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Introducing the problem
The question whose solution I want to describe arose in studying
models of the universe in general relativity. So to introduce the
problem, without assuming the audience is familiar with relativity, I
have to introduce its basic ideas, which depend on concepts from
differential geometry.

The more I thought about this talk the more background I realised I
needed, meaning I have very little time for the actual computer algebra
calculations, which may be the most interesting part for this audience. I
shall also skip over technical details like conditions on topology and
differentiability.

I shall start with special relativity, then motivate general relativity and
introduce the geometric ideas needed to formulate it. Then I have to
discuss spacetime symmetries and so introduce the problem I tackled.
A theorem on (local) characterization of Riemannian manifolds, a
computational technique for the spacetime case, and a specialized
suite of software then enabled the problem to be solved.
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The need for special relativity
At the turn of the 20th century it was known that Newtonian ideas of
space, time and motion did not agree with what was observed for light.

Maxwell’s equations for electromagnetism (in vacuum) imply that light
has a specific speed c. If light behaved we might expect, the speed
would be different in a moving frame: if we are in a car going at 30 kph,
a car going at 100 kph has a speed relative to us of 70 kph. But light’s
speed, relative or not, is always c.

19th century explanations in terms of an ”aether” which supported light
waves ran into problems with contradictory experiments. These can be
accounted for by suitable equations saying how space and time
measurements by relatively moving observers are related. Various
people (Lorentz, Larmor, Poincaré) deduced these. They could be
considered to be real changes in moving objects.....

Question: are these real changes of objects or not?
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Special relativity

Einstein’s radical idea was that they were apparent changes arising
from the nature of space-time and how we observe it.

He was able to show that there was a certain quantity which did not
change under the transformations Lorentz and others had found, and
associated it with how we measure.
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Pythagoras’ theorem in 3D
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Spacetime geometry in special relativity
So what about 4D, with time as the fourth dimension?

One might expect
s2 = x2 + y2 + z2 + c2t2

where the c2 (or some velocity squared) is needed to turn time units
into length units.

Einstein realised that one actually needs

s2 = x2 + y2 + z2 − c2t2.

now called the Minkowski metric (after 1908 work of Minkowski). This
ensures everybody agrees on the value of c because they agree that
s = 0 along a light ray. Of course, it means s can no longer be simply
thought of as distance.

A negative total for s2 means we are measuring a time.
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Why was General Relativity needed?
Special relativity gave a new understanding of space and time. It
agreed with the known properties of electromagnetic phenomena and
with a suitably modified version of Newton’s laws of motion. But it is
not compatible with Newton’s law of gravitation.

Moreover, Einstein knew that Newton’s gravity theory could not explain
the observed precession of Mercury’s orbit round the Sun.

So from 1907 onwards Einstein looked to generalise special relativity
so as to agree with both special relativity and Newton’s gravity theory
in appropriate limits, the corrections to either being small in everyday
observations.

In 1915 he announced general relativity which meets that need. The
main holdup was that he did not know the differential geometry needed
in formulating the new theory. (He was taught it in particular by his
friends Michele Besso and Marcel Grossmann.)
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Einstein’s “equivalence principle”

Earth

Experimenter releases
two balls. From his/her
point of view they are moving
in time and not in space, so
their motions are parallel
in space-time. What happens?

Lab

Consider Einstein's lift example.
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Einstein’s “equivalence principle”

Balls move towards
one another. So parallel
lines in space-time meet,
when there is a gravity
field.
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Curvature on the earth

Parallel lines meet on the curved surface of the earth. Einstein’s
thought experiment therefore suggests we need a curved spacetime.
How can we define curvature without having an extra dimension to
“see” it in?
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How to define curvature
How to infer a sphere (e.g. the Earth’s surface) is curved and define its
curvature.

Pulling a pointer round
a closed curve it comes
back pointing a different
way. The angle depends
on the size of the curve and
the curvature of the surface.

