Definite-Sum Solutions of Linear Recurrences With Polynomial Coefficients

Antonio Jiménez-Pastor
École Polytechnique, Paris, France
Marko Petkovšek
University of Ljubljana, Slovenia

Moscow Computer Algebra Seminar April 20, 2022

Outline

1 Introduction
\simeq Formal polynomial series
${ }_{3}$ Quasi-triangular bases
4 Product bases
${ }_{5}$ Sieved polynomial bases

1. Introduction

Introduction

Notation:
$\mathbb{N}=\{0,1,2, \ldots\}$
$\mathbb{K} \quad \ldots$ field of characteristic 0
$\mathbb{K}^{\mathbb{N}} \quad \ldots$ the set of all sequences over \mathbb{K}

Introduction

Notation:

$$
\begin{array}{lll}
\mathbb{N} & = & \{0,1,2, \ldots\} \\
\mathbb{K} & \ldots & \text { field of characteristic } 0 \\
\mathbb{K}^{\mathbb{N}} & \ldots & \text { the set of all sequences over } \mathbb{K}
\end{array}
$$

Let $E: \mathbb{K}^{\mathbb{N}} \rightarrow \mathbb{K}^{\mathbb{N}}$ be the shift operator w.r.t. n, acting on $a=\left\langle a_{n}\right\rangle_{n=0}^{\infty} \in \mathbb{K}^{\mathbb{N}}$ by

$$
\begin{gathered}
E a_{n}=a_{n+1} \quad \text { for all } n \geq 0, \text { or } \\
\left(a_{0}, a_{1}, a_{2}, \ldots\right) \mapsto\left(a_{1}, a_{2}, a_{3}, \ldots\right)
\end{gathered}
$$

Introduction

Let $d \in \mathbb{N}$ and $p_{0}, p_{1}, \ldots, p_{d} \in \mathbb{K}[n], p_{d} \neq 0$. The operator $L: \mathbb{K}^{\mathbb{N}} \rightarrow \mathbb{K}^{\mathbb{N}}$ defined by

$$
L=\sum_{j=0}^{d} p_{j}(n) E^{j}
$$

is a linear recurrence operator with polynomial coefficients, acting on $a \in \mathbb{K}^{\mathbb{N}}$ by

$$
(L a)_{n}=\sum_{j=0}^{d} p_{j}(n) a_{n+j}
$$

Introduction

Notation:
$\mathbb{K}[n]\langle E\rangle \quad \ldots \quad$ the algebra of linear recurrence operators with polynomial coefficients in n
$\mathcal{P}(\mathbb{K}) \quad \ldots$ the set of P-recursive sequences over \mathbb{K}

Definition

A sequence $a \in \mathbb{K}^{\mathbb{N}}$ is P-recursive if there is $L \in \mathbb{K}[n]\langle E\rangle$,
$L \neq 0$, such that

$$
(L a)_{n}=0
$$

for all $n \geq 0$.

Introduction

Creative Telescoping

Given a bivariate hypergeometric sequence $F \in \mathbb{K}^{\mathbb{N} \times \mathbb{N}} \backslash\{0\}$, i.e.,

$$
\frac{F(n+1, k)}{F(n, k)}, \frac{F(n, k+1)}{F(n, k)} \in \mathbb{K}(n, k)
$$

FIND $L \in \mathbb{K}[n]\langle E\rangle$ such that

$$
L\left(\sum_{k=0}^{n} F(n, k)\right)=0
$$

Solved (for many inputs) by Zeilberger's algorithm.

Introduction

Inverse Creative Telescoping

Given $L \in \mathbb{K}[n]\langle E\rangle$,
FIND a bivariate hypergeometric sequence $F \in \mathbb{K}^{\mathbb{N} \times \mathbb{N}} \backslash\{0\}$ s.t.

$$
L\left(\sum_{k=0}^{n} F(n, k)\right)=0
$$

Introduction

Inverse Creative Telescoping

Given $L \in \mathbb{K}[n]\langle E\rangle$,
FIND a bivariate hypergeometric sequence $F \in \mathbb{K}^{\mathbb{N} \times \mathbb{N}} \backslash\{0\}$ s.t.

$$
L\left(\sum_{k=0}^{n} F(n, k)\right)=0
$$

Solved by Chen and Singer (2012) for rational $F(n, k)$.

Introduction

A simpler version

Given $L \in \mathbb{K}[n]\langle E\rangle$ and a (hypergeometric) kernel $K(n, k)$, FIND $h \in \mathbb{K}^{\mathbb{N}}$ such that

$$
L\left(\sum_{k=0}^{n} h_{k} K(n, k)\right)=0 .
$$

Introduction

Example

Take $K(n, k)=\binom{n}{k} \in \mathbb{K}[n]$. Then

$$
\sum_{k=0}^{n} h_{k} K(n, k)=\sum_{k=0}^{\infty} h_{k}\binom{n}{k} .
$$

Idea: Interpret $f(x):=\sum_{k=0}^{\infty} h_{k}\binom{x}{k}$ as a formal polynomial series.

Introduction

Example

Take $K(n, k)=\binom{n}{k} \in \mathbb{K}[n]$. Then

$$
\sum_{k=0}^{n} h_{k} K(n, k)=\sum_{k=0}^{\infty} h_{k}\binom{n}{k} .
$$

Idea: Interpret $f(x):=\sum_{k=0}^{\infty} h_{k}\binom{x}{k}$ as a formal polynomial series.
Notation:
We will also denote by $E: \mathbb{K}[x] \rightarrow \mathbb{K}[x]$ the shift operator w.r.t. x, acting on $p(x) \in K[x]$ by

$$
E p(x)=p(x+1)
$$

So, $E n=n+1$ and $E x=x+1$.

2. Formal polynomial series

Formal polynomial series

Definition

A sequence of polynomials $\mathcal{B}=\left\langle P_{k}(x)\right\rangle_{k=0}^{\infty}$ from $\mathbb{K}[x]$ is a factorial basis for $\mathbb{K}[x]$ if
(1) $\operatorname{deg} P_{k}=k$,
(2) $P_{k} \mid P_{m}$ for $k<m$.

Formal polynomial series

Proposition

$$
\begin{aligned}
\mathcal{B}= & \left\langle P_{k}(x)\right\rangle_{k=0}^{\infty} \text { is a factorial basis } \Longleftrightarrow \\
& \exists \rho=\left(\rho_{1}, \rho_{2}, \rho_{3}, \ldots\right) \in \mathbb{K}^{\mathbb{N} \backslash\{0\}} \exists c_{0}, c_{1}, c_{2}, \ldots \in \mathbb{K}^{*}: \\
& P_{k}(x)=c_{k}\left(x-\rho_{1}\right)\left(x-\rho_{2}\right) \cdots\left(x-\rho_{k}\right) \text { for all } k \in \mathbb{N} .
\end{aligned}
$$

Also known as a sequence of polynomials with persistent roots in umbral calculus (ρ is the root sequence of \mathcal{B}).

