matrix mat1 contains all the information about a structure of the circuit, and such symbolic 

matrices are used to represent different quantum circuits in the package QuantumCircuit. The 

first argument of the function circuit is a symbolic matrix mat1 encoding information about the 

circuit. The second and third arguments specify the lists of input and output qubits, respectively. 

Number of rows in the matrix mat1 is equal to the number of qubits in the circuit. Each column of 

this matrix contains symbols corresponding to the quantum gates, acting successively on the qubits. 

Letter “H” and the unit in the first column denote the Hadamard gate and the identical transformation 

acting on the qubits x1〉 and x0〉, respectively. Letters “C” and “X” in the second column corre-

sponds to the control and target qubits in the controlled-NOT gate. Letter “X” is used here to denote 

the operation “NOT” and it means application of the Pauli-X operator to qubit x0〉 when qubit x1〉 

is set to 1〉. At last, letter “M” denotes measurement of the qubit x1〉. To avoid misunderstanding 

we follow the rule: each column of the matrix encoding quantum circuit must contain either 

single qubit gates acting on different qubits or only one multi-qubit gate. 

It is known that there exists a restricted set of quantum gates which enables to implement any 

unitary operator. One such set includes the Hadamard gate, CNOT gate, phase gate (denoted S) 

and π/8 gate (denoted T), it is called the standard set of universal gates. The last two gates are 

denoted in the package QuantumCircuit by letters “S” and “T”, as well. Besides, the package 

includes the Pauli-Y, Pauli-Z and three phase shift gates, namely, Rz[φ], Rz
k[φ] and Rk. It should be 

noted that different phase shift gates are used only to simplify representation of quantum circuits. 

The most general phase shift gate is Rz[φ], its matrix representation and relationship with other 

phase gates is given by

Rz[φ] =
1 0

0 e2π iφ , Rz
k[φ] = Rz[kφ], Rk = Rz

1

2k
, S = Rz

1

4
, T = Rz

1

16
.

If we do not want to show the output qubits in a digram the third argument of the function circuit 

should be a list of spaces. Note that number of spaces should be equal to the number of qubits in 

the circuit. Example:

In[60]:= mat2 = 
C Z Rz[φ]
Y C R3

;

circuit[mat2, {x1, x0}, { , }]

Out[61]=

|x1〉

|x0〉 Y

Z Rz(φ)

R3

One can readily see that controlled operators are defined in the matrix mat2 similar to the controlled-

NOT gate considered above. Control qubits are denoted by letter "C" and located in the same 

column with the target qubit. Besides, a target qubit may have several control qubits. For example, 

Pauli-X gate with two control qubits is known as the Toffoli gate (column {X,C,C} in matrix mat3). 

Controlled phase shift gates are shown in figure below together with the Toffoli and SWAP gates. 

In[62]:= mat3 =

1 Rz2[φ] C X SW
Rz[φ] C R5 C 1
C 1 1 C SW

;

circuit[mat3, {x2, x1, x0}, {, ,}]

Out[63]=

|x2〉

|x1〉

|x0〉

Rz(φ)

Rz
2(φ)

R5

The package QuantumCircuit enables also to visualize quantum circuits containing the multi-

qubit wires and classical bits. For example, quantum circuit shown in figure below contains n-qubit 

wire (symbol “n” in matrix mat4) and each qubit in this wire is acted on by the Hadamard gate, the 

corresponding operator is shown at the diagram as a tensor product of n Hadamard gates and is 

denoted in mat4 by symbol HHn. Then this wire is used to control operator Uf acting on qubit x0〉 

(symbol Uf in matrix mat4). After measurement of qubit x0〉 a classical bit f0〉 is obtained that is 

used afterwards to control some unitary operator U acting on the state of n-qubit wire. Note that 

classical bits are shown in quantum circuits as double lines. 

In[64]:= mat4 = 
n HHn C 1 U
1 X Uf M CC

;

circuit[mat4, {0, x0}, {y, f0}]

Out[65]=

|0〉

|x0〉

|y〉

|f0〉

10
H⊗10

X Uf

U

Using function Show one can easily add some graphics objects into the diagram generated by 

function circuit. The corresponding command is shown below. 

