Алгоритмы символьных вычислений для построения и исследования управляемых компартментальных моделей динамических систем

¹Петров А.А., ²Дружинина О.В., ¹Масина О.Н. ЕГУ им. И.А. Бунина¹ ФИЦ ИУ РАН²

Семинар «Компьютерная алгебра» Руководитель семинара – д.ф.-м.н. С.А. Абрамов ФИЦ ИУ РАН 19.11.2025

Аннотация

Доклад посвящен проблемам разработки алгоритмического и программного обеспечения символьных вычислений для построения и исследования управляемых компартментальных моделей динамических систем. Рассмотрены случаи, когда интенсивности переходов из одного компартмента в другой являются постоянными и изменяющимися. Предложены методы реализации компартментальных моделей с управлением на основе аналитического и имитационного подходов. Для имитационной реализации компартментальной модели разработан алгоритм символьных вычислений с представлением состояний на основе дискретного марковского процесса. Для аналитической реализации предложен алгоритм символьных вычислений для построения соответствующих систем обыкновенных дифференциальных уравнений с учетом управляющих воздействий. Разработан специализированный язык (DSL, Domain Specific Language) для формального описания управляемых компартментальных моделей. В качестве примеров рассмотрены обобщенные динамические модели эпидемиологии.

Введение

Современные исследования сосредоточены на символьном представлении моделей динамических систем. Решение ключевых задач направлено на

- автоматизацию построения управляемых компартментных моделей;
- символьную редукцию сложных моделей;
- генерацию кода для уравнений с управлением по обратной связи.

Теоретический и прикладной интерес представляет включение управляющих параметров в эпидемиологические модели, такие как SIR, SEIR, SAPHIRE и SIDARTHE и др.

Актуальные результаты разработки систем компьютерной алгебры I

Язык программирования **Julia** [Bezanson, 2012] предоставляет мощные инструменты для символьных вычислений, численного моделирования и высокопроизводительных расчетов, что делает его перспективной платформой для решения задач компьютерной алгебры.

В [Кулябов, 2021] авторы исследуют символьные вычисления для математического моделирования в экосистеме Julia. Рассмотрены ключевые функциональные области систем компьютерной алгебры в Julia и их практическая применимость.

В [Tarcsay et al., 2021] рассмотрена разработка компартментальных моделей для диагностики технических ошибок промышленных процессов, причем компартментальные модели предлагается развивать с учетом объединения с различными методами диагностики (экспертными системами, байесовскими сетями, паритетными отношениями и т. д.) и получить надежные инструменты для обнаружения неисправностей.

В [Зиненко, Балабанова, 2022] предлагается описание процесса распространения финансовых рисков по банковской системе с использованием компартментной модели. Предложенная компартментальная модель позволяет оценить динамику распространения финансового риска в банковской системе.

Актуальные результаты разработки систем компьютерной алгебры II

В [Kunwar at al., 2022] проведено сравнение компартментальной и агентной моделей распространения эпидемий. Показано, что два типа моделей дают похожие результаты исследования, однако демонстрируют разные характеристики при рассмотрении их вычислительной и концептуальной сложности.

В [Логинов, Перцев, Топчий, 2019] разработана стохастическая модель динамики частиц в компартментальной системе, описываемая процессом рождения-гибели с индивидуальными временами переходов. На основе теории графов и метода Монте-Карло реализован алгоритм численного моделирования.

В [Kouye et al, 2024] проведен глобальный анализ чувствительности стохастических компартментальных моделей эпидемиологии с использованием непрерывных марковских цепей.

Вопросы эффективной символьной редукции сложных управляемых моделей, генерации кода для синтеза многомерных дифференциальных уравнений применительно к компартментальным системам в различных предметных областях остаются недостаточно исследованными.