Formal polynomial series

Proposition

$$
\begin{aligned}
\mathcal{B}= & \left\langle P_{k}(x)\right\rangle_{k=0}^{\infty} \text { is a factorial basis } \Longleftrightarrow \\
& \exists \rho=\left(\rho_{1}, \rho_{2}, \rho_{3}, \ldots\right) \in \mathbb{K}^{\mathbb{N} \backslash\{0\}} \exists c_{0}, c_{1}, c_{2}, \ldots \in \mathbb{K}^{*}: \\
& P_{k}(x)=c_{k}\left(x-\rho_{1}\right)\left(x-\rho_{2}\right) \cdots\left(x-\rho_{k}\right) \text { for all } k \in \mathbb{N} .
\end{aligned}
$$

Also known as a sequence of polynomials with persistent roots in umbral calculus (ρ is the root sequence of \mathcal{B}).

Notation:
$\mathcal{L}_{\mathbb{K}[x]}$ is the \mathbb{K}-algebra of linear operators $L: \mathbb{K}[x] \rightarrow \mathbb{K}[x]$.

Formal polynomial series

Example

Some factorial bases:
■ $\mathcal{P}:=\left\langle x^{k}\right\rangle_{k=0}^{\infty} \quad$ power basis
■ $\mathcal{F}:=\left\langle x^{k}\right\rangle_{k=0}^{\infty}$ falling-factorial basis

- $\mathcal{C}:=\left\langle\binom{ x}{k}\right\rangle_{k=0}^{\infty}$ binomial-coefficient basis
- $\mathcal{R}:=\left\langle x^{\bar{k}}\right\rangle_{k=0}^{\infty}$ rising-factorial basis
- $\mathcal{A}:=\left\langle\binom{ x+k}{k}\right\rangle_{k=0}^{\infty}$ Apéry basis

Formal polynomial series

Example

Some factorial bases:
■ $\mathcal{P}:=\left\langle x^{k}\right\rangle_{k=0}^{\infty} \quad$ power basis
$\square \mathcal{F}:=\left\langle x^{k}\right\rangle_{k=0}^{\infty}$ falling-factorial basis

- $\mathcal{C}:=\left\langle\binom{ x}{k}\right\rangle_{k=0}^{\infty}$ binomial-coefficient basis

■ $\mathcal{R}:=\left\langle x^{\bar{k}}\right\rangle_{k=0}^{\infty}$ rising-factorial basis

- $\mathcal{A}:=\left\langle\binom{ x+k}{k}\right\rangle_{k=0}^{\infty}$ Apéry basis

Note:

$$
\mathcal{C}=\left\langle\frac{x^{k}}{k!}\right\rangle_{k=0}^{\infty}, \quad \mathcal{A}=\left\langle\frac{(x+1)^{\bar{k}}}{k!}\right\rangle_{k=0}^{\infty}
$$

Formal polynomial series

Definition

An operator $L \in \mathcal{L}_{\mathbb{K}[x]}$ and a factorial basis \mathcal{B} are compatible iff there are $A, B \in \mathbb{N}$ such that for all $k \geq 0$

$$
\begin{equation*}
L P_{k}=\sum_{i=-A}^{B} \alpha_{i, k} P_{k+i} \tag{1}
\end{equation*}
$$

for some $\alpha_{i, k} \in \mathbb{K}$. Here $P_{k+i}:=0$ if $k+i<0$.

If (1) holds, L and \mathcal{B} are (A, B)-compatible.

Formal polynomial series

Definition

Define $D, E, Q, X \in \mathcal{L}_{\mathbb{K}[x]}$ for $p \in \mathbb{K}[x]$ and $q \in \mathbb{K}^{*}$ by $D p(x):=p^{\prime}(x) \quad$ (differentiation),
$E p(x) \quad:=p(x+1) \quad$ (shift),
$Q p(x):=p(q x) \quad(q$-shift),
$X p(x) \quad:=x p(x) \quad$ (multiplication by x).

Formal polynomial series

Definition

Define $D, E, Q, X \in \mathcal{L}_{\mathbb{K}[x]}$ for $p \in \mathbb{K}[x]$ and $q \in \mathbb{K}^{*}$ by $D p(x):=p^{\prime}(x) \quad$ (differentiation),
$E p(x):=p(x+1) \quad$ (shift),
$Q p(x):=p(q x) \quad$ (q-shift),
$X p(x) \quad:=x p(x) \quad$ (multiplication by x).

Example

$\square\left(x^{k}\right)^{\prime}=k x^{k-1} \quad \Longrightarrow D$ is $(1,0)$-compatible with \mathcal{P}
■ $(q x)^{k}=q^{k} x^{k} \quad \Longrightarrow Q$ is $(0,0)$-compatible with \mathcal{P}
■ $\binom{x+1}{k}=\binom{x}{k-1}+\binom{x}{k} \Longrightarrow E$ is (1,0)-compatible with \mathcal{C}

Formal polynomial series

Example

$\square(x+1)^{k}=\sum_{j=0}^{k}\binom{k}{j} x^{j} \Longrightarrow E$ is not compatible with \mathcal{P}
$\square(x+1)^{\bar{k}}=\sum_{j=0}^{k} \frac{k!}{j!} x^{\bar{j}} \Longrightarrow E$ is not compatible with \mathcal{R}
■ $\binom{x+1+k}{k}=\sum_{j=0}^{k}\binom{x+j}{j} \Longrightarrow E$ is not compatible with \mathcal{A}

- $\binom{x}{k}^{\prime}=\sum_{j=0}^{k-1} \frac{(-1)^{j+k}}{j-k}\binom{x}{j} \Longrightarrow D$ is not compatible with \mathcal{C}

Formal polynomial series

Example

$\square(x+1)^{k}=\sum_{j=0}^{k}\binom{k}{j} x^{j} \Longrightarrow E$ is not compatible with \mathcal{P}
■ $(x+1)^{\bar{k}}=\sum_{j=0}^{k} \frac{k!}{j!} x^{\bar{j}} \Longrightarrow E$ is not compatible with \mathcal{R}
■ $\binom{x+1+k}{k}=\sum_{j=0}^{k}\binom{x+j}{j} \Longrightarrow E$ is not compatible with \mathcal{A}
■ $\binom{x}{k}^{\prime}=\sum_{j=0}^{k-1} \frac{(-1)^{j+k}}{j-k}\binom{x}{j} \Longrightarrow D$ is not compatible with \mathcal{C}

Proposition

■ $x P_{k}(x)=u_{k} P_{k}(x)+v_{k} P_{k+1}(x)$
$\Longrightarrow X$ is $(0,1)$-compatible with every factorial basis

Formal polynomial series

Proposition

E and \mathcal{B} with root sequence ρ are $(A, 0)$-compatible iff
$\forall n \in \mathbb{N}:\left\{\rho_{1}+1, \rho_{2}+1, \ldots, \rho_{n}+1\right\} \subseteq\left\{\rho_{1}, \rho_{2}, \ldots, \rho_{n+A}\right\}$
as multisets.

Formal polynomial series

Proposition

E and \mathcal{B} with root sequence ρ are $(A, 0)$-compatible iff

$$
\forall n \in \mathbb{N}:\left\{\rho_{1}+1, \rho_{2}+1, \ldots, \rho_{n}+1\right\} \subseteq\left\{\rho_{1}, \rho_{2}, \ldots, \rho_{n+A}\right\}
$$ as multisets.

