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What is identifiability: toy examples
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In the model described by x = kx
e x can measured in an experiment
and, therefore, its derivatives can be estimated,

e k is an unknown scalar parameter.
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Example

In the model described by x = x + ki + k>

e x can measured in an experiment
and, therefore, its derivatives can be estimated,

e ki and kp are unknown scalar parameters.

Impossible to find k; and k», = k; and ky are non-identifiable.
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What is identifiability: toy examples

Example

In the model described by x = kx
e x can measured in an experiment
and, therefore, its derivatives can be estimated,

e k is an unknown scalar parameter.
k=— = ks identifiable.
X

Example

In the model described by x = x + ki + k>

e x can measured in an experiment
and, therefore, its derivatives can be estimated,

e ki and kp are unknown scalar parameters.

Impossible to find k; and k», = k; and ky are non-identifiable.

But ky + ky is identifiable. How to detect this and use to reparametrize? 3
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Identifiability: Motivation

Common problem: more than one parameter value
fits the data.

There are different options

Cause Remedy
Noisy data —>  More measurements

or better equipment
Non-identfiability === Another model or new equipment

Verifying identifiabilty allows a modeller
to find the cause and choose the correct remedy.
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Abstract We consider the dynamics of chemical reaction networks under the
assumption of mass-action kinetics. We show that there exist reaction networks R
for which the reaction rate constants are not uniauelv identifiable. even if we are eiven



Is this really an issue?

SIAM RevIEW (© 2011 Society for Industrial and Applied Mathematics
Vol. 53, No. I, pp. 3-39

On ldentifiability of Nonlinear
ODE Models and Applications in
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Abstract. Ordinary differential equations (ODEs) are a powerful tool for modeling dynamic processes
with wide applications in a variety of scientific fields. Over the last two decades, ODEs
have also emerged as a prevailing tool in various biomedical research fields, especially
in infectious disease modeling. In practice, it is important and necessary to determine
unknown parameters in ODE models based on experimental data. Identifiability analysis
is the first step in determining unknown parameters in ODE models and such analysis
techniques for nonlinear ODE models are still under development. In this article, we
review identifiability analysis methodologies for nonlinear ODE models developed in the
past couple of decades, including structural identifiability analysis, practical identifiability
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Review: To be or not to be an identifiable model. Is this a relevant
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What is a good (useful) mathematical model in animal science? For models constructed for prediction purposes, the question of
model adequacy (usefulness) has been traditionally tackled by statistical analysis applied to observed experimental data relative to
model-predicted variables. However, little attention has been paid to analytic tools that exploit the mathematical properties of the
model equations. For example, in the context of model calibration, before pting a numerical estimation of the model
parameters, we might want to know if we have any chance of success in estimating a unique best value of the model parameters
from available measurements. This question of uniqueness is referred to as structural identifiability; a mathematical property that is
defined on the sole basis of the model structure within a hypothetical ideal experi de ined by a setting of model inputs
(stimuli) and observable variables . Structural identifiability analysis applied to dynamic models described by




Relaxation of the problem: local identifiability

On this slide

e x can be measured in an experiment
and, therefore, its derivatives can be estimated

e /; and ko, are unknown scalar parameters

Equation What happens Identifiable?
X=X+ ki ki =x—x YES
X =X+ ki ki = +v/x —x NO
X = x4+ ki + ko Infinitely many values for k; and k, NO



Relaxation of the problem: local identifiability

On this slide

e x can be measured in an experiment
and, therefore, its derivatives can be estimated

e /; and ko, are unknown scalar parameters

Equation What happens Identifiable?
X =x+ ki ki =% —x Globally

x = x+ k;2 ky = /% — x Locally

X = x4+ ki + ko Infinitely many values for k; and k, NO
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Local identifiability: state of the art

e Jacobian test: Hermann and Krener (1977)

e Efficient software:

e OBSERVABILITYTEST (2002)
e IDENTIFIABILITYANALYSIS (2012)
e STRIKE-GOLDD (2016)

e Criteria for systems of special form:

Meshkat, Sullivant, Eisenberg (2015)
Meshkat, Rosen, Sullivant (2016)
Baaijens, Draisma (2016)

Gross, Meshkat, Shiu (2018)



The importance of being globally identifiable

e Local identifiability does not guarantee the unigieness of
the parameter value.
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The importance of being globally identifiable

e Local identifiability does not guarantee the unigieness of
the parameter value.

e Lack of global identifiability is hard to detect using
numeric methods.

e |t happens!



It happens: epidemiology (SEIR model)

S = _‘;%, Susciptible
1 St
E =0y -k Exposed
I"=nE — al, !
R' = aR, Infectious
N=S+E+I+R, !
Recovered
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It happens: epidemiology (SEIR model)

)/1:/\/7

Yo = kl.

Turns out:

Only locally identifiable: «,n,

Nonidentifiable: 3, k.

Susceptible

{
Exposed

0

Infectious

I

Recovered

Furthermore:
An unordered pair {a,n} is

identifiable, so o + 7 and a7 are
identifiable.



