Computing Elementary Integrals by Additive Decomposition and Homomorphic Valuation

Ziming Li
Key Laboratory of Mathematics Mechanization
AMSS, Chinese Academy of Sciences

Seminar on Computer Algebra
CMC faculty of MSU and CCAS
May 17, 2022

joint work with S. Chen, H. Du, Y. Gao and J. Guo

Outline

- Additive decompositions
- Elementary integrals
- On-going projects

What is an additive decomposition?

Given $f(x)$, compute $g(x)$ and $r(x)$ of the same type as f 's s.t.

$$
f(x)=g(x)^{\prime}+r(x) \quad \leftarrow \text { remainder }
$$

with the properties
(i) (minimality) $r(x)$ is minimal in some sense;
(ii) (integrability) $\exists h(x)$ of the same type as f 's s.t.

$$
f(x)=h(x)^{\prime}
$$

if and only if $r(x)=0$.

Remark. $f(x)$ may be replaced by a sequence $f(n)$, and derivative ' by the difference operator Δ_{n}.

Rational case (I)

Let C be a field of characteristic zero.
Hermite-Ostrogradsky (≈ 1850).
For $f \in C(x)$, one can compute $g, r \in C(x)$ s.t.

$$
f=g^{\prime}+r \quad \text { where }^{\prime}=d / d x
$$

with the properties:
(i) the denominator of r is of minimal degree,

- r is proper,
- r has a squarefree denominator;
(ii) $f=h^{\prime}$ for some $h \in C(x)$ if and only if $r=0$.

Rational case (II)

Abramov (1975).
For $f \in \mathbb{C}(n)$, one can construct $g, r \in \mathbb{C}(n)$ s.t.

$$
f=\Delta_{n}(g)+r
$$

with the properties:
(i) the denominator of r is of minimal degree,

- r is proper,
- r has a shiftfree denominator;
(ii) $f=\Delta_{n}(h)$ for some $h \in \mathbb{C}(n)$ if and only if $r=0$.

Inspiration

S. Abramov and M. Petkovšek.

Minimal decomposition of indefinite hypergeometric sums,

Proc. ISSAC 2001, and its expanded version in JSC, 2002.

Theorem 11 Let a term T be regularly described by a triple ($f_{1} / f_{2}, v_{1} / v_{2}, n_{0}$), i.e.,

$$
T(n)=\frac{v_{1}(n)}{v_{2}(n)} \prod_{k=n_{0}}^{n-1} \frac{f_{1}(k)}{f_{2}(k)} .
$$

Then there exists a term T_{1} of the form

$$
T_{1}(n)=S(n) \prod_{k=n_{0}}^{n-1} \frac{f_{1}(k)}{f_{2}(k)}
$$

$S \in K[n]$, such that the term $T_{2}=T-(E-1) T_{1}$ is of the form

$$
\frac{P(n)}{v_{2}(n)} \prod_{k=n_{0}}^{n-1} \frac{f_{1}(k)}{f_{2}(k+1)}
$$

where P is a polynomial whose degree is less than

$$
\lambda= \begin{cases}\operatorname{deg} v_{2}+\operatorname{deg} f_{2} & \text { if } \operatorname{deg}\left(f_{2}-f_{1}\right)>\operatorname{deg} f_{1} \\ \operatorname{deg} v_{2}+\operatorname{deg} f_{1} & \text { if } \operatorname{deg}\left(f_{2}-f_{1}\right)=\operatorname{deg} f_{1} \\ & \text { or } \operatorname{deg}\left(f_{2}-f_{1}\right)<\operatorname{deg} f_{1}-1, \\ \operatorname{deg} v_{2}+\operatorname{deg} f_{1}+\tau & \text { if } \operatorname{deg}\left(f_{2}-f_{1}\right)=\operatorname{deg} f_{1}-1\end{cases}
$$

where in the last case τ is equal to $\operatorname{lc}\left(f_{2}-f_{1}\right) / \operatorname{lc} f_{1}$ if this is a nonnegative integer, and -1 otherwise.

Some further developments

(q)-Hypergeometric sequences.

- Hyperexponential (Bostan, Chen, Chyzak, L and Xin 2013)
- Hypergeometric (Chen, Huang, Kauers and L 2015)
- q-Hypergeometric (Du, Huang and L 2018)

D-finite functions.

