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Introduction

Introduction

Sophus Lie has designed explicit form of linearizability criterion for
second-order ordinary di�erential equations. It is convenient and easy-to-use
to determine whether ODE can be linearized by point transformation.

Theorem

Second-order ordinary di�erential equation can be linearized by point
transformation if and only if it is of the form

y ′′ + F3(x , y)(y ′)3 + F2(x , y)(y ′)2 + F1(x , y)y ′ + F (x , y) = 0

and functions satisfy

3(F3)xx − 2(F2)xy + (F1)yy = (3F1F3 − F 2
2 )x − 3(FF3)y − 3F3Fy + F2(F1)y ,

3Fyy − 2(F1)xy + (F2)xx = 3(FF3)x + (F 2
1 − 3FF2)y + 3F (F3)x − F1(F2)x .

Linear and linerizable equations of second order admit symmetry algebra of
maximal dimension, that is equal to 8, and only them.
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Introduction

Prehistory

Sophus Lie's pioneering work on linerization

Cartan's equivalence method

Grebot, Ibragimov, Meleshko, Suksern obtain explicit formulas of
linearizable di�erential equations of third and fourth order, also studied
some cases of system

Doubrov obtained explicit formulas for trivializable di�erential equations
of arbitrary order

Question

Do we actually need an explicit expressions of linerizable equations on
practice?

Answer

No, if we have an algorithm for determination linearizability and performing
linearizing transformation.
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Linearization: algorithmic approach Laguerre-Forsyth canonical form

Laguerre-Forsyth canonical form

From computational point of view it is very important to reduce number of
unknowns as much as possible.

Theorem

Every nonsingular linear di�erential equation of order n > 2 could be reduced
to Laguerre-Forsyth canonical form

u(n)(t) +
n−3∑
i=0

Ai(t)u(i)(t) = 0,

by means of some point transformation.

Remark

In case n = 2 canonical form is

u′′(t) = 0.

Thus equation is linearizable, if and only if it is trivializable.
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Linearization: algorithmic approach Lie procedure

Lie procedure

Objective is to apply original Lie procedure for test-linearization, but in pure
algorithmic way. It means substitution of point transformation

u = f (x , y), t = g(x , y), J = fxgy − fy gx 6= 0

to canonical form of linear ordinary di�erential equations of n-th order, which
implies

y (n)(x) +
P(y (n−1), ..., y ′)
J(gx + gy y ′)n−2 = 0,

Remark

Necessary condition for linearization by point transformation: right-hand side
of ordinary di�erential equation must depend as rational function of all
derivative.
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Linearization: algorithmic approach Algorithm

Algorithm

For given ODE of rational form

y (n)(x) +
M(y (n−1), ..., y ′)
N(y (n−1), ..., y ′)

= 0,

the question of linearizability is equivalent to existence of functions f ,g,Ai so

M(y (n−1), ..., y ′)
N(y (n−1), ..., y ′)

=
P(y (n−1), ..., y ′)
J(gx + gy y ′)n−2

as rational functions in (y (n−1), ..., y ′). It implies to big system of nonlinear
partial di�erential equations.

Remark

Also we must add to system di�erential conditions, which mean that Ai are
functions only of t and inequality J 6= 0.

CMC faculty of MSU and CCAS Linearization of ODE Novermber 18, 2015 10 / 22



Linearization: algorithmic approach Algorithm

Algorithm

For given ODE of rational form

y (n)(x) +
M(y (n−1), ..., y ′)
N(y (n−1), ..., y ′)

= 0,

the question of linearizability is equivalent to existence of functions f ,g,Ai so

M(y (n−1), ..., y ′)
N(y (n−1), ..., y ′)

=
P(y (n−1), ..., y ′)
J(gx + gy y ′)n−2

as rational functions in (y (n−1), ..., y ′). It implies to big system of nonlinear
partial di�erential equations.

Remark

Also we must add to system di�erential conditions, which mean that Ai are
functions only of t and inequality J 6= 0.