Global identifiability:

state of the art

Taylor series method

Differential elimination
for parameters

Input-output equations

Prolongations +
symbolc sampling

Theory: Ponjanpalo, 1978
Software: GENSSI 2.0, 2017
Termination criterion only for special cases

Theory: Diop, Fliess, Ljung, Glad, 1993
Tackles only small examples

Theory: Ollivier, 1990

Software: DAISY, 2007; COMBOS, 2014

In a few minutes!

Theory: Hong, Ovchinnikov, Pogudin, Yap, 2020
Software: STAN, 2019

10



Definition of identifiability in algebra
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Differential fields, polynomials, and ideals

e Differential ring/field K is ring/field with a derivation ’:
C(x) with derivation d/dx.

12



Differential fields, polynomials, and ideals

e Differential ring/field K is ring/field with a derivation ’:
C(x) with derivation d/dx.

e Differential polynomials:

K{x,y,z} = Klx,y,z,x',y',Z',.. ].

12



Differential fields, polynomials, and ideals

e Differential ring/field K is ring/field with a derivation ’:
C(x) with derivation d/dx.

e Differential polynomials:

K{x,y,z} = Klx,y,z,x',y',Z',.. ].

e Differential ideal / in differential ring R:

acl = a el.

12



Differential fields, polynomials, and ideals

e Differential ring/field K is ring/field with a derivation ’:
C(x) with derivation d/dx.

Differential polynomials:
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Differential fields, polynomials, and ideals

e Differential ring/field K is ring/field with a derivation ’:
C(x) with derivation d/dx.

e Differential polynomials:

K{x,y,z} = Klx,y,z,x',y',Z',.. ].

e Differential ideal / in differential ring R:

acl = a el.

e Notation: smallest differential ideal in R containing a, b, c is [a, b, c].

e Notation: smallest differential field containing C and a, b, c is
C{a, b, c).

12



Generic solution

Input
System
{X,_f(xa//)v 1)
y = g(x, 1),
where

e x are unknown state variables;
e 1 are unknown scalar parameters;

e y are outputs measured in experiment.
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Input
System
{x'—f(x,//)7 1)
y = 8(x, 1),
where

e x are unknown state variables;
e 1 are unknown scalar parameters;

e y are outputs measured in experiment.

A tuple (x*,y*) from a differential field k O C(p) is a generic solution
of (2) if, for every differential polynomial P € C(u){x,y}, we have

P(x*,y*) =0 <= Pe[x' —f(x,u),y — glx,p)]-
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Generic solution

Input
System
{x'—f(x,//)7 1)
y = 8(x, 1),
where

e x are unknown state variables;
e 1 are unknown scalar parameters;

e y are outputs measured in experiment.

A tuple (x*,y*) from a differential field k O C(p) is a generic solution
of (2) if, for every differential polynomial P € C(u){x,y}, we have

P(x*,y*) =0 <= Pe[x' —f(x,u),y — glx,p)]-

Example: (0,0) is not generic but (e, e') is generic for x' = x,y = x. »



Definition of identifiability

Input
System
X' = f(x, p),
{ (2)
y = g(x; 1)
where

e x are unknown state variables;
e 1 are unknown scalar parameters;

e y are outputs measured in experiment.

14



Definition of identifiability

Input
System

where
e x are unknown state variables;

e 1 are unknown scalar parameters;

e y are outputs measured in experiment.

A rational function h € C(p) is globally (resp., locally) identifiable if, for
every generic solution (x*, y*) of (2),

he C{y")
(resp., h is algebraic over C(y*)).
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Definition of identifiability

Input
System
X' = f(x, p),
{ (2)
y = g(x; 1)
where

e x are unknown state variables,
e 1 are unknown scalar parameters;

e y are outputs measured in experiment.

A rational function h € C(p) is globally (resp., locally) identifiable if, for
every generic solution (x*, y*) of (2),

he C{y")
(resp., h is algebraic over C(y*)).

Example: x' = x+pu1 +po,y =x. Then h=p1 +up =y’ —yis

identifiable.
14



Input-output equations
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Specification: what we are after

Input
System

where

e x are unknown state variables,
e 1 are unknown scalar parameters;

e y are outputs measured in experiment.
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Specification: what we are after

Input
System

where

e x are unknown state variables,
e 1 are unknown scalar parameters;

e y are outputs measured in experiment.

Output

Generators of the field of identifiable rational functions in .

16



Running example: predator-prey model

x| = kixy — koxixo,
Xy = —k3xo + kaxixo,
y=x

e x| - prey

e X, - predators

17



Running example: predator-prey model

x| = kixy — koxixo,
Xy = —k3xa + kax1x2,
y=x

e xi - prey

e X, - predators

Globally identifiable: ki, k3, k4
Nonidentifiable: k-
Identifiable functions: C(ki, k3, kq).

17



Step 1: Eliminate

Idea: we cannot measure x, — let us eliminate it!
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Step 1: Eliminate

Idea: we cannot measure x, — let us eliminate it!

X{ = /(1X1 — /QX1X2
Xy = —kaxo + kuxixa = vy —y"*—kay?y' —ksyy'+kikay*—kiksy® = 0

y=xi

18



Step 1: Eliminate

Idea: we cannot measure x, — let us eliminate it!

