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Motivation: residues for rational integrability

Each f pxq P Cpxq has a unique partial fraction decomposition

f pxq “ ppxq `
ÿ

kě1

ÿ

α PC

ckpαq

px ´ αqk
;

where ppxq P Crxs, and

ckpαq P C, almost all 0.

Fact: f pxq is rationally integrable, i.e., f pxq “ g 1pxq for some
gpxq P Cpxq, if and only if the residues

respf , α, 1q :“ c1pαq “ 0 for every α P C.

Thus we say that the residues respf , α, 1q form a complete
obstruction to the rational integrability of f .



Motivation: discrete residues for rational summability

(Chen-Singer 2012) show: f pxq rationally summable, i.e.,

f pxq “ gpx ` 1q ´ gpxq

for some gpxq P Cpxq, if and only if for every k ě 1 and every
Z-orbit ω P C{Z the discrete residues

drespf , ω, kq :“
ÿ

αPω

ckpαq “ 0.

Thus we say that the discrete residues drespf , α, 1q form a
complete obstruction to the rational summability of f .

The construction rests on the fundamental result (Abramov 1971):
if f pxq is summable, its denominator has strictly positive dispersion.

Similar idea is successful in q-dilation case (Chen-Singer 2012) and
Mahler case (A.-Zhang 2022, A.-Zhang 2024).



Elliptic curves and functions: analytic viewpoint (1 of 2)

For a given lattice Λ Ă C, the field
MΛ of Λ-elliptic functions consists of
meromorphic functions f pzq on C such
that f pz ` λq “ f pzq for every λ P Λ.

Given a Z-basis tλ1, λ2u of Λ, f P MΛ is
determined by its restriction to the fun-
damental parallelogram P, the convex
hull of 0, λ1, λ2, λ1 ` λ2 in C. The
field MΛ ” meromorphic functions on
the elliptic curve EΛ :“ C{Λ.

0

λ1

λ2
λ1 ` λ2

P

Facts*:

§ # zeros of f in EΛ “ # poles of f in EΛ.

§
ř

zeros of f in EΛ “
ř

poles of f in EΛ.

§ Non-constant elliptic functions have at least two poles in EΛ.

*Zeros and poles must be counted with multiplicity and modulo Λ.



Elliptic curves and functions: analytic viewpoint (2 of 2)

The Weierstrass ℘-function with respect to Λ is

℘Λpzq :“
1

z2
`

ÿ

λPΛzt0u

„

1

pz ´ λq2
´

1

λ2

ȷ

.

Facts: r℘1
Λpzqs2 “ 4r℘Λpzqs3 ´ g2 ¨℘Λpzq ´ g3 for certain constants

g2, g3 P C that depend only on Λ; and MΛ “ Cp℘Λpzq, ℘1
Λpzqq.

The Weierstrass ζ-function with respect to Λ is

ζΛpzq “
1

z
`

ÿ

λPΛzt0u

„

1

z ´ λ
`

1

λ
`

z

λ2

ȷ

.

Facts: ζ 1
Λpzq “ ´℘Λpzq; and although ζΛpzq is not elliptic,

ζΛpz ` sq ´ ζΛpzq is elliptic for any s P C.

Note: the Weierstrass ζΛpzq plays a prominent role in our story!



Difference equations over elliptic curves: definitions

For a fixed s P C such that s R Q ¨ Λ, (i.e., s̄ P EΛ is a nontorsion
point), we define the corresponding shift automorphism τ of MΛ by

τ : f pzq ÞÑ f pz ` sq.

An nth-order linear difference equation over EΛ is

anτ
npyq ` an´1τ

n´1pyq ` ¨ ¨ ¨ ` a1τpyq ` a0y “ b,

where a0, a1, . . . , an, b P MΛ such that ana0 ‰ 0, and y is an
“unknown function” (or a formal Laurent series).



Difference equations over elliptic curves: applications
Combinatorics [DHRS18]: given certain sets of allowed steps

D Ď

!

, , , , , , ,
)

,

the generating function
ř

i ,j ,n wDpi , j , nqx iy jzn, where wDpi , j , nq is
the number of walks of length n from p0, 0q to pi , jq that only take
steps from D and remain confined to the first quadrant.