In[66]:= mat5 = 
H C
1 X

;

Showcircuit[mat5, {0, 0}, {, }],

GraphicsText"
1

2
(|00〉+|11〉)", {0.26, -0.05},

BaseStyle -> {FontFamily → "Arial", FontSize → 12} 

Out[67]=

|0〉

|0〉

H

1

2
(|00〉+|11〉)

Unitary matrix corresponding to quantum circuit
Using the function basisState defined above one can easily construct an abitrary vector in the 2n-

dimentional state space, corresponding to an initial state of the n-qubit memory register. Then this 

state should be transformed to a final state by means of a unitary transformation determined by a 

quantum circuit. The corresponding 2n × 2n unitary matrix is computed by the function matrixU[-

mat], its argument mat is a symbolic matrix encoding information about the quantum circuit. Note 

that this function calculates unitary matrices corresponding to each column of symbolic matrix mat 

and the final unitary matrix U is obtained as a product

U = Um .Um-1 ... U1

where Uj ( j = 1, 2, ..., m) is the 2n × 2n matrix determined by quantum gates being in the jth column 

of the matrix mat, and m is a number of columns in  mat. Matrix representation of the Pauli-X and 

Toffoli gates are given by

In[68]:= matrixU[{{X}}] // MatrixForm
Out[68]//MatrixForm=


0 1
1 0



In[69]:= matrixU[{{C}, {C}, {X}}] // MatrixForm
Out[69]//MatrixForm=

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

Circuit implementing quantum teleportation

To demonstrate usage of the function matrixU, let us consider quantum circuit that is used in 

quantum teleportation. The problem is to transmit an arbitrary state ψ〉 = α 0〉 + β 1〉 of the top 

qubit to the bottom qubit. The corresponding quantum circuit is shown below.

In[70]:= mat6a =

1 1 C H M c1 CC
H C X 1 M CC c1
1 X 1 1 1 X Z

;

circuit[mat6a, {ψ, 0, 0}, {, ,}]

Out[71]=

|ψ〉

|0〉

|0〉

H

H

Z

At first, the bottom two qubits set initially at 0〉 are entangled by means of application of the 

Hadamard and CNOT gates. Then two qubits are measured and the classical bits obtained are 

transmitted to the receiver. Then two qubits are measured and CNOT and controlled Pauli-Z gate 

are applied to the third qubit. 

Initial state ψ00〉 of the three-qubit memory register is defined as a superposition of the two basis 

states 000〉 and 100〉, the corresponding vector is given by

In[6]:= vecInput = α basisState[FromDigits[{0, 0, 0}, 2], 3] +

β basisState[FromDigits[{1, 0, 0}, 2], 3];

To find a final state we multiply this vector by the unitary matrix corresponding to the circuit that is 

computed by the function matrixU.

In[7]:= mat6b =

1 1 C H
H C X 1
1 X 1 1

;

vecOutputB = matrixU[mat6b].vecInput // Normal

Out[8]= 
α

2
,

β

2
,

β

2
,

α

2
,

α

2
, -

β

2
, -

β

2
,

α

2


To save memory we use sparse arrays for representing unitary matrices determined by quantun 

circuits. So the function Normal is used to represent the final vector in the normal form. 

This vector can be rewritten in the form

00〉
α 0〉 + β 1〉

2
+ 01

α 1〉 + β 0〉

2
+ 10

α 0〉 - β 1〉

2
+ 11

α 1〉 - β 0〉

2

Similar result can be obtained without measuring the first two qubits, if we modify the quantum 

circuit a little bit. 

|ψ〉

|0〉

|0〉

|0〉

|0〉

|ψ〉

H

H

Z

H

H

Symbolic matrix encoding the circuit is given by

In[9]:= mat6 =

1 1 C H 1 C H
H C X 1 C 1 H
1 X 1 1 X Z 1

;

In[10]:= vecOutput = matrixU[mat6].vecInput // Normal

Out[10]= {α, β, 0, 0, 0, 0, 0, 0}

The following commands enable to represent the final vector as a superposition of basis states.

In[11]:= vecOutBinary[α_] := Map[IntegerDigits[#〚1〛- 1, 2, 3] &, Position[vecOutput, α]];

coeffOutput[α_] := Cases[vecOutput, _. α] /. x_. α → x;

braInput[α_] := Apply[Plus, Table[ coeffOutput[α]〚k〛 (vecOutBinary[α]〚k〛 //

StringJoin["|", Map[ToString[#] &, vecOutBinary[α]〚k〛 ], "〉"] &),

{k, Length[vecOutBinary[α]]}] ]

Apply[Plus, {α braInput[α], β braInput[β]}]

Out[14]= |000〉 α + |001〉 β

One can readily see that the final state obtained is exactly the state

| 000〉 α + | 001〉 β = | 00〉 (α | 0〉 + β | 1〉) = | 00〉 | ψ〉 = | 00 ψ〉.