X{ = /(1X1 = k2X1X2
Xp = —kaxo+ kaxve = W'y —kay?y'—kayy'+kikay®—kiksy? = 0
y=x

Input-output equation - the “minimal” differential equation for y with
coefficients in the parameters.

18



Step 2: Extract coefficients

Idea: Differentiate the minimal equation = linear equations in the
coefficients

W' —y? = kay®y' — kayy' + kiksy® — kiksy? =0

19



Step 2: Extract coefficients

Idea: Differentiate the minimal equation = linear equations in the
coefficients
' —y? = kay?y' — ksyy' + kikay® — kiksy® =0
Wronskian:
Z 2 2 7 / 3] 2
v =y =kiy'y + ksyy — kikay” + kiksy
" =y?) = ka(y®y') + k(') = kika(y®) + kiks(y®)'
(yy// _ y/2)// — /(/\ (y2y/)// + l('j)(yyl)” o /(\ /(/\ (y3)// + l(|k)>(y2)”
(yy// _ y/2)/// — /(4(_)/2_)/,)”/ + l('j,(yy/)”/ _ l(|l(4(y3)/” + /(\ kj(yz)”,
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Step 2: Extract coefficients

Idea: Differentiate the minimal equation = linear equations in the
coefficients
W' —y? = ky®y' — kayy' + kikay® — kiksy® = 0
Wronskian:
Z 2 2 7 / 3] 2
yy' =y T =ky'y + kayy — kikay” + kiksy
" =y?) = k(y?y') + ka(yy") = kaka(y®) + kaks(y®)’
" = y?)" = k(y?y')" + ka(yy')" — kaka(y®)" + kaks(y*)"
(yy// _ y/2)/// — /(4(_)/2_)/,)”/ + k’j(yy/)”/ _ l(|l(4(y3)/” + /(\ kj(yZ),”

Assume nonsingular Wronskian. Then one can prove:

identifiable <= rational in k47 k3, k1k4,k1k3
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Step 2: Extract coefficients

Idea: Differentiate the minimal equation = linear equations in the
coefficients
W' —y? = ky®y' — kayy' + kikay® — kiksy® = 0
Wronskian:
Z 2 2 7 / 3] 2
yy' =y T =ky'y + kayy — kikay” + kiksy
" =y?) = k(y?y') + ka(yy") = kaka(y®) + kaks(y®)’
" = y?)" = k(y?y')" + ka(yy')" — kaka(y®)" + kaks(y*)"
(yy// _ y/2)/// — /(4(_)/2_)/,)”/ + k’j(yy/)”/ _ l(|l(4(y3)/” + /(\ kj(yZ),”

Assume nonsingular Wronskian. Then one can prove:

identifiable <= rational in k47 k3, k1k4,k1k3

Remark

e Assumption is not always true
19



Subtlety: the assumption does not always hold
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X{ = (J; + /1)X2,
Xp = —wxq,

y =X
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Subtlety: the assumption does not always hold

Not yet an example (twisted harmonic oscillator)

X{ = (;u + (1)X2,

Xy = —WX1, — yN—O—W‘(Vuf(\)y:O

y =X

Example

Assume that « is known

x] = (W + x3)x2,

Xp = —wxq,
r_
x3 =0,

yYi=Xx2, Y2=2Xx3
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Subtlety: the assumption does not always hold

Not yet an example (twisted harmonic oscillator)

X{ (Vu +(1)X2,
xh = —wxq, = y'+tww+a)y=0
y=x2

Example

Assume that « is known

x] = (W + x3)x2,
!

X2 = —WwXy,

/ = ¥+t wny, =0, y3=0

x3 =0,

Yi=Xx2, Y2 =2X3

20



Subtlety: the assumption does not always hold

Not yet an example (twisted harmonic oscillator)

X{ = (;u + (1)X2,
Xy = —WXy, = .y + ( 7”).)/:0

Example

Assume that « is known

x; = (w + x3)x,
= —wx, 4wy +wyy, =0, y3=0

n

/
Xp = — /
x5 =0, i tw” }’1+w()/1)/2) =0

Yi=Xx2, Y2 =2X3

20



Subtlety: the assumption does not always hold

Not yet an example (twisted harmonic oscillator)

X{ = ('x + (\)X27
xh = —wxq, = y'+tww+a)y=0

y =X

Example

Assume that « is known

x] = (W + x3)x2,
" 2

Xé = —WXi, 41 + w n + wyrys = 07
"

x5 =0, '+t wyly, =0

Yi=Xx2, Y2 =Xx3

Determinant of the Wronskian is y1yiy> — y1yay; = 0.
Only w(w + @), « known = quadratic equation in w. 20
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Why do we care about this method then?

e Used in practice (software: DAISY, COMBOS)
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Why do we care about this method then?

