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Preliminary Remarks
1 Quantum behavior is manifestation of universal mathematical properties

of systems with indistinguishable objects — any violation of identity of
particles destroys interferences

2 For systems with symmetries only invariant — independent of relabeling
of “homogeneous” elements — relations and statements are objective
E.g., no objective meaning can be attached to electric potentials
ϕ and ψ or to space points a and b, but invariants ψ − ϕ and b− a
(in more general group notation ϕ−1ψ and a−1b) are meaningful

3 Question “whether the real world is discrete or continuous” or even “finite
or infinite” is metaphysical — neither empirical observations nor logical
arguments can validate one of the alternatives
The choice is a matter of belief or taste

Since no empirical consequences of choice between finite and infinite
descriptions are possible — “physics is independent of metaphysics” —

we can consider quantum concepts in constructive finite background
without any risk to destroy physical content of the problem
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Poincaré
1 “The sole natural object of mathematical thought is the whole number. It is the

external world which has imposed the continuum upon us, which we doubtless
have invented, but which it has forced us to invent. Without it there would be no
infinitesimal analysis; all mathematical science would reduce itself to arithmetic
or to the theory of substitutions. . . . On the contrary, we have devoted to the
study of the continuum almost all our time and all our strength.

. . . Let us not be such purists and let us be grateful to the continuum, which, if
all springs from the whole number, was alone capable of making so much
proceed there from.” (1904)

2 “Now we can no longer maintain that «nature does not make jumps» (Natura non
facit saltus); in fact, it behaves in quite the opposite way. And not only matter
possibly reduces to atoms, but even the world history, I dare say, and even time
itself. . . ” (1912)

3 “However, we should not hurry too much, since at the moment it is clear only that
we are quite far from completing the struggle between two styles of thinking: that
of atomists, believing in the existence of primary elements, a very large but finite
number of combinations of which suffices to explain the whole diversity of the
Universe, and the other one, common to the adherents of continuity and infinity
concepts.” (1912)
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Discrete Mathematics Outperforms Continuous By Content
Comparative overview of simple continuous and finite groups

Lie groups Finite groups

4 infinite families 16 + 1 + 1 infinite families
An,Bn,Cn,Dn An(q),Bn(q),Cn(q),Dn(q),E6(q),E7(q),E8(q),F4(q),G2(q) - Chevalley;

5 exceptional groups 2An
(
q2) ,2Dn

(
q2) ,2E6

(
q2) ,3D4

(
q3) - Steinberg; 2Bn

(
22n+1) - Suzuki;

E6,E7,E8,F4,G2
2F4
(
22n+1) - Ree, Tits; 2G2

(
32n+1) - Ree

Zp - prime order cyclic groups; An - alternating groups

26 sporadic groups

M11,M12,M22,M23,M23 - Mathieu, only nontrivial 4- and 5-transitive

J1, J2, J3, J4 - Janko; Co1,Co2,Co3 - Conway; Fi22,Fi23,Fi24 - Fischer;

HS - Higman-Sims; McL - McLaughlin; He - Held; Ru - Rudvalis;

Suz - Suzuki; O′N - O’Nan; HN - Harada-Norton; Ly - Lyons;

Th - Thompson; B - Baby Monster;

M - Monster; largest sporadic, contains all other sporadics
(excepting 6 called pariahs: J1, J3, J4,Ru,O′N, Ly )

John McKay discovered famous “monstrous moonshine”
Richard Borcherds won Fields medal for proving
“monstrous moonshine” using string theory methods
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State Mixing in Flavor Physics
Fermions in Standard Model form 3 generations of quarks and leptons

Fermions \ Generations 1 2 3
Up-quarks u c t
Down-quarks d s b
Charged leptons e− µ− τ−

Neutrinos νe νµ ντ

Transitions between up- and down- quarks in quark sector and
flavor and mass neutrino states in lepton sector are described
by Cabibbo–Kobayashi–Maskawa

VCKM =

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb


and Pontecorvo–Maki–Nakagawa–Sakata

UPMNS =

Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3


mixing matrices
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Observational Evidences of Fundamental Finite Symmetries
Most sharp picture comes from numerous neutrino oscillation data
Phenomenological pattern

νµ and ντ flavors are presented with equal weights in all
3 mass eigenstates ν1, ν2, ν3 (called “bi-maximal mixing”)

all three flavors are presented equally in ν2 (“trimaximal mixing”)