Just exactly this idea defines
curvature in space-time
(where we cannot go to a
fifth dimension to 'see' that
it is curved).
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An analogy for the gravitational effects of curvature

The idea of gravity in general relativity is that it can be described as a
curvature of spacetime. For a body like the Sun this gives a picture like:

The amount of curvature depends on the amount of matter.
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More on general relativity and differential geometry

General relativity has by now undergone many tests and is clearly the
‘best buy’ theory of space, time and gravity. For example it is used in
GPS systems and in working out satellite trajectories.

For today’s purpose, I need to introduce more detail on the differential
and Riemannian geometry which underlie general relativity. A manifold
is just a topological space on which one can (in neighbourhoods)
define coordinates, and a differential manifold is one where the
coordinates in overlapping coordinate neighbourhoods are related by
differentiable functions.
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Tangent spaces, vectors and tensors

At each point p of a (real) differential manifold there is a tangent space
Tp, a space of vectors V over the field R at that point. (There are at
least 3 equivalent definitions of such vectors.)

From Tp one can define the dual “covector” space V ∗, and then spaces
of tensor products of V and V ∗ at p, in the usual algebraic way. On the
manifold these enable one to define vector and tensor fields, meaning
a specification of a vector or tensor at each point (in an appropriately
differentiable way). It is usual to presume some basis of the tangent
space, say {ea} (a ∈ (1 · · · n)) is being used, and to write vectors and
tensors as indexed values in that basis; For example one writes
V = vaea.
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Riemannian manifolds

A Riemannian manifold is further equipped with a metric, a symmetric
tensor field g which maps V ⊗ V → R, so at each point, for any pair of
vectors v1 and v2, it gives a value g(v1, v2) ∈ R. The metric and its
inverse map vectors to covectors and vice versa. Vectors v such that
g(v , v) > 0 are called spacelike, those such that g(v , v) < 0 are
timelike and those such that g(v , v) = 0 are lightlike or “null”.

In general relativity, spacetime is assumed to be a four-dimensional
real Riemannian manifold with a metric that at each point has the
same signature as the metric of special relativity, so that by choice of a
basis of the tangent space one gets back special relativity locally.
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More geometry

To define curvature in a differential manifold one needs to define when
vectors in a manifold are to be considered parallel, so that one can
implement the definition implied by my earlier example of curvature of
the Earth’s surface.

This is done by defining a connection, which for a vector v1 at p
defines which vector v2 at a neighbouring point p′ is to be considered
parallel to v1. This is said to define parallel transport, and it can readily
be extended to covectors and tensors.

The usual partial derivative of a vector field is not a tensor. To define a
tensorial derivative, the “covariant derivative”, one compares the value
of a vector field at p′ with the vector parallelly transported from p. This
also extends to covector and tensor fields.
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The curvature tensor
In a Riemannian manifold the metric defines a symmetric connection
by the requirement that the metric be covariantly constant.

In such a manifold, applying the idea of parallel transport round a
closed curve in a 2-dimensional surface with coordinates (xk , xℓ)
leads to the formula

vm−
0
v m =

1
2

0
R m

ikℓ
0
v iAkℓ (1)

where the left side is the difference of the final and initial vectors,
Akl ≡

∮
xℓdxk is the area within the curve, and Rm

ikℓ is the Riemann
curvature tensor. (It satisfies various algebraic and differential
identities, notably those named after Bianchi and Ricci, which I will not
give here but do need to refer to later.)

I’ll skip the formulae for going from metric to connection to curvature as
you do not need to know them to follow this talk.
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The Weyl and Ricci tensors
For later use we will need the decomposition of the Riemannian
curvature given by

Rab
cd = Cab

cd − 1
3Rδa

[cδ
b
d ] + 2δ[a[c Rb]

d ]. (2)

where δa
b is the usual Kronecker delta, Rab ≡ Ra

bad and R ≡ gabRab
(using Einstein’s index convention that repeated indices re summed
over), and the square brackets mean we take the skew part. Rab is
called the Ricci tensor and Cabcd is the Weyl tensor or conformal
curvature tensor.