Example

■ $P_{k}(x)=x^{k}: \rho=(0,0,0, \ldots), \rho+1=(1,1,1, \ldots) X$
■ $P_{k}(x)=x \underline{k}: \rho=(0,1,2, \ldots), \rho+1=(1,2,3, \ldots)$
■ $P_{k}(x)=x^{\bar{k}}: \rho=(0,-1,-2, \ldots), \rho+1=(1,0,-1, \ldots) X$

Formal polynomial series

Proposition

Let $\mathcal{B}=\left\langle P_{k}(x)\right\rangle_{k=0}^{\infty}$ be a factorial basis of $\mathbb{K}[x]$. The algebra $\mathbb{K}[x]$ naturally embeds into the algebra $\mathbb{K}[[\mathcal{B}]]$ of formal polynomial series of the form

$$
y=\sum_{k=0}^{\infty} c_{k} P_{k}(x) \quad\left(c_{k} \in \mathbb{K}\right)
$$

with multiplication defined by

$$
\begin{gathered}
\left(\sum_{i=0}^{\infty} c_{i} P_{i}(x)\right)\left(\sum_{j=0}^{\infty} d_{j} P_{j}(x)\right)=\sum_{k=0}^{\infty} e_{k} P_{k}(x), \\
e_{k}=\sum_{\max \{i, j\} \leq k \leq i+j} c_{i} d_{j}\left[P_{k}\right]\left(P_{i} P_{j}\right) .
\end{gathered}
$$

Formal polynomial series

Let $L \in \mathcal{L}_{\mathbb{K}[x]}$ be (A, B)-compatible with the basis \mathcal{B}.
Extend $L: \mathbb{K}[x] \rightarrow \mathbb{K}[x]$ to $L: \mathbb{K}[[\mathcal{B}]] \rightarrow \mathbb{K}[[\mathcal{B}]]$ by defining

$$
\begin{aligned}
L\left(\sum_{k=0}^{\infty} c_{k} P_{k}(x)\right) & :=\sum_{k=0}^{\infty} c_{k} L P_{k}(x) \\
& =\sum_{k=0}^{\infty} c_{k} \sum_{i=-A}^{B} \alpha_{i, k} P_{k+i}(x) \\
& =\sum_{k=0}^{\infty}\left(\sum_{i=-B}^{A} \alpha_{-i, k+i} c_{k+i}\right) P_{k}(x)
\end{aligned}
$$

where $P_{k}(x)=0$ for $k<0$ and $c_{k+i}=0$ for $k+i<0$.

Formal polynomial series

Theorem

For any $L \in \mathcal{L}_{\mathbb{K}[x]}$ and $y=\sum_{k=0}^{\infty} c_{k} P_{k}(x) \in \mathbb{K}[[\mathcal{B}]]$ we have

$$
L y=0 \Longleftrightarrow L^{\prime} c=0
$$

where $L^{\prime}=\mathcal{R}_{\mathcal{B}} L$ is the operator induced by L in basis \mathcal{B} :

$$
\begin{align*}
& \mathcal{R}_{\mathcal{B}} L:=\sum_{i=-B}^{A} \alpha_{-i, k+i} E_{k}^{i}, \tag{2}\\
& E_{k}^{i}(c)_{k}=c_{k+i} \\
& c_{j}=0 \quad \text { for all } i, k \in \mathbb{Z}, \\
& \text { for } j<0 .
\end{align*}
$$

Formal polynomial series

Definition

Let \mathcal{B} be a factorial basis of $\mathbb{K}[x]$.

- $\mathcal{L}_{\mathcal{B}}:=\left\{L \in \mathcal{L}_{\mathbb{K}[x]} ; L\right.$ compatible with $\left.\mathcal{B}\right\}$,
- $\mathcal{E}:=$

$$
\left\{\sum_{i=-S}^{R} a_{k}^{(i)} E_{k}^{i} ; R, S \in \mathbb{N}, a^{(i)} \in \mathbb{K}^{\mathbb{Z}} \text { for }-S \leq i \leq R\right\} .
$$

Formal polynomial series

Definition

Let \mathcal{B} be a factorial basis of $\mathbb{K}[x]$.

- $\mathcal{L}_{\mathcal{B}}:=\left\{L \in \mathcal{L}_{\mathbb{K}[x]} ; L\right.$ compatible with $\left.\mathcal{B}\right\}$,
- $\mathcal{E}:=$

$$
\left\{\sum_{i=-S}^{R} a_{k}^{(i)} E_{k}^{i} ; R, S \in \mathbb{N}, a^{(i)} \in \mathbb{K}^{\mathbb{Z}} \text { for }-S \leq i \leq R\right\}
$$

Proposition

$\mathcal{L}_{\mathcal{B}}$ and \mathcal{E} are \mathbb{K}-algebras, and the transformation

$$
\mathcal{R}_{\mathcal{B}}: \mathcal{L}_{\mathcal{B}} \rightarrow \mathcal{E}
$$

is an isomorphism of \mathbb{K}-algebras.

Formal polynomial series

Example

Differential operators:

$$
\begin{aligned}
\mathcal{R}_{\mathcal{P}} D & =(k+1) E_{k} \\
\mathcal{R}_{\mathcal{P}} X & =E_{k}^{-1}
\end{aligned}
$$

q-Difference operators:

$$
\begin{aligned}
\mathcal{R}_{\mathcal{P}} Q & =q^{k} \\
\mathcal{R}_{\mathcal{P}} X & =E_{k}^{-1}
\end{aligned}
$$

Recurrence operators:

$$
\begin{aligned}
\mathcal{R}_{\mathcal{C}} E & =E_{k}+1 \\
\mathcal{R}_{\mathcal{C}} X & =k\left(E_{k}^{-1}+1\right)
\end{aligned}
$$

Formal polynomial series

Example

$$
L=E-c \quad \text { where } c \in \mathbb{K}
$$

Formal polynomial series

Example

$$
L=E-c \quad \text { where } c \in \mathbb{K}
$$

Note: $L\left(c^{n}\right)=c^{n+1}-c c^{n}=0$

Formal polynomial series

Example

$$
L=E-c \quad \text { where } c \in \mathbb{K}
$$

Note: $L\left(c^{n}\right)=c^{n+1}-c c^{n}=0, \quad \mathcal{R}_{\mathcal{C}} L=E_{k}-(c-1)$.

Formal polynomial series

Example

$$
L=E-c \quad \text { where } c \in \mathbb{K}
$$

Note: $L\left(c^{n}\right)=c^{n+1}-c c^{n}=0, \quad \mathcal{R}_{\mathcal{C}} L=E_{k}-(c-1)$.
Find $h_{k} \neq 0$ s.t. $\mathcal{R}_{\mathcal{C}} L\left(h_{k}\right)=0$.