νe is absent in ν3

implies probabilities
(
|Uαβ |2

)
=


2
3

1
3 0

1
6

1
3

1
2

1
6

1
3

1
2


−→ unitary matrix (Harrison, Perkins, Scott) UHPS =


√

2
3

1√
3

0
− 1√

6
1√
3
− 1√

2
− 1√

6
1√
3

1√
2


UHPS (also “tribimaximal mixing matrix”) coincides with a matrix decomposing
permutation representation of S3 into irreducible components
This caused a burst of activity in building models based on finite symmetry groups

In the quark sector the picture is not so clear, but there are some encouraging
empirical observations, e.g., quark-lepton complementarity (QLC)
— observation that sum of quark and lepton mixing angles ≈ π/4

V. V. Kornyak ( LIT, JINR ) Finite Groups & Quantum Physics 19 October 2011 6/28



Popular Groups for Constructing Models in Flavor Physics

T = A4 — the tetrahedral group;
T′ — the double covering of A4;
O = S4 — the octahedral group;
I = A5 — the icosahedral group;
DN — the dihedral groups (N even);
QN — the quaternionic groups (4 divides N);
Σ
(
2N2) — the groups in this series have the structure

(ZN × ZN) o Z2;
∆
(
3N2) — the structure (ZN × ZN) o Z3;

Σ
(
3N3) — the structure (ZN × ZN × ZN) o Z3;

∆
(
6N2) — the structure (ZN × ZN) o S3.
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Permutations
Any set Ω = {ω1, . . . , ωn} with transitive symmetries G = {g1, g2, . . . , gM} is in
1-to-1 correspondence with set of right (or left) cosets of some subgroup H ≤ G
Ω ∼= H\G (or G/H) is called homogeneous space (G-space)

Action of G on Ω is faithful if H does not contain normal subgroups of G

Action by permutations π(g) =

(
ωi

ωig

)
∼=

(
Ha

Hag

)
g, a ∈ G i = 1, . . . , n

Maximum transitive set Ω ∼= {1}\G ∼= G corresponds to right regular action

Π(g) =

(
gi

gig

)
i = 1, . . . ,M

For “quantitative” (“statistical”) description elements of Ω are equipped with
numerical “weights” from suitable number system N containing 0 and 1
— permutations can be rewritten as matrices
π(g)→ ρ(g) ρ(g)ij = δωi g,ωj i, j = 1, . . . , n permutation representation
Π(g)→ P(g) P(g)ij = δei g,ej i, j = 1, . . . ,M regular representation

For the sake of freedom of algebraic manipulations, one assumes usually
that N is algebraically closed field — ordinarily complex numbers C.
If N is a field, then the set Ω can be treated as basis of linear vector
space H = Span (ω1, · · · , ωn).
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Linear Representations of Finite Group
1 Any linear representation of G is unitary — there is always

unique invariant inner product 〈· | ·〉 making H into Hilbert space
2 All possible irreducible unitary representations of G are contained in

regular representation

T−1P(g)T =



D1(g)

d2


D2(g)

. . .
D2(g)

. . .

dm


Dm(g)

. . .
Dm(g)


I m = number of

{
different irreducible representations Dj of G
conjugacy classes in G

I dj = dim Dj = multiplicity of Dj in regular representation
I obviously d2

1 + d2
2 + · · ·+ d2

m = M ≡ |G| besides: dj divides M
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Character Table Describes All Irreducible Representations
Example: character table of icosahedral group A5

K1 K15 K20 K12 K12′

χ1 1 1 1 1 1
χ3 3 − 1 0 φ 1− φ
χ3′ 3 − 1 0 1− φ φ

χ4 4 0 1 − 1 − 1
χ5 5 1 − 1 0 0

φ = 1+
√

5
2 — “golden ratio”

φ and 1− φ are cyclotomic integers (even “cyclotomic naturals”):
φ = −r2 − r3 ≡ 1 + r + r4 and 1− φ = −r − r4 ≡ 1 + r2 + r3

r is primitive 5th root of unity

Some general properties of characters

Characters determine representations uniquely

Isoclinism. Character table determines group almost entirely:
nonisomorphic groups with identical character tables have identical
derived groups (commutator subgroups)
Example. Dihedral and quaternionic groups of order 8 are isoclinic:
D8 = {symmetries of square} and Q8 = {±1,±i,±j,±k}
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Computational Group Theory
Some computer implementations

GAP (Groups, Algorithms, Programming)
http://www.gap-system.org/
sufficiently comprehensive, efficient free system for working
with groups and various other structures of discrete mathematics
some shortcomings are total ignoring unitarity issues
and unhandy command line oriented interface

Magma
http://magma.maths.usyd.edu.au/magma/
quality enough (by all accounts) but expensive system

