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What is an additive decomposition?

Given f (x), compute g(x) and r(x) of the same type as f ’s s.t.

f (x) = g(x)′ + r(x) ← remainder

with the properties

(i) (minimality) r(x) is minimal in some sense;

(ii) (integrability) ∃ h(x) of the same type as f ’s s.t.

f (x) = h(x)′

if and only if r(x) = 0.

Remark. f (x) may be replaced by a sequence f (n), and derivative ′

by the difference operator ∆n.
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Rational case (I)

Let C be a field of characteristic zero.

Hermite-Ostrogradsky (≈ 1850).

For f ∈ C (x), one can compute g , r ∈ C (x) s.t.

f = g ′ + r where ′ = d/dx ,

with the properties:

(i) the denominator of r is of minimal degree,

r is proper,

r has a squarefree denominator;

(ii) f = h′ for some h ∈ C (x) if and only if r = 0.
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Rational case (II)

Abramov (1975).

For f ∈ C(n), one can construct g , r ∈ C(n) s.t.

f = ∆n(g) + r

with the properties:

(i) the denominator of r is of minimal degree,

r is proper,

r has a shiftfree denominator;

(ii) f = ∆n(h) for some h ∈ C(n) if and only if r = 0.
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Inspiration

S. Abramov and M. Petkovšek.

Minimal decomposition of indefinite hypergeometric sums,

Proc. ISSAC 2001, and its expanded version in JSC, 2002.
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Some further developments

(q)-Hypergeometric sequences.

Hyperexponential (Bostan, Chen, Chyzak, L and Xin 2013)

Hypergeometric (Chen, Huang, Kauers and L 2015)

q-Hypergeometric (Du, Huang and L 2018)

D-finite functions.

Algebraic (Chen, Kauers, Koutschan 2016)

Fuchsian D-finite (Chen, van Hoeij, Kauers, Koutschan 2018)

D-finite (van der Hoeven 2017, 2018; Bostan, Chyzak, Lairez,

Salvy 2018, van der Hoeven 2020)
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Additive decompositions in symbolic integration

Compute elementary integrals of transcendental functions over C(x).
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Differential fields

Let K be a field and let ′ : K → K satisfy

∀u, v ∈ K , (u + v)′ = u′ + v ′ and (uv)′ = u′v + uv ′.

Call ′ a derivation and and (K , ′) a differential field (D-field).

Call c ∈ K a constant if c ′ = 0.

CK := {c ∈ K | c ′ = 0}.

Call ` ∈ K a logarithmic derivative if ` = a′/a for some a ∈ K .

The set of generalized logarithmic derivatives

LK := spanCK
{` | ` is a logarithmic derivative} .

Example. Let (K , ′) = (C(x), d/dx). Then

CK = C and LK = {f | f is proper with squarefree denominator}.
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Primitive and logarithmic towers

Set K0 = C(x) and Ki = K0(t1, . . . , ti ), i = 1, . . . , n. Then

K0 ⊂ K1 ⊂ · · · ⊂ Kn = K0(t1, . . . , tn).

The tower Kn is primitive if

(i) t1, . . . , tn are algebraically independent over K0,

(ii) t ′i ∈ Ki−1, i = 1, . . . , n,

(iii) CKn = C.

Such a tower is logarithmic if t ′i ∈ LKi−1
, i = 1, . . . , n.

Example.

K0(log(x), arctan(x)) is logarithmic,

K0

(
log(x),

∫
1

log(x) dx
)

is primitive but not logarithmic.
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Additive decomposition in symbolic integration

Let F be a D-field.

Given f ∈ F , compute g , r ∈ F s.t.

f = g ′ + r

with the properties

(i) r is minimal in some sense,

(ii) f = h′ for some h ∈ F if and only if r = 0.

Supervisor’s suggestion. Develop an additive decomposition in
logarithmic towers.

Students’ adventure. Develop an additive decomposition in
primitive towers.
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Matryoshka decomposition (I)

Let Kn = K0(t1, . . . , tn) and f = a/b ∈ Kn with gcd(a, b) = 1.

Call f ti -proper if f ∈ Ki and degti (a) < degti (b).

Set

P0 = K0[t1, . . . , tn],

Pj={f ∈Kj [tj+1, . . . , tn] | coeffs are tj -proper}, j=1, . . . , n − 1,

Pn = {f ∈ Kn | f is tn-proper}.

