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What is identifiability: toy examples

Example

In the model described by ẋ = kx

• x can measured in an experiment

and, therefore, its derivatives can be estimated,

• k is an unknown scalar parameter.

k =
ẋ

x
=⇒ k is identifiable.

Example

In the model described by ẋ = x + k1 + k2

• x can measured in an experiment

and, therefore, its derivatives can be estimated,

• k1 and k2 are unknown scalar parameters.

Impossible to find k1 and k2 =⇒ k1 and k2 are non-identifiable.

But k1 + k2 is identifiable. How to detect this and use to reparametrize?
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Identifiability: Motivation

Common problem: more than one parameter value

fits the data.

There are different options

Cause Remedy

Noisy data =⇒ More measurements

or better equipment

Non-identfiability =⇒ Another model or new equipment

Verifying identifiabilty allows a modeller

to find the cause and choose the correct remedy.
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Is this really an issue?
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Abstract We consider the dynamics of chemical reaction networks under the
assumption of mass-action kinetics. We show that there exist reaction networks R
for which the reaction rate constants are not uniquely identifiable, even if we are given
complete information on the dynamics of concentrations for all chemical species of
R. Also, we show that there exist reaction networks R1 �= R2 such that their dyna-
mics are identical under appropriate choices of reaction rate constants, and present
theorems that characterize the properties of R, R1, R2 that make this possible. We
use these facts to show how we can determine dynamical properties of some chemical
networks by analyzing other chemical networks.

Keywords Chemical reaction networks · Mass-action kinetics ·
Parameter identification

1 Introduction

A chemical reaction network, under the assumption of mass-action kinetics, gives rise
to a dynamical system governing the concentrations of the different chemical species
[1–11]. We are interested in studying the inverse problem, i.e., the identifiability of
the reaction network and of its reaction rate constants, given the dynamics of chemical
species concentrations.

G. Craciun (B) · C. Pantea
Department of Mathematics, University of Wisconsin-Madison, 480 Lincoln Drive, Madison,
WI 53706-1388, USA
e-mail: craciun@math.wisc.edu

G. Craciun
Department of Biomolecular Chemistry, University of Wisconsin-Madison, 1300 University Avenue,
Madison, WI 53706-1532, USA
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On Identifiability of Nonlinear
ODE Models and Applications in
Viral Dynamics∗

Hongyu Miao†

Xiaohua Xia‡

Alan S. Perelson§

Hulin Wu†

Abstract. Ordinary differential equations (ODEs) are a powerful tool for modeling dynamic processes
with wide applications in a variety of scientific fields. Over the last two decades, ODEs
have also emerged as a prevailing tool in various biomedical research fields, especially
in infectious disease modeling. In practice, it is important and necessary to determine
unknown parameters in ODE models based on experimental data. Identifiability analysis
is the first step in determining unknown parameters in ODE models and such analysis
techniques for nonlinear ODE models are still under development. In this article, we
review identifiability analysis methodologies for nonlinear ODE models developed in the
past couple of decades, including structural identifiability analysis, practical identifiability
analysis, and sensitivity-based identifiability analysis. Some advanced topics and ongoing
research are also briefly reviewed. Finally, some examples from modeling viral dynamics of
HIV and influenza viruses are given to illustrate how to apply these identifiability analysis
methods in practice.

Key words. ODE modeling, structural identifiability, practical identifiability, sensitivity-based iden-
tifiability, viral dynamics

AMS subject classifications. 34A30, 34A34, 34C20

DOI. 10.1137/090757009

1. Introduction. Ordinary differential equation (ODE) models have been widely
used to model physical phenomena, engineering systems, economic behavior, and
biomedical processes. In particular, ODE models have recently played a prominent
role in describing both the within host dynamics and epidemics of infectious diseases
and other complex biomedical processes (e.g., [2, 15, 59, 74, 75, 77]). Great attention

∗Received by the editors April 24, 2009; accepted for publication (in revised form) February 22,
2010; published electronically February 8, 2011. This work was partially supported by NIAID/NIH
research grants AI055290, AI50020, AI28433, AI078498, RR06555, the University of Rochester
Provost Award, and the University of Rochester DCFAR (P30AI078498) Mentoring Award. The
U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or allow others to do so, for U.S. Government purposes. Copyright is
owned by SIAM to the extent not limited by these rights.

http://www.siam.org/journals/sirev/53-1/75700.html
†Department of Biostatistics and Computational Biology, University of Rochester School of

Medicine and Dentistry, 601 Elmwood Avenue, Box 630, Rochester, NY 14642 (hongyu miao@urmc.
rochester.edu, hwu@bst.rochester.edu).