Einstein’s equations relating curvature to the matter content take the
form

Rab − 1
2Rgab + Λgab = κ0Tab. (3)

where Tab is the energy-momentum tensor of the matter that is present
and κ0 is a constant determinable from the Newtonian limit.
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(Local) characterization of Riemannian manifolds
Because the same geometry may be obtained in various coordinates,
it is very useful to have a way to give a unique (local) characterization
of the geometry.

The theorem on which this is based can be expressed as saying that
for two spacetimes M and M, if x is a regular point of M and E a
basis of the tangent space at x (a “frame”) and similarly (x , E) in M,
then M and M are (locally) identical (“isometric”: see next slide)
around x and x if and only if the components of the curvature and its
covariant derivatives in frames E and E chosen in a
coordinate-independent way can be equated. [For a more formal
statement see Theorem 9.1 in Stephani et al. (2003).]

The algorithm to compute the required quantities follows ideas of É.
Cartan. It was initiated by Brans (1965, 1977) and Karlhede (1980) and
first implemented by Karlhede and Åman (1979). It has been improved
by MacCallum and Åman (1986), and further by myself and others.
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Spacetime symmetries

To explain how the characterization works I need some symmetry
concepts.

An isometry in a Riemannian manifold M is a map M → M such that
the metric is mapped to itself. Isometries form a group.

If an isometry has a fixed point, say p, it is an isotropy at p. A
transformation in the tangent space at p, Tp, that preserves the
Riemannian structures there is called a linear isotropy. An isotropy
always induces a linear isotropy at p. For both, the adjective ‘local’ will
mean existence in some neighbourhood of p. I will not put the word
‘local’ into all statements to which it would apply, but just remind you of
it sometimes.
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Obtaining a (local) characterization
One usually starts with a given metric. The idea is to compute the
Riemann tensor and its derivatives up to the q-th (q = 0,1, · · · ): we
call that set of quantities Rq. At each step we choose a frame in which
Rq takes a canonical form: this implies that at each step we are
reducing the freedom in the choice of frame.

We then find the linear isotropy group Îq preserving Rq, denoting its
dimension by sq, and the number tq of independent functions of
position in Rq. We stop when increasing q gives no new information. It
has been proved that for spacetimes the maximum q required (in a
very special case) is 7 (Milson and Pelavas (2009)).

Two spacetimes will be locally isometric (i.e. really the same) if and
only if they have the same values sq, tq and the remaining independent
components can be equated (which would specify the isometry). In
principle that step is formally undecideable but in practice it is doable
in cases encountered so far.
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More on spacetime symmetries
If the isometry group includes maps such that for any pair of points
(p, q) there is a isometry mapping p to q the manifold is called
homogeneous.

Among spacetimes an important subset (because they give interesting
cosmological models) are those which are spatially homogeneous,
i.e. contain spacelike hypersurfaces which are homogeneous.

Robertson (1929, 1935, 1936) and (independently) Walker (1936)
proved that spacetimes which are spherically symmetric about each
point must be spatially homogeneous. Such Robertson-Walker
metrics, with appropriate dynamics for their time evolution, are the
standard models of modern cosmology.

The work I want to talk about involves a generalization of that result
using weaker isotropy assumptions.
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Local invariance

A local linear isotropy preserves the curvature tensor and all its
derivatives at p. I consider a slightly weaker idea which I call local
invariance.

This is that “at each point p in an open neighbourhood U of a point p0,
the same non-trivial subgroup g of the Lorentz group acts in the
tangent space Tp and leaves invariant the curvature tensor and its
covariant derivatives up to the m-th”.

Following Ellis (1967), if g is a continuous group this assumption will
be denoted (Am).
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The problem
I have now given enough background to be able to introduce the
problem whose solution I wanted to describe.

