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Motivation: residues for rational integrability

Each f(x) € C(x) has a unique partial fraction decomposition

PN e

k=1 aeC

where p(x) € C[x], and
ck(a) € C, almost all 0.

Fact: f(x) is rationally integrable, i.e., f(x) = g’(x) for some
g(x) € C(x), if and only if the residues

res(f,a,1) :==ci(a) =0 for every a e C.

Thus we say that the residues res(f, «, 1) form a complete
obstruction to the rational integrability of f.



Motivation: discrete residues for rational summability

(Chen-Singer 2012) show: f(x) rationally summable, i.e.,

for some g(x) € C(x), if and only if for every k > 1 and every
Z-orbit w € C/Z the discrete residues

dres(f,w, k) := Z ck(a) = 0.
aEw

Thus we say that the discrete residues dres(f, «, 1) form a
complete obstruction to the rational summability of f.

The construction rests on the fundamental result (Abramov 1971):
if f(x) is summable, its denominator has strictly positive dispersion.

Similar idea is successful in g-dilation case (Chen-Singer 2012) and
Mahler case (A.-Zhang 2022, A.-Zhang 2024).



Elliptic curves and functions: analytic viewpoint (1 of 2)

My of A-elliptic functions consists of
meromorphic functions f(z) on C such
that f(z + \) = f(z) for every A e A. ‘ ﬂ
Given a Z-basis {\1, \2} of A, f € Mp is ﬂ
determined by its restriction to the fun-
damental parallelogram P, the convex
hull of 0, A1, X2, A1 + Ao in C. The
field Mp = meromorphic functions on
the elliptic curve Ep := C/A.
Facts*:
> 4 zeros of f in En = # poles of f in Ep.
» > zeros of f in Epn = )] poles of f in Ej.

» Non-constant elliptic functions have at least two poles in Ep.

For a given lattice A < C, the field

*Zeros and poles must be counted with multiplicity and modulo A.



Elliptic curves and functions: analytic viewpoint (2 of 2)

The Weierstrass g-function with respect to A is
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Facts: [p)(2)]? = 4[pn(2)]® — g2 pa(2) — g3 for certain constants
£, g3 € C that depend only on A; and My = C(pa(2), ) (2)).

The Weierstrass (-function with respect to A is
1 1 1 =z
W) ==+ ), [++2].
z AAT(0) z—=XA A A

Facts: (3(z) = —pa(2); and although (a(z) is not elliptic,
CA(z + 5) — Ca(2) is elliptic for any s € C.

Note: the Weierstrass (a(z) plays a prominent role in our story!



Difference equations over elliptic curves: definitions

For a fixed s € C such that s ¢ Q- A, (i.e., 5 € Ep is a nontorsion
point), we define the corresponding shift automorphism T of Mu by

T:f(z) = f(z+5s).

An nth-order linear difference equation over Ej is
an7"(y) + anam" Hy) + -+ a17(y) + a0y = b,

where ag, a1, ..., an, b€ Mp such that anag # 0, and y is an
“unknown function” (or a formal Laurent series).



Difference equations over elliptic curves: applications
Combinatorics [DHRS18]: given certain sets of allowed steps

Dg{:ﬁyiﬁvi?hﬁhf’.h%h:i:a:.\'}a

the generating function %, ; , wp(i, J, n)x'yiz", where wp(i, j, n) is
the number of walks of length n from (0,0) to (i,/) that only take
steps from D and remain confined to the first quadrant.

Mathematical Physics [Spi08, ADR21]: For p, g € C* such that
p” g% = {1} and |p[ lgl <1,and t = (t1,...,t3) € (C*)®
satisfying 1—[?_1 ti=p 242, the elliptic hypergeometr/c function is

j 1_[, 1 tZ'p,q)r(tJZ’l;p,q)dz_
si

(2% p, )l (z7%pq) z°
where the elliptic Gamma functions appearing in the integrand are

V(t;p,q

[(z;p,q) == (Pq/z; P, q)o0/(2i P, q)o0;  Where
(zip@)w = [ (1-Pd2).

j,k=0



First-order difference equations over elliptic curves
The simplest kind of difference equation over Ep is
7(y) =ay  for some 0 # ae My. (1)

The simplest kind of solution we could hope for is y = b € Mj,
which would force the special form a = 7(b)/b for some b € Mj.

Is there a way to test for this?

By the chain rule, 7(y’) = 7(y)’ = a'y + ay’, so y'/y =: w satisfies

We say a given f € M) is elliptically summable if there exists
g € Mp such that f = 7(g) — g.

We see that a necessary condition for (1) to admit an elliptic
function solution is for f = a’/a to be elliptically summable.