‡Department of Electrical, Electronic and Computer Engineering, University of Pretoria, Lynn-
wood Road, Pretoria 0002, South Africa (xxia@postino.up.ac.za).

§Theoretical Biology and Biophysics Group, MS-K710, Los Alamos National Laboratory, Los
Alamos, NM 87545 (asp@lanl.gov).
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Is this really an issue?

Review: To be or not to be an identifiable model. Is this a relevant
question in animal science modelling?

R. Muñoz-Tamayo1†, L. Puillet1, J. B. Daniel1,2, D. Sauvant1, O. Martin1, M. Taghipoor3 and P. Blavy1

1UMR Modélisation Systémique Appliquée aux Ruminants, INRA, AgroParisTech, Université Paris-Saclay, 75005 Paris, France; 2Trouw Nutrition R&D, P.O. Box 220,
5830 AE Boxmeer, The Netherlands; 3PEGASE, AgroCampus Ouest, INRA, 35590 Saint-Gilles, France

(Received 4 May 2017; Accepted 24 September 2017; First published online 3 November 2017)

What is a good (useful) mathematical model in animal science? For models constructed for prediction purposes, the question of
model adequacy (usefulness) has been traditionally tackled by statistical analysis applied to observed experimental data relative to
model-predicted variables. However, little attention has been paid to analytic tools that exploit the mathematical properties of the
model equations. For example, in the context of model calibration, before attempting a numerical estimation of the model
parameters, we might want to know if we have any chance of success in estimating a unique best value of the model parameters
from available measurements. This question of uniqueness is referred to as structural identifiability; a mathematical property that is
defined on the sole basis of the model structure within a hypothetical ideal experiment determined by a setting of model inputs
(stimuli) and observable variables (measurements). Structural identifiability analysis applied to dynamic models described by
ordinary differential equations (ODEs) is a common practice in control engineering and system identification. This analysis demands
mathematical technicalities that are beyond the academic background of animal science, which might explain the lack of
pervasiveness of identifiability analysis in animal science modelling. To fill this gap, in this paper we address the analysis of
structural identifiability from a practitioner perspective by capitalizing on the use of dedicated software tools. Our objectives are
(i) to provide a comprehensive explanation of the structural identifiability notion for the community of animal science modelling,
(ii) to assess the relevance of identifiability analysis in animal science modelling and (iii) to motivate the community to use
identifiability analysis in the modelling practice (when the identifiability question is relevant). We focus our study on ODE models.
By using illustrative examples that include published mathematical models describing lactation in cattle, we show how structural
identifiability analysis can contribute to advancing mathematical modelling in animal science towards the production of useful
models and, moreover, highly informative experiments via optimal experiment design. Rather than attempting to impose a
systematic identifiability analysis to the modelling community during model developments, we wish to open a window towards the
discovery of a powerful tool for model construction and experiment design.

Keywords: dynamic modelling, identifiability, model calibration, optimal experiment design, parameter identification

Implications

Mathematical modelling has played a central role in animal
science with a plethora of developments for enhancing
understanding and guiding sustainable livestock farming.
Progress in precision farming and omics technologies will call
for model developments adapted to get the most out of the
resulting big data, including better modelling practice. Our
objective is of providing insight into a mathematical tool
called structural identifiability analysis that has been seldom
used for analysing dynamic models in animal science. We
illustrate how this tool (when relevant) can contribute to

advancing mathematical modelling towards the production
of useful models and optimal experiments.

Introduction

The development of mathematical models in animal science
has contributed to gaining insight in different central aspects
of animal physiology such as metabolism and digestion. The
potential of modelling has been discussed by different authors
(France, 1988; Baldwin, 2000; Doeschl-Wilson, 2011).
A classical modelling approach for describing the dynamics

of a system under study is to construct dynamic models con-
sisting of ordinary differential equations (ODEs). These models
comprise parameters (sometimes in large number) whose
numerical values need to be estimated from experimental data† E-mail: rafael.munoztamayo@agroparistech.fr

Animal (2018), 12:4, pp 701–712 © The Animal Consortium 2017
doi:10.1017/S1751731117002774
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Relaxation of the problem: local identifiability

On this slide

• x can be measured in an experiment

and, therefore, its derivatives can be estimated

• k1 and k2 are unknown scalar parameters

Equation What happens Identifiable?