Then

Kn = P0 ⊕ P1 ⊕ · · · ⊕ Pn−1 ⊕ Pn.⋂ ⋂ ⋂
K0[t1, . . . , tn] K1[t2, . . . tn] Kn−1[tn]
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Matryoshka decomposition (II)

Let πi be the projection: Kn → Pi w.r.t. the direct sum.

For f ∈ Kn, f = π0(f ) + π1(f ) + · · ·+ πn(f )

is called the matryoshka decomposition of f .

Example. Let K3 = C(x)(t1, t2, t3) and

f =
x(t1t2 + x)(t23 − t1t3 + xt2)

t2t3
.

Then

f = xt1t3 − xt21︸ ︷︷ ︸
π0(f )

+ 0︸︷︷︸
π1(f )

+ (x2/t2)t3 − x2t1/t2︸ ︷︷ ︸
π2(f )

+ (x2t1t2 + x3)/t3︸ ︷︷ ︸
π3(f )

.
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A partial order on a tower (I)

Monomial order. Set

T = {tm1
1 tm2

2 · · · t
mn
n |m1, . . . ,mn ∈ N}

and ≺ to be the plex order w.r.t. t1 ≺ t2 ≺ · · · ≺ tn.

Definition. Let f ∈ Kn and i ∈ {0, 1, . . . , n − 1}.

hmi (f ) := the highest monomial in ti+1, . . . , tn in πi (f ) if πi (f ) 6= 0

and

hm(f ) := the highest monomial among hm0(f ), . . . hmn−1(f ).
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A partial order on a tower (II)

Example. Let f ∈ K3. Then

f = xt1t3 − xt21︸ ︷︷ ︸
π0(f )

+ 0︸︷︷︸
π1(f )

+ (x/t2)t3 − xt1/t2)︸ ︷︷ ︸
π2(f )

+ (xt1t2 + x2)/t3︸ ︷︷ ︸
π3(f )

⇓
hm(f ) = t1t3.

Definition. Let f , g ∈ Kn with πn(f ) = a/b and πn(g) = u/v ,
where

a, b, u, v ∈ K0[t1, . . . , tn] and gcd(a, b) = gcd(u, v) = 1.

Then f ≺ g if

either f = 0 and g 6= 0, or

degtn(b) < degtn(v), or

hm(f ) ≺ hm(g).
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S-Primitive towers

Definition.

Let f ∈ Ki , i ∈ {0, 1, . . . , n}, and let t0 = x . Then f is
ti -simple if it is ti -proper with squarefree denominator w.r.t. ti .

f ∈ Kn is simple if πi (f ) is ti -simple, where 0 ≤ i ≤ n.

A primitive tower Kn is S-primitive if each t ′i is simple.

Example.

Logarithmic towers are S-primitive.

K0

(
log(x),

∫
1

log(x) dx
)

is S-primitive.
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Additive decomposition in S-primitive towers

Theorem. Let Kn be S-primitive. For f ∈ Kn, there is an algorithm
to compute g , r ∈ Kn s.t.

f = g ′ + r

with the properties

(i) r is minimal w.r.t. ≺,

(ii) f = h′ for some h ∈ Kn if and only if r = 0.

Idea. Using integration by parts to reduce hm(f ).

Publ. H. Du, J. Guo, L, and E. Wong. An additive decomposition
in logarithmic extensions and beyond. Proc. ISSAC 2020.
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Example

Let K3 = K0(t1, t2, t3), where

t1 = log(x), t2 = arctan(x), t3 = arctan(log(x)).

Let

f =
(x2 + 4)t2 − x

(x2 + 1)t22
+

2t3
xt21 + x

+ (t1 + 1)2t3 ∈ K3

=

(
x

t2
+ t23 + (xt21 + x)t3 − x

)′
︸ ︷︷ ︸

g

+
3

(x2 + 1)t2︸ ︷︷ ︸
r

.

∫
f dx =

x

arctan(x)
+ arctan(log(x))2 + (x log(x)2 + x) arctan(log(x))− x

+

∫
3

(x2 + 1) arctan(x)
dx .

/∈

K3
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How to integrate a remainder

Let Kn be S-primitive. Given f ∈ Kn with an additive decomp

f = (· · · )′ + r .