Approaching elliptic summability via residues

Goal: a complete obstruction to elliptic summability, depending
C-linearly on f € Mp, analogous to the Chen-Singer discrete
residues in the case of the shift on rational functions.

Obstacle: the structure of My is complicated! In particular:
» elliptic functions lack “partial fraction decompositions”;

> non-constant elliptic functions must have at least two poles
(this prevents us from “elliptifying” the Chen-Singer strategy).

In (Dreyfus-Hardouin-Roques-Singer 2018) the authors define a
partial obstruction to elliptic summability despite these obstacles.

Our Contribution: Completion of (DHRS 2018) into a
complete obstruction to elliptic summability.




Elliptic orbital residues: analytic version*

*The following is an analytic reinterpretation of DHRS 2018.*

For f € Mp and « € C, there exist unique ¢ (f,a) € C for k e N,
almost all 0, such that

f
f(z) — Z (Czk(—i;l is holomorphic at a.
k=1

Now choose one «,, € C in each orbit w e C/(N@ Zs) ~ Ep/{5).

Definition (DHRS 2018)

The analytic orbital residue of f € My at the orbit w of order k is
Ores(f,w, k) := Z c(f,a) = Z ck(f, ay + ns).

aEw nez
Theorem (DHRS 2018)
If f € Mp is elliptically summable, then Ores(f,w, k) =0 for all
orbits w and all k e N. On the other hand, if all these orbital
residues vanish, then f is “nearly elliptically summable”.



Near elliptic summability: analytic version

What it means for f(z) € Mj to be "nearly elliptically summable”:
there exist g(z) € Mj and Ry, Ry € C such that

f(z) = g(z+s) — g(z) + Ro+ Ri[Ca(z +5) = ()], (2)

_

~
summable part non-summable part

where (A(z) again denotes the Weierstrass (-function.
Recall: (a(z) is not elliptic, but {A(z 4+ s) — (a(2) is elliptic!

It is shown in [DHRS 2018] that any f(z) € Mp as in (2) is
elliptically summable if and only if both Ry = 0 and R; = 0.

From this analytic point of view, our goal then becomes: find an
intrinsic definition of the constants Ry and Ry for arbitrary f € Mj,
i.e., not just for those with every Ores(f,w, k) =0, and not
mediated by any accessory g(z) € M.



(-expansions

Recall we had chosen a representative «, € C for each orbit

weC/(NDZs) ~ EpJ(5)=:Q
This set = := {«, | w € Q} of choices is called an analytic pinning.

The following is an immediate variation on a classical result:

Proposition
There exist unique constants ¢ (f) € C and cx(f, oy, + ns) € C for
k € N and n € Z, almost all zero, such that

= ¢ (f) +Z Z Z k(f: )Ofw + ns) C(k 2 (z—a,—ns).

k=1weQneZ

We call this the (-expansion of f(z) € My relative to Z.



Analytic panorbital residues

Relative to the pinning = = {a,, | w € Q}, we had the (-expansion

-G Z 5 5 el e

k=1lweQneZ

and the orbital residues Ores(f,w, k) := Y _; ck(f, o, + ns).
Definition (A.-Babbitt 2024)

The analytic panorbital residues of f € My relative to = are
PanOres=(f,0) := ¢5 () and

PanOresz(f,1) Z Z n-ci(f,a, + ns)

w€eQ neZ

Theorem (A.-Babbitt 2024)

f € My is elliptically summable if and only if all the orbital residues
and both panorbital residues vanish.



Elliptic curves and functions: algebraic viewpoint (1 of 2)

In many applications, elliptic curves are described algebraically.

For K an algebraically closed field of characteristic zero, we can
define an elliptic curve £ over K as the zero locus in P?(K) of

Y27 = 4X3 — g2 XZ?% — g3 75,
for some g2, g3 € K such that g5 — 27g32 # 0.

To reformulate the previous difference structure:

» the points of £ form an abelian group under a group law &,
with O-element O :=[0:1:0];
» for a given (nontorsion) point S € £(K) the map

7 f(P)— F(P®S)

defines an (infinite order) automorphism of the field Mg of
rational functions on £.



Elliptic curves and functions: algebraic viewpoint (2 of 2)
Concretely, Mg ~ K(x, y) subject to the relation

y? =4 — gox — gs.
If the point O # S € £ is given by
S=[x(S):y(S):1] = [a: B:1] e P*(K),

then 7 : Mg — Mg is the unique K-linear map such that

2
T(x) = (2};1225a> —X—q and

)=~ (X220 ) rt0 + L

X —« 2x — 2«

In this setting, elliptic difference equations and elliptic summability
are defined just like before: f € Mg is elliptically summable if there
exists g € Mg such that

f=1(g) - &



Compatible systems of local uniformizers

A compatible system of local uniformizers is a family
(see [DHRS18)):
UI{UPEMg ‘ Peé’}

such that each up has a zero of order 1 at P and
T(UP) = Upgs for every P e £.