ẋ = x + k1 k1 = ẋ − x YES

ẋ = x + k1
2 k1 = ±

√
ẋ − x NO

ẋ = x + k1 + k2 Infinitely many values for k1 and k2 NO

6
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On this slide

• x can be measured in an experiment

and, therefore, its derivatives can be estimated

• k1 and k2 are unknown scalar parameters

Equation What happens Identifiable?

ẋ = x + k1 k1 = ẋ − x Globally

ẋ = x + k1
2 k1 = ±

√
ẋ − x Locally

ẋ = x + k1 + k2 Infinitely many values for k1 and k2 NO
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Local identifiability: state of the art

• Jacobian test: Hermann and Krener (1977)

• Efficient software:

• ObservabilityTest (2002)

• IdentifiabilityAnalysis (2012)

• STRIKE-GOLDD (2016)

• Criteria for systems of special form:

• Meshkat, Sullivant, Eisenberg (2015)

• Meshkat, Rosen, Sullivant (2016)

• Baaijens, Draisma (2016)

• Gross, Meshkat, Shiu (2018)
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The importance of being globally identifiable

• Local identifiability does not guarantee the uniqieness of

the parameter value.

• Lack of global identifiability is hard to detect using

numeric methods.

• It happens!
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It happens: epidemiology (SEIR model)





S ′ = −β SI
N ,

E ′ = β SI
N − ηE ,

I ′ = ηE − αI ,
R ′ = αR,

N = S + E + I + R,

y1 = N,

y2 = κI .

Susceptible

↓
Exposed

↓
Infectious

↓
Recovered

Turns out:

Only locally identifiable: α, η,

Nonidentifiable: β, κ.

Furthermore:
An unordered pair {α, η} is

identifiable, so α + η and αη are

identifiable.
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Global identifiability: state of the art

Taylor series method Theory: Ponjanpalo, 1978

Software: GenSSI 2.0, 2017

Termination criterion only for special cases

Differential elimination Theory: Diop, Fliess, Ljung, Glad, 1993

for parameters Tackles only small examples

Input-output equations Theory: Ollivier, 1990

Software: DAISY, 2007; COMBOS, 2014

In a few minutes!

Prolongations + Theory: Hong, Ovchinnikov, Pogudin, Yap, 2020

symbolc sampling Software: SIAN, 2019
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Definition of identifiability in algebra
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Differential fields, polynomials, and ideals

• Differential ring/field K is ring/field with a derivation ′:

C(x) with derivation d/dx .

• Differential polynomials:

K{x , y , z} = K [x , y , z , x ′, y ′, z ′, . . .].

• Differential ideal I in differential ring R:

a ∈ I =⇒ a′ ∈ I .

• Notation: smallest differential ideal in R containing a, b, c is [a, b, c].

• Notation: smallest differential field containing C and a, b, c is

C〈a, b, c〉.

12
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Generic solution

Input

System {
x′ = f(x, µ),

y = g(x, µ),
(1)

where

• x are unknown state variables;

• µ are unknown scalar parameters;

• y are outputs measured in experiment.

A tuple (x∗, y∗) from a differential field k ⊃ C(µ) is a generic solution

of (2) if, for every differential polynomial P ∈ C(µ){x , y}, we have

P(x∗, y∗) = 0 ⇐⇒ P ∈ [x ′ − f (x , µ), y − g(x , µ)].

Example: (0, 0) is not generic but (et , et) is generic for x ′ = x , y = x .
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Definition of identifiability

Input

System {
x′ = f(x, µ),

y = g(x, µ),
(2)

where
• x are unknown state variables;

• µ are unknown scalar parameters;

• y are outputs measured in experiment.

A rational function h ∈ C(µ) is globally (resp., locally) identifiable if, for

every generic solution (x∗, y∗) of (2),

h ∈ C〈y∗〉
(resp., h is algebraic over C〈y∗〉).

Example: x ′ = x + µ1 + µ2, y = x . Then h = µ1 + µ2 = y ′ − y is

identifiable.
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Running example: predator-prey model





x ′1 = k1x1 − k2x1x2,

x ′2 = −k3x2 + k4x1x2,

y = x1.

