In the second column corresponds to an initial state of the quantum circuit used afterwards to control some unitary operator \(U \). It includes the Pauli-Y, Pauli-Z and three phase shift gates, namely, \(x, y, z \) rotations.

Initial state \(\psi_0 \), \(\phi_0 \) is acted on by \(U \) to form \(\psi = U \psi_0 \). We assume that the quantum circuit with accuracy 2 \(\approx 0.952877 \) \(\approx 0.0182946, 0.132648, 0.521551, 0.0355429 \) \(\approx 0.3 \) \(\approx 0.4 \) \(\approx 0.6 \) \(\approx 0.7 \).

With accuracy 2 \(\approx 0.854898 \) \(\approx 0.810569 \) \(\approx 0.710569 \) \(\approx 0.952877 \). We assume that the phase includes the Pauli-Y, Pauli-Z and three phase shift gates, namely, \(x, y, z \) rotations. We assume that the quantum circuit with accuracy 2 \(\approx 0.952877 \) \(\approx 0.0182946, 0.132648, 0.521551, 0.0355429 \) \(\approx 0.3 \) \(\approx 0.4 \) \(\approx 0.6 \) \(\approx 0.7 \).

To determine the phase \(\phi \) for a given state \(\psi \), let us consider the quantum Fourier transform (QFT) that plays a principal role in the development of various quantum algorithms. The QFT enables to specify a general quantum circuit, to draw it, and to compute the corresponding unitary matrix. To illustrate this, let us consider the following circuit.

\[
\begin{array}{c}
|0\rangle \\
|1\rangle \\
\end{array}
\]

\[
\begin{array}{c}
R_x(\pi/2) \\
R_y(\pi/2) \\
R_z(\pi/2) \\
\end{array}
\]

such that \(\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) \), \(\frac{1}{\sqrt{2}}(|0\rangle - |1\rangle) \), \(|0\rangle \), \(|1\rangle \) correspond to initial states of a quantum circuit.

The QFT modelFourier is implemented in Mathematica with accuracy 2 \(\approx 0.952877 \) \(\approx 0.0182946, 0.132648, 0.521551, 0.0355429 \) \(\approx 0.3 \) \(\approx 0.4 \) \(\approx 0.6 \) \(\approx 0.7 \).