- Algebraic (Chen, Kauers, Koutschan 2016)
- Fuchsian D-finite (Chen, van Hoeij, Kauers, Koutschan 2018)
- D-finite (van der Hoeven 2017, 2018; Bostan, Chyzak, Lairez, Salvy 2018, van der Hoeven 2020)

Additive decompositions in symbolic integration

Compute elementary integrals of transcendental functions over $\mathbb{C}(x)$.

Differential fields

Let K be a field and let ${ }^{\prime}: K \rightarrow K$ satisfy

$$
\forall u, v \in K,(u+v)^{\prime}=u^{\prime}+v^{\prime} \quad \text { and } \quad(u v)^{\prime}=u^{\prime} v+u v^{\prime}
$$

Call ' a derivation and and ($K,{ }^{\prime}$) a differential field (D-field).

- Call $c \in K$ a constant if $c^{\prime}=0$.
- $C_{K}:=\left\{c \in K \mid c^{\prime}=0\right\}$.
- Call $\ell \in K$ a logarithmic derivative if $\ell=a^{\prime} / a$ for some $a \in K$.
- The set of generalized logarithmic derivatives

$$
L_{K}:=\operatorname{span}_{C_{K}}\{\ell \mid \ell \text { is a logarithmic derivative }\} .
$$

Example. Let $\left(K,{ }^{\prime}\right)=(\mathbb{C}(x), d / d x)$. Then
$C_{K}=\mathbb{C} \quad$ and $\quad L_{K}=\{f \mid f$ is proper with squarefree denominator $\}$.

Primitive and logarithmic towers

Set $K_{0}=\mathbb{C}(x)$ and $K_{i}=K_{0}\left(t_{1}, \ldots, t_{i}\right), i=1, \ldots, n$. Then

$$
K_{0} \subset K_{1} \subset \cdots \subset K_{n}=K_{0}\left(t_{1}, \ldots, t_{n}\right)
$$

The tower K_{n} is primitive if
(i) t_{1}, \ldots, t_{n} are algebraically independent over K_{0},
(ii) $t_{i}^{\prime} \in K_{i-1}, i=1, \ldots, n$,
(iii) $C_{K_{n}}=\mathbb{C}$.

Such a tower is logarithmic if $t_{i}^{\prime} \in L_{K_{i-1}}, i=1, \ldots, n$.
Example.

- $K_{0}(\log (x), \arctan (x))$ is logarithmic,
- $K_{0}\left(\log (x), \int \frac{1}{\log (x)} d x\right)$ is primitive but not logarithmic.

Additive decomposition in symbolic integration

Let F be a D-field.
Given $f \in F$, compute $g, r \in F$ s.t.

$$
f=g^{\prime}+r
$$

with the properties
(i) r is minimal in some sense,
(ii) $f=h^{\prime}$ for some $h \in F$ if and only if $r=0$.

Supervisor's suggestion. Develop an additive decomposition in logarithmic towers.

Students' adventure. Develop an additive decomposition in primitive towers.

Matryoshka decomposition (I)

Let $K_{n}=K_{0}\left(t_{1}, \ldots, t_{n}\right)$ and $f=a / b \in K_{n}$ with $\operatorname{gcd}(a, b)=1$.
Call $f t_{i}$-proper if $f \in K_{i}$ and $\operatorname{deg}_{t_{i}}(a)<\operatorname{deg}_{t_{i}}(b)$.
Set

- $P_{0}=K_{0}\left[t_{1}, \ldots, t_{n}\right]$,
- $P_{j}=\left\{f \in K_{j}\left[t_{j+1}, \ldots, t_{n}\right] \mid\right.$ coeffs are t_{j}-proper $\}, j=1, \ldots, n-1$,
- $P_{n}=\left\{f \in K_{n} \mid f\right.$ is t_{n}-proper $\}$.