e Used in practice (software: DAISY, COMBOS)

e If the assumption is true, finds all identifiable functions

21



Our algorithm

Algorithm Computing all identifiable functions

!
=
Input System ¥ = {X O 11)
y =g(x 1)
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Algorithm Computing all identifiable functions

x' = f(x, )

y = g(x, 1)
Output Generators of the field of identifiable functions of ©

Input System ¥ = {
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1. Compute a set p of input-output equations of X (differential alg.).
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Our algorithm

Algorithm Computing all identifiable functions

x' = f(x, )
y = 8(x, 1)
Output Generators of the field of identifiable functions of

Input System ¥ = {

1. Compute a set p of input-output equations of X (differential alg.).

2. For each p € p, compute W,: compute the Wronskian of the
monomials of p and apply reduction modulo the equations of X.
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Our algorithm

Algorithm Computing all identifiable functions

x' = f(x, p)

y = g(x, 1)
Output Generators of the field of identifiable functions of ©

Input System ¥ = {

1. Compute a set p of input-output equations of X (differential alg.).

2. For each p € p, compute W,: compute the Wronskian of the
monomials of p and apply reduction modulo the equations of ¥.

3. For each p € p, calculate the reduced row echelon form of the
matrix W), and let F(p) be the field generated over C by all
non-leading coefficients of all matrices W,,.
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Our algorithm

Algorithm Computing all identifiable functions

x' = f(x, @)

y = g(x, 1)
Output Generators of the field of identifiable functions of ©

Input System ¥ = {

1. Compute a set p of input-output equations of X (differential alg.).

2. For each p € p, compute W,: compute the Wronskian of the
monomials of p and apply reduction modulo the equations of ¥.

3. For each p € p, calculate the reduced row echelon form of the
matrix W), and let F(p) be the field generated over C by all
non-leading coefficients of all matrices W,,.

4. Find generators of C(u) N F(p).

22



Our algorithm

Algorithm Computing all identifiable functions

x' = f(x, )
y =8g(x, 1)
Output Generators of the field of identifiable functions of ©

Input System ¥ = {

1. Compute a set p of input-output equations of X (differential alg.).

2. For each p € p, compute W,: compute the Wronskian of the
monomials of p and apply reduction modulo the equations of ¥.

3. For each p € p, calculate the reduced row echelon form of the
matrix W), and let F(p) be the field generated over C by all
non-leading coefficients of all matrices W,,.

4. Find generators of C(x) N F(p). Return these generators.

Implementation is available here:

https://github.com/pogudingleb/AllIdentifiableFunctions -


https://github.com/pogudingleb/AllIdentifiableFunctions

Our algorithm: example
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Our algorithm: example

x' =0
Z: y]_:3X+b

Ya=x

1. We eliminate x and find the following input-output equations:

vi—ay,—b=0,y,=0.
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Our algorithm: example

x' =0
> = y123X+b

Y2 =X
1. We eliminate x and find the following input-output equations:
yi—ay,—b=0,y,=0.

Therefore, p = (p1, p2), where py = y1 — ay> — b and pr = y4.

23



Our algorithm: example

x'=0
Y=<yi;=ax+b

Y2 =X
1. We eliminate x and find the following input-output equations:
yi—ay,—b=0,y,=0.

Therefore, p = (p1, p2), where p1 = y1 — ay» — b and po = yj3.

2.
1 vy » 1 ax+b x
W, =10 y v mod X = |0 0 0
0 yi' vy 0 0 0
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Our algorithm: example

x' =0
Y=<{yi=ax+b
Y2 =X
1. We eliminate x and find the following input-output equations:
yi—ay,—b=0,y;,=0.

Therefore, p = (p1, p2), where py = y1 — ay, — b and pr = yj4.

2.
1 i w 1 ax+b x
W,=[0 v/ | mdz=|0 o o0
0 v’ v 0 0 0

We = (y4) mod == (0).
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Our algorithm: example

x'=0
Y=<{yi=ax+b
Y2 =X
1. We eliminate x and find the following input-output equations:
yi—ayp—b=0,y,=0.
Therefore, p = (p1, p2), where py = y1 — ay» — b and po = yj}.

2.
1 1w 1 ax+b x
Wo, =10 yi mod X =10 0 0
0 v ¥ o 0 0

Wy, = (y5) mod == (0).
3. The corresponding reduced row echelon forms are the same.
Therefore, F(p) = C(ax + b, x).
23



Our algorithm: example

x'=0
Y=<{yi=ax+b
Y2 =X
1. We eliminate x and find the following input-output equations:
yi—ayp—b=0,y,=0.
Therefore, p = (p1, p2), where py = y1 — ay» — b and po = yj}.

2.
1 1w 1 ax+b x
Wo, =10 yi mod X =10 0 0
0 v ¥ o 0 0

Wy, = (y5) mod == (0).
3. The corresponding reduced row echelon forms are the same.
Therefore, F(p) = C(ax + b, x).
4. The field of identifiable functions is C(a, b) N C(ax + b, x)=7". 23



Our algorithm: another example

x] = (W + x3)x2,

I,
Xy = —wXi,
!/

x3 =0,

Yi=2x2, Y2=2X3
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Our algorithm: another example

X1 = (v +x3)x,
Xé = _V'JX17
x3=0,

Yi=x2, 2=2X3

1. We eliminate x1, X2, x3 and find these input-output equations:

}/{/ + w‘z}q +wyrys = 0, }/2/ =0.