Предшествующие публикации І

В [Демидова, Дружинина, Масина, Петров, 2023] разработан программный комплекс для синтеза и анализа управляемых динамических моделей с учетом детерминированного и стохастического описания. На примерах популяционной динамики показана возможность преобразования моделей между разными представлениями и проведения сравнительного анализа. Для реализации на Python и Julia использованы методы компьютерной алгебры, а также численные алгоритмы Рунге-Кутты.

В [Демидова, Дружинина, Масина, Петров, 2024] рассмотрены вопросы построения компартментальных моделей динамических систем с применением программного комплекса символьных вычислений. Программный комплекс направлен на решение задачи унификации формализованного построения моделей с учетом сущностного описания возможных взаимодействий компартментов и влияния различных факторов на эволюцию систем. Разработанное программное обеспечение позволяет получить символьное представление дифференциальных уравнений модели

Предшествующие публикации II

как в стохастическом, так и в детерминированном случае. Предложенный программный комплекс реализован с помощью языка Julia.

Работа [Петров, Дружинина, Масина, Демидова, 2025] посвящена созданию алгоритмического и программного обеспечения для математического моделирования компартментальных систем. Для аналитической реализации предложен алгоритм символьных вычислений для построения соответствующих систем обыкновенных дифференциальных уравнений с учетом управляющих воздействий. Разработан специализированный язык (DSL, Domain Specific Language) для формального описания управляемых компартментальных моделей. Проведены вычислительные эксперименты по расчету траекторной динамики с учетом управления.

Компартментальные модели

Области применения

Эпидемиология

Mодели SIR, SEIR Прогноз пандемий Стратегии вакцинации

Фармакокинетика

Распределение лекарств (ADME) Расчет дозировок Многокамерные модели

Экология

Круговороты веществ Перенос загрязнителей Пищевые цепи

Физиология

Метаболизм (глюкоза, кальций) Эндокринная регуляция Рост опухолей

Экономика & Социум

Финансовые потоки Распространение инноваций Динамика мнений

Технологии

Системы доставки лекарств Кинетика высвобождения

Модель эпидемиологии SIR

Наиболее известным примером использования компартментальных моделей в эпидемиологии является модель SIR (Susceptible – Infected – Recovered), которая используется для изучения распространения инфекционных заболеваний и содержит три компартмента: S – количество восприимчивых к заболеванию людей; I – количество инфицированных людей на текущий момент; R – количество выздоровевших или невосприимчивых.

Рис. 1: Диаграмма переходов для модели SIR

Цель и задачи исследования

Целью исследования является разработка алгоритмов символьных вычислений для построения и исследования управляемых компартментальных моделей динамических систем.

Задачи исследования:

- разработка инструментария для построения и анализа моделей компартментальных систем в символьной форме
- разработка и реализация алгоритмов численного моделирования компартментальных систем
 - разработка имитационных алгоритмов моделирования траекторной динамически
 - разработка алгоритмов генерации ОДУ на основе формального описания модели
- апробация и верификация разработанных методов и алгоритмов с использованием управляемых компартментальных моделей

Структура языка правил взаимодействия

Общий формат правила:

⟨intense⟩ ⟨interact⟩

Интенсивность $\langle expr \rangle$:

- Константы: 5, 0.1
- Переменные: k1, A
- Мат. операции: +, -, *, /
- Функции: sin(), log(), ln()

Взаимодействие $\langle interact \rangle$:

- Хим. нотация: A + B → C
- Распад: (A → 0)

Примеры правил взаимодействия

Базовые реакции

- k(A + B → C) простая бинарная
- (k1*A*B) (A + B → 2C) массового действия
- $(A*exp(-\lambda*t))(A \rightarrow 0)$ экспоненциальный распад

Сложная кинетика

- ((Vmax*S)/(Km+S))(S → P) Михаэлиса-Ментен
- $(A*sin(\omega*t))(2X + Y \rightarrow X)$ осциллирующая
- (k*ln(A))(A → B) логарифмическая

