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Big picture

Difference equations are used in combinatorics, number theory, and to

model discrete-time processes, etc.

Often, solutions in sequences are of interest.

In this talk:

• algorithm for checking consistency of a system of equations (and

elimination),

• undecidability results for almost anything beyond,

• and speculation.
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Part 1: Prologue
Main characters and first obstacles
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Difference equations and their solutions

• Fn+2 = Fn+1 + Fn

Solution: {. . . , 1, 0, 1, 1, 2, 3, 5, 8, 13, . . .} in the ring CZ of sequences

More formally: σ2(F ) = σ(F ) + F

• f (x + 1) = xf (x)

Solution: Γ(x) in the field of meromorphic functions on C
More formally: σ(f ) = xf

• σ(f ) = 2f + 1

σ Equation Solution

shift on CZ fn+1 = 2fn + 1 {. . . , 0, 1, 3, 7, . . .}
shift on functions f (x + 1) = 2f (x) + 1 2x − 1
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Functions vs. sequences

Example {
f σ(f ) = 0,

f + σ(f ) = 1

• does not have a solution in ;

• has a solution f = {. . . , 0, 1, 0, 1, . . .} is σ is a shift on CZ.
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Sequences vs. Germs

Germs
Let I := {sequences in CZ with finite support}, this is an ideal.

Ring of germs: G := CZ/I.

Example

Consider f · g = 0 & f ̸= 0.

• in sequences: g contains at least one zero;

• in germs: g contains infinitely many zeros.
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Not an easy solution space!

Theorem (Hrushovski, Point, 2007)

Problem:

• given a system of difference equations and inequations

• check if it has a solution.

Is undecidable both in CZ and G.

Glimpse under the hood

Encoding diophantine equations:

f · g = 0 & g ̸= 0 & (f − σ(f ))2 = 1

implies that f consists of integers.

Then

h = σ(h) & (h − f ) · e = 0 & e ̸= 0

implies that h is a constant integer sequence.
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Part 2: Cans
Consistency and elimination

joint with A. Ovchinnikov and T. Scanlon
https://arxiv.org/abs/1712.01412
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Consistency problem

• Given a system of difference equations over C
• Check if it has a solution.

Question: solution where?
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CZ or nothing

Theorem (Ovchinnikov, Pogudin, Scanlon, 2020)
System of difference equations

over a constant field k has =⇒ It has a solution in k̄Z

a solution in some difference ring
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How to detect inconsistency?

Example

Does there exist a sequence {an}n∈Z such that:{
an+4 = an,

an+5 = an + 1
?

NO because

a20 = a0 and a20 = a0 + 4.

Idea: no “finite” solution =⇒ no solution.

Converse? Bound?
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Converse — yes

Theorem (OPS, 2020)

Finite solution of any length =⇒ infinite solution.

Small ̸= easy

Surprisingly hard over “small” fields (e.g., Q or Fp, not C).

Involves

• parts of the proof of bound (coming soon);

• nonstandard Frobenius as a model of ACFA.
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Algorithm: first try

Idea: difference equations =⇒ polynomial equations

via prolongation

Possible approach

1. Apply shift n 7→ n + 1 (a prolongation) to the system

2. Check consistency of the polynomial system

3. If not succeed, go to Step 1.

Half-solution: can detect inconsistency but not consistency.
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Bound for the number of prolongations

Theorem (OPS, 2020)

If the system is inconsistent, this will be detected after at most

N = B(d ,D)

prolongations, where

D the degree of the system,

d the dimension of the system.

B(d ,D) =


D + 1, if d = 0,

2 + D2 + D(D−1)(D−2)
6

, if d = 1,

B(d − 1,D) + DB(d−1,D).

13



Example (sharpness for d = 0)

Theorem implies that B(0,D) = D + 1.

This value is achieved on the elimination problem of xi in{
xi+1 = xi + 1,

xi · (xi − 1) . . . · (xi − D + 1) = 0.

14
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How to detect consistency?

Example (periodicity)

an(an − 1)(an − 2) = 0 and (an+1 − an)
2 = 1.

There is a periodic solution

0, 1, 0, 1, 0, 1, . . .

Idea: prove there is always a periodic solution + bound the period

BUT an+1 = an + 1 does not have periodic solutions

Next idea: allow solutions to contain “high-dimensional points”

For example: A = A+ 1, so {an} = {A,A, . . .} is a periodic solution
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Picture

We can bring every system to a form

(an + bn)(an − bn) = 0 − nonlinear but no shifts

bn+1 = an − with a shift but linear

16



Conjectures/expectations

• Seems that the main issue — combinatorics;

• Sharpness in d = 0 and bound for d = 1 indicate that the worst case

is a union of hyperplanes;

• Possible approach

• consider the “worst” case, union of hypersurfaces, get lower bounds;

• employ deformation argument to reduce general case to unions of

hyperplanes.
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Part 3: Cannots
Implications, grids, R

joint with T. Scanlon and M. Wibmer
https://arxiv.org/abs/1909.03239
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Checking implication

Problem

• Given a system of difference equations f1 = . . . = fℓ = 0 and one

more equation g = 0

• Check if g = 0 holds for any solution of f1 = . . . = fℓ = 0.

Connection to Hrushovski-Point

Problem above ⇐⇒ consistency of f1 = . . . = fℓ = 0 & g ̸= 0

In Hrushovski-Point case many inequations, here just one.

Theorem (PSW, 2020)

If solutions are sought in sequences, the problem is undecidable.

Idea: system =⇒ piecie-wise polynomial map =⇒
enumerating tuples of integers =⇒ diophantine equations

19
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Consistency over reals

Problem

• Given a system of difference equations over R

• Check if it has a solution in RZ.

Theorem (PSW, 2020)

The problem is undecidable.

About the proof

In Hrushovski-Point: inequations used for “{an} contains infinitely many

zeroes”. We do this in R (with Lagrange four-square theorem!).
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Equations on grids

Consider equations with two shifts like

am,n = 1
4 (am−1,n + am,n−1 + am+1,n + am,n+1).

Problem

• Given a system of difference equations over C with two shifts

• Check if it has a solution in CZ2

.

Theorem (PSW, 2020)

The problem is undecidable.

About the proof

Reduction to the domino tiling problem.

Remark: similar result if the sequences are indexed by a free monoid.

21
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End of the story? Of course, no

• The undecidability-of-implication proof does not work for germs.

Still decidable?

• Many interesting algebraically closed field: p-adics, Fp(t), etc

• Shink the class of sequences: the ones that may “come from

discretization”?

22



End of the story? Of course, no

• The undecidability-of-implication proof does not work for germs.

Still decidable?

• Many interesting algebraically closed field: p-adics, Fp(t), etc

• Shink the class of sequences: the ones that may “come from

discretization”?

22



End of the story? Of course, no

• The undecidability-of-implication proof does not work for germs.

Still decidable?

• Many interesting algebraically closed field: p-adics, Fp(t), etc

• Shink the class of sequences: the ones that may “come from

discretization”?

22



Summary

• Cold start: known undecidability of equations + inequations

• New hope: algorithm for equations

(+ bound, + universality, + elimination)

• Understanding the limits: undecidability for implications, reals,

equations on grids

• Still many promising directions!
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Thank you!

Looking for a PhD student: http:

//www.lix.polytechnique.fr/Labo/Gleb.POGUDIN/phd-occam/
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