24



Our algorithm: another example

Y1i=X2, Yo = X3
1. We eliminate xi, xo, x3 and find these input-output equations:
" 2 /
n+wyrtwyy, =0, y, =0.

Therefore, p = (p1, p2), where py = yi' + wW’y1 + wyrys, p2 = ys.
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Our algorithm: another example

x{ = (w + x3)x2,
= Xy = —WwXi,

x5 =0,

Yi=2x2, y2=2x3
1. We eliminate x1, x2, x3 and find these input-output equations:

i+ w’yr +wyrys = 0, ¥, = 0.

Therefore, p = (p1, p2), where py = yi' +w’y1 + wyrys, p2 = ys.

2.
oo iy X2 —(w + x3)wx2 XoX3
Wop=|yi »" (1) |mod = —wx1 xiw?(w + x3) —X3X1W
i " () —(w + x3)wx2 xzw2(w + X3)2 —(w + x3)wx2x3
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Our algorithm: another example

X1 = (w + x3)x2,
Xy = —WXy,
x4 =0,
Yi=x2, Y2 =2x3
1. We eliminate x1, x2, x3 and find these input-output equations:
2
Y +wiyi+wyy, =0, y, =0.

Therefore, p = (p1, p2), where p1 = yi' +w’y1 + wyrys, p2 = ys.

2.

1 }/1” yiyz X2 —(w + X3)OJX2 X2X3
Wo=|vi ¥’ (ny) |modX= —wxi x1w?(w + x3) —X3X1W

il " ()" —(w + x3)wx2 X20J2(w +x3)? —(w+ x3)wxaxs

Wp, = (y4) mod £ = (0).

24



Our algorithm: another example

X = (w+ x3)x2,
Xy = —wxi,
x5 =0,
Yi=2x2, y2=2x3
1. We eliminate x1, xo, x3 and find these input-output equations:
N+ Wiy +wyy, =0, y; =0.
Therefore, p = (p1, p2), where p1 = yi' +w’y1 + wyrys, p2 = y5.

1
nown Y1y2 X2 —(w + x3)wx2 XoX3
"

Wp1: oo (}/1}/2)’ mod Y= —WwX1 X1w2(w+xs) —X3X1W

it " ()" —(WHx)we xew(w+x)? —(w+ xs)wxexs
W, = (yﬁ) mod ¥ = (0) .
3. The corresponding reduced row echelon forms are

1 —(w+xw x3
0 0 0| and (0)
0 0 0 24



Our algorithm: another example

X = (v + x3)x2,

Xy = —wxi,

x5 =0,

yYi=Xx2, y2=2x3

1. We eliminate x1, x2, x3 and find these input-output equations:
W+ iy +wyy, =0, y; =0.

Therefore, p = (p1, p2), where p; = yi' + w’y1 + wyrys, p2 = y4.
2. The corresponding reduced row echelon forms are

1 —(w+xs)w x3
0 0 0| and (0)
0 0 0

. Therefore, F(p) = C(w(w + x3), x3).
3. The field of identifiable functions is C(w) N C(w(w + x3), x3)=".
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Intersection of fields: an attempt

ACM SIGSAM Bulletin Volume 32, Issue 2, p. 62
(from abstract of ISSAC 1998 poster):

Computing the Intersection of Finitely Generated Fields
JORN MULLER-QUADE and THOMAS BETH

Institut fir Algorithmen und Kognitive Systeme
Fakultat fir Informatik, Universitat Karlsruhe, Germany.

For the problem of computing the intersection of fields only partial solutions were known. For
fields generated by single polynomials in one variable a construction was given by Binder [B96].
Another approach was a spin-off of an algorithm capable of deciding if two finitely generated fields
are linear disjoint [MR98]. For two fields being linear disjoint an algorithm for the computation of
the intersection is given there.

In this note we introduce the first algorithm for computing the intersection k(f) N k(g) in
the general case of two subfields k(f) = k(fi,..., f-) and k(g) = k(g1,..-,9s) of a function field
k(X) = Quot(k[X3, ..., X,]/I(X)) which is finitely generated over a field k of constants.
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Intersection of fields: mistake found

3. A (counter-)example: Intersecting fields

As described in Miiller-Quade and Beth (1998a), an ideal restriction can be used to compute
generators of the intersection k(g) N k(h) of two subfields k(g), k(h) C k(¥): it is sufficient to
find a basis of the ideal

Bk KEIX] S (k@) NkB)IX]. 3
TR/E)
Ck(3)[X]

Unfortunately, the method discussed in the previous section does not allow the computation of
the intersection (3), as in general k(l;) is not a subfield of k(g). In Miiller-Quade and Beth (1998a)
an algorithm for accomplishing this task was proposed, but a more detailed analysis shows that
it actually computes the ideal Pz)/x(z) - kG)[X1N k(h)[X] which in general does not coincide
with the ideal (3).