• x1 - prey

• x2 - predators

Globally identifiable: k1, k3, k4

Nonidentifiable: k2

Identifiable functions: C(k1, k3, k4).
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Step 1: Eliminate

Idea: we cannot measure x2 =⇒ let us eliminate it!





x ′1 = k1x1 − k2x1x2

x ′2 = −k3x2 + k4x1x2

y = x1

=⇒ yy ′′−y ′2−k4y
2y ′−k3yy

′+k1k4y
3−k1k3y

2 = 0

Input-output equation - the “minimal” differential equation for y with

coefficients in the parameters.
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Step 2: Extract coefficients

Idea: Differentiate the minimal equation =⇒ linear equations in the

coefficients

yy ′′ − y ′2 − k4y
2y ′ − k3yy

′ + k1k4y
3 − k1k3y

2 = 0

Wronskian:

yy ′′ − y ′2 = k4y
2y ′ + k3yy

′ − k1k4y
3 + k1k3y

2

(yy ′′ − y ′2)′ = k4(y 2y ′)′ + k3(yy ′)′ − k1k4(y 3)′ + k1k3(y 2)′

(yy ′′ − y ′2)′′ = k4(y 2y ′)′′ + k3(yy ′)′′ − k1k4(y 3)′′ + k1k3(y 2)′′

(yy ′′ − y ′2)′′′ = k4(y 2y ′)′′′ + k3(yy ′)′′′ − k1k4(y 3)′′′ + k1k3(y 2)′′′

Assume nonsingular Wronskian. Then one can prove:

identifiable ⇐⇒ rational in k4, k3, k1k4, k1k3

Remark

• Assumption is not always true
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Subtlety: the assumption does not always hold

Not yet an example (twisted harmonic oscillator)




x ′1 = (ω + α)x2,

x ′2 = −ωx1,

y = x2

=⇒ y ′′ + ω(ω + α)y = 0

Example

Assume that α is known




x ′1 = (ω + x3)x2,

x ′2 = −ωx1,

x ′3 = 0,

y1 = x2, y2 = x3

=⇒

Determinant of the Wronskian is y1y
′
1y2 − y1y2y

′
1 = 0.

Only ω(ω + α), α known =⇒ quadratic equation in ω.
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Why do we care about this method then?

• Used in practice (software: DAISY, COMBOS)

• If the assumption is true, finds all identifiable functions
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Our algorithm

Algorithm Computing all identifiable functions

Input System Σ =

{
x′ = f(x, µ)

y = g(x, µ)
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Algorithm Computing all identifiable functions

Input System Σ =

{
x′ = f(x, µ)

y = g(x, µ)

Output Generators of the field of identifiable functions of Σ

1. Compute a set p̄ of input-output equations of Σ (differential alg.).

2. For each p ∈ p̄, compute Wp: compute the Wronskian of the

monomials of p and apply reduction modulo the equations of Σ.

3. For each p ∈ p̄, calculate the reduced row echelon form of the

matrix Wp and let F (p̄) be the field generated over C by all

non-leading coefficients of all matrices Wp.

4. Find generators of C(µ) ∩ F (p̄). Return these generators.

Implementation is available here:

https://github.com/pogudingleb/AllIdentifiableFunctions
22
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Our algorithm: example

Σ =





x ′ = 0

y1 = ax + b

y2 = x
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Therefore, F (p̄) = C(ax + b, x).
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Wp2 =
(
y ′2

)
mod Σ =

(
0
)
.

3. The corresponding reduced row echelon forms are the same.

Therefore, F (p̄) = C(ax + b, x).

4. The field of identifiable functions is C(a, b) ∩ C(ax + b, x)=?. 23



Our algorithm: another example

Σ =





x ′1 = (ω + x3)x2,

x ′2 = −ωx1,

x ′3 = 0,

y1 = x2, y2 = x3
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Therefore, p̄ = (p1, p2), where p1 = y ′′1 + ω2y1 + ωy1y2, p2 = y ′2.
2.

Wp1=




y1 y ′′
1 y1y2

y ′
1 y ′′′

1 (y1y2)′

y ′′
1 y ′′′′

1 (y1y2)′′


mod Σ=




x2 −(ω + x3)ωx2 x2x3

−ωx1 x1ω
2(ω + x3) −x3x1ω

−(ω + x3)ωx2 x2ω
2(ω + x3)2 −(ω + x3)ωx2x3



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Σ =





x ′1 = (ω + x3)x2,

x ′2 = −ωx1,

x ′3 = 0,

y1 = x2, y2 = x3

1. We eliminate x1, x2, x3 and find these input-output equations:

y ′′1 + ω2y1 + ωy1y2 = 0, y ′2 = 0.

Therefore, p̄ = (p1, p2), where p1 = y ′′1 + ω2y1 + ωy1y2, p2 = y ′2.
2.

