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Introduction

Let

R[x1, . . . , xn]

be a polynomial domain over a commutative ring R having a

decidable equality R.

Apply a sparse representation of a polynomial as a list of nonzero

monomials, ordered decreasingly by <e on the exponents

(or “power products” or “tuples”).

Each exponent is represented as a tuple of n natural numbers.

Choosing an appropriate ordering <e it is often possible to reach

the needed property for the chosen algorithm on polynomials.



Admissible Ordering on Exponents

I STO-e — a strict total order (IsStrictTotalOrder <e),

I +emono — ∀e ∈ PP (e +e) preserves <e ,

I >0 — ∀e 6= 0e , e >e 0e .

Examples of admissible orderings on Nn:

lexicographic ordering, degree-lexicographic ordering, orderings

presented by an integer matrix of weights (flag).

Abstract <e is needed.

Multiplying monomials corresponds to addition +e of the exponent

vectors. For example,

(x2y0) ∗ (x1y5) has the exponent [3, 5].



Denote <p the pointwise ordering on exponents.

It is not total (for n > 1).

Due to +emono for <e , it holds

<p =⇒ <e (I )

We assume here that any nonzero monomial coefficient is

invertible. So, for any monomials m,m′

m divides m′ ⇐⇒ exp(m) ≤p exp(m′)

And we say in such a case “exp(m) divides exp(m′)”.

In such a case it holds exp(m) ≤e exp(m′) — due to (I).

The notions of

leading monomial lm, leading exponent lExp,

leading coefficient lc

are defined relatively to <e .



Normal form Algorithm for Polynomials

This method is related to solving membership of a polynomial to

an ideal:

f ∈ Ideal(gs)

That is finding a decomposition

f = φ1g1 + . . .+ φmgm

It is solved by the Gröbner basis algorithm [2].

The normal form algorithm NF for bringing a polynomial f to its

normal form by the list gs of polynomials is a one of the basic parts

of the Gröbner basis method. It is as follows



f = 0 is put normal form.

For nonzero f , search for the first g in gs such that

e = lExp(g) divides e ′ = lExp(f ).

If there is not such, then f is normal.

If such g is found then m = lm(g) divides m′ = lm(f ).

Let mq be the quotient monomial.

Then NF f ′ gs applies, where

f ′ = f −mqg (II )

lm(f ) is canceled at this step, and either f ′ = 0 or it holds

lExp(f ′) <e lExp(f )

This is easy to derive from the axioms for <e .



NF stops when none in gs reduces the current remainder f .

This produces a descending chain

e0 >e e1 >e . . .

of the leading exponents of the polynomial being reduced.

It is known that any admissible ordering <e on power products is

descending-halt.

Hence NF is terminating.



On Constructive Proofs for NF Termination

We deal with provable programming of scientific computation.

It is based, by default, on constructive formal proofs which are

checked by a machine.

To implement algorithms and proofs we use the Agda language

[1, 6].

The most popular proof for the descending-halt property of

<e bases on Dickson’s lemma.

A constructive definition of the descending-halt property is

∀(f : N→ X ) ∃n, f (1 + n) ≮ f (n).

But first, it is not simple to compose a full constructive proof for

(Descending-halt <e), and for Dickson’s lemma too.



Second, usual mathematical practice of referring to the

descending-halt property of a relation does not work in the

constructive proof program systems based on the dependent types

theory (Coq, Agda).

Instead the best termination proofs need there a reference to a

proof for a certain

well-founded

property of a relation. It is a bit stronger than descending-halt.

This restriction is somewhat fundamental for the above

programming systems.

For example, try to implement NF as



<e-descending-halt : DescendingHalt _<e_

<e-descending-halt = <proof>

NF : Pol -> List Pol -> Pol

NF f gs =

aux f (lExp f) _ _

where

aux : Pol -> PP -> _ -> _ -> Pol

aux f e _ _ =

case reduce f gs -- search one step reduction

of

{ nothing -> f -- normal form f

; (just (pol []) -> pol [] -- zero normal form

; (just f’) -> let e’ = lExp f’

e’<e = <proof>

in

aux f’ e’ e’<e <e-descending-halt }



— the code is contrived.

Then the type checker would report an error of not seeing a

termination proof.

But if we prove <e-wellFounded : WellFounded _<e_

and set this proof reference <e-wellFounded

to the above NF program instead of <e-descending-halt,

then the type checker will confirm termination.