Thus, using symbolic matrix for representation of quantum circuit we can easily visualize the circuit, 

calculate the corresponding unitary matrix and find a final state of the memory register for any given 

initial state. Note that constructing a quantum circuit in this approach is very easy and reduces to 

defining a symbolic matrix encoding information about the circuit. 

Implementation of quantum Fourier transform

It should be emphasized that symbolic matrix encoding intormation about quantum circuit may be 

generated, as well, if algorithm of the circuit construction is given. To demonstrate such an example, 

let us consider the quantum Fourier transform (QFT) that plays a principal role in the development of 

efficient quantum algorithms (see [C,G]). It is a unitary transformation whose action on the computa-

tional basis state is given by

UFT x〉n =
1

2n/2

y=0

2n-1

exp 2π i
x y

2n
y

n

To understand a structure of the quantum circuit implementing QFT it is sufficient to consider some 

particular case, for example, 4-qubit quantum circuit shown below.

|x3〉

|x2〉

|x1〉

|x0〉

|y3〉

|y2〉

|y1〉

|y0〉

H R2 R3 R4

H R2 R3

H R2

H

Symbolic matrix encoding this circuit is defined below as mat7. Note that Fig. 7 is obtained by 

means of applying the function circuit.

In[15]:= mat7 =

H R2 R3 R4 1 1 1 1 1 1 SW 1
1 C 1 1 H R2 R3 1 1 1 1 SW
1 1 C 1 1 C 1 H R2 1 1 SW
1 1 1 C 1 1 C 1 C H SW 1

;

circuit[mat7, {x3, x2, x1, x0}, {y3, y2, y1, y0}]

Out[15]=

|x3〉

|x2〉

|x1〉

|x0〉

|y3〉

|y2〉

|y1〉

|y0〉

H R2 R3 R4

H R2 R3

H R2

H

Symbolic matrix encoding the QFT in case of n-qubit memory register is constructed in a similar 

way. To generate such a matrix we define a function modelFourier.

In[16]:= modelFourier[n_] := Module{model, mm, n1},

model = Arraymm, n, n n + 1  2 + Floorn  2 /. mm[i_, j_] → 1;

n1 = 0;

Do Do Ifk ⩵ 1, model[[j, n1 + 1]] = H,

model[[j, n1 + k]] = Rk; model[[j + k - 1, n1 + k]] = C

 , {k, n - j + 1};

n1 = n1 + n - j + 1, {j, n};

Do model[[j, n1 + j]] = SW;

model[[n - j + 1, n1 + j]] = SW , j, Floorn  2;

model 

One can readily check that symbolic matrix given by function modelFourier in case of four qubits 

coincides with matrix mat7 defined above. 

In[17]:= modelFourier[4] // MatrixForm

Using the same symbolic matrix one can compute the unitary matrix corresponding to the QFT, in 

case of three qubits it is given by

In[18]:= matrixU[modelFourier[3] ] // MatrixForm

Quantum algorithm for phase estimation

Consider a unitary operator U with the eigenvector u〉 and the eigenvalue e2π iφ, where φ is an 

unknown real number, 0 ≤ φ < 1, which is called the phase. We assume that the quantum circuit 

implementing the operator U is given and the quantum memory register can be set to the state u〉. 

The problem is to construct a quantum circuit for determining the unknown phase φ. Note that we 

cannot measure the phase φ directly. But using the circuit below we can transfer information about 

the phase to another qubit.

|0〉

|u〉

H

U |u〉

1

2

(|0〉+e2π iφ|1〉)

For simulation we’ll use the phase shift operator Rz(φ), which has an eigenvector 1〉.

mat =
H C
1 Rzk[φ]

;

|0〉

|1〉

H

Rz
k(φ) |1〉

1

2

(|0〉+e2π i kφ|1〉)

To determine the phase φ with accuracy 2-n, we need n-qubit memory register. At first we apply the 

Hadamard gate to each qubit and obtain a superposition of all possible basis states of the n-qubit 

memory register. Then n controlled operators Rz
2j

 with the control qubits xj〉 ( j = 0, 1, ..., n - 1) are 

succesfully applied to the eigenstate 1〉 and the corresponding phase multipliers exp2π i 2j φ are 

transfered to the qubits xj〉 .

|0〉

|1〉

n
H⊗n

Uz |1〉

1

2n/2
(|0〉+e2π i 2n-1 φ|1〉)⊗...⊗

(|0〉+e2π i 20 φ|1〉)

At last we apply the inverse Fourier transform to the memory register and measure it.

|0〉

|1〉

|k〉
n

H⊗n

Uf

FT

|1〉



To simulate this algorithm we generate a matrix determining the first part of the circuit above.