Then

$$
K_{n}=\begin{array}{cccccc}
\bigcap_{0} & \oplus & \bigcap_{1} & \oplus & \cdots & \oplus
\end{array} \bigcap_{K_{0}\left[t_{1}, \ldots, t_{n}\right]} \quad \bigcap_{K_{1}\left[t_{2}, \ldots, t_{n}\right]}
$$

Matryoshka decomposition (II)

Let π_{i} be the projection: $K_{n} \rightarrow P_{i}$ w.r.t. the direct sum.

$$
\text { For } f \in K_{n}, \quad f=\pi_{0}(f)+\pi_{1}(f)+\cdots+\pi_{n}(f)
$$

is called the matryoshka decomposition of f.
Example. Let $K_{3}=\mathbb{C}(x)\left(t_{1}, t_{2}, t_{3}\right)$ and

$$
f=\frac{x\left(t_{1} t_{2}+x\right)\left(t_{3}^{2}-t_{1} t_{3}+x t_{2}\right)}{t_{2} t_{3}}
$$

Then

$$
f=\underbrace{x t_{1} t_{3}-x t_{1}^{2}}_{\pi_{0}(f)}+\underbrace{0}_{\pi_{1}(f)}+\underbrace{\left(x^{2} / t_{2}\right) t_{3}-x^{2} t_{1} / t_{2}}_{\pi_{2}(f)}+\underbrace{\left(x^{2} t_{1} t_{2}+x^{3}\right) / t_{3}}_{\pi_{3}(f)}
$$

A partial order on a tower (I)

Monomial order. Set

$$
T=\left\{t_{1}^{m_{1}} t_{2}^{m_{2}} \cdots t_{n}^{m_{n}} \mid m_{1}, \ldots, m_{n} \in \mathbb{N}\right\}
$$

and \prec to be the plex order w.r.t. $t_{1} \prec t_{2} \prec \cdots \prec t_{n}$.
Definition. Let $f \in K_{n}$ and $i \in\{0,1, \ldots, n-1\}$.
$\mathrm{hm}_{i}(f):=$ the highest monomial in t_{i+1}, \ldots, t_{n} in $\pi_{i}(f)$ if $\pi_{i}(f) \neq 0$
and
$h m(f):=$ the highest monomial among $\mathrm{hm}_{0}(f), \ldots \mathrm{hm}_{n-1}(f)$.

A partial order on a tower (II)

Example. Let $f \in K_{3}$. Then

$$
\begin{gathered}
f=\underbrace{x t_{1} t_{3}-x t_{1}^{2}}_{\pi_{0}(f)}+\underbrace{0}_{\pi_{1}(f)}+\underbrace{\left.\left(x / t_{2}\right) t_{3}-x t_{1} / t_{2}\right)}_{\pi_{2}(f)}+\underbrace{\left(x t_{1} t_{2}+x^{2}\right) / t_{3}}_{\pi_{3}(f)} \\
\Downarrow \\
\mathrm{hm}(f)=t_{1} t_{3} .
\end{gathered}
$$

Definition. Let $f, g \in K_{n}$ with $\pi_{n}(f)=a / b$ and $\pi_{n}(g)=u / v$, where
$a, b, u, v \in K_{0}\left[t_{1}, \ldots, t_{n}\right] \quad$ and $\quad \operatorname{gcd}(a, b)=\operatorname{gcd}(u, v)=1$.
Then $f \prec g$ if

- either $f=0$ and $g \neq 0$, or
- $\operatorname{deg}_{t_{n}}(b)<\operatorname{deg}_{t_{n}}(v)$, or
- $\mathrm{hm}(f) \prec \mathrm{hm}(g)$.

S-Primitive towers

Definition.

- Let $f \in K_{i}, i \in\{0,1, \ldots, n\}$, and let $t_{0}=x$. Then f is t_{i}-simple if it is t_{i}-proper with squarefree denominator w.r.t. t_{i}.
- $f \in K_{n}$ is simple if $\pi_{i}(f)$ is t_{i}-simple, where $0 \leq i \leq n$.
- A primitive tower K_{n} is S-primitive if each t_{i}^{\prime} is simple.

Example.

- Logarithmic towers are S-primitive.
- $K_{0}\left(\log (x), \int \frac{1}{\log (x)} d x\right)$ is S-primitive.

Additive decomposition in S-primitive towers

Theorem. Let K_{n} be S-primitive. For $f \in K_{n}$, there is an algorithm to compute $g, r \in K_{n}$ s.t.

$$
f=g^{\prime}+r
$$

with the properties
(i) r is minimal w.r.t. \prec,
(ii) $f=h^{\prime}$ for some $h \in K_{n}$ if and only if $r=0$.

Idea. Using integration by parts to reduce $\mathrm{hm}(f)$.
Publ. H. Du, J. Guo, L, and E. Wong. An additive decomposition in logarithmic extensions and beyond. Proc. ISSAC 2020.