Пример реализации в виде программы на Julia модель SIR

```
include("./compart_next.jl")

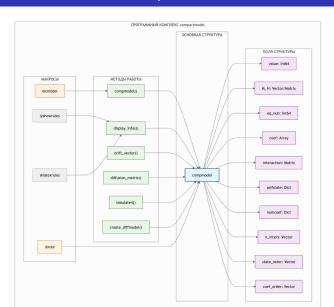
variables.s.i.r

sir_=_@cmodel_s.i.r

rule.sir_β(s.→.i)
rule.sir_γ(i..→.r)

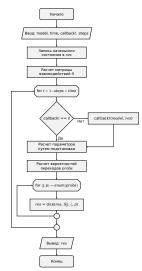
showrules.sir
```

Результат работы макроса showrules:

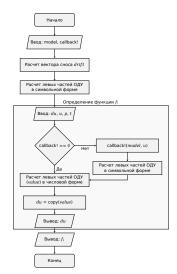

```
s \stackrel{\beta}{	o} i
i \stackrel{\gamma}{	o} r
```

Формальное описание языка

Нотация BNF


```
<expr> ::= <term> | <expr> <binary op> <expr>
                      | ['+'|'-'] '(' <expr> ')'
| ['+'|'-'] <term> | <mathf>
| '(' <expr> ')'
<mathf> ::= 'log(' <expr> ',' <expr> ')' | 'ln(' <expr> ')'
<term>
                ::= <constant> | <variable>
<variable>
                ::= letter {letter|digit}
<constant>
                ::= digit+
digit ::= '0'|'1'|'2'|'3'|'4'|'5'|'6'|'7'|'8'|'9'
letter ::= 'a'..'z' | 'A'..'Z' | 'α'..'ω'
<binary_op> ::= '+' | '-' | '*' | '/' |
<rule>
                ::= <intense> <interact>
                ::= <letter> | '(' <expr> ')'
<intense>
<interact>
                ::= '(' <state> '-' <state> ')' | '(' <state> '-' '0' ')'
<state>
                ::= <letter> '+' <letter> | '2' <letter>
                                                  '2' <letter> '+' '<letter>' <letter>
```

Программный комплекс compartmodel


Алгоритмы программного комплекса

Имитационный алгоритм траекторной динамики

Алгоритмы программного комплекса

Алгоритм построения системы ОДУ (дифференциальный алгоритм)

Программная структура компартментальной модели

```
mutable_struct_compmodel
        value::Int64
        M::Union{Vector,Matrix}
        N::Union{Vector,Matrix}
        ea nub::Int64
       ...coef::Array
        interaction::Matrix{Int64}
8
        selfstate::Dict(Num.Int64)
9
        numcoef::Dict{Num.Float64}
10
        n inters::Vector{Num}
11
        state order::Vector(Num)
12
        coef order::Vector(Num)
13
14
     end
```

где value – количество компартментов, M,N – матрицы взаимодествий, eq_nub – количество правил, coef – выражения интенсивностей переходов в строковой форме, interaction – матрица возможных типов взаимодействий, selfstate – словарь состояний компатментов, numcoef – словарь значений коэффициентов интенсивностей переходов, n_i nters – функции интенсивностей переходов в символьной форме, state_order – порядок компартментов, coef_order – порядок коэффициентов интенсивностей переходов.

Пример реализации в виде программы на Julia модель SIRU

```
include("./compart_next.jl")

devariables.s.i.r

sir_=_@cmodel.s.i.r

reflection (β*(i/n))(s.-.i)
 reflection (β*(i/n))(s.-.i)
 reflection (γ.-.u)(i.-.r)
 reflection (β*(i/n))(s.-.r)
 reflection (β*(i/n))(s.-..r)
 reflection (β*(i/n))(s.-...r)
 refl
```

Результат работы макроса showrules:

$$s \stackrel{\beta*(i/n)}{\rightarrow} i$$
 $i \stackrel{\gamma+u}{\rightarrow} r$

Дифференциальная форма модели

Дифференциальные уравнения модели имеют вид:

$$\dot{\Omega} = \begin{bmatrix} \frac{-is\beta}{n} \\ \frac{is\beta}{n} - i(u + \gamma) \\ i(u + \gamma) \end{bmatrix}, \quad \Omega = (s, i, r)^{T}, \quad u = f_{u}(t, \Omega),$$
 (1)

где s – численность компартмента S (число восприимчивых), r – численность компартмента R (число выздоровевших), u - функция управления с обратной связью.