In[19]:= mat[n_, φ_] := Block{mat1},

mat1 = Table[If[j ⩵ 1, H,

If[j ⩵ n + 2 - i, C, 1]],

{i, n}, {j, n + 1}];

mat1 = Appendmat1,

TableIfj ⩵ 1, 1, Rz2^(j-2)[φ],

{j, n + 1};

mat1

In case of 5-qubit memory register the corresponding quantum circuit is shown below.

In[20]:= circuit[mat[5, φ], {0, 0, 0, 0, 0, 1}, {, , , , ,}]

Computing a unitary matrix correcponding to this circuit we transform initial state of the memory 

register to the state vec2.

In[21]:= vec1[n_] := matrixU[mat[n, φ]].basisState[1, n + 1] // Normal;

In[22]:= vec2 = Table[vec1[5][[2 i]], {i, 2^5}]

Then we apply the inverse Fourier transform and obtain the vector vec3.

In[23]:= vec3 = Transpose[Conjugate[matrixU[modelFourier[5] ]]].vec2 // Normal ;

One can readily check that if the phase φ may be represented in the form of n-bit binary fraction a 

final state of the memory register turns out to be one of the basis states and an exact value of φ is 

obtain with unit probability as a result of measurement.

In[24]:= vec3 /. φ → 17  32 // Simplify

Out[24]= {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

If the phase φ ia not a n-bit binary fraction then any basis state of the n-qubit memory register can 

be obtained as a result of measurement but probabilities of getting these states are different. In 

case of φ = 2 /3, for example, the final vector is

In[25]:= vec4 = N[Abs[#]^2] & /@ vec3 /. φ → 2  3

Out[25]= {0.000976563, 0.000882784, 0.000816818, 0.000772241, 0.000745116,

0.000733207, 0.000735568, 0.000752386, 0.000785007, 0.000836174,

0.000910541, 0.00101564, 0.00116367, 0.00137492, 0.00168475,

0.00215875, 0.00292969, 0.00430009, 0.00708864, 0.0142042, 0.0429899,

0.684162, 0.171224, 0.0276022, 0.0109337, 0.00590282, 0.00374412,

0.00262653, 0.00197636, 0.00156735, 0.00129572, 0.00110852}

Analysis of the algorithm shows that probability to get a number y as a result of measurement is 

determined by the function

In[26]:= p1[n_, y_, φ_] :=
1

22 n

Sinπ 2n φ - y^2

Sinπ φ - y  2n^2

One can readily see that probabilities of getting different results determined by the vector vec4 

coincide with the corresponding values of the function p1.

In[27]:= pa = Plotp15, y, 2  3, {y, 0, 2^5 - 1},

PlotStyle → {Thick, Black}, PlotRange → All;

dat1 = Table[{i - 1, vec4[[i]]}, {i, Length[vec4]}];

pb = ListPlot[dat1, PlotRange → All, PlotStyle → {Black, PointSize[0.02]}];

Show[pa, pb, BaseStyle → {FontFamily → "Arial", FontSize → 12},

AxesLabel → {"k", "p"}]

Out[30]=

5 10 15 20 25 30
k

0.2

0.4

0.6

0.8

1.0

p

Obviously, the numbers 21 and 22 may be obtained with maximum probability.

In[31]:= {dat1[[22]], dat1[[23]]}

Out[31]= {{21, 0.684162}, {22, 0.171224}}

Total probability is greater than 8π2.

In[33]:= dat1[[22, 2]] + dat1[[23, 2]], 8.  π
2


Out[33]= {0.855386, 0.810569}

Accuracy of the calculation is given by

In[35]:= 2  3 - 21.  32, 2  3 - 22.  32, 1.  2^6

Out[35]= {0.0104167, -0.0208333, 0.015625}

Obviously, the probability to get any possible result is equal to 1.

In[36]:= Apply[Plus, vec4]

Out[36]= 1.

To increase an accuracy of calculation let us consider 10-qubit memory register.