Mathematical Physics [Spi08, ADR21]: For p, q P C˚ such that

pZ X qZ “ t1u and |p|, |q| ă 1, and t “ pt1, . . . , t8q P pC˚q8

satisfying
ś8

j“1 tj “ p2q2, the elliptic hypergeometric function is

V pt ; p, qq :“

ż

S1

ś8
j“1 Γptjz ; p, qqΓptjz

´1; p, qq

Γpz2; p, qqΓpz´2; p, qq

dz

z
;

where the elliptic Gamma functions appearing in the integrand are

Γpz ; p, qq :“ ppq{z ; p, qq8{pz ; p, qq8; where

pz ; p, qq8 :“
ź

j ,kě0

p1 ´ pjqkzq.



First-order difference equations over elliptic curves

The simplest kind of difference equation over EΛ is

τpyq “ ay for some 0 ‰ a P MΛ. (1)

The simplest kind of solution we could hope for is y “ b P MΛ,
which would force the special form a “ τpbq{b for some b P MΛ.

Is there a way to test for this?

By the chain rule, τpy 1q “ τpyq1 “ a1y ` ay 1, so y 1{y “: w satisfies

τpwq ´ w “
a1

a
.

We say a given f P MΛ is elliptically summable if there exists
g P MΛ such that f “ τpgq ´ g .

We see that a necessary condition for (1) to admit an elliptic
function solution is for f “ a1{a to be elliptically summable.



Approaching elliptic summability via residues

Goal: a complete obstruction to elliptic summability, depending
C-linearly on f P MΛ, analogous to the Chen-Singer discrete
residues in the case of the shift on rational functions.

Obstacle: the structure of MΛ is complicated! In particular:

§ elliptic functions lack “partial fraction decompositions”;

§ non-constant elliptic functions must have at least two poles
(this prevents us from “elliptifying” the Chen-Singer strategy).

In (Dreyfus-Hardouin-Roques-Singer 2018) the authors define a
partial obstruction to elliptic summability despite these obstacles.

Our Contribution: Completion of (DHRS 2018) into a
complete obstruction to elliptic summability.



Elliptic orbital residues: analytic version*

*The following is an analytic reinterpretation of DHRS 2018.*

For f P MΛ and α P C, there exist unique ckpf , αq P C for k P N,
almost all 0, such that

f pzq ´
ÿ

kě1

ckpf , αq

pz ´ αqk
is holomorphic at α.

Now choose one αω P C in each orbit ω P C{pΛ ‘ Zsq » EΛ{xs̄y.

Definition (DHRS 2018)

The analytic orbital residue of f P MΛ at the orbit ω of order k is

Orespf , ω, kq :“
ÿ

α Pω

ckpf , αq “
ÿ

n PZ
ckpf , αω ` nsq.

Theorem (DHRS 2018)

If f P MΛ is elliptically summable, then Orespf , ω, kq “ 0 for all
orbits ω and all k P N. On the other hand, if all these orbital
residues vanish, then f is “nearly elliptically summable”.



Near elliptic summability: analytic version

What it means for f pzq P MΛ to be “nearly elliptically summable”:
there exist gpzq P MΛ and R0,R1 P C such that

f pzq “ gpz ` sq ´ gpzq
loooooooomoooooooon

summable part

`R0 ` R1

“

ζΛpz ` sq ´ ζΛpzq
‰

loooooooooooooooomoooooooooooooooon

non-summable part

, (2)

where ζΛpzq again denotes the Weierstrass ζ-function.

Recall: ζΛpzq is not elliptic, but ζΛpz ` sq ´ ζΛpzq is elliptic!

It is shown in [DHRS 2018] that any f pzq P MΛ as in (2) is
elliptically summable if and only if both R0 “ 0 and R1 “ 0.

From this analytic point of view, our goal then becomes: find an
intrinsic definition of the constants R0 and R1 for arbitrary f P MΛ,
i.e., not just for those with every Orespf , ω, kq “ 0, and not
mediated by any accessory gpzq P MΛ.



ζ-expansions

Recall we had chosen a representative αω P C for each orbit
ω P C{pΛ ‘ Zsq » EΛ{xs̄y “: Ω.

This set Ξ :“ tαω | ω P Ωu of choices is called an analytic pinning.

The following is an immediate variation on a classical result:

Proposition

There exist unique constants cΞ0 pf q P C and ckpf , αω ` nsq P C for
k P N and n P Z, almost all zero, such that

f pzq “ cΞ0 pf q`
ÿ

kě1

ÿ

ω PΩ

ÿ

n PZ

p´1qk´1ckpf , αω ` nsq

pk ´ 1q!
¨ζ

pk´1q

Λ pz´αω´nsq.

We call this the ζ-expansion of f pzq P MΛ relative to Ξ.