Formal polynomial series

Example

$$
L=E-c \quad \text { where } c \in \mathbb{K}
$$

Note: $L\left(c^{n}\right)=c^{n+1}-c c^{n}=0, \quad \mathcal{R}_{\mathcal{C}} L=E_{k}-(c-1)$.
FIND $h_{k} \neq 0$ s.t. $\mathcal{R}_{\mathcal{C}} L\left(h_{k}\right)=0$.
Solution: $\quad\left(\mathcal{R}_{\mathcal{C}} L\right)\left((c-1)^{k}\right)=0$

$$
\Longrightarrow L\left(\sum_{k=0}^{n}\binom{n}{k}(c-1)^{k}\right)=0 .
$$

Formal polynomial series

Example

$$
L=E-c \quad \text { where } c \in \mathbb{K}
$$

Note: $L\left(c^{n}\right)=c^{n+1}-c c^{n}=0, \quad \mathcal{R}_{\mathcal{C}} L=E_{k}-(c-1)$.
FIND $h_{k} \neq 0$ s.t. $\mathcal{R}_{\mathcal{C}} L\left(h_{k}\right)=0$.
Solution: $\quad\left(\mathcal{R}_{\mathcal{C}} L\right)\left((c-1)^{k}\right)=0$

$$
\Longrightarrow L\left(\sum_{k=0}^{n}\binom{n}{k}(c-1)^{k}\right)=0
$$

Since $c^{0}=\sum_{k=0}^{0}\binom{0}{k}(c-1)^{k}=1$, we obtain the identity

$$
\sum_{k=0}^{n}\binom{n}{k}(c-1)^{k}=c^{n}
$$

Formal polynomial series

Example

$$
\begin{aligned}
L= & E^{3}-\left(n^{2}+6 n+10\right) E^{2} \\
& +(n+2)(2 n+5) E-(n+1)(n+2)
\end{aligned}
$$

Note: $L y=0$ has no nonzero Liouvillian solution.

Formal polynomial series

Example

$$
\begin{aligned}
L= & E^{3}-\left(n^{2}+6 n+10\right) E^{2} \\
& +(n+2)(2 n+5) E-(n+1)(n+2)
\end{aligned}
$$

Note: $L y=0$ has no nonzero Liouvillian solution.

$$
\begin{aligned}
\mathcal{R}_{\mathcal{C}} L= & E_{k}^{3}-\left(k^{2}+6 k+7\right) E_{k}^{2} \\
& -\left(2 k^{2}+8 k+7\right) E_{k}-(k+1)^{2}
\end{aligned}
$$

Formal polynomial series

Example

$$
\begin{aligned}
L= & E^{3}-\left(n^{2}+6 n+10\right) E^{2} \\
& +(n+2)(2 n+5) E-(n+1)(n+2)
\end{aligned}
$$

Note: $L y=0$ has no nonzero Liouvillian solution.

$$
\begin{aligned}
\mathcal{R}_{\mathcal{C}} L= & E_{k}^{3}-\left(k^{2}+6 k+7\right) E_{k}^{2} \\
& -\left(2 k^{2}+8 k+7\right) E_{k}-(k+1)^{2}
\end{aligned}
$$

Find $h_{k} \neq 0$ s.t. $\mathcal{R}_{\mathcal{C}} L\left(h_{k}\right)=0$.

Formal polynomial series

Example

$$
\begin{aligned}
L= & E^{3}-\left(n^{2}+6 n+10\right) E^{2} \\
& +(n+2)(2 n+5) E-(n+1)(n+2)
\end{aligned}
$$

Note: $L y=0$ has no nonzero Liouvillian solution.

$$
\begin{aligned}
\mathcal{R}_{\mathcal{C}} L= & E_{k}^{3}-\left(k^{2}+6 k+7\right) E_{k}^{2} \\
& -\left(2 k^{2}+8 k+7\right) E_{k}-(k+1)^{2}
\end{aligned}
$$

Find $h_{k} \neq 0$ s.t. $\mathcal{R}_{\mathcal{C}} L\left(h_{k}\right)=0$.

Solution: $\quad\left(\mathcal{R}_{\mathcal{C}} L\right)\left(k!^{2}\right)=0$

Formal polynomial series

Example

$$
\begin{aligned}
L= & E^{3}-\left(n^{2}+6 n+10\right) E^{2} \\
& +(n+2)(2 n+5) E-(n+1)(n+2)
\end{aligned}
$$

Note: $L y=0$ has no nonzero Liouvillian solution.

$$
\begin{aligned}
\mathcal{R}_{\mathcal{C}} L= & E_{k}^{3}-\left(k^{2}+6 k+7\right) E_{k}^{2} \\
& -\left(2 k^{2}+8 k+7\right) E_{k}-(k+1)^{2}
\end{aligned}
$$

Find $h_{k} \neq 0$ s.t. $\mathcal{R}_{\mathcal{C}} L\left(h_{k}\right)=0$.
SOLUTION: $\left(\mathcal{R}_{\mathcal{C}} L\right)\left(k!^{2}\right)=0 \Longrightarrow L\left(\sum_{k=0}^{n}\binom{n}{k} k!^{2}\right)=0$.
3. Quasi-triangular bases

Quasi-triangular bases

Question: Which formal power series solutions

$$
y(x)=\sum_{k=0}^{\infty} h_{k} P_{k}(x)
$$

give rise to genuine solutions in $\mathbb{K}^{\mathbb{N}}$?

Quasi-triangular bases

Question: Which formal power series solutions

$$
y(x)=\sum_{k=0}^{\infty} h_{k} P_{k}(x)
$$

give rise to genuine solutions in $\mathbb{K}^{\mathbb{N}}$?
Example

$$
\text { If } \mathcal{B}=\mathcal{C}=\left\langle\binom{ x}{k}\right\rangle_{k=0}^{\infty} \text { then }
$$

$$
\sum_{k=0}^{\infty} h_{k} P_{k}(n)=\sum_{k=0}^{\infty} h_{k}\binom{n}{k}=\sum_{k=0}^{n} h_{k}\binom{n}{k} \in \mathbb{K}[[\mathcal{B}]]
$$

for every $n \in \mathbb{N}$.

Quasi-triangular bases

Definition

A shift-compatible basis $\mathcal{B}=\left\langle P_{k}(n)\right\rangle_{k=0}^{\infty}$ is quasi-triangular if there is a strictly increasing function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that
$1 \forall k, n \in \mathbb{N}:\left(k>f(n) \Longrightarrow P_{k}(n)=0\right)$,
2 $\forall n \in \mathbb{N}: P_{f(n)}(n) \neq 0$.

Quasi-triangular bases

Definition

A shift-compatible basis $\mathcal{B}=\left\langle P_{k}(n)\right\rangle_{k=0}^{\infty}$ is quasi-triangular if there is a strictly increasing function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that

$$
\begin{aligned}
& 1 \forall k, n \in \mathbb{N}:\left(k>f(n) \Longrightarrow P_{k}(n)=0\right) \\
& \mathbf{2} \forall n \in \mathbb{N}: P_{f(n)}(n) \neq 0
\end{aligned}
$$

Example

The basis $\mathcal{C}=\left\langle\binom{ n}{k}\right\rangle_{k=0}^{\infty}$ is quasi-triangular with $f(n)=n$.

Quasi-triangular bases

Proposition

Let $\mathcal{B}=\left\langle P_{k}(n)\right\rangle_{k=0}^{\infty}$ be a quasi-triangular basis. Then for every $a \in \mathbb{K}^{\mathbb{N}}$ there exists $b \in \mathbb{K}^{\mathbb{N}}$ such that

$$
a_{n}=\sum_{k=0}^{\infty} b_{k} P_{k}(n)
$$

for some $b \in \mathbb{K}^{\mathbb{N}}$.

Quasi-triangular bases

Proposition

Let $\mathcal{B}=\left\langle P_{k}(n)\right\rangle_{k=0}^{\infty}$ be a quasi-triangular basis. Then for every $a \in \mathbb{K}^{\mathbb{N}}$ there exists $b \in \mathbb{K}^{\mathbb{N}}$ such that

$$
a_{n}=\sum_{k=0}^{\infty} b_{k} P_{k}(n)
$$

for some $b \in \mathbb{K}^{\mathbb{N}}$.

