Panorbital residues for elliptic summability*

Carlos E. Arreche & Matthew Babbitt The University of Texas at Dallas

November 20, 2024

*Work in progress.

Motivation: residues for rational integrability

Each $f(x) \in \mathbb{C}(x)$ has a unique partial fraction decomposition

$$f(x) = p(x) + \sum_{k \ge 1} \sum_{\alpha \in \mathbb{C}} \frac{c_k(\alpha)}{(x - \alpha)^k}; \quad \text{where } p(x) \in \mathbb{C}[x], \text{ and} \\ c_k(\alpha) \in \mathbb{C}, \text{ almost all } 0.$$

Fact: f(x) is *rationally integrable*, i.e., f(x) = g'(x) for some $g(x) \in \mathbb{C}(x)$, if and only if the *residues*

$$\operatorname{res}(f, \alpha, 1) := c_1(\alpha) = 0$$
 for every $\alpha \in \mathbb{C}$.

Thus we say that the residues $res(f, \alpha, 1)$ form a *complete obstruction* to the rational integrability of f.

Motivation: discrete residues for rational summability (Chen-Singer 2012) show: f(x) rationally summable, i.e.,

$$f(x) = g(x+1) - g(x)$$

for some $g(x) \in \mathbb{C}(x)$, if and only if for every $k \ge 1$ and every \mathbb{Z} -orbit $\omega \in \mathbb{C}/\mathbb{Z}$ the discrete residues

dres
$$(f, \omega, k) := \sum_{\alpha \in \omega} c_k(\alpha) = 0.$$

Thus we say that the discrete residues $dres(f, \alpha, 1)$ form a *complete obstruction* to the rational summability of f.

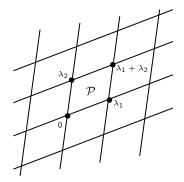
The construction rests on the fundamental result (Abramov 1971): if f(x) is summable, its denominator has strictly positive *dispersion*.

Similar idea is successful in *q*-dilation case (Chen-Singer 2012) and Mahler case (A.-Zhang 2022, A.-Zhang 2024).

Elliptic curves and functions: analytic viewpoint (1 of 2)

For a given lattice $\Lambda \subset \mathbb{C}$, the field M_{Λ} of Λ -*elliptic functions* consists of meromorphic functions f(z) on \mathbb{C} such that $f(z + \lambda) = f(z)$ for every $\lambda \in \Lambda$.

Given a \mathbb{Z} -basis $\{\lambda_1, \lambda_2\}$ of Λ , $f \in M_{\Lambda}$ is determined by its restriction to the *fundamental parallelogram* \mathcal{P} , the convex hull of 0, λ_1 , λ_2 , $\lambda_1 + \lambda_2$ in \mathbb{C} . The field $M_{\Lambda} \equiv$ meromorphic functions on the *elliptic curve* $E_{\Lambda} := \mathbb{C}/\Lambda$.



Facts*:

- # zeros of f in $E_{\Lambda} = \#$ poles of f in E_{Λ} .
- \sum zeros of f in $E_{\Lambda} = \sum$ poles of f in E_{Λ} .
- Non-constant elliptic functions have at least two poles in E_{Λ} .

*Zeros and poles must be counted with multiplicity and modulo Λ .

Elliptic curves and functions: analytic viewpoint (2 of 2)

The Weierstrass \wp -function with respect to Λ is

$$\wp_{\Lambda}(z) := rac{1}{z^2} + \sum_{\lambda \in \Lambda \setminus \{0\}} \left[rac{1}{(z-\lambda)^2} - rac{1}{\lambda^2}
ight]$$

Facts: $[\wp'_{\Lambda}(z)]^2 = 4[\wp_{\Lambda}(z)]^3 - g_2 \cdot \wp_{\Lambda}(z) - g_3$ for certain constants $g_2, g_3 \in \mathbb{C}$ that depend only on Λ ; and $M_{\Lambda} = \mathbb{C}(\wp_{\Lambda}(z), \wp'_{\Lambda}(z))$.

The Weierstrass ζ -function with respect to Λ is

$$\zeta_{\Lambda}(z) = \frac{1}{z} + \sum_{\lambda \in \Lambda \setminus \{0\}} \left[\frac{1}{z - \lambda} + \frac{1}{\lambda} + \frac{z}{\lambda^2} \right]$$

Facts: $\zeta'_{\Lambda}(z) = -\wp_{\Lambda}(z)$; and although $\zeta_{\Lambda}(z)$ is <u>not</u> elliptic, $\zeta_{\Lambda}(z+s) - \zeta_{\Lambda}(z)$ is elliptic for any $s \in \mathbb{C}$.