Then

r has an elem. int. over Kn


=⇒ r is simple

⇐⇒ r ∈ spanC{t ′1, . . . , t ′n}+ LKn

⇐⇒ r ∈ LKn , when Kn is logarithmic.
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Logarithmic parts

Problem. Given a simple element r ∈ Kn, decide whether r ∈ LKn .
Assume r ∈ LKn . Compute c1, . . . , cs ∈ C and g1, . . . , gs ∈ Kn s.t.

r = c1
g ′1
g1

+ · · ·+ cs
g ′s
gs
,

or, equivalently,∫
r dx = c1 log(g1) + · · ·+ cs log(gs).

Call {(c1, g1), . . . , (cs , gs)} a logarithmic part of r .
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From simple to t-simple

Lemma. Let r be in a primitive tower Kn. Then

r ∈ LKn ⇐⇒ πi (r) ∈ LKi
, i = 0, 1, . . . , n.

Let K be a D-field and t primitive over K .

Problem. Given a t-simple r ∈ K (t), compute a logarithmic part of
r if there exists one.

Z. Li, KLMM, CAS Elem. Int. by AD. and HV. 21/39



Rothstein-Trager resultants

Theorem. For a t-simple r = a/b ∈ K (t) with gcd(a, b) = 1, let z
be an indeterminate, and

RT(r) := resultantt(a− zb′, b)︸ ︷︷ ︸
Rothstein-Trager resultant of r

∈ K [z ].

Then r has a logarithmic part if and only if the monic associate of
RT(r) belongs to C[z ].

In this case, let c1, . . . , cs are all distinct roots of RT(r). Then a
logarithmic part of r is{(

c1, gcd(a− c1b
′, b)

)
, . . . ,

(
cs , gcd(a− csb

′, b)
)}
.
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Resultant-based algorithm

Input: a t-simple r = a/b ∈ K (t) with gcd(a, b) = 1.

Output: a logarithmic part of r if there exists one.

1. Compute the Rothstein-Trager resultant RT(r);

2. Compute the monic associate M(z) of RT(r) w.r.t. z;

3. If M(z) /∈ C[z ], then return false;

4. Factor M(z) = p1 . . . ps over its coefficient field;

5. Set gi (z , t) := gcd(a− zb′, b) mod pi (z), i = 1, . . . , s;

6. Return {(αi , gi (αi , t)) | pi (αi ) = 0, i = 1, . . . , s}.
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Example

Let K = C(x), t = log(x) and

r = 8 t3x2−2 t3x+4 t2x−4 xt+t−2
x(8 t3x3+12 t3x2−10 t3x+12 t2x2+t3+12 t2x−5 t2+6 xt+3 t+1).

The numerator of RT(r) =

51200x7z3 − 20480x9z3 − 30720x8z3 + 2560x9z − 320x9 + 3840x8z − 480x8

+104960x6z3 − 6400x7z − 110080x5z3 + 800x7 − 13120x6z − 1720x5 − 5x3

+18560x4z3 + 1640x6 + 13760x5z − 320x3z3 − 2320x4z + 290x4 + 40x3z

= (· · · )︸ ︷︷ ︸
content w.r.t. z

(
z3 − 1

8
z +

1

64

)
︸ ︷︷ ︸

monic associate

.

Logarithmic part:(
1

4
, t +

1

2(x − 1)

)
,

(
α, t + 8

α

4 x2 + 8 x − 1
+

3 + 2 x

4 x2 + 8 x − 1

)
with α2 + 1

4α−
1
16 = 0.
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Lucky points

Let K = C(x , y1, . . . , y`).

Definition. Let r = a/b ∈ K (t) be t-simple. A point v ∈ C`+1 is
lucky for r if

the denominator of
(∏`

i=1 y
′
i

)
· t ′ does not vanish at v (?)

lct(b) · lct(b′)(v) 6= 0 (??)

resultantt(b, b
′)(v) 6= 0.

If v is lucky, then

RT(r)(v, z) = resultantt(a(v, t)− zb′(v, t), b(v, t))︸ ︷︷ ︸
R̃

.

If v satisfies (?) and (??), then

v is lucky ⇐⇒ degz(R̃) = degt(b).
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Algorithm LuckyPoints

Input: a nonzero t-simple element r = a/b ∈ K (t),

Output: fail if no lucky point is chosen, otherwise

{(v1, r1), (v2, r2)},

where vi is a lucky point and ri = RT(r)(vi , z) ∈ C[z ] for i = 1, 2.