Analytic panorbital residues
Relative to the pinning Ξ “ taω | ω P Ωu, we had the ζ-expansion

f pzq “ cΞ0 pf q`
ÿ

kě1

ÿ

ω PΩ

ÿ

n PZ

p´1qk´1ckpf , αω ` nsq

pk ´ 1q!
¨ζ

pk´1q

Λ pz´αω´nsq,

and the orbital residues Orespf , ω, kq :“
ř

nPZ ckpf , αω ` nsq.

Definition (A.-Babbitt 2024)

The analytic panorbital residues of f P MΛ relative to Ξ are

PanOresΞpf , 0q :“ cΞ0 pf q and

PanOresΞpf , 1q :“
ÿ

ω PΩ

ÿ

n PZ
n ¨ c1pf , αω ` nsq

Theorem (A.-Babbitt 2024)

f P MΛ is elliptically summable if and only if all the orbital residues
and both panorbital residues vanish.



Elliptic curves and functions: algebraic viewpoint (1 of 2)

In many applications, elliptic curves are described algebraically.

For K an algebraically closed field of characteristic zero, we can
define an elliptic curve E over K as the zero locus in P2pKq of

Y 2Z “ 4X 3 ´ g2XZ
2 ´ g3Z

3,

for some g2, g3 P K such that g3
2 ´ 27g2

3 ‰ 0.

To reformulate the previous difference structure:

§ the points of E form an abelian group under a group law ‘,
with 0-element O :“ r0 : 1 : 0s;

§ for a given (nontorsion) point S P EpKq the map

τ : f pPq ÞÑ f pP ‘ Sq

defines an (infinite order) automorphism of the field ME of
rational functions on E .



Elliptic curves and functions: algebraic viewpoint (2 of 2)
Concretely, ME » Kpx , yq subject to the relation

y2 “ 4x3 ´ g2x ´ g3.

If the point O ‰ S P E is given by

S “ rxpSq : ypSq : 1s “ rα : β : 1s P P2pKq,

then τ : ME Ñ ME is the unique K-linear map such that

τpxq “

ˆ

y ´ 2β

2x ´ 2α

˙2

´ x ´ α; and

τpyq “ ´

ˆ

y ´ 2β

x ´ α

˙

τpxq `
αy ´ 2βx

2x ´ 2α

In this setting, elliptic difference equations and elliptic summability
are defined just like before: f P ME is elliptically summable if there
exists g P ME such that

f “ τpgq ´ g .



Compatible systems of local uniformizers

A compatible system of local uniformizers is a family
(see [DHRS18]):

U “
␣

uP P ME
ˇ

ˇ P P E
(

such that each uP has a zero of order 1 at P and

τ
`

uP
˘

“ uPaS for every P P E .

Given such a U as above, for f P ME and P P E there exist unique
cUk pf ,Pq P K for k P N, almost all 0, such that

f ´
ÿ

kě1

cUk pf ,Pq

ukP
is nonsingular at P.

§ In analytic setting, the usual local uniformizers uα :“ pz ´ αq

for α P C, which are clearly τ -compatible. Although these
uα R MΛ, we still used them to define the local data ckpf , αq.



Elliptic orbital residues: algebraic version*

*The following is an algebraic summary of DHRS 2018.*

For U “ tuPu as before and for f P ME , there exist unique
cUk pf ,Pq P K for k P N and P P E , almost all 0, such that

f ´
ÿ

kě1

cUk pf ,Pq

ukP
is nonsingular at P.

Let us further choose a representative Qω for each orbit ω P E{xSy.

Definition (DHRS 2018)

The U-orbital residue of f P MΛ at the orbit ω of order k is

OresU pf , ω, kq :“
ÿ

n PZ
cUk pf ,Qω ‘ nSq.

Theorem (DHRS 2018)

If f P ME is elliptically summable, then OresU pf , ω, kq “ 0 for all
orbits ω and all k P N. On the other hand, if all these orbital
residues vanish, then f is “nearly elliptically summable”.



Interlude: effective divisors and Riemann-Roch spaces
An effective divisor D on E is a formal sum

D “
ÿ

P P E
nP ¨ rPs

such that every nP P Zě0 and almost every nP “ 0. The degree

degpDq :“
ÿ

P P E
nP P Zě0.

For D as above, the Riemann-Roch space LpDq is the K-vector
space of elements φ P ME such that

§ φ has a pole of order at most nP at P.