Example

Let $K_{3}=K_{0}\left(t_{1}, t_{2}, t_{3}\right)$, where

$$
t_{1}=\log (x), \quad t_{2}=\arctan (x), \quad t_{3}=\arctan (\log (x))
$$

Let

$$
\begin{aligned}
f & =\frac{\left(x^{2}+4\right) t_{2}-x}{\left(x^{2}+1\right) t_{2}^{2}}+\frac{2 t_{3}}{x t_{1}^{2}+x}+\left(t_{1}+1\right)^{2} t_{3} \in K_{3} \\
& =\underbrace{\left(\frac{x}{t_{2}}+t_{3}^{2}+\left(x t_{1}^{2}+x\right) t_{3}-x\right)^{\prime}}_{g}+\underbrace{\frac{3}{\left(x^{2}+1\right) t_{2}}}_{r} .
\end{aligned}
$$

$$
\int f d x=\frac{x}{\arctan (x)}+\arctan (\log (x))^{2}+\left(x \log (x)^{2}+x\right) \arctan (\log (x))-x
$$

$$
+\int \frac{3}{\left(x^{2}+1\right) \arctan (x)} d x
$$

$$
\begin{aligned}
& 1 \\
& K_{3}
\end{aligned}
$$

How to integrate a remainder

Let K_{n} be S-primitive. Given $f \in K_{n}$ with an additive decomp

$$
f=(\cdots)^{\prime}+r .
$$

Then
r has an elem. int. over $K_{n}\left\{\begin{array}{l} \\ \Longleftrightarrow r \text { is simple } \\ \\ \Longleftrightarrow r \in \operatorname{span}_{\mathbb{C}}\left\{t_{1}^{\prime}, \ldots, t_{n}^{\prime}\right\}+L_{K_{n}} \\ \\ \Longleftrightarrow r \in L_{K_{n}}, \text { when } K_{n} \text { is logarithmic. }\end{array}\right.$

Logarithmic parts

Problem. Given a simple element $r \in K_{n}$, decide whether $r \in L_{K_{n}}$. Assume $r \in L_{K_{n}}$. Compute $c_{1}, \ldots, c_{s} \in \mathbb{C}$ and $g_{1}, \ldots, g_{s} \in K_{n}$ s.t.

$$
r=c_{1} \frac{g_{1}^{\prime}}{g_{1}}+\cdots+c_{s} \frac{g_{s}^{\prime}}{g_{s}}
$$

or, equivalently,

$$
\int r d x=c_{1} \log \left(g_{1}\right)+\cdots+c_{s} \log \left(g_{s}\right)
$$

Call $\left\{\left(c_{1}, g_{1}\right), \ldots,\left(c_{s}, g_{s}\right)\right\}$ a logarithmic part of r.

From simple to t-simple

Lemma. Let r be in a primitive tower K_{n}. Then

$$
r \in L_{K_{n}} \Longleftrightarrow \pi_{i}(r) \in L_{K_{i}}, \quad i=0,1, \ldots, n
$$

Let K be a D-field and t primitive over K.
Problem. Given a t-simple $r \in K(t)$, compute a logarithmic part of r if there exists one.

Rothstein-Trager resultants

Theorem. For a t-simple $r=a / b \in K(t)$ with $\operatorname{gcd}(a, b)=1$, let z be an indeterminate, and

$$
\mathrm{RT}(r):=\underbrace{\text { resultant }_{t}\left(a-z b^{\prime}, b\right)}_{\text {Rothstein-Trager resultant of } r} \in K[z] .
$$

Then r has a logarithmic part if and only if the monic associate of $\mathrm{RT}(r)$ belongs to $\mathbb{C}[z]$.

In this case, let c_{1}, \ldots, c_{s} are all distinct roots of $\mathrm{RT}(r)$. Then a logarithmic part of r is

$$
\left\{\left(c_{1}, \operatorname{gcd}\left(a-c_{1} b^{\prime}, b\right)\right), \ldots,\left(c_{s}, \operatorname{gcd}\left(a-c_{s} b^{\prime}, b\right)\right)\right\}
$$

Resultant-based algorithm

Input: a t-simple $r=a / b \in K(t)$ with $\operatorname{gcd}(a, b)=1$.
Output: a logarithmic part of r if there exists one.