Example. Consider the two subfields k(3) := Q(x* 4 x2) and k(h) := Q(x2) of k(¥) := Q(x).
Then we know from the first example in the previous section that

Beyr@ - kKOXINKEIX] = (X0 +2- X% + x* —2x%. X3 — 222 . X2 — x4 x*%).
T. Beth et al. / Journal of Symbolic Computation 41 (2006) 372-380 379

As adjoining the coefficients of a reduced Gribner basis of this ideal to @ yields the field Q(x?),
the algorithm from Miiller-Quade and Beth (1998a) yields QU3 +x2) NQx2) = Q(x?2), which
is clearly wrong.

So it remains an interesting open question whether the techniques described here can be extended
in such a way that they allow the computation of a system of generators of the intersection of

26
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Intersection of fields: towards solution

A solution was given in 2009 with a restriction: the fields that are being
intersected are algebraically closed in the ambient field.

TECHNISCHE UNIVERSITAT MUNCHEN
Zentrum Mathematik

Algorithms for Fields and an Application to a
Problem in Computer Vision

Anna Katharina Binder
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Intersection of fields: towards solution

A solution was given in 2009 with a restriction: the fields that are being
intersected are algebraically closed in the ambient field.

TECHNISCHE UNIVERSITAT MUNCHEN
Zentrum Mathematik

Algorithms for Fields and an Application to a
Problem in Computer Vision

Anna Katharina Binder

This result is good but is not good enough for our purpose.
27



Intersection of fields: algorithm

Algorithm Intersection of fields

Input Tuples f := (f,...,£) and g := (g1, ..., &) such that
Ay s 81,0, 80 € K(X), where X := (x1,...,Xp);

Output If terminates, returns generators of K(f) N K(g).
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Intersection of fields: algorithm

Algorithm Intersection of fields

Input Tuples f := (f,...,£) and g := (g1, ..., &) such that
fyeoosfs, g1y, 80 € K(X), where X := (x1,...,Xp);

Output If terminates, returns generators of K(f) N K(g).

Notation: Introduce new variables Z := (Zy,...,Z,). In the algorithm,
for S C K(x)[Z], (S) is the ideal generated by S in K(x)[Z].
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Intersection of fields: algorithm

Algorithm Intersection of fields

Input Tuples f := (fi,...,£) and g := (g1, ..., &) such that
Ay s 81,0, 80 € K(X), where X == (x1,...,Xp);

Output If terminates, returns generators of K(f) N K(g).
Notation: Introduce new variables Z := (Z,...,Z,). In the algorithm,
for S C K(X)[Z], (S) is the ideal generated by S in K(X)[Z].

1. For every 1 < i< s, write fi(X) = Z,g; so that n;, d; € K[X], and set

D(X):=dy-...-ds;
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Intersection of fields: algorithm

Algorithm Intersection of fields

Input Tuples f := (fi,...,£) and g := (g1, ..., &) such that
Aoy fs, 815,80 € K(X), where X := (x1,...,Xp);

Output If terminates, returns generators of K(f) N K(g).

1. For every 1 < i< s, write fi(X) = Z’Exg so that n;, d; € K[x], and set
D() := dy - ...-ds,
2. Seti:=1, h:=(1) and

h=(m(Z) — A(X)d(Z),...,n(Z) — f:(X)ds(X)): D(Z)>;
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Intersection of fields: algorithm

Algorithm Intersection of fields

Input Tuples f := (f,...,£) and g := (g1, ..., &) such that
Ay fs, 815,80 € K(X), where X := (x1,...,%,);

Output If terminates, returns generators of K(f) N K(g).

1. Forevery 1 <i<s, write fi(x) = Zgg so that n;, d; € K[x], and set
D(X):=dy-...-ds;
2. Seti:=1, i :=(1) and
J1 = <n1(7) - fl()_()dl(j)v sy ns(f) - fs()_()ds(y» D(?)oo'
3. While I; # J; do
3t = <J,' N K(g’)l?]l,
3.2 Jip = (i 0 K(Z)):
33 i =i+1;
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Intersection of fields: algorithm

Algorithm Intersection of fields

Input Tuples f := (f,...,£) and g := (g1, ..., &) such that
Ay s 81,0, 80 € K(X), where X := (x1,...,Xp);
Output If terminates, returns generators of K(f) N K(g).
1. Forevery 1 <i<s, write fi(x) = % so that n;, d; € K[x], and set
D(x):=dy-... ds;
2. Seti:=1,hL:=(1) and
= <n1(7) — A(X)d(2),...,n(Z) — @()?)ds(Y)>: D(Z)>;
3. While [; # J; do
3.1 [i41 = <J, n K(g’)[?:&,
3.2 Jiy1:= </,'+1 n K(f)[ZD,
33 i =i+1;
4. Compute any reduced Grobner basis of J; and return its coefficients.
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Intersection of fields: algorithm

Algorithm Intersection of fields

Input Tuples f := (fi,...,£) and g := (g1, ..., &) such that
Aoy fs, 815,80 € K(X), where X := (x1,...,Xp);

Output If terminates, returns generators of K(f) N K(g).