Proposition

A basis $\mathcal{B}=\left\langle P_{k}(n)\right\rangle_{k=0}^{\infty}$ is quasi-triangular if and only if its root sequence $\rho=\left\langle\rho_{1}, \rho_{2}, \rho_{3}, \ldots\right\rangle$ satisfies
$1\langle 0,1,2,3, \ldots\rangle$ is a subsequence of ρ,
2 for every $n \in \mathbb{N}$, the first appearance of n in ρ precedes the first appearance of $n+1$ in ρ.

4. Product bases

Product bases

Problem: We need more bases compatible with E.

Product bases

Problem: We need more bases compatible with E. Idea: Use products of compatible bases.

Definition

Let $\mathcal{B}_{i}=\left\langle P_{k}^{(i)}(x)\right\rangle_{k=0}^{\infty}$ be a basis of $\mathbb{K}[x]$ for $i=1,2, \ldots, m$.
For all $k \in \mathbb{N}$ and $j \in\{0,1, \ldots, m-1\}$, let

$$
P_{m k+j}^{(\pi)}(x):=\prod_{i=1}^{j} P_{k+1}^{(i)}(x) \cdot \prod_{i=j+1}^{m} P_{k}^{(i)}(x) .
$$

Then $\prod_{i=1}^{m} \mathcal{B}_{i}:=\left\langle P_{n}^{(\pi)}(x)\right\rangle_{n=0}^{\infty}$ is the product of $\mathcal{B}_{1}, \ldots, \mathcal{B}_{m}$.

Product bases

Example

Let $m=2, \mathcal{B}_{1}=\mathcal{B}_{2}=\mathcal{C}$. Then $P_{k}^{(1)}(x)=P_{k}^{(2)}(x)=\binom{x}{k}$, and so

Product bases

Example

Let $m=2, \mathcal{B}_{1}=\mathcal{B}_{2}=\mathcal{C}$. Then $P_{k}^{(1)}(x)=P_{k}^{(2)}(x)=\binom{x}{k}$, and so

$$
P_{2 k}^{(\pi)}(x)=P_{k}^{(1)}(x) P_{k}^{(2)}(x)=\binom{x}{k}^{2}
$$

Product bases

Example

Let $m=2, \mathcal{B}_{1}=\mathcal{B}_{2}=\mathcal{C}$. Then $P_{k}^{(1)}(x)=P_{k}^{(2)}(x)=\binom{x}{k}$, and so

$$
\begin{aligned}
P_{2 k}^{(\pi)}(x) & =P_{k}^{(1)}(x) P_{k}^{(2)}(x)=\binom{x}{k}^{2} \\
P_{2 k+1}^{(\pi)}(x) & =P_{k+1}^{(1)}(x) P_{k}^{(2)}(x)=\binom{x}{k+1}\binom{x}{k} .
\end{aligned}
$$

Product bases

Theorem

Let $\mathcal{B}_{1}, \mathcal{B}_{2}, \ldots, \mathcal{B}_{m}$ be factorial bases of $\mathbb{K}[x]$, and $L \in \mathcal{L}_{\mathbb{K}[x]}$.
$1 \prod_{i=1}^{m} \mathcal{B}_{i}$ is a factorial basis of $\mathbb{K}[x]$.
2 Let L be a ring endomorphism of $\mathbb{K}[x]$, and let each \mathcal{B}_{i} be $\left(A_{i}, B_{i}\right)$-compatible with L.
Denote $A=\max _{1 \leq i \leq m} A_{i}$ and $B=\min _{1 \leq i \leq m} B_{i}$. Then $\prod_{i=1}^{m} \mathcal{B}_{i}$ is $(m A, B)$-compatible with L.

Product bases

Theorem

Let $\mathcal{B}_{1}, \mathcal{B}_{2}, \ldots, \mathcal{B}_{m}$ be factorial bases of $\mathbb{K}[x]$, and $L \in \mathcal{L}_{\mathbb{K}[x]}$.
$1 \prod_{i=1}^{m} \mathcal{B}_{i}$ is a factorial basis of $\mathbb{K}[x]$.
2 Let L be a ring endomorphism of $\mathbb{K}[x]$, and let each \mathcal{B}_{i} be (A_{i}, B_{i})-compatible with L.
Denote $A=\max _{1 \leq i \leq m} A_{i}$ and $B=\min _{1 \leq i \leq m} B_{i}$. Then $\prod_{i=1}^{m} \mathcal{B}_{i}$ is $(m A, B)$-compatible with L.

Proposition

Let $a \in \mathbb{N} \backslash\{0\}, b \in \mathbb{K}$, and $\mathcal{C}_{a, b}:=\left\langle\binom{ a x+b}{k}\right\rangle_{k=0}^{\infty}$.
Then E is $(a, 0)$-compatible with $\mathcal{C}_{a, b}$.

Product bases

Theorem

Let $\mathcal{B}_{1}, \mathcal{B}_{2}, \ldots, \mathcal{B}_{m}$ be factorial bases of $\mathbb{K}[x]$, and $L \in \mathcal{L}_{\mathbb{K}[x]}$.
$1 \prod_{i=1}^{m} \mathcal{B}_{i}$ is a factorial basis of $\mathbb{K}[x]$.
2 Let L be a ring endomorphism of $\mathbb{K}[x]$, and let each \mathcal{B}_{i} be $\left(A_{i}, B_{i}\right)$-compatible with L.
Denote $A=\max _{1 \leq i \leq m} A_{i}$ and $B=\min _{1 \leq i \leq m} B_{i}$. Then $\prod_{i=1}^{m} \mathcal{B}_{i}$ is $(m A, B)$-compatible with L.

Proposition

Let $a \in \mathbb{N} \backslash\{0\}, b \in \mathbb{K}$, and $\mathcal{C}_{a, b}:=\left\langle\binom{ a x+b}{k}\right\rangle_{k=0}^{\infty}$.
Then E is $(a, 0)$-compatible with $\mathcal{C}_{a, b}$.
Proof: By the Chu-Vandermonde identity,

$$
\binom{a(x+1)+b}{k}=\sum_{i=0}^{a}\binom{a}{i}\binom{a x+b}{k-i}=\sum_{i=-a}^{0}\binom{a}{-i}\binom{a x+b}{k+i} .
$$

Product bases

Corollary

The product basis $\prod_{i=1}^{m} \mathcal{C}_{a_{i}, b_{i}}$ is a factorial basis of $\mathbb{K}[x]$, corresponding to the kernel

$$
K(n, k)=\prod_{i=1}^{m}\binom{a_{i} n+b_{i}}{k}
$$

It is $(m A, 0)$-compatible with E where $A=\max _{1 \leq i \leq m} a_{i}$.

Product bases

Corollary

The product basis $\prod_{i=1}^{m} \mathcal{C}_{a_{i}, b_{i}}$ is a factorial basis of $\mathbb{K}[x]$, corresponding to the kernel

$$
K(n, k)=\prod_{i=1}^{m}\binom{a_{i} n+b_{i}}{k} .
$$

It is $(m A, 0)$-compatible with E where $A=\max _{1 \leq i \leq m} a_{i}$.