1. Compute the Rothstein-Trager resultant RT(r);
2. Compute the monic associate $M(z)$ of $\mathrm{RT}(r)$ w.r.t. z;
3. If $M(z) \notin \mathbb{C}[z]$, then return false;
4. Factor $M(z)=p_{1} \ldots p_{s}$ over its coefficient field;
5. Set $g_{i}(z, t):=\operatorname{gcd}\left(a-z b^{\prime}, b\right) \bmod p_{i}(z), i=1, \ldots, s$;
6. Return $\left\{\left(\alpha_{i}, g_{i}\left(\alpha_{i}, t\right)\right) \mid p_{i}\left(\alpha_{i}\right)=0, i=1, \ldots, s\right\}$.

Example

Let $K=\mathbb{C}(x), t=\log (x)$ and

$$
r=\frac{8 t^{3} x^{2}-2 t^{3} x+4 t^{2} x-4 x t+t-2}{x\left(8 t^{3} x^{3}+12 t^{3} x^{2}-10 t^{3} x+12 t^{2} x^{2}+t^{3}+12 t^{2} x-5 t^{2}+6 x t+3 t+1\right)}
$$

The numerator of $\mathrm{RT}(r)=$

$$
\begin{aligned}
& 51200 x^{7} z^{3}-20480 x^{9} z^{3}-30720 x^{8} z^{3}+2560 x^{9} z-320 x^{9}+3840 x^{8} z-480 x^{8} \\
& +104960 x^{6} z^{3}-6400 x^{7} z-110080 x^{5} z^{3}+800 x^{7}-13120 x^{6} z-1720 x^{5}-5 x^{3} \\
& +18560 x^{4} z^{3}+1640 x^{6}+13760 x^{5} z-320 x^{3} z^{3}-2320 x^{4} z+290 x^{4}+40 x^{3} z
\end{aligned}
$$

$$
=\underbrace{(\cdots)}_{\text {content w.r.t. } z} \underbrace{\left(z^{3}-\frac{1}{8} z+\frac{1}{64}\right)}_{\text {monic associate }} .
$$

Logarithmic part:

$$
\left(\frac{1}{4}, t+\frac{1}{2(x-1)}\right),\left(\alpha, t+8 \frac{\alpha}{4 x^{2}+8 x-1}+\frac{3+2 x}{4 x^{2}+8 x-1}\right)
$$

with $\alpha^{2}+\frac{1}{4} \alpha-\frac{1}{16}=0$.

Lucky points

Let $K=\mathbb{C}\left(x, y_{1}, \ldots, y_{\ell}\right)$.
Definition. Let $r=a / b \in K(t)$ be t-simple. A point $\mathbf{v} \in \mathbb{C}^{\ell+1}$ is lucky for r if
$\left\{\begin{array}{l}\text { the denominator of }\left(\prod_{i=1}^{\ell} y_{i}^{\prime}\right) \cdot t^{\prime} \text { does not vanish at } \mathbf{v} \\ \operatorname{lc}_{t}(b) \cdot \operatorname{Ic}_{t}\left(b^{\prime}\right)(\mathbf{v}) \neq 0 \\ \text { resultant }_{t}\left(b, b^{\prime}\right)(\mathbf{v}) \neq 0 .\end{array}\right.$

- If \mathbf{v} is lucky, then

$$
\mathrm{RT}(r)(\mathbf{v}, z)=\underbrace{\operatorname{resultant}_{t}\left(a(\mathbf{v}, t)-z b^{\prime}(\mathbf{v}, t), b(\mathbf{v}, t)\right)}_{\tilde{R}} .
$$

- If \mathbf{v} satisfies (\star) and $(\star \star)$, then
\mathbf{v} is lucky $\Longleftrightarrow \operatorname{deg}_{z}(\tilde{R})=\operatorname{deg}_{t}(b)$.

Algorithm LuckyPoints

Input: a nonzero t-simple element $r=a / b \in K(t)$,
Output: FAIL if no lucky point is chosen, otherwise

$$
\left\{\left(\mathbf{v}_{1}, r_{1}\right),\left(\mathbf{v}_{2}, r_{2}\right)\right\}
$$

where \mathbf{v}_{i} is a lucky point and $r_{i}=\mathrm{RT}(r)\left(\mathbf{v}_{i}, z\right) \in \mathbb{C}[z]$ for $i=1,2$.