Theorem (Riemann-Roch for Effective Divisors in Genus 1)

If D ‰ 0 is an effective divisor on an elliptic curve E then

dimK
`

LpDq
˘

“ degpDq.



Near elliptic summability: algebraic version

What it means for f P ME to be “nearly elliptically summable”:
there exist g P ME and φ P L

`

rOs ` rSs
˘

such that

f “ τpgq ´ g
looomooon

summable part

` φ
loomoon

non-summable part

, (3)

DHRS 2018 show that any f P ME as in (3) is elliptically
summable if and only if φ “ 0.

From this algebraic point of view, our goal is now to define certain
constants, intrinsically in terms of an arbitrary f P ME , that detect
whether φ in (3) is 0 in the special case when we happen to have
every OresU pf , ω, kq “ 0.



Admissible algebraic pinnings
Given an elliptic curve E over K and nontorsion S P E , let us again
denote Ω :“ E{xSy.

An algebraic pinning is a choice Ξ “
`

U ,Q, qω
˘

of:

U : a compatible system of local uniformizers tuP | P P Eu;

Q: a choice of representatives tQω P ω | ω P Ωu;

qω: a choice of distinguished orbit in Ω.

We denote the chosen representative qQ :“ Q
qω P Q, for readability.

Given f P ME , such an algebraic pinning Ξ is f -admissible if:

§ f has no poles in qω; and

§ f is nonsingular at Qω a nS for every ω P Ω and n P Zě0.

Since each f P ME has only finitely many poles, it is clear there
always exist pinnings that are simultaneously fi -admissible for any
finite collection f1, . . . , fN P ME .



Ancillary data obtained from algebraic pinning

For a pinning Ξ “
`

U ,Q, qω
˘

we obtain the following auxiliary data
as consequences of the Riemann-Roch Theorem.

Technical Lemma (A.-Babbitt 2024)

1. For each qω ‰ ω P Ω and k P N, there exist unique

φΞ
ω,k P L

´

krQωs ` r qQs

¯

and dΞ
k pωq P K such that

§ φΞ
ω,k ´ u´k

Qω
is nonsingular at Qω; and

§ φΞ
ω,k ´ dΞ

k pωq ¨ u´1
qQ

has a zero at qQ.

2. For each j P Zě2 there exists a unique

ψΞ
j P L

´

r qQ ‘ jSs ` r qQ ‘ Ss

¯

such that

§ ψΞ
j ` u´1

qQ‘S
has a zero at qQ ‘ S .



Algebraic panorbital residues

Definition (A.-Babbitt 2024)

The algebraic panorbital residues of f P ME relative to an
f -admissible pinning Ξ of orders 1 and 0 are, respectively,

PanOresΞpf , 1q :“
ÿ

ω PΩ
ω‰qω

ÿ

n,kě1

dΞ
k pωq ¨ n ¨ cUk pf ,Qω ‘ nSq; and

PanOresΞpf , 0q :“

f p qQq`
ÿ

ω PΩ
ω‰qω

ÿ

n,kě1

´

dΞ
k pωq ¨ ΨΞ

n

`

qQ
˘

´ φΞ
ω,k

`

qQ a nS
˘

¯

¨cUk pf ,Qω‘nSq,

where ψΞ
1 :“ 0 and ΨΞ

n :“
řn

j“1 ψ
Ξ
j .

Theorem (A.-Babbitt 2024)

f P ME is elliptically summable if and only if all the orbital residues
and both panorbital residues vanish.
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doi:10.5802/jep.143

S. Chen & M.F. Singer. Residues and telescopers for bivariate rational functions,

Advances in Applied Mathematics 49(2), 111–133, (2012).
doi:10.1016/j.aam.2012.04.003

T. Dreyfus, C. Hardouin, J. Roques, & M.F. Singer, On the nature of the
generating series of walks in the quarter plane, Inventiones mathematicae
213(1), 139–203, (2018). doi:10.1007/s00222-018-0787-z

V.P. Spiridonov, Essays on the theory of elliptic hypergeometric functions,

Russian Mathematical Surveys 63(3), 405–472, (2008).
doi:10.1070/RM2008v063n03ABEH004533

https://doi.org/10.1016/0041-5553(71)90028-0
https://doi.org/10.1145/3476446.3536186
https://doi.org/10.1093/imrn/rnae238
https://doi.org/10.5802/jep.143
https://doi.org/10.1016/j.aam.2012.04.003
https://doi.org/10.1007/s00222-018-0787-z
https://doi.org/10.1070/RM2008v063n03ABEH004533