Wp1=




y1 y ′′
1 y1y2

y ′
1 y ′′′

1 (y1y2)′

y ′′
1 y ′′′′

1 (y1y2)′′


mod Σ=




x2 −(ω + x3)ωx2 x2x3

−ωx1 x1ω
2(ω + x3) −x3x1ω

−(ω + x3)ωx2 x2ω
2(ω + x3)2 −(ω + x3)ωx2x3




Wp2 =
(
y ′

2

)
mod Σ =

(
0
)
.
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
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Wp2 =
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y ′

2

)
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0
)
.

3. The corresponding reduced row echelon forms are



1 −(ω + x3)ω x3

0 0 0

0 0 0


 and

(
0
)

. Therefore, F (p̄) = C(ω(ω + x3), x3).
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1 −(ω + x3)ω x3

0 0 0
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
 and

(
0
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. Therefore, F (p̄) = C(ω(ω + x3), x3).

3. The field of identifiable functions is C(ω) ∩ C(ω(ω + x3), x3)=?.
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Intersection of fields: an attempt

ACM SIGSAM Bulletin Volume 32, Issue 2, p. 62

(from abstract of ISSAC 1998 poster):

C o m p u t i n g  t h e  I n t e r s e c t i o n  o f  F i n i t e l y  G e n e r a t e d  F i e l d s  

J()RN Mf0LLER-QUADE and THOMAS BETH 

Institut fiir Algorithmen und Kognitive Systeme 
Fakult£t f/Jr Informatik, Universit£t Karlsruhe, Germany. 

For the problem of computing the intersection of fields only partial solutions were known. For 
fields generated by single polynomials in one variable a construction was given by Binder [B96]. 
Another approach was a spin-off of an algorithm capable of deciding if two finitely generated fields 
are linear disjoint [MR98]. For two fields being linear disjoint an algorithm for the computation of 
the intersection is given there. 

In this note we introduce the first algorithm for computing the intersection k(f) fq k(g) in 
the general case of two subfields k(f) = k( f l , . . . ,  fr) and k(g) = k(gl,. . .  ,gs) of a function field 
k(X) = Quot(k[X1,.. . ,  Xn]/I(X)) which is finitely generated over a field k of constants. 

A correspondence between fields and ideals (see [MSB98, MR98]) is used to reduce the problem 
of intersecting k(f) and k(g) to the task of restricting an ideal corresponding to k(f) from a 
polynomial ring over k(X) to a polynomial ring over the subfield k(g). This problem is then solved 
for arbitrary ideals using tag variables and elimination. 

For k(f) _< k(X) the ideal Jk(f) ~ k(f)[Z1,. . . ,  Zn] of all syzygies of the generators X1 , . . . ,  Xn 
of k(X) over k(f) is defined as (X1 -- Z1 , . . . ,  Xn - Z,~) N k(f)[Z1, . . . ,  Zn]. The most important 
property of this ideal is that it can be computed effectively and that from the ideal Jk(f) generators 
of the corresponding field k(f) can be: obtained. This reduces some problems from field theory to 
ideal theory. In the case of field intersection we get: 

Jk ( f )Nk(g )  =- gk(f) N k(g)[Z1,. . . ,  Zn]. 

We give an algorithm to compute the right-hand side of this equation. Hence due to the effec- 
tiveness of the field-ideal-correspondence the intersection of finitely generated fields is effectively 
computable. 

We conclude with applications to fields of invariants and group theory, e. g., deciding if a matrix 
group is finite if only the generators are known. All these applications are based on the equality 
k(x)(~,,v2) = k(x)al N k(x) G2 and the effectiveness of solving the field intersection problem. 
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[B96] F. Binder. Fast Computations in the Lattice of Polynomial Rational Function Fields. Pro- 
ceedings of the 1996 International Symposium on Symbolic and Algebraic Computation. 
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[MR98] J. Mfiller-Quade and M. Rbtteler. Deciding Linear Disjointness of Finitely Generated 
Fields. Proceedings of the 1998 International Symposium on Symbolic and Algebraic Com- 
putation. 1998. ACM-Press 

• [MSB98] J. Mfiller-Quade, R. Steinwandt and Th. Beth. An application of Grbbner bases to the 
decomposition of rational mapTings. Grbbner Bases and Applications (Proc. of the Con- 
ference 33 Years of Grbbner Bases). 1998. London Mathematical Society Lecture Notes 
Series 
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Intersection of fields: mistake found