In my PhD thesis (1970) I studied spatially homogeneous spacetimes,
without assuming any isotropy. While considering the observational
properties of such models of the universe, I noted that there were
several cases in which the observations had reflection symmetries at
each point (MacCallum and Ellis 1970). Schmidt (1969) then showed
these cases necessarily had a discrete isotropy group at every point.

This prompted the question of whether assuming local invariance
under those discrete isotropy groups would imply that there was a
continuous group of isometries (not necessarily giving as much
symmetry as spatial homogeneity).

Schmidt (1969) proved that if all reversals of spatial axes were
isotropies, spatial homogeneity was implied.
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The problem (cont)

With my then graduate student Filipe Mena I set out to study the
remaining groups of discrete isotropies that had appeared in spatially
homogeneous spacetimes. We used a more algebraic method than
Schmidt, and were able to make progress (MacCallum and Mena
2002, and Mena’s PhD thesis) but we still have not completed the work
in a fully satisfactory manner.

I realised that part of our difficulties was that one will have reflection
symmetries if there is a continuous group of isotropies which includes
(e.g.) rotation through π radians, since that reverses both axes in a
plane. It made our proofs easier if we could avoid there being such a
continuous isotropy group. So during the pandemic I set out to
characterize all cases with local invariance under a continuous isotropy
group. That is the problem I shall talk about today.
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Previous results and conjectures
In the first paper I ever studied line by line, Ellis (1967) proved that (A3)
with a group of spatial rotations implied that spacetimes with “dust”
matter content were (locally) spatially homogeneous. Such spacetimes
were called “locally rotationally symmetric” (LRS). Those results were
generalized to other Ricci tensors by Ellis and Stewart (1968). Cahen
and Defrise (1968) and Goode and Wainwright (1986) respectively
showed (with different assumptions) that only (A2) and (A1) were
needed. (Goode and Wainwright did not express the result in those
terms, but I identified their assumptions as (A1).)

In the PhD thesis (1981) of my former postdoc and co-author, the late
Stephen Siklos, he wrote that spacetimes could be completely
characterized by the curvature and its first covariant derivative. This is
not true in general but remained a conjecture for many cases.

From these results I anticipated that something between 1 and 3
covariant derivatives would be required in the various cases to be
studied, and that turned out to be true.
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The strategy
I followed an extension of the strategy of Goode and Wainwright:

1 Pick a frame in which the curvature has a canonical form invariant
under the linear isotropy assumed.

2 Let m = 1
3 Find the consequences of (Am).
4 Use the Bianchi identities to obtain further restrictions. Also use

the Ricci equations or commutator equations where possible.
5 Stop if the characterization algorithm has terminated
6 Having fully utilized (Am), increment m and go to step 3.

The dimension of the full group of isometries can then be calculated,
using the information on the number of independent quantities
remaining in the equations. Note that in a fixed frame connection
components are invariants although they are not tensors.
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Tackling the continuous isotropy problem

Assuming a continuous isotropy implies strong restrictions on the
curvature. Possible algebraic structures of the Weyl tensor were first
studied by Petrov (1954). To allow a continuous isotropy either the
Weyl tensor must be zero, in which case the spacetime is called
conformally flat, or it must be of one of the special types now called
Petrov types D or N. The Ricci tensor also must have one of the
structures admitting a continuous isotropy: these are denoted by
Segre types.

To solve the continuous isotropy problem I had to compute covariant
derivatives for each allowable pair of Petrov and Ricci tensor types.

The final results are statements of the number of derivatives on which
the isotropy has to be imposed, and the dimension of the isometry
groups arising.
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The software used

For the calculations I used a system called CLASSI which was
developed to tackle the problem of classification of spacetimes. It is
based on a system called SHEEP for use in relativity.