Указанные уравнения синтезируются с использованием предметноориентированного языка на основе макрокоманд Julia. Синтез осуществлен с применением символьных вычислений на основе алгоритма 2.

Результаты моделирования ^{Модель SIR}

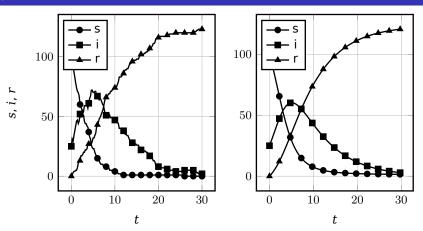


Рис. 2: Траекторная динамика модели SIR для имитационной реализации (слева) и для системы ОДУ (справа)

Результаты моделирования Модель SIRU

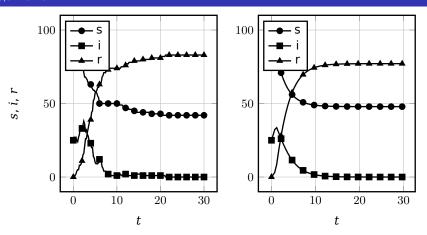


Рис. 3: Траекторная динамика модели SIRU для имитационной реализации (слева) и для системы ОДУ (справа) при изменении значения u от 0 до 0.5

Описание модели SIRHU

Модель SIRHU расширяет модель SIRU за счет введения дополнительного компартмента H (незарегистрированные инфицированные). Диаграмма этой модели показана на рисунке 4.

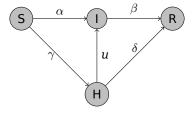


Рис. 4: Диаграмма модели SIRHU

Правила взаимодействия

Код с макромодулем compart.jl:

```
include("./compart.jl")  
@variables s i r h  
sirh = @cmodel s i r h  
@rule sirh \alpha(s + i \rightarrow i + i)  
@rule sirh \beta(i \rightarrow r)  
@rule sirh \gamma(s + h \rightarrow h + h)  
@rule sirh \gamma(s + h \rightarrow h + h)  
@rule sirh \gamma(s + h \rightarrow h + h)  
@rule sirh \gamma(s + h \rightarrow h + h)  
@rule sirh \gamma(s + h \rightarrow h + h)  
@rule sirh \gamma(s + h \rightarrow h + h)
```

@showrules sirh

Финальные правила взаимодействия:

$$i+s\stackrel{lpha}{
ightarrow} 2i, \ i\stackrel{eta}{
ightarrow} r, \ h+s\stackrel{\gamma}{
ightarrow} 2h, \ h\stackrel{u}{
ightarrow} i, \ h\stackrel{\delta}{
ightarrow} r.$$

Дифференциальные уравнения

Программный пакет обеспечивает автоматическую генерацию дифференциальных уравнений модели SIRHU.

$$\dot{K} = \begin{bmatrix} -hs\gamma - is\alpha \\ hu - i\beta + is\alpha \\ h\delta + i\beta \\ -hu - h\delta + hs\gamma \end{bmatrix}, \quad K = [s, i, r, h]^{\mathsf{T}}, \quad u = f_u(t, K). \tag{2}$$

Экспериментальные результаты имитационного моделирования без управления

Численные эксперименты показывают согласованность модели SIRHU с решениями дифференциальных уравнений.