378 T. Beth et al. / Journal of Symbolic Computation 41 (2006) 372–380

H = 〈F1, p〉. Computing the elimination ideal H∩Q(x2)[Z ] with a lexicographic Gröbner basis
provides no further difficulties and yields

I ∩ Q(x2)[Z ] = 〈Z6 + 2 · Z5 + Z4 − 2x2 · Z3 − 2x2 · Z2 − x6 + x4〉.
Example. Let x1, x2 be algebraically independent overQ, and consider the ideal

J := 〈x1 · Z1 − Z2, x2 · Z2 − Z3, Z23〉 ⊆ Q(x1, x2)[Z1, Z2, Z3].

We want to compute the restriction J∩Q[Z1, Z2, Z3]. The idealP(x1,x2)/Q is the zero ideal, and
the polynomials &F compute to

F1 = X1 · Z1 − Z2,
F2 = X2 · Z2 − Z3,
F3 = Z23 .

Dealing again with a polynomial ring, we have Q = 〈0〉, and thus we obtain 〈 &F, &p, &q〉 =
〈F1, F2, F3〉 (⊆ Q[X1, X2, Z1, Z2, Z3]). For example, by means ofMAGMA one can determine
the following irredundant primary decomposition I = Q1 ∩ Q2 ∩ Q3 of 〈 &F, &p, &q〉 ⊆
Q[X1, X2, Z1, Z2, Z3]:

Q1 = 〈X21, X1 · Z1 − Z2, X1 · Z2, X1 · Z3, X2 · Z2 − Z3, Z22, Z2 · Z3, Z23〉
Q2 = 〈X1 · Z1 − Z2, X22, X2 · Z2 − Z3, X2 · Z3, Z23〉
Q3 = 〈X1 · Z1 − Z2, X2 · Z2 − Z3, Z21, Z1 · Z2, Z1 · Z3, Z22, Z2 · Z3, Z23〉.

Only for i = 3 we haveQi ∩ Q[X1, X2] = 〈0〉 (= P(x1,x2)/Q), and thus we obtain H = Q3. By
intersecting H with Q[Z1, Z2, Z3] we get (via Lemma 2.2)

J ∩ Q[Z1, Z2, Z3] = 〈Z21 , Z1 · Z2, Z1 · Z3, Z22, Z2 · Z3, Z23〉.

3. A (counter-)example: Intersecting fields

As described in Müller-Quade and Beth (1998a), an ideal restriction can be used to compute
generators of the intersection k(&g) ∩ k(&h) of two subfields k(&g), k(&h) ⊆ k(&x): it is sufficient to
find a basis of the ideal

P(&x)/k(&g)︸ ︷︷ ︸
⊆k(&g)[ &X]

∩k(&h)[ &X] ⊆ (k(&g) ∩ k(&h))[ &X ]. (3)

Unfortunately, the method discussed in the previous section does not allow the computation of
the intersection (3), as in general k(&h) is not a subfield of k(&g). In Müller-Quade and Beth (1998a)
an algorithm for accomplishing this task was proposed, but a more detailed analysis shows that
it actually computes the ideal P(&x)/k(&g) · k(&x)[ &X ] ∩ k(&h)[X] which in general does not coincide
with the ideal (3).

Example. Consider the two subfields k(&g) := Q(x3 + x2) and k(&h) := Q(x2) of k(&x) := Q(x).
Then we know from the first example in the previous section that

P(&x)/k(&g) · k(&x)[ &X] ∩ k(&h)[X] = 〈X6 + 2 · X5 + X4 − 2x2 · X3 − 2x2 · X2 − x6 + x4〉.
T. Beth et al. / Journal of Symbolic Computation 41 (2006) 372–380 379

As adjoining the coefficients of a reduced Gröbner basis of this ideal to Q yields the field Q(x2),
the algorithm fromMüller-Quade and Beth (1998a) yieldsQ(x3+ x2) ∩ Q(x2) = Q(x2), which
is clearly wrong.

So it remains an interesting open question whether the techniques described here can be extended
in such a way that they allow the computation of a system of generators of the intersection of
arbitrary finitely generated extension fields.
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Intersection of fields: towards solution

A solution was given in 2009 with a restriction: the fields that are being

intersected are algebraically closed in the ambient field.
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This result is good but is not good enough for our purpose.
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Intersection of fields: algorithm

Algorithm Intersection of fields

Input Tuples f̄ := (f1, . . . , fs) and ḡ := (g1, . . . , g`) such that

f1, . . . , fs , g1, . . . , g` ∈ K (x̄), where x̄ := (x1, . . . , xn);

Output If terminates, returns generators of K (f̄ ) ∩ K (ḡ).
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for S ⊂ K (x̄)[Z ], 〈S〉 is the ideal generated by S in K (x̄)[Z ].