<u>Note</u>: the Weierstrass $\zeta_{\Lambda}(z)$ plays a prominent role in our story!

Difference equations over elliptic curves: definitions

For a fixed $s \in \mathbb{C}$ such that $s \notin \mathbb{Q} \cdot \Lambda$, (i.e., $\overline{s} \in E_{\Lambda}$ is a *nontorsion* point), we define the corresponding *shift automorphism* τ of M_{Λ} by

$$\tau:f(z)\mapsto f(z+s).$$

An n^{th} -order linear difference equation over E_{Λ} is

$$a_n \tau^n(y) + a_{n-1} \tau^{n-1}(y) + \dots + a_1 \tau(y) + a_0 y = b,$$

where $a_0, a_1, \ldots, a_n, b \in M_{\Lambda}$ such that $a_n a_0 \neq 0$, and y is an "unknown function" (or a formal Laurent series).

Difference equations over elliptic curves: applications Combinatorics [DHRS18]: given certain sets of allowed steps

$$\mathcal{D} \subseteq \Big\{ \stackrel{\scriptstyle{\scriptstyle{\scriptstyle{\sim}}}}{\mapsto}, \stackrel{\scriptstyle{\scriptstyle{\scriptstyle{\sim}}}}{\mapsto}, \stackrel{\scriptstyle{\scriptstyle{\scriptstyle{\sim}}}}{\mapsto}, \stackrel{\scriptstyle{\scriptstyle{\scriptstyle{\sim}}}}{\mapsto}, \stackrel{\scriptstyle{\scriptstyle{\scriptstyle{\sim}}}}{\mapsto}, \stackrel{\scriptstyle{\scriptstyle{\scriptstyle{\sim}}}}{\mapsto}, \stackrel{\scriptstyle{\scriptstyle{\scriptstyle{\sim}}}}{\mapsto}, \stackrel{\scriptstyle{\scriptstyle{\scriptstyle{\sim}}}}{\mapsto}, \stackrel{\scriptstyle{\scriptstyle{\scriptstyle{\sim}}}}{\mapsto} \Big\},$$

the generating function $\sum_{i,j,n} w_{\mathcal{D}}(i,j,n) x^i y^j z^n$, where $w_{\mathcal{D}}(i,j,n)$ is the number of walks of length *n* from (0,0) to (i,j) that only take steps from \mathcal{D} and remain confined to the first quadrant.

Mathematical Physics [Spi08, ADR21]: For $p, q \in \mathbb{C}^*$ such that $p^{\mathbb{Z}} \cap q^{\mathbb{Z}} = \{1\}$ and |p|, |q| < 1, and $\underline{t} = (t_1, \ldots, t_8) \in (\mathbb{C}^*)^8$ satisfying $\prod_{j=1}^8 t_j = p^2 q^2$, the *elliptic hypergeometric function* is

$$V(\underline{t};p,q) := \int_{S^1} \frac{\prod_{j=1}^8 \Gamma(t_j z;p,q) \Gamma(t_j z^{-1};p,q)}{\Gamma(z^2;p,q) \Gamma(z^{-2};p,q)} \frac{dz}{z};$$

where the elliptic Gamma functions appearing in the integrand are

$$egin{aligned} & \mathsf{\Gamma}(z;p,q) := (pq/z;p,q)_\infty/(z;p,q)_\infty; & ext{where} \ & (z;p,q)_\infty := \prod_{j,k \geqslant 0} (1-p^j q^k z). \end{aligned}$$

First-order difference equations over elliptic curves

The simplest kind of difference equation over E_{Λ} is

$$\tau(y) = ay \qquad \text{for some } 0 \neq a \in M_{\Lambda}. \tag{1}$$

The simplest kind of solution we could hope for is $y = b \in M_{\Lambda}$, which would force the special form $a = \tau(b)/b$ for some $b \in M_{\Lambda}$.

Is there a way to test for this?

By the chain rule, au(y') = au(y)' = a'y + ay', so y'/y =: w satisfies

$$\tau(w)-w=\frac{a'}{a}.$$

We say a given $f \in M_{\Lambda}$ is *elliptically summable* if there exists $g \in M_{\Lambda}$ such that $f = \tau(g) - g$.

We see that a necessary condition for (1) to admit an elliptic function solution is for f = a'/a to be elliptically summable.