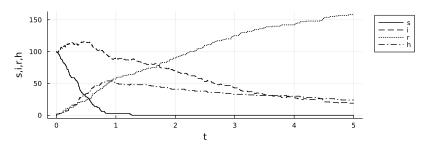


Рис. 5: Динамика компартментов SIRHU для конкретных параметров [0.01, 0.5, 0.1, 0.1, 0.1]

Экспериментальные результаты моделирования с управлением по обратной связи

Численные эксперименты показывают согласованность модели SIRHU с решениями дифференциальных уравнений.

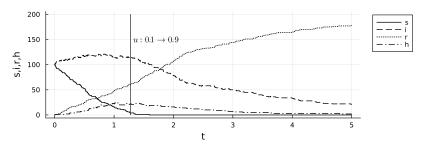
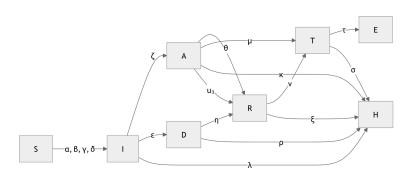
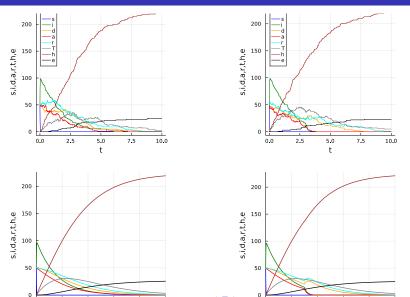



Рис. 6: Динамика компартментов SIRHU для конкретных параметров [0.01, 0.5, 0.1, 0.1 o 0.9, 0.1] и управления по обратной связи


Модель SIDARTHEU

- S количество восприимчивых к заболеванию людей,
- I количество скрыто инфицированных людей на текущий момент,
- D количество бессимптомных инфицированных, диагностированных лабораторно,
- А количество недиагностированных инфицированных с симптоматикой,
- R количество клинически диагностированных больных,
- Т количество угрожаемых (госпитализированных) диагностированных больных,
- Н количество выздоровевших (иммунизированных),
- Е количество погибших.

Результаты экспериментов

Перспективы исследования

- совершенствование алгоритмического и программного обеспечения compmodel
 - реализация возможности работы со временем (t) в символьном виде
 - реализация сериализации/десериализации моделей и данных (TOML, CSV)
 - документирование и обработка ошибок
- изучение нестационарных управляемых моделей
- идентификация компартментальных систем на основе методов интеллектуального анализа

Заключение

- В ходе исследования достигнута поставленная цель разработан комплекс алгоритмов символьных вычислений для построения и анализа управляемых компартментальных моделей динамических систем.
- Разработан инструментарий символьного анализа компартментальных систем и реализованы алгоритмы численного моделирования, включая имитационные методы траекторной динамики и генерацию систем ОДУ по формальному описанию. Проведенная апробация и верификация методов подтвердила эффективность подхода к анализу управляемых компартментальных моделей. Управление в указанных системах задается в аддитивном форме и может быть определено функциональными зависимостями, а также алгоритмически.
- Предложенный методологический подход позволяет осуществлять комплексный анализ динамических систем — от формального описания до численного моделирования и верификации результатов.

Литература I

Tarcsay B.L., Bárkányi Á., Chovan T., Németh S. Development of Compartment Models for Diagnostic Purposes // Hungarian Journal of Industry and Chemistry. 2021. V. 49. No. 1. P. 47–58. https://doi.org/10.33927/hiic-2021-07.

Зиненко А.В., Балабанова Н.В. Компартментная модель оценки финансовых рисков // Современные наукоемкие технологии. Региональное приложение. 2022. № 3 (71). С. 27–32.

Kunwar P., Markovichenko O., Chyba M., Mileyko Y., Koniges A., Lee T. A Study of Computational and Conceptual Complexities of Compartment and Agent Based Models // Networks and Heterogeneous Media. 2022. V. 17. Iss. 3. P. 359–384. https://doi.org/10.3934/nhm.2022011.