1. For k from 1 to 5 do

- Choose two points $\mathbf{v}_{1}, \mathbf{v}_{2}$ satisfying ($*$) and ($(\star$), and compute

$$
r_{i}=\operatorname{resultant}_{t}\left(a\left(\mathbf{v}_{i}, t\right)-z b^{\prime}\left(\mathbf{v}_{i}, t\right), b\left(\mathbf{v}_{i}, t\right)\right), \quad i=1,2 .
$$

- If $\operatorname{deg}_{z}\left(r_{1}\right)=\operatorname{deg}_{z}\left(r_{2}\right)=\operatorname{deg}_{t}(b)$, return $\left\{\left(\mathbf{v}_{1}, r_{1}\right),\left(\mathbf{v}_{2}, r_{2}\right)\right\}$. end do.

2. Return FAIL.

Homomorphism-based algorithm

Input: a t-simple $r=a / b \in K(t)$ with $\operatorname{gcd}(a, b)=1$
Output: a logarithmic part of r if there exists one.

1. $U:=\operatorname{LuckyPoints}(r)$.
2. If $U=$ FAil, then call the resultant-based algorithm.
3. Assume $U=\left\{\left(\mathbf{v}_{1}, r_{1}\right),\left(\mathbf{v}_{2}, r_{2}\right)\right\}$. Compute the monic associate M_{1} and M_{2} of r_{1} and r_{2}, respectively.
4. If $M_{1} \neq M_{2}$ then return false.
5. Factor $M_{1}=p_{1} \cdots p_{s}$ over its coefficient field.
6. For j from 1 to s do

- $g_{j}=\operatorname{gcd}\left(a-z b^{\prime}, b\right) \bmod p_{j}$.
- If $\operatorname{deg}_{t}\left(g_{j}\right) \neq$ the multiplicity of p_{j} in M_{1}, then return False. end do.

7. Return $\left\{\left(\alpha_{j}, g_{j}\left(\alpha_{j}, t\right)\right), \mid p_{j}\left(\alpha_{j}\right)=0, j=1, \ldots, s\right\}$.

Other algorithms

- Subresultant-based algorithm (D. Lazard and R. Rioboo, 1990):
- avoiding algebraic gcd-computation.
- Gröbner-based algorithm (G. Czichowski, 1995):
- constructing the squarefree part of a Rothstein-Trager resultant directly and avoiding algebraic gcd-computation.

Experiments (I)

Let $K_{2}=\underbrace{\mathbb{Q}\left(x, t_{1}\right)}_{K}\left(t_{2}\right)$, where $t_{1}=\log (x)$ and $t_{2}=\log (\log (x))$.
Let

$$
\begin{aligned}
& f=\operatorname{randpoly}\left(\left[x, t_{1}, t_{2}\right], \text { dense }, \text { degree }=\mathrm{d}\right), \\
& g=\operatorname{randpoly}\left(\left[x, t_{1}, t_{2}\right], \text { dense }, \text { degree }=\mathrm{d}\right),
\end{aligned}
$$

and

$$
r=\frac{\operatorname{rem}\left(f, g, t_{2}\right)}{g}
$$

Compute a logarithmic part of r if there exists one.

d	5	6	7	8	9	10	11	12
RES	0.3	1.3	3.6	8.7	10.0	40.0	81.3	422.6
HOM	$*$	$*$	$*$	$*$	$*$	$*$	0.1	0.1

where $*$ means " <0.1 sec".

Experiments (II)

Let

$$
\begin{aligned}
& f=\operatorname{randpoly}\left(\left[x, t_{1}, t_{2}\right], \text { dense }, \text { degree }=\mathrm{d}\right), \\
& g=\operatorname{randpoly}\left(\left[x, t_{1}, t_{2}\right], \text { dense }, \text { degree }=\mathrm{d}\right),
\end{aligned}
$$

and

$$
r=4 \frac{f^{\prime}}{f}-\frac{1}{3} \frac{g^{\prime}}{g}
$$

Compute a logarithmic part of r.

d	1	2	3	4	5	6	7	8
RES	$*$	$*$	$*$	0.1	0.3	3.0	7.4	18.5
HOM	$*$	$*$	$*$	$*$	$*$	0.1	0.1	0.1

where $*$ means " <0.1 sec".