Let us call the obtained program Program-I.



Way-outs. Other works. Attempts

The nicest way is to implement NF is given above as Program-I.

But to constructively prove WellFounded _<e_

is even more difficult than to prove Dickson’s lemma and

<e-descending-halt.

There are visible the four main relevant works

(all in the segment of 1998 - 2003).

[8] (by Théry) describes a machine-checked implementation in Coq

of Buchberger’s algorithm. But termination is taken only as a

hypothesis.

[3] (by Coquand and Persson) is about provable Gröbner bases in

type theory (in particular in the Coq system). It also describes a

certain constructive proof of Dickson’s lemma.

But I failed to understand this proof!



[9] (by Coquand and Vytiniotis) pretends to constructively derive

well-foundedness of an order relation from the descent-halt

property (well-quasi-order) joint with a certain additional small

condition. It gives a hope that this will allow to prove

constructively well-foundedness of <e from Dickson’s lemma and

from the axioms for the <e relation.

For this, we still need first to constructively prove Dickson’s

lemma.

[7] (by S.A. Romanenko) describes an Agda program for a proof

for Higman’s lemma (for two letters). A proof for Dickson’s lemma

can be derived from this by coding each natural number in unary

system using one letter and using another letter as a delimiter. So

that Higman’s word inclusion relation corresponds to inequality ≤p

on tuples in Nn.



This is the easiest way for us to prove Dickson’s lemma in Agda.

Finally, [5] (Martin–Mateos, Alonso, Hidalgo, Ruiz–Reina)

describes a formal proof of Dickson’s lemma in ACL2.

There is one page there that shows a nice geometric-like

description of an idea of a constructive proof of Dickson’s lemma.

Its construction of the pattern multiset, and a well-founded

ordering on pattern multisets do provide a proof for Dickson’s

lemma. But we also find that it can be used as a direct proof for

termination for the normal form algorithm NF.

Therefore we are currently trying to implement in Agda this

method with the multiset of patterns and to apply it to composing

a termination proof for NF.

Currently we are close to accomplish this idea implementation in

Agda.



Also we suggest a direct constructive proof for

well-foundedness of <e for n = 2 (two variables).

It is implemented in Agda.

But strangely, I failed, so far, to generalize it to arbitrary n.

Also we describe below the proof for Dickson’s lemma

following the idea by [5].



Well-foundedness and Accessibility

Definition.

A binary relation < on X is called well-founded if for any predicate

P on X satisfying the properties

I P(x) holds for all x minimal by < AND

I ∀x , if P(y) holds for all y < x , then P(x)

it holds P(x) for all x .

This is the transfinite induction rule.

Example: the lexicographic ordering on N×N is well-founded.

As in the above definition the property P is arbitrary, let us

formulate well-foundedness in a bit simpler way by replacing P

with the accessibility predicate Acc .



Definition.

A binary relation < on X is called well-founded if

Acc(x) holds for all x in X ,

where the predicate Acc is defined by the following properties.

I (1) Each minimal element x is accessible: Acc(x).

I (2) ∀x , if Acc(y) for all y < x , then Acc(x).

In our constructive proof system, the only way to prove

well-foundedness of < is to do a finite number of steps (1) or (2).



Examples for the well-founded property

1. < on N. ...

2. < on Z is neither descending-halt nor well-founded:

... -2 -1 0 1 2 ...

3. Prove constructively that lexicographic ordering on N×N
is well-founded:

Y ^ ^ ^

| | |

p | |

2 | r |

1 | | |

0 |__q__|________

0 1 2 ... > X



4. Prove constructively that any partial order < on any finite set

is well-founded (?)

_ a k

/ | \ / \

b c d __ / l

/__ / | / | \ \ /

e f h i j

| /

g

Induction by depth of a node starting from the lower node . . .



Admissible Ordering for n = 2 is Well-founded

It is needed to prove that all integer points in the quadrant PP

drawn below are accessible.

To develop an intuition, prove first that (0,0) and (1,0) are

accessible.

Y ^ ^ PP

|..|\\\\\\\\\\\\\\\\\\\\\\

|..|\\\\\\\\\\\\\\\\\\\\\\ >=e (1,0)

e’ i..|\\\\\\\\\\\\\\\\\\\\\\

| |\\\\\\\\\\\\\\\\\\\\\\

| |\\\\\\\\\\\\\\\\\\\\\\

0--1--2-----------------------------> X

e

Acc (0, 0) is because (0, 0) is minimal.