Example

$\mathcal{B}=\mathcal{C}^{2}: m=2, A=1 \Longrightarrow E$ is $(2,0)$-compatible with \mathcal{B}

Product bases

Corollary

The product basis $\prod_{i=1}^{m} \mathcal{C}_{a_{i}, b_{i}}$ is a factorial basis of $\mathbb{K}[x]$, corresponding to the kernel

$$
K(n, k)=\prod_{i=1}^{m}\binom{a_{i} n+b_{i}}{k} .
$$

It is $(m A, 0)$-compatible with E where $A=\max _{1 \leq i \leq m} a_{i}$.

Example

$\mathcal{B}=\mathcal{C}^{2}: m=2, A=1 \Longrightarrow E$ is $(2,0)$-compatible with \mathcal{B}

$$
P_{2 k}(x+1)=P_{2 k}(x)+2 P_{2 k-1}(x)+P_{2 k-2}(x)
$$

$$
P_{2 k+1}(x+1)=P_{2 k+1}(x)+\frac{2 k+1}{k+1} P_{2 k}(x)+\frac{k}{k+1} P_{2 k-1}(x)
$$

Product bases

Example (continued)
X is $(0,1)$-compatible with \mathcal{B} :

$$
\begin{aligned}
x \cdot P_{2 k}(x) & =(k+1) P_{2 k+1}(x)+k P_{2 k}(x) \\
x \cdot P_{2 k+1}(x) & =(k+1) P_{2 k+2}(x)+k P_{2 k+1}(x) .
\end{aligned}
$$

Product bases

Example (continued)

X is $(0,1)$-compatible with \mathcal{B} :

$$
\begin{aligned}
x \cdot P_{2 k}(x) & =(k+1) P_{2 k+1}(x)+k P_{2 k}(x) \\
x \cdot P_{2 k+1}(x) & =(k+1) P_{2 k+2}(x)+k P_{2 k+1}(x)
\end{aligned}
$$

Problems:

1 The coefficients of $\mathcal{R}_{\mathcal{B}} L$ need not belong to $\mathbb{K}(k)$.
2 ord $\mathcal{R}_{\mathcal{B}} L$ may exceed ord L by a factor of $m A$.
3 We need only those $h \in \operatorname{ker} \mathcal{R}_{\mathcal{B}} L$ satisfying

$$
k \not \equiv 0 \quad(\bmod m) \Longrightarrow h_{k}=0
$$

5. Sieved polynomial bases

Sieved polynomial bases

Definition

Call the sequence $b \in \mathbb{K}^{\mathbb{N}}$ defined by

$$
b_{k}=a_{m k+j} \text { for all } k \in \mathbb{N}
$$

the j-th m-section of $a \in \mathbb{K}^{\mathbb{N}}$, and denote it by $s_{j}^{m} a$.

Sieved polynomial bases

Definition

Call the sequence $b \in \mathbb{K}^{\mathbb{N}}$ defined by

$$
b_{k}=a_{m k+j} \text { for all } k \in \mathbb{N}
$$

the j-th m-section of $a \in \mathbb{K}^{\mathbb{N}}$, and denote it by $s_{j}^{m} a$.
Notation
For

$$
y(x)=\sum_{k=0}^{\infty} c_{k} P_{k}(x) \in \mathbb{K}[[\mathcal{B}]]
$$

let $\beta y=c^{\prime} \in \mathbb{K}^{\mathbb{Z}}$ be the doubly-infinite sequence where

$$
c_{k}^{\prime}= \begin{cases}c_{k}, & \text { if } k \geq 0 \\ 0, & \text { if } k<0\end{cases}
$$

Sieved polynomial bases

Theorem
For $L \in \mathcal{L}_{\mathbb{K}[x]}, k \in \mathbb{N}, m \in \mathbb{N} \backslash\{0\}, r, j \in\{0, \ldots, m-1\}$, let

$$
L_{r, j}:=\sum_{\substack{-A \leq i \leq B \\ i+j \equiv r(\bmod m)}} \alpha_{k+\frac{r-i-j}{m}, j, i} E_{k}^{\frac{r-i-j}{m}} \in \mathcal{E}
$$

where

$$
L P_{m k+j}(x)=\sum_{i=-A}^{B} \alpha_{k, j, i} P_{m k+j+i}(x)
$$

Then for every $y \in \mathbb{K}[[\mathcal{B}]]$ and $r \in\{0,1, \ldots, m-1\}$,

$$
s_{r}^{m} \beta(L y)=\sum_{j=0}^{m-1} L_{r, j}\left(s_{j}^{m} \beta y\right)
$$

Sieved polynomial bases

Corollary
$L y=0 \Longleftrightarrow \forall r \in\{0,1, \ldots, m-1\}:$

$$
\sum_{j=0}^{m-1} L_{r, j}\left(s_{j}^{m} \beta y\right)=0 .
$$

Sieved polynomial bases

Corollary
$L y=0 \Longleftrightarrow \forall r \in\{0,1, \ldots, m-1\}:$

$$
\sum_{j=0}^{m-1} L_{r, j}\left(s_{j}^{m} \beta y\right)=0 .
$$

Notation

$$
\left[\mathcal{R}_{\mathcal{B}} L\right]:=\left[L_{r, j}\right]_{r, j=0}^{m-1}
$$

Proposition

$$
\left[\mathcal{R}_{\mathcal{B}}\left(L^{(1)} L^{(2)}\right)\right]=\left[\mathcal{R}_{\mathcal{B}} L^{(1)}\right]\left[\mathcal{R}_{\mathcal{B}} L^{(2)}\right]
$$

Sieved polynomial bases

- To construct $\left[\mathcal{R}_{\mathcal{B}} L\right]$ for some $L \in \mathbb{K}[x]\langle E\rangle$:

11 compute $\left[\mathcal{R}_{\mathcal{B}} E\right]$ and $\left[\mathcal{R}_{\mathcal{B}} X\right]$;
\square everywhere in L substitute

- $E \mapsto\left[\mathcal{R}_{\mathcal{B}} E\right]$,
- $x \mapsto\left[\mathcal{R}_{\mathcal{B}} X\right]$,
- $c \in \mathbb{K}^{*} \mapsto c I_{m}$.

Sieved polynomial bases

- To construct $\left[\mathcal{R}_{\mathcal{B}} L\right]$ for some $L \in \mathbb{K}[x]\langle E\rangle$:

1 compute $\left[\mathcal{R}_{\mathcal{B}} E\right]$ and $\left[\mathcal{R}_{\mathcal{B}} X\right]$;
\square everywhere in L substitute

- $E \mapsto\left[\mathcal{R}_{\mathcal{B}} E\right]$,
- $x \mapsto\left[\mathcal{R}_{\mathcal{B}} X\right]$,
- $c \in \mathbb{K}^{*} \mapsto c I_{m}$.
- We are looking for $y \in \operatorname{ker} L$ of the form

$$
y(x)=\sum_{k=0}^{\infty} h_{k} P_{m k}(x)
$$

so we have $s_{0}^{m} \beta y=h$ and $s_{j}^{m} \beta y=0$ for all $j \neq 0$.