The starting point for SHEEP was Ray d’Inverno’s system LAM (Lisp
Algebraic Manipulator) originally implemented in machine-specific
code and designed to study spacetimes in general relativity (see his
PhD thesis, 1970, and subsequent papers cited in my review of
computer algebra systems for work in gravity theory).

Using Ray’s ideas as a basis Inge Frick (1977, 1982) developed
SHEEP (“LAM(B) grown up”) which is based on the same Lisp that
underlies Reduce, so-called Standard Lisp. SHEEP can be built on
any machine for which Reduce will run, and it is possible to build joint
Reduce-SHEEP binaries enabling SHEEP values to be handled using
Reduce’s facilities.
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More on CLASSI

CLASSI is a specialized set of packages built on SHEEP, primarily by
Jan Åman, but also by myself, Jim Skea, Gordon Joly, and others, to
compute and study the curvature and its derivatives as required for
classification of spacetimes.

The calculations are usually done entirely in spinors, which I now
introduce.

Reduce, SHEEP and CLASSI are all available as free software.
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The Lorentz group and spinors
The set of transformations that preserves

s2 = x2 + y2 + z2 − c2t2.

is called the Lorentz group. It plays an important role in physics,
especially in quantum theory and particle physics. The part of the
group connected with the identity is the proper (no change of parity)
orthochronous (no reversal of the time direction) part L↑

+.

There is a 2-1 map of the group SL(2,C) to L↑
+. the fundamental

representation of SL(2,C), which is a 2-dimensional complex vector
space S with elements VA (A ∈ (0, 1)) called (2-)spinor space. One
can map vectors and tensors on spacetime to those on S. All
quantities needed have concise forms because the two-dimensionality
forces all tensors built on S to be expressible as combinations of terms
with skew symmetry and completely symmetric terms (e.g.
SAB = S(AB) + SϵAB where S(AB) = (SAB + SBA)/2, S is the trace of

SAB, and ϵAB is skew and has the form
(

0 1
−1 0

)
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Results

I succeeded in solving the continuous isotropy problem completely, in 3
papers in 2021. Knowing the relevant conditions, one can then study
cases with discrete isotropy which do not satisfy those conditions, and
so complete the study of the discrete isotropies. That remains to be
done.

There are three main cases depending on whether the isotropy acts in
spacelike, timelike or null 2-dimensional spaces. The most difficult
subcases turned out to be the conformally flat (zero Weyl tensor)
spacetimes, because no useful information came from the Weyl tensor
and its derivatives.

I shall give the outcome for spatial rotation isotropy. (In the talk, time
allowed for a short live demonstration of some of the calculations.)
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Results for spatial rotations
Theorem

If in a neighbourhood in a spacetime of Petrov type D, (A1) is true for a
g containing a spatial rotation, then the spacetime is LRS.

This confirms the Goode and Wainwright result. I was able to show
why Cahen and Defrise had overlooked the further reduction from (A2)
to (A1).

For conformally flat accelerated perfect fluid type Ricci tensors (A3) is
required to ensure LRS, showing that Ellis’s original condition is
necessary as well as sufficient.

All other conformally flat spacetimes in which (A1) holds with a g
containing a spatial rotation must be LRS, agreeing with Siklos’
conjecture.
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My own related work
The book of which I am a co-author

H. Stephani, D. Kramer, M. A. H. MacCallum, C. A. Hoenselaers, and
E. Herlt Exact solutions of Einstein’s field equations, 2nd edition
Cambridge University Press, Cambridge (2003) Corrected paperback
edition, 2009.

gives a concise introduction to the mathematics of spacetimes followed
by a review of the known solutions of Einstein’s equations.

The papers on the problem discussed here appeared in the journal
General Relativity and Gravitation as vol. 53, articles 57, 61 and 96
(2021). The example above is in the first of these.

My review of available software for gravity research and the
applications thereof up to 2018 appeared as Living Reviews in
Relativity 21, 6 (2018).
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