Prove Acc (1, 0): . . .



Lemma I. The axis OX is accessible.

Prove Acc a for a = (i , 0) inductively on i .

The case of i = 0 is already proved.

Let i > 0.

It is sufficient to prove Acc e for all points

e = (x , j), e <e a, j < i .

Prove it by induction on x .



Lemma I, the case x = 0.

Y ^ ^ PP

|........|\\\\\\\\\\\\\\\\\\\\\\

|........|\\\\\\\\\\\\\\\\\\\\\\

j e........|\\\\\\\\\\\\\\\\\\\\\\

u | e’ |\\\\\\\\\\\\\\\\\\\\\\

| |\\\\\\\\\\\\\\\\\\\\\\

0--------a-----------------------> X

z i

It suffices to prove Acc e ′ for all e ′ <e e = (0, j).

All of them satisfy e ′ <e (0, j), a.

Hence all of such points e ′ = (z , u) reside in the rectangle

R = [0, i)× [0, j)

R is a finite set.



Sieve algorithmically all points of R filtering-in all the points

e ′, e ′ <e e,

and order this list incresingly by <e .

This is possible because <e is total and decidable.

This produces the list

L = [0 = e1 < . . . < em]

It is sufficient now to prove that all the points in L are accessible.

. . . . . .

Applying induction, all the points in L are accessible.

So, all the points smaller than e belong to L, and all the points in

L are accessible. Therefore e = (0, j) is accessible.

The case x = 0 is proved.

Lemma I, the case 0 < x < i



It is similar to the case of x = 0, only induction is added, and a

slight complication done.

We skip this part.

Theorem.

Any admissible ordering <e is well-founded on N×N.

The proof is by induction on the number j of the horizontal level

y = j on the plane quadrant.

It proves accessibility of all points in such a level.

We skip this proof.

A machine-checked proof of this theorem is implemented in

Agda.



About Dickson’s Lemma

Denote

PP = Nn

an additive monoid of tuples (which in our case are also called

exponents of monomials, or power-products).

Dickson’s lemma.

For any (infinite) sequence f : N→ PP of tuples there exist

i < j such that f (i) ≤p f (j) (divides).

Corollary for any admissible ordering <e .

It can be proved constructively that any admissible ordering <e is

descending-halt.

Because f (i) ≤p f (j) implies f (i) ≤e f (j).



The below constructive proof for Dickson’s lemma follows the idea

taken from [5].

We present this idea in our words.

Call the list [e0 . . . em] of tuples in PP good, if there are

i < j ≤ m such that ei ≤p ej .

Let f (i) = ei be a sequence in PP.

It is needed to prove that there exists a good initial segment in f .

Let S(m) = [e0, . . . , em] be bad.

Then none of these tuples divides any following tuple in this list.

Denote Sh(m) the subset of all e ∈ PP divisible by any member

in S(m).



Regions, patterns, multisets

Call Sh(m) a shaded region of S(m).

Call W (m) = PP \ Sh(m) a white region.

If em+1 is divisible by any element in S(m)

(is in the shaded region), then good S(m + 1) is found,

the goal is reached.

Otherwise, S(m + 1) is bad, Sh(m) is a proper subset in

Sh(m + 1),

and W (m + 1) is a proper subset in W (m).

That is preserving badness in S is possible only while the white

region sequence is strictly decreasing by the set inclusion:

. . . ⊂ S(m) ⊂ . . . ⊂ S(1) ⊂ S(0)



For example, put n = 2 and consider a bad segment

[e0, e1] = [(3, 2), (1, 5)].

Its shaded and white regions are shown on this figure:

Y ^ ^ ^ ^ PP

| |.....|\\\\\\\\\\\\\\\\\\\-->

| |.....|\\\\\\\\\\\\\\\\\\\-->

5| e1....|\\\\\\\\\\\\\\\\\\\-->

4| |\\\\\\\\\\\\\\\\\\\-->

3| |\\\\\\\\\\\\\\\\\\\-->

2| e0\\\\\\\\\\\\\\\\\\-->

1|

0--1--2--3-----------------------> X Figure 1.