1. For k from 1 to 5 do

Choose two points v1, v2 satisfying (?) and (??), and compute

ri = resultantt(a(vi , t)− zb′(vi , t), b(vi , t)), i = 1, 2.

If degz(r1) = degz(r2) = degt(b), return {(v1, r1), (v2, r2)}.
end do.

2. Return fail.

Z. Li, KLMM, CAS Elem. Int. by AD. and HV. 26/39



Homomorphism-based algorithm

Input: a t-simple r = a/b ∈ K (t) with gcd(a, b) = 1

Output: a logarithmic part of r if there exists one.

1. U := LuckyPoints(r).

2. If U = Fail, then call the resultant-based algorithm.

3. Assume U = {(v1, r1), (v2, r2)}. Compute the monic associate
M1 and M2 of r1 and r2, respectively.

4. If M1 6= M2 then return false.

5. Factor M1 = p1 · · · ps over its coefficient field.

6. For j from 1 to s do
gj = gcd(a− zb′, b) mod pj .

If degt(gj) 6= the multiplicity of pj in M1, then return false.

end do.

7. Return {(αj , gj(αj , t)), | pj(αj) = 0, j = 1, . . . , s}.
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Other algorithms

Subresultant-based algorithm (D. Lazard and R. Rioboo, 1990):

avoiding algebraic gcd-computation.

Gröbner-based algorithm (G. Czichowski, 1995):

constructing the squarefree part of a Rothstein-Trager
resultant directly and avoiding algebraic gcd-computation.
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Experiments (I)

Let K2 = Q(x , t1)︸ ︷︷ ︸
K

(t2), where t1 = log(x) and t2 = log(log(x)).

Let
f = randpoly([x , t1, t2], dense, degree = d),

g = randpoly([x , t1, t2], dense, degree = d),

and

r =
rem(f , g , t2)

g
.

Compute a logarithmic part of r if there exists one.

d 5 6 7 8 9 10 11 12

RES 0.3 1.3 3.6 8.7 10.0 40.0 81.3 422.6

HOM ∗ ∗ ∗ ∗ ∗ ∗ 0.1 0.1

where ∗ means “< 0.1 sec”.
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Experiments (II)

Let
f = randpoly([x , t1, t2], dense, degree = d),

g = randpoly([x , t1, t2], dense, degree = d),

and

r = 4
f ′

f
− 1

3

g ′

g
.

Compute a logarithmic part of r .

d 1 2 3 4 5 6 7 8

RES ∗ ∗ ∗ 0.1 0.3 3.0 7.4 18.5

HOM ∗ ∗ ∗ ∗ ∗ 0.1 0.1 0.1

where ∗ means “< 0.1 sec”.
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Experiments (III)

Let p = z3 − z + 1 and

f = randpoly([y , x , t1, t2], dense, degree = d).

Compute a logarithmic part of

r =
∑

p(y)=0

y
f (y , x , t1, t2)′

f (y , x , t1, t2)
.

d 1 2 3 4 5 6 7 8

RES ∗ 0.7 15.6 139.5 > 400 > 400 > 400 > 400

HOM ∗ ∗ 0.1 0.1 0.3 0.6 0.8 1.2

where ∗ means “< 0.1 sec”.
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Risch’s algorithm for logarithmic towers
Input: f in a logarithmic tower Kn.

Output: an elementary integral of f if there exists one.

1. Hermite-reduce w.r.t. tn: f = g ′n + hn + pn, where hn is tn-simple
and pn ∈ Kn−1[tn].

If hn has no log part, then return “no elem integral ”;

compute a log part {(c1, g1), . . . , (cs , gs)}.

2. Polynomial-reduce w.r.t. tn: pn = u′n + rn−1 with rn−1 ∈ Kn−1 by
solving Risch’s equations in Kn−1. If no solution, then return “no
elem integral”.

3. Recursion. Integrate rn−1 over Kn−1.

If rn−1 has no elem integral, then return “no elem integral ”;

return

gn + un +
s∑

i=1

ci log(gi ) +

∫
rn−1 dx .
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Addition decomposition and homomorphic valuation

Input: f ∈ Kn = C(x)(t1, . . . tn), a logarithmic tower.