Experiments (III)

Let $p=z^{3}-z+1$ and

$$
f=\operatorname{randpoly}\left(\left[y, x, t_{1}, t_{2}\right], \text { dense, degree }=\mathrm{d}\right) .
$$

Compute a logarithmic part of

$$
r=\sum_{p(y)=0} y \frac{f\left(y, x, t_{1}, t_{2}\right)^{\prime}}{f\left(y, x, t_{1}, t_{2}\right)}
$$

d	1	2	3	4	5	6	7	8
RES	$*$	0.7	15.6	139.5	>400	>400	>400	>400
HOM	$*$	$*$	0.1	0.1	0.3	0.6	0.8	1.2

where $*$ means " <0.1 sec".

Risch's algorithm for logarithmic towers

Input: f in a logarithmic tower K_{n}.
Output: an elementary integral of f if there exists one.

1. Hermite-reduce w.r.t. $t_{n}: f=g_{n}^{\prime}+h_{n}+p_{n}$, where h_{n} is t_{n}-simple and $p_{n} \in K_{n-1}\left[t_{n}\right]$.

- If h_{n} has no log part, then return "no elem integral ";
- compute a log part $\left\{\left(c_{1}, g_{1}\right), \ldots,\left(c_{s}, g_{s}\right)\right\}$.

2. Polynomial-reduce w.r.t. t_{n} : $p_{n}=u_{n}^{\prime}+r_{n-1}$ with $r_{n-1} \in K_{n-1}$ by solving Risch's equations in K_{n-1}. If no solution, then return "no elem integral".
3. Recursion. Integrate r_{n-1} over K_{n-1}.

- If r_{n-1} has no elem integral, then return "no elem integral ";
- return

$$
g_{n}+u_{n}+\sum_{i=1}^{s} c_{i} \log \left(g_{i}\right)+\int r_{n-1} d x
$$

Addition decomposition and homomorphic valuation

Input: $f \in K_{n}=\mathbb{C}(x)\left(t_{1}, \ldots t_{n}\right)$, a logarithmic tower.
Output: an elementary integral of f if there exists one.

1. Compute an additive decomposition

$$
f=g^{\prime}+r, \quad \text { where } r \text { is a remainder. }
$$

If r is not simple, then return "no elem integral ".
2. For i from 1 to n do
compute a logarithmic part of $\pi_{i}(r)$ in $K_{i-1}\left(t_{i}\right)$.

$$
\left\{\left(c_{i, 1}, g_{i, 1}\right), \ldots,\left(c_{i, s_{i}}, g_{i, s_{i}}\right)\right\}
$$

if such a part does not exist, then return "no elem integral". end do.
3. Return

$$
g+\sum_{i=1}^{n} \sum_{j=1}^{s_{i}} c_{i, j} \log \left(g_{i, j}\right)+\int \pi_{0}(r) d x
$$

Example

Let $K_{3}=\mathbb{C}(x)\left(t_{1}, t_{2}, t_{3}\right)$, where

$$
t_{1}=\log (x), \quad t_{2}=\arctan (x), \quad t_{3}=\arctan (\log (x))
$$

Let

$$
\begin{gathered}
f=\frac{\left(x^{2}+4\right) t_{2}-x}{\left(x^{2}+1\right) t_{2}^{2}}+\frac{2 t_{3}}{x t_{1}^{2}+x}+\left(t_{1}+1\right)^{2} t_{3} \in K_{3} \\
\int f d x= \\
\underbrace{\frac{x}{\arctan (x)}+\arctan (\log (x))^{2}+\left(x \log (x)^{2}+x\right) \arctan (\log (x))-x}_{g} \\
\\
+\int \frac{3}{\left(x^{2}+1\right) \arctan (x)} d x=g+3 \log (\arctan (x)) .
\end{gathered}
$$