Sieved polynomial bases

■ For such y, the last Corollary implies

$$
\begin{aligned}
L y=0 & \Longleftrightarrow \forall r \in\{0,1, \ldots, m-1\}: L_{r, 0} h=0 \\
& \Longleftrightarrow \operatorname{gcrd}\left(L_{0,0}, L_{1,0}, \ldots, L_{m-1,0}\right) h=0
\end{aligned}
$$

■ So we only need column 0 of $\left[\mathcal{R}_{\mathcal{B}} L\right]$ to construct the desired annihilator

$$
L^{\prime}=\operatorname{gcrd}\left(L_{0,0}, L_{1,0}, \ldots, L_{m-1,0}\right)
$$

of the unknown h.

Sieved polynomial bases

Example

Find a solution $y \neq 0$ of $L y=0$ where

$$
\begin{aligned}
L= & 4(2 n+3)^{2}(4 n+3) E^{2} \\
& -2(4 n+5)\left(20 n^{2}+50 n+27\right) E+9(4 n+7)(n+1)^{2} .
\end{aligned}
$$

Sieved polynomial bases

Example

Find a solution $y \neq 0$ of $L y=0$ where

$$
\begin{aligned}
L= & 4(2 n+3)^{2}(4 n+3) E^{2} \\
& -2(4 n+5)\left(20 n^{2}+50 n+27\right) E+9(4 n+7)(n+1)^{2}
\end{aligned}
$$

For $\mathcal{B}=\mathcal{C}^{2}$ we compute

$$
\left[\mathcal{R}_{\mathcal{B}} E\right]=\left[\begin{array}{cc}
E_{k}+1 & \frac{2 k+1}{k+1} \\
2 E_{k} & \frac{k+1}{k+2} E_{k}+1
\end{array}\right]
$$

Sieved polynomial bases

Example

Find a solution $y \neq 0$ of $L y=0$ where

$$
\begin{aligned}
L= & 4(2 n+3)^{2}(4 n+3) E^{2} \\
& -2(4 n+5)\left(20 n^{2}+50 n+27\right) E+9(4 n+7)(n+1)^{2}
\end{aligned}
$$

For $\mathcal{B}=\mathcal{C}^{2}$ we compute

$$
\begin{aligned}
& {\left[\mathcal{R}_{\mathcal{B}} E\right]=\left[\begin{array}{cc}
E_{k}+1 & \frac{2 k+1}{k+1} \\
2 E_{k} & \frac{k+1}{k+2} E_{k}+1
\end{array}\right]} \\
& {\left[\mathcal{R}_{\mathcal{B}} X\right]=\left[\begin{array}{cc}
k & k E_{k}^{-1} \\
k+1 & k
\end{array}\right]}
\end{aligned}
$$

Sieved polynomial bases

Example (continued)

This yields

Sieved polynomial bases

Example (continued)

This yields

$$
\begin{aligned}
L_{0,0}= & 4(2 k+3)^{2}(4 k+3) E_{k}^{2} \\
& +\frac{2\left(592 k^{4}+1388 k^{3}+1254 k^{2}+519 k+81\right)}{k+1} E_{k} \\
& +676 k^{3}-889 k^{2}-466 k-99-(244 k+41) k^{2} E_{k}^{-1}, \\
L_{1,0}= & \frac{8(2 k+3)\left(28 k^{3}+108 k^{2}+132 k+51\right)}{k+2} E_{k}^{2} \\
& +4\left(360 k^{3}+720 k^{2}+451 k+82\right) E_{k} \\
& -2(k+1)\left(74 k^{2}+377 k+133\right)-60(k+1) k^{2} E_{k}^{-1}
\end{aligned}
$$

Sieved polynomial bases

Example (continued)

with $L^{\prime}=\operatorname{gcrd}\left(L_{0,0}, L_{1,0}\right)=1-\frac{k}{2(2 k-1)} E_{k}^{-1}$.

Sieved polynomial bases

Example (continued)

with $L^{\prime}=\operatorname{gcrd}\left(L_{0,0}, L_{1,0}\right)=1-\frac{k}{2(2 k-1)} E_{k}^{-1}$.
Looking for hypergeometric solutions h of $L^{\prime} h=0$, we obtain $h_{k}=\frac{1}{\binom{2 k}{k}}$, hence

Sieved polynomial bases

Example (continued)

with $L^{\prime}=\operatorname{gcrd}\left(L_{0,0}, L_{1,0}\right)=1-\frac{k}{2(2 k-1)} E_{k}^{-1}$.
Looking for hypergeometric solutions h of $L^{\prime} h=0$, we obtain $h_{k}=\frac{1}{\binom{2 k}{k}}$, hence

$$
y_{n}=\sum_{k=0}^{\infty} \frac{\binom{n}{k}^{2}}{\binom{2 k}{k}}
$$

is a definite-sum solution of $L y=0$.

Sieved polynomial bases

Example

Find a definite-sum solution $y \neq 0$ of $L y=0$ where

$$
L=(n+2)^{2} E^{2}-\left(11 n^{2}+33 n+25\right) E-(n+1)^{2}
$$

using the kernel $K(n, k)=\binom{n}{k}\binom{n+k}{2 k}$.

Sieved polynomial bases

Example

Find a definite-sum solution $y \neq 0$ of $L y=0$ where

$$
L=(n+2)^{2} E^{2}-\left(11 n^{2}+33 n+25\right) E-(n+1)^{2}
$$

using the kernel $K(n, k)=\binom{n}{k}\binom{n+k}{2 k}$.
Define the basis $\mathcal{B}=\left\langle P_{k}(x)\right\rangle_{k=0}^{\infty}$ by

$$
\begin{aligned}
P_{3 k}(x) & =\binom{x}{k}\binom{x+k}{2 k}, \\
P_{3 k+1}(x) & =\binom{x}{k}\binom{x+k}{2 k+1}, \\
P_{3 k+2}(x) & =\binom{x}{k+1}\binom{x+k}{2 k+1} .
\end{aligned}
$$

Sieved polynomial bases

Example (continued)

It is not difficult to see that basis \mathcal{B} is factorial, hence the operator X is $(0,1)$-compatible with \mathcal{B} :

$$
\begin{aligned}
x P_{3 k}(x) & =(2 k+1) P_{3 k+1}(x)+k P_{3 k}(x) \\
x P_{3 k+1}(x) & =(k+1) P_{3 k+2}(x)+k P_{3 k+1}(x) \\
x P_{3 k+2}(x) & =2(k+1) P_{3 k+3}(x)-(k+1) P_{3 k+2}(x)
\end{aligned}
$$

Sieved polynomial bases

Example (continued)

The shift operator E is $(3,0)$-compatible with \mathcal{B} :

$$
\begin{aligned}
& P_{3 k}(x+1)=P_{3 k}(x) \\
& \quad+\frac{3}{2} P_{3 k-1}(x)+\frac{8 k-3}{2 k} P_{3 k-2}(x)+P_{3 k-3}(x) \\
& P_{3 k+1}(x+1)=P_{3 k+1}(x) \\
& \quad+\frac{3 k+1}{2 k+1} P_{3 k}(x)+\frac{k}{2 k+1} P_{3 k-1}(x)+\frac{2 k-1}{2 k+1} P_{3 k-2}(x) \\
& P_{3 k+2}(x+1)=P_{3 k+2}(x)+\frac{3 k+2}{k+1} P_{3 k+1}(x)+P_{3 k}(x)
\end{aligned}
$$

Sieved polynomial bases

Example (continued)