28



Intersection of fields: algorithm

Algorithm Intersection of fields

Input Tuples f̄ := (f1, . . . , fs) and ḡ := (g1, . . . , g`) such that
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Output If terminates, returns generators of K (f̄ ) ∩ K (ḡ).

Notation: Introduce new variables Z := (Z1, . . . ,Zn). In the algorithm,

for S ⊂ K (x̄)[Z ], 〈S〉 is the ideal generated by S in K (x̄)[Z ].

1. For every 1 6 i 6 s, write fi (x̄) = ni (x̄)
di (x̄) so that ni , di ∈ K [x̄ ], and set

D(x̄) := d1 · . . . · ds ;
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di (x̄) so that ni , di ∈ K [x̄ ], and set

D(x̄) := d1 · . . . · ds ;

2. Set i := 1, I1 := 〈1〉 and

J1 :=
〈
n1(Z )− f1(x̄)d1(Z ), . . . , ns(Z )− fs(x̄)ds(X )

〉
: D(Z )∞;

28



Intersection of fields: algorithm

Algorithm Intersection of fields

Input Tuples f̄ := (f1, . . . , fs) and ḡ := (g1, . . . , g`) such that
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〈
n1(Z )− f1(x̄)d1(Z ), . . . , ns(Z )− fs(x̄)ds(X )

〉
: D(Z )∞;

3. While Ii 6= Ji do

3.1 Ii+1 := 〈Ji ∩ K(ḡ)[Z ]〉;
3.2 Ji+1 := 〈Ii+1 ∩ K(f̄ )[Z ]〉;
3.3 i := i + 1;
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J1 :=
〈
n1(Z )− f1(x̄)d1(Z ), . . . , ns(Z )− fs(x̄)ds(X )

〉
: D(Z )∞;

3. While Ii 6= Ji do

3.1 Ii+1 := 〈Ji ∩ K(ḡ)[Z ]〉;
3.2 Ji+1 := 〈Ii+1 ∩ K(f̄ )[Z ]〉;
3.3 i := i + 1;

4. Compute any reduced Gröbner basis of Ji and return its coefficients.
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f1, . . . , fs , g1, . . . , g` ∈ K (x̄), where x̄ := (x1, . . . , xn);

Output If terminates, returns generators of K (f̄ ) ∩ K (ḡ).
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Intersection of fields: algorithm

Algorithm Intersection of fields

Input Tuples f̄ := (f1, . . . , fs) and ḡ := (g1, . . . , g`) such that

f1, . . . , fs , g1, . . . , g` ∈ K (x̄), where x̄ := (x1, . . . , xn);

Output If terminates, returns generators of K (f̄ ) ∩ K (ḡ).

Binder (2009): the algorithm terminates if K (f̄ ) and K (ḡ) are

algebraically closed in K (x̄).

Our contribution: proved that the algorithm terminates if at least one of

K (f̄ ) and K (ḡ) is algebraically closed in K (x̄).

Implementation is available here:

https://github.com/pogudingleb/AllIdentifiableFunctions

More particular case used in our identifiability algorithm:

C(x1, . . . , xs) ∩ C(ḡ)
in C(x1, . . . , xn). 28
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Intersection of fields: example

K = C, f̄ = (a, b), ḡ = (ax + b, x), C(f̄ ) ∩ C(ḡ) =? in C(a, b, x).
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We have I1 = 〈1〉
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K = C, f̄ = (a, b), ḡ = (ax + b, x), C(f̄ ) ∩ C(ḡ) =? in C(a, b, x).

We have I1 = 〈1〉 and

J1 = 〈Z1 − a,Z2 − b〉 ⊂ C(a, b, x)[Z1,Z2,Z3].
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We have I1 = 〈1〉 and

J1 = 〈Z1 − a,Z2 − b〉 ⊂ C(a, b, x)[Z1,Z2,Z3].

Compute J1 ∩ C(ax + b, x)[Z1,Z2,Z3].
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K = C, f̄ = (a, b), ḡ = (ax + b, x), C(f̄ ) ∩ C(ḡ) =? in C(a, b, x).