Experiments

Let $K_{1}=K_{0}(t)$, where $t=\log (x)$.
Let $f=\operatorname{randpoly}([x, t]$, degree $=\mathrm{d})+\mathrm{xt}^{\mathrm{d}}$,
$g=\operatorname{randpoly}([x, t]$, degree $=d)+(x-1) t^{d}$,
$u=\operatorname{randpoly}([x, t]$, degree $=\mathrm{d})+2 \mathrm{t}^{\mathrm{d}}$,
$v=\operatorname{randpoly}([x, t]$, degree $=\mathrm{d})-\mathrm{t}^{\mathrm{d}}$,
$w=\operatorname{randpoly}([y, x, t]$, degree $=\mathrm{d})+\mathrm{t}^{\mathrm{d}}$ and $p=z^{2}-z+2$.
Integrate

$$
\left(\frac{f}{g}\right)^{\prime}+\frac{1}{2} \frac{u^{\prime}}{u}-\frac{1}{3} \frac{v^{\prime}}{v}+\frac{\left(\sum_{p(y)=0} y w(y, x, t)\right)^{\prime}}{\sum_{p(y)=0} y w(y, x, t)}
$$

d	1	2	3	4	5	6	7	8
int	4.0	24.3	45.3	20.1	30.0	48.7	>400	>400
A \& H	0.1	0.2	0.7	2.1	3.8	13.6	36.0	240.2

Elementary integrals over S-primitive towers

Input: $f \in K_{n}$, where $K_{n}=\mathbb{C}(x)\left(t_{1}, \ldots, t_{n}\right)$ is S-primitive.
Output: an elementary integral of f if there exists one.

1. Compute an additive decomposition

$$
f=g^{\prime}+r, \quad \text { where } r \text { is a remainder. }
$$

If r is not simple, then return "no elem integral".
2. Apply Raab's algorithm to compute $c_{1}, \ldots, c_{n} \in \mathbb{C}$ s.t.

$$
h:=r-c_{1} t_{1}^{\prime}-\cdots-c_{n} t_{n}^{\prime} \in L_{K_{n}} .
$$

If such constants do not exist, then return "no elem integral".
3. Compute a log part of h to get

$$
\left\{\left(c_{1}, g_{1}\right), \ldots,\left(c_{s}, g_{s}\right)\right\}
$$

4. Return $g+c_{1} t_{1}+\cdots+c_{n} t_{n}+\sum_{i=1}^{s} c_{i} \log \left(g_{i}\right)$.

Example

Let an S-primitive tower $K_{3}=K_{0}\left(t_{1}, t_{2}, t_{3}\right)$, where

$$
t_{1}=\log (x), t_{2}=\int \frac{1}{\log (x)} d x, t_{3}=\log (\log (x))
$$

Integrate.

$$
\begin{aligned}
& \underbrace{t_{3}+\frac{t_{2}-2 x t_{1}}{t_{1}^{2}}+\frac{1}{t_{1} t_{2}}}_{f} \stackrel{\text { A.D. }}{=} \underbrace{\left(\frac{1}{2} \frac{t_{2}^{2} t_{1}+2 x t_{3} t_{1}-2 x t_{2}-2 x^{2}}{t_{1}}\right)^{\prime}}_{g}+\underbrace{\frac{1}{t_{1} t_{2}}-\frac{1}{t_{1}}}_{r} \\
& \stackrel{\text { Raab }}{=}\left(g-t_{2}\right)^{\prime}+\frac{1}{t_{1} t_{2}} \stackrel{\text { L.P. }}{=}\left(g-t_{2}+\log \left(t_{2}\right)\right)^{\prime} .
\end{aligned}
$$

Result.

$$
\int f d x=g-t_{2}+\log \left(t_{2}\right)
$$

Remark. Both Maple and Mathematica return the integral unevaluated.

Additive decomposition in hyperexponential towers

A D-field $K_{n}=K_{0}\left(t_{1}, \ldots, t_{n}\right)$ is a hyperexponential tower if
(i) t_{1}, \ldots, t_{n} are algebraically independent over K_{0},
(ii) $t_{i}^{\prime} / t_{i} \in K_{i-1}$ with $1 \leq i \leq n$,
(iii) $C_{K_{n}}=\mathbb{C}$.

Such a tower is exponential if each t_{i}^{\prime} / t_{i} is a derivative in K_{i-1}.
Additive decompositions can be carried out in several cases, e.g.

- each $t_{i}^{\prime} / t_{i} \in K_{0}$,
- K_{n} is exponential.

Summary

Results.

- an additive decomposition in S-primitive towers,
- an algorithm for computing elementary integrals over S-primitive towers.

Goal.

- develop an additive decomposition in $K_{n}=K_{0}\left(t_{1}, \ldots, t_{n}\right)$, where t_{i} is either logarithmic or exponential over K_{i-1},
- compute elementary integrals over K_{n}.

Thanks for your attention!