Approaching elliptic summability via residues

Goal: a complete obstruction to elliptic summability, depending \mathbb{C} -linearly on $f \in M_{\Lambda}$, analogous to the Chen-Singer discrete residues in the case of the shift on rational functions.

Obstacle: the structure of M_{Λ} is complicated! In particular:

- elliptic functions lack "partial fraction decompositions";
- non-constant elliptic functions must have at least two poles (this prevents us from "elliptifying" the Chen-Singer strategy).

In (Dreyfus-Hardouin-Roques-Singer 2018) the authors define a partial obstruction to elliptic summability despite these obstacles.

Our Contribution: Completion of (DHRS 2018) into a complete obstruction to elliptic summability.

Elliptic orbital residues: analytic version*

The following is an analytic reinterpretation of DHRS 2018. For $f \in M_{\Lambda}$ and $\alpha \in \mathbb{C}$, there exist unique $c_k(f, \alpha) \in \mathbb{C}$ for $k \in \mathbb{N}$, almost all 0, such that

$$f(z) - \sum_{k \ge 1} \frac{c_k(f, \alpha)}{(z - \alpha)^k}$$
 is holomorphic at α .

Now choose one $\alpha_{\omega} \in \mathbb{C}$ in each *orbit* $\omega \in \mathbb{C}/(\Lambda \oplus \mathbb{Z}s) \simeq E_{\Lambda}/\langle \bar{s} \rangle$. Definition (DHRS 2018)

The *analytic orbital residue* of $f \in M_{\Lambda}$ at the orbit ω of order k is

$$\operatorname{Ores}(f,\omega,k) := \sum_{\alpha \in \omega} c_k(f,\alpha) = \sum_{n \in \mathbb{Z}} c_k(f,\alpha_\omega + ns).$$

Theorem (DHRS 2018)

If $f \in M_{\Lambda}$ is elliptically summable, then $\operatorname{Ores}(f, \omega, k) = 0$ for all orbits ω and all $k \in \mathbb{N}$. On the other hand, if all these orbital residues vanish, then f is "nearly elliptically summable".

Near elliptic summability: analytic version

What it means for $f(z) \in M_{\Lambda}$ to be "nearly elliptically summable": there exist $g(z) \in M_{\Lambda}$ and $R_0, R_1 \in \mathbb{C}$ such that

$$f(z) = \underbrace{g(z+s) - g(z)}_{\text{summable part}} + \underbrace{R_0 + R_1 [\zeta_{\Lambda}(z+s) - \zeta_{\Lambda}(z)]}_{\text{non-summable part}}, \quad (2)$$

where $\zeta_{\Lambda}(z)$ again denotes the Weierstrass ζ -function.

Recall: $\zeta_{\Lambda}(z)$ is not elliptic, but $\zeta_{\Lambda}(z+s) - \zeta_{\Lambda}(z)$ is elliptic!

It is shown in [DHRS 2018] that any $f(z) \in M_{\Lambda}$ as in (2) is elliptically summable if and only if both $R_0 = 0$ and $R_1 = 0$.

From this analytic point of view, our goal then becomes: find an intrinsic definition of the constants R_0 and R_1 for arbitrary $f \in M_{\Lambda}$, i.e., not just for those with every $\operatorname{Ores}(f, \omega, k) = 0$, and not mediated by any accessory $g(z) \in M_{\Lambda}$.

ζ -expansions

Recall we had chosen a representative $\alpha_{\omega} \in \mathbb{C}$ for each orbit $\omega \in \mathbb{C}/(\Lambda \oplus \mathbb{Z}s) \simeq E_{\Lambda}/\langle \bar{s} \rangle =: \Omega.$

This set $\Xi := \{ \alpha_{\omega} \mid \omega \in \Omega \}$ of choices is called an *analytic pinning*.

The following is an immediate variation on a classical result:

Proposition

There exist unique constants $c_0^{\Xi}(f) \in \mathbb{C}$ and $c_k(f, \alpha_{\omega} + ns) \in \mathbb{C}$ for $k \in \mathbb{N}$ and $n \in \mathbb{Z}$, almost all zero, such that

$$f(z) = c_0^{\Xi}(f) + \sum_{k \ge 1} \sum_{\omega \in \Omega} \sum_{n \in \mathbb{Z}} \frac{(-1)^{k-1} c_k(f, \alpha_\omega + ns)}{(k-1)!} \cdot \zeta_{\Lambda}^{(k-1)}(z - \alpha_\omega - ns).$$

We call this the ζ -expansion of $f(z) \in M_{\Lambda}$ relative to Ξ .