In[37]:= vec1a = vec1[10];

vec2 = Table[vec1a[[2 i]], {i, 2^10}];

In[39]:= vec3 = Transpose[Conjugate[matrixU[modelFourier[10] ]]].vec2 // Normal ;

In case of n-bit binary fraction an exact result is obtained with unit probability.

In[40]:= vec3 /. φ → 17  32 // Simplify

In[41]:= Position[%, 1]

Out[41]= {{545}}

In[42]:= 544  2^10

Out[42]=
17

32

In a general case of φ = 2 /3, for example, we obtain

In[43]:= vec4 = N[Abs[#]^2] & /@ vec3 /. φ → 2  3;

pa = Plotp110, y, 2  3, {y, 0, 2^10 - 1},

PlotStyle → {Thick, Black}, PlotRange → All, PlotPoints → 100;

dat1 = Table[{i - 1, vec4[[i]]}, {i, Length[vec4]}];

pb = ListPlot[dat1, PlotRange → All, PlotStyle → {Black, PointSize[0.02]}];

Show[pa, pb, BaseStyle → {FontFamily → "Arial", FontSize → 12},

AxesLabel → {"k", "p"}]

Out[47]=
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In[48]:= Show[pa, pb, BaseStyle → {FontFamily → "Arial", FontSize → 12},

AxesLabel → {"k", "p"},

PlotRange → {{670, 697}, {-0.1, 1.05}}, AxesOrigin → {670, 0}]

Out[48]=

675 680 685 690 695
k
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p

In[49]:= 2  3 - 682  2^10, 2  3 - 683  2^10, 1  210 // N

Out[49]= {0.000651042, -0.000325521, 0.000976563}

In[50]:= dat1[[683, 2]] + dat1[[684, 2]], 8.  π^2

Out[50]= {0.854898, 0.810569}

Approximate QFT

Approximate QFT was first introduced by Barenco, et al [A. Barenco, A. Ekert, K. Suominen, P. 

Törmä, Approximate Quantum Fourier Transform and Decoherence, Phys. Rev. A, vol. 54, issue 1, 

pp. 139-146]. It is constructed similar to regular QFT but differs by eliminating higher precision 

phase shift operators. Let m be the degree of the AQFT, it means that the corresponding quantum 

circuit contains only phase shift operators R2, R3,..., Rm. One can easilly generate symbolic matrix 

determining the AQFT of degree m, the corresponding function is given by

In[51]:= modelFourierApp[n_, m_] := Module{model, mm, n1, m1},

m1 = 0;

Do[m1 = m1 + If[k ≤ m, k, m], {k, n}];

model = Arraymm, n, m1 + Floorn  2 /. mm[i_, j_] → 1;

n1 = 0;

Do Do Ifk ⩵ 1, model[[j, n1 + 1]] = H; n1 = n1 + 1, Ifk ≤ m,

model[[j, n1 + 1]] = Rk; model[[j + k - 1, n1 + 1]] = C;

n1 = n1 + 1

 , {k, n - j + 1},

{j, n};

Do model[[j, n1 + j]] = SW;

model[[n - j + 1, n1 + j]] = SW , j, Floorn  2;

model 

In case of 5 qubits and m = 3, for example, we have

In[52]:= modelFourierApp[5, 3] // MatrixForm
Out[52]//MatrixForm=

H R2 R3 1 1 1 1 1 1 1 1 1 SW 1
1 C 1 H R2 R3 1 1 1 1 1 1 1 SW
1 1 C 1 C 1 H R2 R3 1 1 1 1 1
1 1 1 1 1 C 1 C 1 H R2 1 1 SW
1 1 1 1 1 1 1 1 C 1 C H SW 1

In[53]:= circuit[modelFourierApp[5, 3], {x4, x3, x2, x1, x0}, {, , , ,}]

Out[53]=

|x4〉

|x3〉

|x2〉

|x1〉

|x0〉

H R2 R3

H R2 R3

H R2 R3

H R2

H

What will happen if the AQFT is used instead of the full QFT in the algorithm for phase estimation?

vec3a = Transpose[Conjugate[matrixU[modelFourierApp[10, 9] ]]].vec2 // Normal ;

vec3a /. φ → 17  32 // N // Chop

Position[%, 1.]