Логинов К.К., Перцев Н.В., Топчий В.А. Стохастическое моделирование компартментных систем с трубками // Математическая биология и биоинформатика. 2019. Т. 14. № 1. С. 188–203. https://doi.org/10.17537/2019.14.188.

Kouye H.M., Mazo G., Prieur C., Vergu E. Performing Global Sensitivity Analysis on Simulations of a Continuous-Time Markov Chain Model Motivated by Epidemiology // Computational & Applied Mathematics. 2024. V. 43. No. 409. P. 1–22. https://doi.org/10.1007/s40314-024-02897-y.

Gevorkyan M.N., Korolkova A.V., Kulyabov D.S. Julia Language Features for Processing Statistical Data // Discrete and Continuous Models and Applied Computational Science. 2023. V. 31. No. 1. P. 5–26.

Кулябов Д. С., Королькова А. В. Компьютерная алгебра на JULIA // Программирование. 2021. № 2. С. 44–50. DOI 10.31857/S0132347421020084

Литература II

Gao K., Mei G., Piccialli F., Cuomo S., Tu J., Huo Z. Julia Language in Machine Learning: Algorithms, Applications, and Open Issues, 2020. https://arxiv.org/10.48550/arXiv.2003.10146.

Perkel J. Julia: come for the syntax, stay for the speed. // Nature. 2019. Iss. 572. P. 141–142. https://doi.org/10.1038/d41586-019-02310-3.

Kulyabov D.S. Analytical Overview of Symbolic Computation Systems // Vestn. Ross. Univ. Druzhby Nar., Ser. Mat. Inf. Fiz. 2007. № 1-2. P. 38-45.

Кулябов Д.С., Кототчикова М.Г. Аналитический обзор систем символьных вычислений // Вестник Российского университета дружбы народов. Серия: Математика, информатика, физика. 2007. № 1-2. С. 38-45.

Bezanson J., Karpinski S., Shah V., Edelman A. Julia: A Fast Dynamic Language for Technical Computing, 2012. https://arxiv.org/abs/1209.5145.

Bezanson J., Edelman A., Karpinski S., Shah V. B. Julia: A fresh approach to numerical computing // SIAM Review. 2017. V. 59. No. 1. P. 65-98.

Petrov A.A., Druzhinina O.V., Masina O.N. Symbolic Computing in the Constructing Problem of Controlled Compartmental Model // Computer algebra: 6th International Conference Materials. Moscow, 23–25 June, 2025 / ed. A. A. Ryabenko, D. S. Kulyabov. Moscow: RUDN University, 2025. P. 90–93. Материалы 6-й международной конференции «Компьютерная алгебра». Москва, 23–25 июня 2025 г. / Под ред. А.А. Рябенко, Д.С. Кулябов. М.: РУДН, 2025. С. 90–93.

Литература III

Демидова А.В., Дружинина О.В., Масина О.Н., Петров А.А. Разработка алгоритмического и программного обеспечения моделирования управляемых динамических систем с применением символьных вычислений и стохастических методов // Программирование. 2023. №2. С. 54-68. DOI: 10.31857/S0132347423020085

Demidova A.V., Druzhinina O.V., Masina O.N., Petrov A.A. Modeling of One-Step Processes Using Computer Algebra Tools // Materials of the Fifth International Conference "Computer Algebra". Moscow, June 26–28, 2023. Ed. by S.A. Abramov, A.B. Batkhin, L.A. Sevast'yanov. Moscow: Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, 2023. P. 57–60.

Демидова А.В., Дружинина О.В., Масина О.Н., Петров А.А. Построение компартментальных моделей динамических систем с применением программного комплекса символьных вычислений на языке Julia // Программирование. 2024. №2. С. 33-44. https://doi.org/10.31857/50132347424020051

Петров А.А., Дружинина О.В., Масина О.Н., Демидова А.В. Разработка алгоритмического и программного обеспечения для символьных вычислений в задачах построения управляемых компартментальных моделей динамических систем // Программирование. 2025. №1. С. 26-39. https://doi.org/10.31857/S0132347425010043