The initial white region is all PP.

W (0) is PP minus the quadrant of the vertex (3, 2).

W (1) is W (0) minus the quadrant of (5, 1).



Generally, to prove that W (i) terminates,, represent each

W = W (i) symbolically as a certain multiset PM of patterns,

so that each point in W is “covered” by some pattern in PM.

Also it is defined a well-founded ordering <pm on the pattern

multisets such that for any bad segment S(m + 1) the pattern

multiset for S(m + 1) is smaller in <pm than the multiset for

S(m).

The algorithm producing bad segments S(i) is joined with

producing the pattern multisets PM(i) representing W (i).

PM(i) decreases in <pm, and as this ordering is well-founded,

this algorithm terminates, and the last PM(m) is minimal, so

that it represents a finite list L in PP, and the further

termination proof is easy.

Let l = length L. It follows then that em+l+1 is divisible by



some previous ei — which is the goal.

Now define pattern, ordering on the pattern multisets,

reduction of a pattern multiset by the current tuple in PP.

Denote

N∗ = N ∪ ∗

A pattern is a vector in (N∗)n.

Occurrences of ∗ in a pattern are called freedoms.

The number of freedoms in a pattern is called dimension

of a pattern.

A pattern represents the set of tuples obtained by replacing every

freedom with all natural natural numbers.

A white region is represented by a multiset of patterns.



For example, for n = 2, the pattern [∗, ∗] represents the whole

PP.

Example. Represent W [e0, e1] as a pattern multiset:

Y ^ ^ ^ ^ PP

| |.....|\\\\\\\\\\\\\\\\\\\\\\-->

| |.....|\\\\\\\\\\\\\\\\\\\\\\-->

5| e1....|\\\\\\\\\\\\\\\\\\\\\\-->

4| |\\\\\\\\\\\\\\\\\\\\\\-->

3| |\\\\\\\\\\\\\\\\\\\\\\-->

2| e0\\\\\\\\\\\\\\\\\\\\\-->

1|

0--1--2--3-------------------------> X

Its representation can be this pattern multiset (PM):

{ (1, [0∗, ∗0, ∗1]), (0, [10, 11, 12, 13, 14, 20, 21, 22, 33, 24]) }

Here . . . levels . . .



A level is a pair (d ,ps) . . .

In PM, patterns are gathered into levels and these levels are listed

decreasingly by dimension.

Multiplicity of a level is called the length of its pattern list.

Ordering <pm on PM:

first – by head dimension, then — by head multiplicity,

then — compare tails recursively.

The multiset ordering is well-founded.

It is easy to prove for our case, because a level dimesion is not

greater than n, so, <pm is actually a lexicographic ordering on

Nn+1.



Pattern reduction, multiset reduction

Obtaining the pattern set representation for the white regions W(i)

for any given tuple sequence ei and its related bad segments S(i)

is as follows.

W (0) = PP. It is represented by a single pattern {**...*}.

Let S(m) = [e0, . . . , em] be the current bad segment,

W (m) its white area,

PM = PM(m) the pattern multiset representing W (m),

S(m + 1) = [e0, . . . , em, em+1] the next bad segment.

So, none in S(m) divides e = em+1.

W (m + 1) is obtained by finding all the patterns in PM

reducible by e, reducing these patterns by e, and inserting the

redexes into PM according to the ordering, with producing the

pattern multiset PM ′, this PM ′ to represent W (m + 1).



An inequality ≤∗ between N and N∗ is defined so that

i ≤∗ ∗ for any natural i ,

and i ≤∗ j means i ≤ j for a natural j .

An inequality ≤ep between tuples PP and patterns Pattern is

defined as ≤∗ applied coordinate-wise.

This is a partial order.

p ∈ Pattern is called reducible by e ∈ PP

if p has a freedom in it and e ≤ep p.

For a pattern p reducible by e the list of redexes is produced as

follows.

If p has ∗ at some position and e has j at this position, then

the redexes for this free position are all the patterns e ′0, . . . e
′
j−1,

where e ′k is obtained from e by replacing ∗ at this position

with 0 ≤ k < j .



The exception is for the case of j = 0 for which this ∗ is

replaced only with 0

(a deviation from [5]).

These redexes are generated for all free positions in p, the

pattern p is removed from PM, and its redexes are inserted to

PM to form PM′.