Analytic panorbital residues

Relative to the pinning $\Xi = \{a_{\omega} \mid \omega \in \Omega\}$, we had the ζ -expansion

$$f(z) = c_0^{\Xi}(f) + \sum_{k \ge 1} \sum_{\omega \in \Omega} \sum_{n \in \mathbb{Z}} \frac{(-1)^{k-1} c_k(f, \alpha_\omega + ns)}{(k-1)!} \cdot \zeta_{\Lambda}^{(k-1)}(z - \alpha_\omega - ns),$$

and the orbital residues $\operatorname{Ores}(f, \omega, k) := \sum_{n \in \mathbb{Z}} c_k(f, \alpha_{\omega} + ns).$ Definition (A.-Babbitt 2024) The *analytic panorbital residues* of $f \in M_{\Lambda}$ relative to Ξ are

$$\operatorname{PanOres}_{\Xi}(f,0) := c_0^{\Xi}(f) \quad \text{and}$$
$$\operatorname{PanOres}_{\Xi}(f,1) := \sum_{\omega \in \Omega} \sum_{n \in \mathbb{Z}} n \cdot c_1(f, \alpha_{\omega} + ns)$$

Theorem (A.-Babbitt 2024)

 $f \in M_{\Lambda}$ is elliptically summable if and only if all the orbital residues and both panorbital residues vanish.

Elliptic curves and functions: algebraic viewpoint (1 of 2)

In many applications, elliptic curves are described *algebraically*.

For \mathbb{K} an algebraically closed field of characteristic zero, we can define an *elliptic curve* \mathcal{E} over \mathbb{K} as the zero locus in $\mathbf{P}^2(\mathbb{K})$ of

$$Y^2 Z = 4X^3 - g_2 X Z^2 - g_3 Z^3,$$

for some $g_2, g_3 \in \mathbb{K}$ such that $g_2^3 - 27g_3^2 \neq 0$.

To reformulate the previous difference structure:

- ▶ the points of *E* form an abelian group under a group law ⊕, with 0-element *O* := [0 : 1 : 0];
- ▶ for a given (nontorsion) point $S \in \mathcal{E}(\mathbb{K})$ the map

$$\tau: f(P) \mapsto f(P \oplus S)$$

defines an (infinite order) automorphism of the field $M_{\mathcal{E}}$ of rational functions on \mathcal{E} .

Elliptic curves and functions: algebraic viewpoint (2 of 2) Concretely, $M_{\mathcal{E}} \simeq \mathbb{K}(x, y)$ subject to the relation

$$y^2 = 4x^3 - g_2 x - g_3.$$

If the point $\mathcal{O} \neq S \in \mathcal{E}$ is given by

$$S = [x(S) : y(S) : 1] = [\alpha : \beta : 1] \in \mathbf{P}^2(\mathbb{K}),$$

then $\tau: M_{\mathcal{E}} \to M_{\mathcal{E}}$ is the unique \mathbb{K} -linear map such that

$$\tau(x) = \left(\frac{y - 2\beta}{2x - 2\alpha}\right)^2 - x - \alpha; \quad \text{and} \quad \tau(y) = -\left(\frac{y - 2\beta}{x - \alpha}\right)\tau(x) + \frac{\alpha y - 2\beta x}{2x - 2\alpha}$$

In this setting, elliptic difference equations and elliptic summability are defined just like before: $f \in M_{\mathcal{E}}$ is *elliptically summable* if there exists $g \in M_{\mathcal{E}}$ such that

$$f=\tau(g)-g.$$

Compatible systems of local uniformizers

A *compatible system of local uniformizers* is a family (see [DHRS18]):

$$\mathcal{U} = \left\{ u_P \in M_{\mathcal{E}} \mid P \in \mathcal{E} \right\}$$

such that each u_P has a zero of order 1 at P and

$$\tau(u_P) = u_{P \ominus S}$$
 for every $P \in \mathcal{E}$.

Given such a \mathcal{U} as above, for $f \in M_{\mathcal{E}}$ and $P \in \mathcal{E}$ there exist unique $c_k^{\mathcal{U}}(f, P) \in \mathbb{K}$ for $k \in \mathbb{N}$, almost all 0, such that

$$f - \sum_{k \ge 1} \frac{c_k^{\mathcal{U}}(f, P)}{u_P^k}$$
 is nonsingular at P .