Binder (2009): the algorithm terminates if K(f) and K(g) are
algebraically closed in K(x).
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Algorithm Intersection of fields

Input Tuples f := (fi,...,£) and g := (g1, ..., &) such that
Aoy fs, 815,80 € K(X), where X := (x1,...,Xp);
Output If terminates, returns generators of K(f) N K(g).

Binder (2009): the algorithm terminates if K(f) and K(g) are
algebraically closed in K(x).

Our contribution: proved that the algorithm terminates if at least one of
K(f) and K(g) is algebraically closed in K(X).
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Intersection of fields: algorithm

Algorithm Intersection of fields

Input Tuples f := (fi,...,£) and g := (g1, ..., &) such that
Aoy fs, 815,80 € K(X), where X := (x1,...,Xn);

Output If terminates, returns generators of K(f) N K(g).

Binder (2009): the algorithm terminates if K(f) and K(g) are
algebraically closed in K(x).

Our contribution: proved that the algorithm terminates if at least one of

K(f) and K(g) is algebraically closed in K(X).

Implementation is available here:
https://github.com/pogudingleb/AllIdentifiableFunctions
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https://github.com/pogudingleb/AllIdentifiableFunctions

Intersection of fields: algorithm

Algorithm Intersection of fields

Input Tuples f := (f,...,£) and g := (g1, ..., &) such that
Ay s 81,0, 80 € K(X), where X := (x1,...,Xp);

Output If terminates, returns generators of K(f) N K(g).

Binder (2009): the algorithm terminates if K(f) and K(g) are
algebraically closed in K(X).

Our contribution: proved that the algorithm terminates if at least one of

K(f) and K(g) is algebraically closed in K(X).

Implementation is available here:
https://github.com/pogudingleb/AllIdentifiableFunctions

More particular case used in our identifiability algorithm:

C(x1,...,x)NC(g)
in C(xg,...,Xn) 28
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Intersection of fields: example

K=C, f=(ab), &= (ax+b,x), C(f)nC(g)=?in C(a,b,x).
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Intersection of fields: example

K=C, f=(ab), &= (ax+b,x), C(f)nC(g)=?in C(a,b,x).
We have I, = (1)
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Intersection of fields: example

K=C, f=(ab), g=(ax+b,x), C(f)NC(g)=7in C(a,b,x).
We have / = (1) and
J1 = <Zl —a, 22 = b> C (C(a, b,X)[Zl7Z2, Z3]
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Intersection of fields: example

K=C, f=(ab), g=(ax+b,x), C(f)NC(g)=7in C(a,b,x).
We have ; = (1) and
h =(Z1—a,Z—b) CC(a,b,x)[21, 22, Z3].

Compute Jy N C(ax + b, x)[Z1, 2>, Z3].
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Intersection of fields: example

K=C, f=(ab), g=(ax+b,x), C(f)NC(g)=7inC(a,b,x).
We have / = (1) and
J1 = <Zl —a, 22 = b> C (C(a, b,X)[Zl,ZQ, Z3]

Compute 41 NC(ax + b, x)[Z1, Z2, Z3]. For this, first consider the ideal
I :=(Z1 — A, Z, — B,AX + B —ax— b, X — x)

in C(ax + b, x)[Z1, Zs, Zs, A, B, X],
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Intersection of fields: example

K=C, f=(ab), &= (ax+b,x), C(f)NnC(g)=?in C(a,b,x).
We have /; = (1) and
b= <Zl —a,zr — b> C (C(a, b, X)[Zl,Z2, Z3]

Compute J; NC(ax + b, x)[Z1, Z2, Z3]. For this, first consider the ideal
= (Zi — A Z— B,AX + B —ax — b, X — x)
in C(ax + b,x)[Z1, Z», Z3, A, B, X], and now we compute

L :=1NC(ax + b,x)[ 21, 22, Z3] = (Z1x + Zo — ax — b).

29



Intersection of fields: example

K=C, f=(ab), &= (ax+b,x), C(f)nC(g)=?in C(a,b,x).
We have ; = (1) and
h=(Z1—a,Z,— b) C C(a, b,x)[ 241, 22, Z3].
Compute 1 NC(ax + b, x)[Z1, Z2, Z3]. For this, first consider the ideal
l'=(Z1 — A Z,— B,AX+B—ax— b, X —x)
in C(ax + b, x)[Z1, Z», Z3, A, B, X], and now we compute
b= 1NC(ax + b, x)[21, 22, Z3] = (Z1x + Zo — ax — b).