The associated operator matrices are:

$$
\begin{gathered}
{\left[\mathcal{R}_{\mathcal{B}} E\right]=\left[\begin{array}{ccc}
E_{k}+1 & \frac{3 k+1}{2 k+1} & 1 \\
\frac{8 k+5}{2(k+1)} E_{k} & \frac{2 k+1}{2 k+3} E_{k}+1 & \frac{3 k+2}{k+1} \\
\frac{3}{2} E_{k} & \frac{k+1}{2 k+3} E_{k} & 1
\end{array}\right],} \\
{\left[\mathcal{R}_{\mathcal{B}} X\right]=\left[\begin{array}{ccc}
k & 0 & 2 k E_{k}^{-1} \\
2 k+1 & k & 0 \\
0 & k+1 & -(k+1)
\end{array}\right]}
\end{gathered}
$$

Sieved polynomial bases

Example (continued)

The associated operator matrices are:

$$
\begin{gathered}
{\left[\mathcal{R}_{\mathcal{B}} E\right]=\left[\begin{array}{ccc}
E_{k}+1 & \frac{3 k+1}{2 k+1} & 1 \\
\frac{8 k+5}{2(k+1)} E_{k} & \frac{2 k+1}{2 k+3} E_{k}+1 & \frac{3 k+2}{k+1} \\
\frac{3}{2} E_{k} & \frac{k+1}{2 k+3} E_{k} & 1
\end{array}\right],} \\
{\left[\mathcal{R}_{\mathcal{B}} X\right]=\left[\begin{array}{ccc}
k & 0 & 2 k E_{k}^{-1} \\
2 k+1 & k & 0 \\
0 & k+1 & -(k+1)
\end{array}\right]}
\end{gathered}
$$

For $L=(n+2)^{2} E^{2}-\left(11 n^{2}+33 n+25\right) E-(n+1)^{2}$ we find:

Sieved polynomial bases

Example (continued)

$$
\begin{aligned}
L_{0,0}= & (k+2)^{2} E_{k}^{2}+\frac{29 k^{3}+46 k^{2}+14 k-1}{2 k+1} E_{k} \\
& -2\left(37 k^{2}+41 k+11\right), \\
L_{1,0}= & \frac{(k+2)(4 k+5)\left(12 k^{2}+26 k+11\right)}{2(k+1)(2 k+3)} E_{k}^{2} \\
& -\frac{79+237 k+199 k^{2}+47 k^{3}}{2(1+k)} E_{k}-(2 k+1)(49 k+31), \\
L_{2,0}= & \frac{(k+2)\left(22 k^{2}+62 k+43\right)}{2(2 k+3)} E_{k}^{2} \\
& -\frac{3}{2}\left(11 k^{2}+34 k+25\right) E_{k}-11(k+1)(2 k+1),
\end{aligned}
$$

Sieved polynomial bases

Example (continued)

 and$$
\operatorname{gcrd}\left(L_{0,0}, L_{1,0}, L_{2,0}\right)=E_{k}-2 \frac{2 k+1}{k+1} .
$$

Sieved polynomial bases

Example (continued)

and

$$
\operatorname{gcrd}\left(L_{0,0}, L_{1,0}, L_{2,0}\right)=E_{k}-2 \frac{2 k+1}{k+1} .
$$

So $h_{k}=\binom{2 k}{k}$ satisfies $L_{0,0} h_{k}=L_{1,0} h_{k}=L_{2,0} h_{k}=0$.

Sieved polynomial bases

Example (continued)

and

$$
\operatorname{gcrd}\left(L_{0,0}, L_{1,0}, L_{2,0}\right)=E_{k}-2 \frac{2 k+1}{k+1} .
$$

So $h_{k}=\binom{2 k}{k}$ satisfies $L_{0,0} h_{k}=L_{1,0} h_{k}=L_{2,0} h_{k}=0$. Since

$$
h_{k} P_{3 k}(n)=\binom{2 k}{k}\binom{n}{k}\binom{n+k}{2 k}=\binom{n}{k}^{2}\binom{n+k}{k},
$$

Sieved polynomial bases

Example (continued)

and

$$
\operatorname{gcrd}\left(L_{0,0}, L_{1,0}, L_{2,0}\right)=E_{k}-2 \frac{2 k+1}{k+1} .
$$

So $h_{k}=\binom{2 k}{k}$ satisfies $L_{0,0} h_{k}=L_{1,0} h_{k}=L_{2,0} h_{k}=0$. Since

$$
h_{k} P_{3 k}(n)=\binom{2 k}{k}\binom{n}{k}\binom{n+k}{2 k}=\binom{n}{k}^{2}\binom{n+k}{k},
$$

we have found that Apéry's $\zeta(2)$-sequence

$$
y_{n}=\sum_{k=0}^{\infty} h_{k} P_{3 k}(n)=\sum_{k=0}^{\infty}\binom{n}{k}^{2}\binom{n+k}{k}
$$

Sieved polynomial bases

Example (continued)

is a solution of

$$
(n+2)^{2} y_{n+2}-\left(11 n^{2}+33 n+25\right) y_{n+1}-(n+1)^{2} y_{n}=0
$$

Sieved polynomial bases

Example (continued)

is a solution of

$$
(n+2)^{2} y_{n+2}-\left(11 n^{2}+33 n+25\right) y_{n+1}-(n+1)^{2} y_{n}=0
$$

Similarly, using the kernel $K(n, k)=\binom{n+k}{2 k}^{2}$, we can show that Apéry's $\zeta(3)$-sequence

Sieved polynomial bases

Example (continued)

is a solution of

$$
(n+2)^{2} y_{n+2}-\left(11 n^{2}+33 n+25\right) y_{n+1}-(n+1)^{2} y_{n}=0
$$

Similarly, using the kernel $K(n, k)=\binom{n+k}{2 k}^{2}$, we can show that Apéry's $\zeta(3)$-sequence

$$
y_{n}=\sum_{k=0}^{\infty}\binom{n}{k}^{2}\binom{n+k}{k}
$$

is a solution of

$$
\begin{aligned}
(n+2)^{3} y_{n+2} & -(2 n+3)\left(17 n^{2}+51 n+39\right) y_{n+1} \\
& +(n+1)^{3} y_{n}=0
\end{aligned}
$$

Some references

1 M. E. H. Ismail: On sieved orthogonal polynomials. I. Symmetric Pollaczek analogues, SIAM J. Math. Anal. 16 (1985) 1093-1113.
2 M. Petkovšek: Finding Closed-Form Solutions of Difference Equations by Symbolic Methods, Ph.D. Thesis, Pittsburgh PA: Carnegie Mellon University, CMU-CS-91-103, 1990.
3 A. Di Bucchianico, D. E. Loeb: Sequences of binomial type with persistent roots, J. Math. Anal. Appl. 199 (1996) 39-58.

Some references

4 S. Chen, M. F. Singer: Residues and telescopers for bivariate rational functions, Adv. in Appl. Math. 49 (2012) 111-133.

5 S. Chen, M. Kauers: Some open problems related to creative telescoping, J. Syst. Sci. Complex. 30 (2017) 154-172.
б M. Petkovšek: Definite sums as solutions of linear recurrences with polynomial coefficients, arXiv:1804.02964 [cs.SC] (2018).
7 A. Jiménez-Pastor, M. Petkovšek: The factorial-basis method for finding definite-sum solutions of linear recurrences with polynomial coefficients, arXiv:2202.05550 [cs.SC] (2022).

Thank you for your attention!