In analytic setting, the usual local uniformizers u_α := (z − α) for α ∈ C, which are clearly τ-compatible. Although these u_α ∉ M_Λ, we still used them to define the local data c_k(f, α).

Elliptic orbital residues: algebraic version*

The following is an algebraic summary of DHRS 2018.

For $\mathcal{U} = \{u_P\}$ as before and for $f \in M_{\mathcal{E}}$, there exist unique $c_k^{\mathcal{U}}(f, P) \in \mathbb{K}$ for $k \in \mathbb{N}$ and $P \in \mathcal{E}$, almost all 0, such that

$$f - \sum_{k \ge 1} \frac{c_k^{\mathcal{U}}(f, P)}{u_P^k}$$
 is nonsingular at P .

Let us further choose a representative Q_{ω} for each *orbit* $\omega \in \mathcal{E}/\langle S \rangle$.

Definition (DHRS 2018)

The *U*-orbital residue of $f \in M_{\Lambda}$ at the orbit ω of order k is

$$\operatorname{Ores}_{\mathcal{U}}(f,\omega,k) := \sum_{n \in \mathbb{Z}} c_k^{\mathcal{U}}(f, Q_\omega \oplus nS).$$

Theorem (DHRS 2018)

If $f \in M_{\mathcal{E}}$ is elliptically summable, then $\operatorname{Ores}_{\mathcal{U}}(f, \omega, k) = 0$ for all orbits ω and all $k \in \mathbb{N}$. On the other hand, if all these orbital residues vanish, then f is "nearly elliptically summable".

Interlude: effective divisors and Riemann-Roch spaces An *effective divisor* D on \mathcal{E} is a formal sum

$$D = \sum_{P \in \mathcal{E}} n_P \cdot [P]$$

such that every $n_P \in \mathbb{Z}_{\geq 0}$ and almost every $n_P = 0$. The *degree*

$$\deg(D):=\sum_{P\in\mathcal{E}}n_P\in\mathbb{Z}_{\geq 0}.$$

For *D* as above, the *Riemann-Roch space* $\mathcal{L}(D)$ is the \mathbb{K} -vector space of elements $\varphi \in M_{\mathcal{E}}$ such that

• φ has a pole of order <u>at most</u> n_P at P.

Theorem (Riemann-Roch for Effective Divisors in Genus 1) If $D \neq 0$ is an effective divisor on an elliptic curve \mathcal{E} then

$$\dim_{\mathbb{K}} (\mathcal{L}(D)) = \deg(D).$$

Near elliptic summability: algebraic version

What it means for $f \in M_{\mathcal{E}}$ to be "nearly elliptically summable": there exist $g \in M_{\mathcal{E}}$ and $\varphi \in \mathcal{L}([\mathcal{O}] + [S])$ such that

$$f = \underbrace{\tau(g) - g}_{\text{summable part}} + \underbrace{\varphi}_{\text{non-summable part}}, \quad (3)$$

DHRS 2018 show that any $f \in M_{\mathcal{E}}$ as in (3) is elliptically summable if and only if $\varphi = 0$.

From this algebraic point of view, our goal is now to define certain constants, intrinsically in terms of an arbitrary $f \in M_{\mathcal{E}}$, that detect whether φ in (3) is 0 in the special case when we happen to have every $\operatorname{Ores}_{\mathcal{U}}(f, \omega, k) = 0$.

Admissible algebraic pinnings

Given an elliptic curve \mathcal{E} over \mathbb{K} and nontorsion $S \in \mathcal{E}$, let us again denote $\Omega := \mathcal{E}/\langle S \rangle$.

An algebraic pinning is a choice $\Xi = (\mathcal{U}, \mathcal{Q}, \widecheck{\omega})$ of:

- \mathcal{U} : a compatible system of local uniformizers $\{u_P \mid P \in \mathcal{E}\}$;
- \mathcal{Q} : a choice of representatives $\{Q_{\omega} \in \omega \mid \omega \in \Omega\}$;
- $\check{\omega}$: a choice of *distinguished orbit* in Ω .

We denote the chosen representative $\widecheck{Q} := Q_{\widecheck{\omega}} \in \mathcal{Q}$, for readability.

Given $f \in M_{\mathcal{E}}$, such an algebraic pinning Ξ is *f*-admissible if:

- f has no poles in $\check{\omega}$; and
- *f* is nonsingular at $Q_{\omega} \ominus nS$ for every $\omega \in \Omega$ and $n \in \mathbb{Z}_{\geq 0}$.