We have I1 = 〈1〉 and

J1 = 〈Z1 − a,Z2 − b〉 ⊂ C(a, b, x)[Z1,Z2,Z3].

Compute J1 ∩ C(ax + b, x)[Z1,Z2,Z3]. For this, first consider the ideal

I := 〈Z1 − A,Z2 − B,AX + B − ax − b,X − x〉

in C(ax + b, x)[Z1,Z2,Z3,A,B,X ],
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K = C, f̄ = (a, b), ḡ = (ax + b, x), C(f̄ ) ∩ C(ḡ) =? in C(a, b, x).

We have I1 = 〈1〉 and

J1 = 〈Z1 − a,Z2 − b〉 ⊂ C(a, b, x)[Z1,Z2,Z3].

Compute J1 ∩ C(ax + b, x)[Z1,Z2,Z3]. For this, first consider the ideal

I := 〈Z1 − A,Z2 − B,AX + B − ax − b,X − x〉
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I2 := I ∩ C(ax + b, x)[Z1,Z2,Z3] = 〈Z1x + Z2 − ax − b〉.
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I ′ := 〈Z1X + Z2 − AX − B,A− a,B − b〉

in C(a, b)[Z1,Z2,Z3,A,B,X ]
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I2 := I ∩ C(ax + b, x)[Z1,Z2,Z3] = 〈Z1x + Z2 − ax − b〉.
We now compute J2 := I2 ∩ C(a, b)[Z1,Z2,Z3]. For this, we consider

I ′ := 〈Z1X + Z2 − AX − B,A− a,B − b〉
in C(a, b)[Z1,Z2,Z3,A,B,X ] , and we compute

J2 := I ′ ∩ C(a, b)[Z1,Z2,Z3] = 〈0〉,
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I ′ := 〈Z1X + Z2 − AX − B,A− a,B − b〉
in C(a, b)[Z1,Z2,Z3,A,B,X ] , and we compute

J2 := I ′ ∩ C(a, b)[Z1,Z2,Z3] = 〈0〉,
which implies I3 = J3 = 〈0〉, and so we stop and conclude

C(a, b) ∩ C(ax + b, x) = C. 29



Intersection of fields: example

K = Q, f̄ = X 2, ḡ = X 2 + X , X̄ = X
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Q(X 2 + X ) ∩Q(X 2).
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K = Q, f̄ = X 2, ḡ = X 2 + X , X̄ = X

So, we compute

Q(X 2 + X ) ∩Q(X 2).

Binder proved:

2 Algorithms for Fields

Examples 2.41. (a) Let X1 be an indeterminate over Q and let L1 := Q(X2
1 ) and L2 :=

Q(X2
1 + X1). Note that the fields L1 and L2 are not algebraically closed in Q(X1).

We show that Algorithm 2.38 does not terminate for these fields. Let Z1 be an
indeterminate over Q(X1). We claim – with the notation of Algorithm 2.38 – that
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n�1Y
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�
Z2

1 �X2
1 + 2iX1 � i2

�
·

n�1Y
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�
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!
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�
!

for all n 2 N0. Assume for a moment that the claim is true. Then we clearly have a
strictly descending chain of ideals I1 ) J1 ) I2, . . ., which shows that the algorithm
does not terminate.
To prove the claim, we use induction on n 2 N0. Note that the ideal I1 is equal to
(1) E K(X1)[Z1]. Furthermore by Proposition 2.21, we have

J1 = JX1

X2
1

= (Z2
1 �X2

1 ) E Q(X1)[Z1].

So the assertion is true for n = 0.
Now suppose that the claim is true for some n 2 N0. A straightforward calculation
shows that

(Z2
1 �X2

1 + 2nX1 � n2) · (Z2
1 �X2

1 � 2(n + 1)X1 � (n + 1)2)

= Z4
1 + (�2(X2
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1 + X1 � 2n2 � 2n) + n4 + 2n3 + n2

2 Q(X2
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and that
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2 Q(X2
1 )[Z].

So by assumption, it can be seen that
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and so

I1 ) J1 ) I2 ) . . . ,

and the algorithm never stops.
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Open problems

Improve the efficiency of our algorithm:

• Improve the efficiency of computing input-output

equations by a better choice of ordering variables

• Improve the computation of the Wronskian and its

reduction modulo the equations (problem:

derivatives of high order =⇒ large expressions)

• Improve the efficiency of the intersection of fields

algorithm (problem: decomposition into prime components

is used; can we do this factorization-free, e.g., using

regular chains?)
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