Given such a U as above, for f € Mg and P € £ there exist unique
c(f,P) e K for k e N, almost all 0, such that

U
cl(f, P
fF_ Z # is nonsingular at P.
u
k=1 P

» In analytic setting, the usual local uniformizers u, := (z — «)
for a € C, which are clearly 7-compatible. Although these
uq ¢ My, we still used them to define the local data ¢(f, «).



Elliptic orbital residues: algebraic version*

*The following is an algebraic summary of DHRS 2018.*

For U = {up} as before and for f € Mg, there exist unique
c(f,P)eK for ke Nand P e &, almost all 0, such that

U
cl(f,P . .
f— E Lk) is nonsingular at P.
u
k>1 P

Let us further choose a representative Q,, for each orbit w € £/(S).

Definition (DHRS 2018)
The U-orbital residue of f € My at the orbit w of order k is
Oresy/(f,w, k) := Z (f,Q,@nS).

neZz

Theorem (DHRS 2018)

If f € Mg is elliptically summable, then Oresy(f,w, k) = 0 for all
orbits w and all k € N. On the other hand, if all these orbital
residues vanish, then f is “nearly elliptically summable”.



Interlude: effective divisors and Riemann-Roch spaces
An effective divisor D on & is a formal sum

D= > np-[P]
Pe&

such that every np € Z=¢ and almost every np = 0. The degree

deg(D) := Z np € Zxo.
Pe&

For D as above, the Riemann-Roch space L£(D) is the K-vector
space of elements ¢ € Mg such that

>  has a pole of order at most np at P.

Theorem (Riemann-Roch for Effective Divisors in Genus 1)

If D # 0 is an effective divisor on an elliptic curve £ then

dimg (£(D)) = deg(D).



Near elliptic summability: algebraic version

What it means for f € Mg to be “nearly elliptically summable”:
there exist g € Mg and ¢ € L([O] + [S]) such that

f= T(g) — 8 + 2 ) (3)
— ——
summable part  non-summable part

DHRS 2018 show that any f € Mg as in (3) is elliptically
summable if and only if ¢ = 0.

From this algebraic point of view, our goal is now to define certain
constants, intrinsically in terms of an arbitrary f € Mg, that detect
whether ¢ in (3) is 0 in the special case when we happen to have
every Oresy/(f,w, k) = 0.



Admissible algebraic pinnings

Given an elliptic curve £ over K and nontorsion S € &, let us again

denote Q := £/(S).

An algebraic pinning is a choice Z = (U, Q,&) of:

U: a compatible system of local uniformizers {up | P € £};
Q: a choice of representatives {Q,, € w | w e Q};

w: a choice of distinguished orbit in Q.

We denote the chosen representative Q= Q3 € Q, for readability.

Given f € Mg, such an algebraic pinning = is f-admissible if:

» f has no poles in &; and
» f is nonsingular at Q, © nS for every w e Q and ne Zxyp.
Since each f € Mg has only finitely many poles, it is clear there

always exist pinnings that are simultaneously fi-admissible for any
finite collection fi,..., fy € Mg¢.



Ancillary data obtained from algebraic pinning

For a pinning = = (Z/{, Q,K)) we obtain the following auxiliary data
as consequences of the Riemann-Roch Theorem.

Technical Lemma (A.-Babbitt 2024)

1. For each & # w € Q and k € N, there exist unique

‘Pik eL (k[Qw] + [é]) and dZ(w) e K such that

> @ — Ug is nonsingular at Q,,; and
> ‘Pf,k — dkE(w) . uct?l has a zero at Q.

2. For each j € Z=» there exists a unique
wJ-E eL ([é @S]+ [Qa® 5]) such that

> 2 tl 0
(U Uses has a zero at Q@ S.



Algebraic panorbital residues

Definition (A.-Babbitt 2024)

The algebraic panorbital residues of f € Mg relative to an
f-admissible pinning = of orders 1 and 0 are, respectively,

PanOresz(f,1) := Z Z dz(w)-n-c¢(f,Q,®nS); and

weQ nk=1
wWHFwW

PanOresE(f, 0) :=

+Y 2 (dFw)-

[I]

V(Q) ~ (e nS) )-(F. Quens),

we nk=1
WAL
where 9T := 0 and V< := e lw"

Theorem (A.-Babbitt 2024)

f € Mg is elliptically summable if and only if all the orbital residues
and both panorbital residues vanish.
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