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Difference equations are used in combinatorics, number theory, and to
model discrete-time processes, etc.

Often, solutions in sequences are of interest.

In this talk:
e algorithm for checking consistency of a system of equations (and
elimination),
e undecidability results for almost anything beyond,

e and speculation.



Part 1: Prologue

Main characters and first obstacles
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Difference equations and their solutions

® Fpyo = Fn+1 + Fn
Solution: {...,1,0,1,1,2,3,5,8,13,...} in the ring CZ of sequences
More formally: o?(F) = o(F) + F

o f(x+1)=xf(x)
Solution: ['(x) in the field of meromorphic functions on C
More formally: o(f) = xf

o o(f)=2f+1
o Equation Solution
shift on C% for1 =2f,+1 {..,0,1,3,7,...}
shift on functions | f(x+1)=2f(x)+1 | 2*—1
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Functions vs. sequences

Example

fo(f)=0,
f+o(f)=1

e does not have a solution in meromorphic function in C
(more generally, any difference field);

e has a solution f ={...,0,1,0,1,...} is o is a shift on CZ.
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Sequences vs. Germs

Germs
Let Z := {sequences in CZ with finite support}, this is an ideal.

Ring of germs: G := CZ/T.
Example

Consider f -g=0& f #0.

e in sequences: g contains at least one zero;

e in germs: g contains infinitely many zeros.
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Not an easy solution space!

Theorem (Hrushovski, Point, 2007)

Problem:

e given a system of difference equations and inequations

e check if it has a solution.

Is undecidable both in C% and G.

Glimpse under the hood

Encoding diophantine equations:
f-g=0&g#0&(f—0o(f))>=1

implies that f consists of integers. Then
h=o(h)&(h—f)-e=0&e#0

implies that h is a constant integer sequence.



Part 2: Cans

Consistency and elimination

joint with A. Ovchinnikov and T. Scanlon
https://arxiv.org/abs/1712.01412
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e Given a system of difference equations over C

e Check if it has a solution.

Question: solution where?






Theorem (Ovchinnikov, Pogudin, Scanlon, 2020)
System of difference equations

over a constant field k has — It has a solution in kZ
a solution in some difference ring
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How to detect inconsistency?

Example

Does there exist a sequence {a,},cz such that:
dnt4 = an, ?
ants = an + 1

doo = 4o and axy) = ag + 4.

NO because

Idea: no “finite” solution = no solution. Converse? Bound?
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Converse — yes

Theorem (OPS, 2020)

Finite solution of any length = infinite solution.

Small # easy
Surprisingly hard over “small” fields (e.g., Q@ or F,, not C).

Involves

e parts of the proof of bound (coming soon);

e nonstandard Frobenius as a model of ACFA.
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Algorithm: first try

Idea: difference equations = polynomial equations

via prolongation
Possible approach
1. Apply shift n+— n+1 (a prolongation) to the system
2. Check consistency of the polynomial system

3. If not succeed, go to Step 1.

Half-solution: can detect inconsistency but not consistency.
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Bound for the number of prolongations

Theorem (OPS, 2020)

If the system is inconsistent, this will be detected after at most

N = B(d, D)
prolongations, where
D the degree of the system,

d the dimension of the system.

D+1,ifd=0,
B(d,D) = {2+ D2 4 20O ¢ g — 1,
B(d — 1, D) + DB(d=1.D),
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Example (sharpness for d = 0)

Theorem implies that B(0, D) = D + 1.
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Example (sharpness for d = 0)

Theorem implies that B(0, D) = D + 1.

This value is achieved on the elimination problem of x; in

Xit1 =X + 1,
X,'~(X,'—1)...~(X,‘—D—|—].):0.
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How to detect consistency?

Example (periodicity)
an(an—1)(a,—2)=0 and (api1 — a,,)2 = 1,

There is a periodic solution
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How to detect consistency?

Example (periodicity)

an(an—1)(a, —2) =0 and (ans1—an)®=1.
There is a periodic solution 0,1,0,1,0,1, ...
Idea: prove there is always a periodic solution + bound the period
BUT a,+1 = a, + 1 does not have periodic solutions

Next idea: allow solutions to contain “high-dimensional points”
For example: A=A +1, so {a,} = {A, A, ...} is a periodic solution

15



We can bring every system to a form

(an+ bn)(an — by) =0 — nonlinear but no shifts

bpr1 = a, — with a shift but linear

16
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Conjectures/expectations

e Seems that the main issue — combinatorics;

e Sharpness in d = 0 and bound for d = 1 indicate that the worst case
is a union of hyperplanes;

e Possible approach

e consider the “worst” case, union of hypersurfaces, get lower bounds;
e employ deformation argument to reduce general case to unions of
hyperplanes.

17



Part 3: Cannots
Implications, grids, R

joint with T. Scanlon and M. Wibmer
https://arxiv.org/abs/1909.03239
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Checking implication

Problem

e Given a system of difference equations f; = ... = f; = 0 and one
more equation g =0

e Check if g = 0 holds for any solution of 4 = ... =f; = 0.

Connection to Hrushovski-Point

Problem above <= consistencyof fi=...={=0& g#0
In Hrushovski-Point case many inequations, here just one.
Theorem (PSW, 2020)

If solutions are sought in sequences, the problem is undecidable.
Idea: system == piecie-wise polynomial map —

enumerating tuples of integers = diophantine equations
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Consistency over reals

Problem
e Given a system of difference equations over R

e Check if it has a solution in RZ.
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Consistency over reals

Problem
e Given a system of difference equations over R

e Check if it has a solution in RZ.
Theorem (PSW, 2020)
The problem is undecidable.

About the proof

In Hrushovski-Point: inequations used for “{a,} contains infinitely many
zeroes”. We do this in R (with Lagrange four-square theorem!).

20



Equations on grids
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Equations on grids

Consider equations with two shifts like
Am,n = %(amfl,n + am,n—1 + Am+1,n + am.,nJrl)-

Problem

e Given a system of difference equations over C with two shifts

e Check if it has a solution in CZ’.
Theorem (PSW, 2020)
The problem is undecidable.

About the proof

Reduction to the domino tiling problem.

Remark: similar result if the sequences are indexed by a free monoid.
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End of the story? Of course, no

e The undecidability-of-implication proof does not work for germs.
Still decidable?

e Many interesting algebraically closed field: p-adics, Fp(t), etc

e Shink the class of sequences: the ones that may “come from

discretization” ?

22



e Cold start: known undecidability of equations + inequations

23



e Cold start: known undecidability of equations + inequations

e New hope: algorithm for equations
(4 bound, + universality, + elimination)

23



e Cold start: known undecidability of equations + inequations

e New hope: algorithm for equations
(4 bound, + universality, + elimination)

e Understanding the limits: undecidability for implications, reals,
equations on grids

23



Cold start: known undecidability of equations + inequations

New hope: algorithm for equations
(4 bound, + universality, + elimination)

Understanding the limits: undecidability for implications, reals,
equations on grids

Still many promising directions!
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Thank you!

Looking for a PhD student: http:
//www.lix.polytechnique.fr/Labo/Gleb.POGUDIN/phd-occam/
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