{{545}}

vec4a = N[Abs[#]^2] & /@ vec3a /. φ → 2  3 // Chop;

dat1 = Table[{i - 1, vec4a[[i]]}, {i, Length[vec4a]}];

pb = ListPlot[dat1, PlotRange → All, PlotStyle → {Black, PointSize[0.02]},

BaseStyle → {FontFamily → "Arial", FontSize → 12}, AxesLabel → {"k", "p"}]
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Show[pb, BaseStyle → {FontFamily → "Arial", FontSize → 12}, AxesLabel → {"k", "p"},

PlotRange → {{670, 697}, {-0.1, 1.05}}, AxesOrigin → {670, 0}]
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682  2^10, 2  3, 683  2^10 // N

{0.666016, 0.666667, 0.666992}

{dat1[[683, 2]], dat1[[684, 2]]}

{0.17098, 0.683916}

vec3b = Transpose[Conjugate[matrixU[modelFourierApp[10, 8] ]]].vec2 // Normal ;

vec3b /. φ → 17  32 // N // Chop

Position[%, 1.]

{{545}}

vec4b = N[Abs[#]^2] & /@ vec3b /. φ → 2  3;

dat1 = Table[{i - 1, vec4b[[i]]}, {i, Length[vec4b]}];

pb = ListPlot[dat1, PlotRange → All, PlotStyle → {Black, PointSize[0.02]},

BaseStyle → {FontFamily → "Arial", FontSize → 12}, AxesLabel → {"k", "p"}]
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Show[pb, BaseStyle → {FontFamily → "Arial", FontSize → 12}, AxesLabel → {"k", "p"},

PlotRange → {{670, 697}, {-0.1, 1.05}}, AxesOrigin → {670, 0}]
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{dat1[[683, 2]], dat1[[684, 2]]}

{0.170969, 0.683865}

vec3c = Transpose[Conjugate[matrixU[modelFourierApp[10, 5] ]]].vec2 // Normal ;

vec3c /. φ → 17  32 // N // Chop

vec4c = N[Abs[#]^2] & /@ vec3c /. φ → 2  3 // Chop;

dat1 = Table[{i - 1, vec4c[[i]]}, {i, Length[vec4c]}];

pb = ListPlot[dat1, PlotRange → All, PlotStyle → {Black, PointSize[0.02]},

BaseStyle → {FontFamily → "Arial", FontSize → 12}, AxesLabel → {"k", "p"}]
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Show[pb, BaseStyle → {FontFamily → "Arial", FontSize → 12}, AxesLabel → {"k", "p"},

PlotRange → {{670, 697}, {-0.1, 1.05}}, AxesOrigin → {670, 0}]

675 680 685 690 695
k

0.2

0.4

0.6

0.8

1.0

p

{dat1[[683, 2]], dat1[[684, 2]]}

{0.169218, 0.676145}

dat1[[683, 2]] + dat1[[684, 2]]

0.845363

vec3d = Transpose[Conjugate[matrixU[modelFourierApp[10, 3] ]]].vec2 // Normal ;

vec3d /. φ → 17  32 // N // Chop

vec4d = N[Abs[#]^2] & /@ vec3d /. φ → 2  3 // Chop;

dat1 = Table[{i - 1, vec4d[[i]]}, {i, Length[vec4d]}];

pb = ListPlot[dat1, PlotRange → All, PlotStyle → {Black, PointSize[0.02]},

BaseStyle → {FontFamily → "Arial", FontSize → 12}, AxesLabel → {"k", "p"}]
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Show[pb, BaseStyle → {FontFamily → "Arial", FontSize → 12}, AxesLabel → {"k", "p"},

PlotRange → {{670, 710}, {-0.1, 1.05}}, AxesOrigin → {670, 0}]
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{dat1[[682, 2]], dat1[[683, 2]], dat1[[684, 2]], dat1[[685, 2]]}

{0.0182946, 0.132648, 0.521551, 0.0355429}

dat1[[683, 2]] + dat1[[684, 2]]

0.654199

According to Barenco, probability to obtain an accurate output using AQFT with at most m phase 

shift operations, when m ≥ log2 n + 2, s at least

P ≥
8
π2 sin2

π

4
m

n
.

Remind that in case of the full QFT the lower bound for this probability is 8
π2 . Another result was 

given by Cheung [D. Cheung, Improved Bounds for the Approximate QFT, arXiv: abs/quant-

ph/0403071, 2004]

P ≥
4
π2 -

1
4 n

.

Our estimation is given by

In[55]:= n = 10;

m = 5;

Cosπ  2^m^2 n - 2 m // N

0.952877

Table
8

π2
Sinπ m1  4  n^2 // N, {m1, m, n}

{0.118705, 0.167064, 0.221289, 0.280045, 0.341884, 0.405285}

4

π2
-

1

4 n
// N

0.380285
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