CMC faculty of MSU and CCAS Linearization of ODE Novermber 18, 2015 10 / 22



Linearization: algorithmic approach Di�erential Thomas decomposition

Contents

1 Introduction

2 Linearization: algorithmic approach
Laguerre-Forsyth canonical form
Lie procedure
Algorithm
Di�erential Thomas decomposition
Examples
Analysis of Lie algebra

3 Conclusions

4 References

CMC faculty of MSU and CCAS Linearization of ODE Novermber 18, 2015 11 / 22



Linearization: algorithmic approach Di�erential Thomas decomposition

Di�erential Thomas decomposition

Linearizability is equivalent to consistency of system of nonlinear partial
di�erential equations and inequalities, and thus is rewritten in fully algebraic
terms. In order to check consistency we are using di�erential Thomas
decomposition (Gerdt'2012 )

It splits system into disjoint set of simple, square-free, involutive
subsystem

If it is inconsistent, then decomposition is empty set

One subsystem corresponds to generic case, all others to singular of lower
dimension

Every solution of any subsystem gives a linearizing transformation and
image of equation
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Linearization: algorithmic approach Examples

Examples

Di�erential Thomas decomposition outputs a system of equations

Computational time - 10s.
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Linearization: algorithmic approach Examples

Examples

Classical Lie's formulas for second-order DE can also be obtained by using our
algorithm, if we apply it to general form of candidate of linearization

y ′′ + F3(x , y)(y ′)3 + F2(x , y)(y ′)2 + F1(x , y)y ′ + F (x , y) = 0.

Using appropriate block ranking of form [[f ,g], [F1,F2,F3,F ]], algorithm
outputs

CMC faculty of MSU and CCAS Linearization of ODE Novermber 18, 2015 15 / 22



Linearization: algorithmic approach Examples

Examples

Remark

Apart from ODE with polynomial coe�cients, the suggested algorithmic
approach is also applicable to the cases when the coe�cients include
elementary functions and also special functions de�ned by algebraic
di�erential equations.

Instead:

We should write:
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Linearization: algorithmic approach Analysis of Lie algebra

Analysis of Lie algebra

A lot of non-linearizable ordinary di�erential equations can be dropped by
analysing its Lie algebra without full previous procedure. Every linear
di�erential equation of n-th order admits Lie symmetry group of form

U = u0(t) +
n∑

i=1

Ciu(i)(t) + eC(u − u0(t)),T = t

with in�nitesimal generators

{u(i)(t)
∂

∂u
, i = 1..n}, (u − u0(t))

∂

∂u

Corollary

Lie symmetry algebra of linearizable equation has dimension n+1 or more.

Corollary

Lie symmetry algebra of linearizable equation has abelian subalgebra of
dimension n.
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Linearization: algorithmic approach Analysis of Lie algebra

Analysis of Lie algebra

Proposition

For n > 2 scalar di�erential equation is linearizable, if and only if its
symmetry algebra contains abelian subalgebra of dimension n.

Sketch of proof (for n = 3):

By transformation of variables one of operator could be reduced to the
form ∂

∂u
Thus all components depend only on t
Commutation relations imply that all operators are of form ui(t) ∂

∂u

These operators generate group U = u +
3∑

i=1
Ciu(i)(t)

Only linear equations admit such group

Remark

Abstract Lie symmetry algebra could be found explicitly without integration
of determining equations (Reid'1991 ).
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Linearization: algorithmic approach Analysis of Lie algebra

Analysis of Lie algebra

D. Burde, M. Ceballos proposed algorithms to determine maximal abelian
dimension in solvable Lie algebra and of general kind (Ceballos'2009 ).

Conjecture (by Boris Doubrov)

For n > 2 scalar di�erential equation is linearizable, if and only if
A) Lie symmetry algebra has dimension n + 4
or
B) Lie symmetry algebra has dimension n + 2 or n + 1, and its derived algebra
is abelian and has dimension n.
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Conclusions

Conclusions

We proposed an algorithmic approach to linearization of scalar ordinary
di�erential equations, based on Lie procedure and analysis of symmetry
algebra.

Test-linearization is purely algorithmic, however to �nd linearizing
transformation you have to �nd at least one solution of system of
determining equations.

Usually on practice this system consists of one-term and two-term
equations and is easily solvable by Maple built-in routines

In contrast to other results we do not make any restrictions on the order
of di�erential equation

In future we want to extend this result to system of second-order
di�erential equations
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