Note that ground patterns (the ones without freedoms) are not

reducible.

Any reducible pattern has dimension d > 0, and all its redexes

ps have dimension d − 1.

These redexes form the level lev = (d − 1, ps), and lev is

inserted into PM as follows.

If PM has not a level of dimension d − 1 then lev is added to

PM according to the dimension ordering.



If PM has a level (d − 1, ps′) then this level is replaced with

(d − 1, ps+ + ps′) — the two multiplicities are summed.

Example of reducing white regions and pattern multiset.

It is taken from [5], but the result is brought to our representation.

level0 : DimLevel

level0 = (2 , [ generalPattern ])

e0 = [3, 2]; e1 = [1, 5]; e2 = [2, 1]

levels1 = reduceLevel e0 level0

levels2 = reduceLevels e1 levels1

levels3 = reduceLevels e2 levels2



Y ^ ^ ^ ^ PP

| |.....|\\\\\\\\\\\\\\\\\\\\\-->

| |.....|\\\\\\\\\\\\\\\\\\\\\-->

5| e1....|\\\\\\\\\\\\\\\\\\\\\-->

4| . |\\\\\\\\\\\\\\\\\\\\\-->

3| . |\\\\\\\\\\\\\\\\\\\\\-->

2| . e0\\\\\\\\\\\\\\\\\\\\-->

1| e2 ......................-->

0--1--2--3--------------------------> X

-- reduce 32 **

levels1 = { (1, [*1, *0, 2*, 1*, 0*]) }

-- -- reduce 15 -->

levels2 = { (1, [*1, *0, 0*]),

--

(0, [24, 23, 22, 21, 20, 14,

13, 12, 11, 10]) }



reduce 21 -->

levels3 = { (1, [*0, 0*]),

(0, [11, 01, 24, 23, 22, 21, 20,

~~~~~~~~~~~~~~

14, 13, 12, 11, 10]) }

By repeating reduceLevels, the current bad segment

S = [e0, . . . , em] is converted to the pattern multiset representing

the white region for S(m):

expsToWhiteRegionLevels : List PP → DimLevels

expsToWhiteRegionLevels es = foldr reduceLevels [ initialLevel ] es



Theorems about Reduction, Insertion, Ordering

To complete this constructive proof of Dickson’s lemma, it is

needed to formally prove several lemmas about this method. In

particular, reduction of the current pattern multiset must agree

with reduction of the corresponding white region. For example, it

is proved a

Theorem: If a tuple e is not divisible by any tuple in the list es,

then e is covered by some of the patterns in the pattern multiset

produced by (expsToWhiteRegionLevels es).

This is formulated in Agda as

es¬divides-e⇒e∈-regionLevels :

∀ e es → All (_�’ e) es →

e ∈ls (expsToWhiteRegionLevels es)



Dickson’s Lemma Usage

It occurs now that a constructive proof for termination of the

normal form function for polynomials can be implemented a bit

more directly than by using Dickson’s lemma.

It is intended to be as follows (the code is contrived):

<pm-wellFounded : WellFounded <pm

-- for pattern multiset ordering

<pm-wellFounded = <... proof>

NF : Pol -> (List Pol) -> Pol

NF f gs =

aux f (pMultiset (lExp f)) <pm-wellFounded _

-- initiate pattern multiset

where

aux : Pol -> PMultiset -> _ -> _ ->Pol

aux f pm _ _ =



case (dim pm , reduce f gs)

of -- check for zero dimension

-- and search one step reduction

{ (0 , _ ) -> finish f (listRegion pm)

; (_ , nothing ) -> f

; (_ , just (pol []) -> pol [] -- zero normal form

; (_ , just f’ ) -> let e’ = lExp f’

pm’ = reducePMultiset e’ pm

pm’<pm : pm’ <pm pm

pm’<pm = <... proof>

in

aux f’ pm’ <pm-wellFounded pm’<pm

}

This multiset reduction stops when the dimension of the head level

becomes zero.



And this program must be so that the code devoted to processing

pm and its proofs would not effect the run-time performance any

essentially.

This is possible due to the “lazy” evaluation in Agda by default

and due to other reasons.

Currently we are close to accomplish implementation in Agda for

the whole method described above.

Intention:

it is desirable to prove constructively well-foundedness of any

admissible ordering.

This will simplify provable programs for many methods for

polynomials.
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