Since each $f \in M_{\mathcal{E}}$ has only finitely many poles, it is clear there always exist pinnings that are simultaneously f_i -admissible for any finite collection $f_1, \ldots, f_N \in M_{\mathcal{E}}$.

Ancillary data obtained from algebraic pinning

For a pinning $\Xi = (\mathcal{U}, \mathcal{Q}, \check{\omega})$ we obtain the following auxiliary data as consequences of the Riemann-Roch Theorem.

Technical Lemma (A.-Babbitt 2024)

1. For each $\check{\omega} \neq \omega \in \Omega$ and $k \in \mathbb{N}$, there exist unique

 $\varphi_{\omega,k}^{\Xi} \in \mathcal{L}\left(k[Q_{\omega}] + [\check{Q}]\right)$ and $d_{k}^{\Xi}(\omega) \in \mathbb{K}$ such that • $\varphi_{\omega,k}^{\Xi} - u_{Q_{\omega}}^{-k}$ is nonsingular at Q_{ω} ; and • $\varphi_{\omega,k}^{\Xi} - d_k^{\Xi}(\omega) \cdot u_{\check{O}}^{-1}$ has a zero at \check{Q} . 2. For each $j \in \mathbb{Z}_{\geq 2}$ there exists a unique $\psi_j^{\Xi} \in \mathcal{L}\left([\check{Q} \oplus jS] + [\check{Q} \oplus S] \right)$ such that • $\psi_j^{\Xi} + u_{\check{Q} \oplus S}^{-1}$ has a zero at $\check{Q} \oplus S$.

Algebraic panorbital residues

Definition (A.-Babbitt 2024)

The algebraic panorbital residues of $f \in M_{\mathcal{E}}$ relative to an f-admissible pinning Ξ of orders 1 and 0 are, respectively,

$$\operatorname{PanOres}_{\Xi}(f,1) := \sum_{\substack{\omega \in \Omega \\ \omega \neq \widetilde{\omega}}} \sum_{n,k \geqslant 1} d_k^{\Xi}(\omega) \cdot n \cdot c_k^{\mathcal{U}}(f, Q_\omega \oplus nS); \quad \text{and}$$

$$\begin{split} & \operatorname{PanOres}_{\Xi}(f,0) := \\ & f(\check{Q}) + \sum_{\substack{\omega \in \Omega \\ \omega \neq \check{\omega}}} \sum_{n,k \geq 1} \left(d_k^{\Xi}(\omega) \cdot \Psi_n^{\Xi}(\check{Q}) - \varphi_{\omega,k}^{\Xi}(\check{Q} \ominus nS) \right) \cdot c_k^{\mathcal{U}}(f, Q_{\omega} \oplus nS), \end{split}$$

where
$$\psi_1^{\Xi} := 0$$
 and $\Psi_n^{\Xi} := \sum_{j=1}^n \psi_j^{\Xi}$.

Theorem (A.-Babbitt 2024)

 $f \in M_{\mathcal{E}}$ is elliptically summable if and only if all the orbital residues and both panorbital residues vanish.

References

- S.A. Abramov. *On the summation of rational functions*. USSR Computational Mathematics and Mathematical Physics **11**(4), 324–330, (1971). doi:10.1016/0041-5553(71)90028-0

C. Arreche & Y. Zhang. *Mahler discrete residues and summability for rational functions.* Proceedings of ISSAC'22, 525–533, (2022). doi:10.1145/3476446.3536186

- C. Arreche & Y. Zhang. *Twisted Mahler discrete residues*. International Mathematics Research Notices (2024). doi:10.1093/imrn/rnae238
- C. Arreche, T. Dreyfus, & J. Roques. *Differential transcendence criteria for second-order linear difference equations and elliptic hypergeometric functions.* Journal de l'École Polytechnique Mathématiques **8**, 147–168, (2021). doi:10.5802/jep.143
- S. Chen & M.F. Singer. Residues and telescopers for bivariate rational functions, Advances in Applied Mathematics 49(2), 111–133, (2012). doi:10.1016/j.aam.2012.04.003
- T. Dreyfus, C. Hardouin, J. Roques, & M.F. Singer, *On the nature of the generating series of walks in the quarter plane*, Inventiones mathematicae **213**(1), 139–203, (2018). doi:10.1007/s00222-018-0787-z

V.P. Spiridonov, *Essays on the theory of elliptic hypergeometric functions*, Russian Mathematical Surveys **63**(3), 405–472, (2008). doi:10.1070/RM2008v063n03ABEH004533