Output: an elementary integral of f if there exists one.

1. Compute an additive decomposition

f = g ′ + r , where r is a remainder.

If r is not simple, then return “no elem integral ”.

2. For i from 1 to n do

compute a logarithmic part of πi (r) in Ki−1(ti ).

{(ci,1, gi,1), . . . , (ci,si , gi,si )};

if such a part does not exist, then return “no elem integral ”.

end do.

3. Return

g +
n∑

i=1

si∑
j=1

ci ,j log(gi ,j) +

∫
π0(r) dx .
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Example

Let K3 = C(x)(t1, t2, t3), where

t1 = log(x), t2 = arctan(x), t3 = arctan(log(x)).

Let

f =
(x2 + 4)t2 − x

(x2 + 1)t22
+

2t3
xt21 + x

+ (t1 + 1)2t3 ∈ K3

∫
f dx =

x

arctan(x)
+ arctan(log(x))2 + (x log(x)2 + x) arctan(log(x))− x︸ ︷︷ ︸

g

+

∫
3

(x2 + 1) arctan(x)
dx = g + 3 log(arctan(x)).

/∈
K3
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Experiments

Let K1 = K0(t), where t = log(x).

Let f = randpoly([x , t], degree = d) + xtd,
g = randpoly([x , t], degree = d) + (x− 1)td,
u = randpoly([x , t], degree = d) + 2td,
v = randpoly([x , t], degree = d)− td,
w = randpoly([y , x , t], degree = d) + td and p = z2 − z + 2.

Integrate

(
f

g

)′
+

1

2

u′

u
− 1

3

v ′

v
+

(∑
p(y)=0 yw(y , x , t)

)′∑
p(y)=0 yw(y , x , t)

.

d 1 2 3 4 5 6 7 8

int 4.0 24.3 45.3 20.1 30.0 48.7 > 400 > 400

A & H 0.1 0.2 0.7 2.1 3.8 13.6 36.0 240.2
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Elementary integrals over S-primitive towers

Input: f ∈ Kn, where Kn = C(x)(t1, . . . , tn) is S-primitive.

Output: an elementary integral of f if there exists one.

1. Compute an additive decomposition

f = g ′ + r , where r is a remainder.

If r is not simple, then return “no elem integral”.

2. Apply Raab’s algorithm to compute c1, . . . , cn ∈ C s.t.

h := r − c1t
′
1 − · · · − cnt

′
n ∈ LKn .

If such constants do not exist, then return “no elem integral”.

3. Compute a log part of h to get

{(c1, g1), . . . , (cs , gs)}.

4. Return g + c1t1 + · · ·+ cntn +
∑s

i=1 ci log(gi ).
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Example

Let an S-primitive tower K3 = K0(t1, t2, t3), where

t1 = log(x), t2 =

∫
1

log(x)
dx , t3 = log(log(x)).

Integrate.

t3 +
t2 − 2xt1

t21
+

1

t1t2︸ ︷︷ ︸
f

A.D.
=

(
1

2

t2
2t1 + 2 xt3 t1 − 2 xt2 − 2 x2

t1

)′
︸ ︷︷ ︸

g

+
1

t1t2
− 1

t1︸ ︷︷ ︸
r

Raab
= (g − t2)′ +

1

t1t2

L.P.
= (g − t2 + log(t2))′ .

Result. ∫
f dx = g − t2 + log(t2).

Remark. Both Maple and Mathematica return the integral unevaluated.
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Additive decomposition in hyperexponential towers

A D-field Kn = K0(t1, . . . , tn) is a hyperexponential tower if

(i) t1, . . . , tn are algebraically independent over K0,

(ii) t ′i/ti ∈ Ki−1 with 1 ≤ i ≤ n,

(iii) CKn = C.

Such a tower is exponential if each t ′i/ti is a derivative in Ki−1.

Additive decompositions can be carried out in several cases, e.g.

each t ′i/ti ∈ K0,

Kn is exponential.
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Summary

Results.

an additive decomposition in S-primitive towers,

an algorithm for computing elementary integrals over
S-primitive towers.

Goal.

develop an additive decomposition in Kn = K0(t1, . . . , tn),
where ti is either logarithmic or exponential over Ki−1,

compute elementary integrals over Kn.

Thanks for your attention!
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