We now compute J» := hh N C(a, b)[Z1, 2, Z5].
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Intersection of fields: example

K=C, f=(ab), &= (ax+b,x), C(f)NnC(g)=?in C(a,b,x).
We have ; = (1) and
J=(Zy —a,Zy — b) C C(a, b, x)[Z1, Zo, Zs).
Compute J; NC(ax + b, x)[Z1, Z2, Z3]. For this, first consider the ideal
l:=(Zi— A Z— B,AX + B — ax — b, X — x)
in C(ax + b,x)[Z1, Z», Z3, A, B, X], and now we compute
L :=1NC(ax + b,x)[21, 22, Z3] = (Z1x + Zo — ax — b).
We now compute J, := hh N C(a, b)[Z1, Z>, Z3]. For this, we consider
I''=(ZX + 2, — AX — B,A—a,B — b)
in C(a, b)[Z1, 2o, Z3, A, B, X]
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Intersection of fields: example

K=C, f=(ab), g=(ax+b,x), C(f)nC(g)=?in C(a,b,x).
We have I, = (1) and
h=(Z —a,Z,—b) C C(a, b,x)[21, 2>, Z3].
Compute /41 NC(ax + b, x)[Z1, Z2, Z3]. For this, first consider the ideal
= (Zi — A Z— B,AX + B —ax — b, X — x)
in C(ax + b, x)[Z1, Z2, Z3, A, B, X], and now we compute
L= 1NC(ax + b, x)[21, 22, Z3] = (Z1x + Zo — ax — b).
We now compute J, := hh N C(a, b)[Z1, Z>, Z3]. For this, we consider
I'=(ZiX + 2, — AX — B,A—a,B — b)
in C(a, b)[21, 22, Z5,A, B, X] , and we compute
b= 1" C(a, b)[Z1, Zs, Z3] = (0),
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Intersection of fields: example

K=C, f=(ab), &= (ax+b,x), C(f)nC(g)=?in C(a,b,x).
We have ; = (1) and
h = <Zl —a, z — b> C (C(a, b, X)[ZI7Z2,Z3].

Compute 1 NC(ax + b, x)[Z1, Z2, Z3]. For this, first consider the ideal
= (Zi — A Z— B,AX + B —ax — b, X — x)
in C(ax + b, x)[Z1, Z2, Z3, A, B, X], and now we compute
L :=1NC(ax + b,x)[ 21, Z2, Z3] = (Z1x + Zo — ax — b).

We now compute J, := hh N C(a, b)[Z1, Z>, Z3]. For this, we consider

I = (ZiX +2Z,— AX — B,A—a,B — b)
in C(a, b)[Z1, 22, Z5, A, B, X] , and we compute

b= 1" N C(a, b)[Z1, Z», Z5] = (0),

which implies /5 = J; = (0),
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Intersection of fields: example

K=C, f=(ab), &= (ax+b,x), C(f)nC(g)=?in C(a,b,x).
We have ; = (1) and
h = <Zl —a, z — b> C (C(a, b, X)[ZI7Z2,Z3].

Compute 1 NC(ax + b, x)[Z1, Z2, Z3]. For this, first consider the ideal
= (Zi — A Z— B,AX + B —ax — b, X — x)
in C(ax + b, x)[Z1, Z2, Z3, A, B, X], and now we compute
L :=1NC(ax + b,x)[ 21, Z2, Z3] = (Z1x + Zo — ax — b).

We now compute J, := hh N C(a, b)[Z1, Z>, Z3]. For this, we consider

I = (ZiX +2Z,— AX — B,A—a,B — b)
in C(a, b)[Z1, 22, Z5, A, B, X] , and we compute

b= 1" N C(a, b)[Z1, Z», Z5] = (0),

which implies 5 = J3 = (0), and so we stop and conclude
C(a, b)) NC(ax + b, x) = C. 29



Intersection of fields: example
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Intersection of fields: example

K=Q, f=X° g=X*+X, X=X

So, we compute
QX? +X) NQ(X?).
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Intersection of fields: example

K=Q, f=X? g=X>+X, X=X
So, we compute
Q(X? 4+ X) N Q(X?).
Binder proved:

n—1 n—l
Ini1 = (H (27 — X7 +2ixy —4%) - — X2 _2(i+1)X; — (2+1)2)>
i=0 Z:O
and

i n—1
Jpg1 = < (23 - X7 +2iX, - ) - [] (27 - X - 26+ 1)X1 — (i + 1)2)>
=0 =0
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Intersection of fields: example

K=Q, f=X° g=X*+X, X=X

So, we compute
QX2 + X) NQ(X?).

Binder proved:

n—1 n—1
Int1 = (H (27 - X7 +2iX, — %) - [] (28 - X —2(i+ )Xy — (i + 1)2)>

=0 =0
and
n n—1
Jng1 = <H -x{+2ix; - %) - [[ (22 - X7 - 26+ 1)X2 - (i + 1)2)>
=0 =0
and so

h2h2h2D
and the algorithm never stops.
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Open problems
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Improve the efficiency of our algorithm:
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e Improve the efficiency of computing input-output
equations by a better choice of ordering variables
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Open problems

Improve the efficiency of our algorithm:
e Improve the efficiency of computing input-output
equations by a better choice of ordering variables

e Improve the computation of the Wronskian and its
reduction modulo the equations (problem:
derivatives of high order = large expressions)
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Open problems

Improve the efficiency of our algorithm:

e Improve the efficiency of computing input-output
equations by a better choice of ordering variables

e Improve the computation of the Wronskian and its
reduction modulo the equations (problem:
derivatives of high order = large expressions)

e Improve the efficiency of the intersection of fields
algorithm (problem: decomposition into prime components
is used; can we do this factorization-free, e.g., using
regular chains?)
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