Nauty (No automorphisms, yes?)
http://cs.anu.edu.au/∼bdm/nauty/
author Brendan D. McKay
program for determining automorphism groups of graphs
regarded as most efficient at present
(apparently ideas of the algorithm can be easily adapted
to computing symmetries of other combinatorial structures),
it is written in C, free available
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Classical and Quantum Evolution of Dynamical System

Classical evolution is a sequence of states evolving in time
· · · → st−1 → st → st+1 → · · · t ∈ T ⊆ Z Ω = {ω1, . . . , ωN}

Quantum evolution is a sequence of permutations of states
· · · → pt−1 → pt → pt+1 → · · · pt ∈ G = {g1, . . . ,gM} ≤ Sym(Ω)

In physics systems with space X =
{

x1, . . . , x|X|
}

are usual

Set of states takes special structure of functions on space Ω = ΣX

Σ =
{
σ1, . . . , σ|Σ|

}
is set of local states

Space symmetry group F =
{

f1, . . . , f|F|
}
≤ Sym(X)

Internal symmetry group Γ =
{
γ1, . . . , γ|Γ|

}
≤ Sym(Σ)

Whole symmetry group G can be expressed as split extension
1→ ΓX → G→ F→ 1 determined by an antihomomorphism µ : F→ F
if µ(f ) = f−1 (natural antihomomorphism)
then G ∼= Γ oX F is wreath product
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Unifying Feynman’s and Matrix Formulations of Quantum Mechanics
Feynman’s rules “multiply subsequent events” and “sum up alternative histories” is
nothing else than rephrasing of matrix multiplication rules

Quantum evolution |ψ〉 = U |φ〉 |φ〉 =

(
φ1
φ2

)
|ψ〉 =

(
ψ1
ψ2

)

φ2 ψ22 2 2

φ1 ψ11 1 1
a11

a22

a1
2

a
21

b1
2

b
21

b11

b22

∼

φ2 ψ22 2

φ1 ψ11 1
u11

u22

u1
2

u
21

m m

BA =

(
b11a11 + b12a21 b11a12 +b12a22

b21a11 + b22a21 b21a12 +b22a22

)
∼ U =

(
u11 u12

u21 u22

)
BA = U

All this works also for generalized amplitude with non U(1)-valued connection
One should only take into account non-commutativity of matrix entries
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Standard and Finite Quantum Mechanics
Our aim is to reproduce main features of quantum mechanics in finite background
Our strategy is Occam’s razor — not to introduce entities unless we really need them

Standard QM Finite QM
State vectors |ψ〉 form

Hilbert space H over C K-dimensional Hilbert space HK
over abelian number field F
— extension of rationals Q
with abelian Galois group (“cyclotomics”)

Unitary operators U belong to
general unitary group Aut (H) unitary representation U in space HK
acting in H of finite group G = {g1, . . . ,gM}

Field F depends on structure of G
Quantum evolution is unitary transformation |ψout〉 = U |ψin〉

Elementary step of evolution Only finite number of possible evolutions:
is described by Schrödinger Uj ∈ {U (g1) . . . ,U (gj ) , . . . ,U (gM)}

equation i
d
dt
|ψ〉 = H |ψ〉 No need for any kind of Schrödinger equation

Formally Hamiltonians can be introduced:

Hj = i ln Uj ≡
p−1∑
k=0

λk Uk
j , p is period of Uj
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Standard and Finite Quantum Mechanics. Continuation

More general Hermitian operators describing observables in quantum
formalism can be expressed in terms of group algebra representation:

A =
M∑

k=1

αk U (gk )

The Born rule: probability to register particle described by |ψ〉 by
apparatus tuned to |φ〉 is

P(φ, ψ) =
|〈φ | ψ〉|2

〈φ | φ〉 〈ψ | ψ〉
(BR)

Conceptual refinement is needed — the only reasonable meaning of
probability for finite sets is frequency interpretation: probability is ratio of
number of “favorable” combinations to total number of all combinations
Our guiding principle: formula (BR) must give rational numbers

if all things are arranged correctly

Other elements of quantum theory are obtained in standard way. E.g.,
Heisenberg principle follows from Cauchy-Bunyakovsky-Schwarz inequality

〈Aψ | Aψ〉 〈Bψ | Bψ〉 ≥ |〈Aψ | Bψ〉|2

equivalent to standard property of any probability P(Aψ,Bψ) ≤ 1
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Embedding Quantum System into Permutations
Any (always unitary) representation U of group G in K-dimensional
Hilbert space HK can be embedded into permutation representation P
of faithful realization of G by permutations of N ≥ K things:

Ω = {ω1, . . . , ωN}
If N > K then representation P in N-dimensional Hilbert space HN has
the structure

T−1PT =

1
U

V

 ≡ 1⊕ U⊕ V

Here 1 is trivial one-dimensional representation — obligatory
component of any permutation representation, V may be empty

Additional “hidden parameters” — appearing due to increase of Hilbert
space dimension from K to N — in no way can effect on data relating to
space HK since both HK and its complement in HN are invariant
subspaces of extended space HN

With trivial assumption that components of state vectors are arbitrary elements of F
we can set arbitrary (e.g., zero) data in subspace complementary to HK

Dropping this assumption leads to more natural meaning of quantum amplitudes
V. V. Kornyak ( LIT, JINR ) Finite Groups & Quantum Physics 19 October 2011 16/28



Natural Quantum Amplitudes
Permutation representation P makes sense over any number system
with 0 and 1

Very natural number system is semi-ring of natural numbers

N = {0,1,2, . . .}
With this semi-ring we can attach counters to elements of set Ω
interpreted as “multiplicities of occurrences” or “population numbers”
of elements ωi in state of system involving elements from Ω

Such state can be represented by vector with natural components

|n〉 =

n1
...

nN


Thus, we come to representation of G in N-dimensional module HN over
semiring N. Representation P simply permutes components of vector |n〉
For further development we turn module HN into N-dimensional
Hilbert space HN by extending N to field F
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Why Cyclotomics?
cyclic subgroups are most important constituents of groups

Field C consists almost entirely of useless non-constructive elements
What is needed actually are combinations of basics:

Natural numbers N = {0,1,2, . . .} — counters of states and dimensions
Irrationalities:

I Roots of unity — all eigenvalues of linear representations
I Square roots of dimensions — coefficients to provide unitarity

Irrationalities of both types have common nature — they are cyclotomic integers
e.g., i is simultaneously square root of integer

√
−1 and primitive 4th root of unity

Purely mathematical derivation leads to minimal abelian number field F
containing these basics

Kronecker-Weber theorem:
Any abelian number field is subfield of some cyclotomic field QP :
F ≤ QP = Q [r] / 〈ΦP (r)〉, ΦP (r) is P th cyclotomic polynomial
Period P — called conductor — is determined by structure of G
QP can be embedded into C, but we do not need this possibility.
Purely algebraic properties of QP are sufficient for all purposes

All irrationalities are intermediate elements of quantum description
whereas final values are rational — this is refinement of interrelation
between complex and real numbers in standard quantum mechanics
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Embedding Cyclotomic Integers NP into Complex Plane C

P = 12 P = 7

Red (green) arrows — primitive (nonprimitive) roots
Complex conjugation in NP is defined via rule rk = rP−k

V. V. Kornyak ( LIT, JINR ) Finite Groups & Quantum Physics 19 October 2011 19/28



Cyclotomics and Eigenvalues of Representations
Roots of unity and abelian number fields

Cyclotomic equation rn = 1 describes all roots of unity

Cyclotomic polynomial Φn (r) describes all primitive nth roots of unity (and only them)

Φn (r) is irreducible over Q divisor of rn − 1

Natural combinations of roots of unity are sufficient for constructing cyclotomic integers.

Negative integers can be introduced via identity (−1) =
p−1∑
k=1

r
P
p k , p is any divisor of P

Conductor P determining ring of integers NP and field QP may be proper divisor of n
To compute basis of lattice NP algorithms like LLL are used

Abelian number field F ≤ QP is fixed in QP by additional symmetries called Galois
automorphisms

All eigenvalues of linear representations are roots of unity

any linear representation is subrepresentation of some permutation representation

characteristic polynomial of matrix P of permutation of N elements:

χP (λ) = det (P− λI) = (λ− 1)k1
(
λ2 − 1

)k2 · · ·
(
λN − 1

)kN

array [k1, k2, . . . , kN] is called cycle type of permutation
ki is number of cycles of length i
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Example: Group of Permutations of Three Things S3
application in physics: “tribimaximal mixing” in neutrino oscillations
Faithful action on Ω = S2\S3 = {1,2,3}

S3 = {
K1︷ ︸︸ ︷

g1 = (),

K2︷ ︸︸ ︷
g2 = (23) ,g3 = (13) ,g4 = (12),

K3︷ ︸︸ ︷
g5 = (123) ,g6 = (132)}

can be generated by two generators g2 and g6 (one of many possible choices)
Permutation matrices of generators

P2 =

1 · ·
· · 1
· 1 ·

 , P6 =

 · · 1
1 · ·
· 1 ·


T−1PT =

(
1 0
0 U

)
, where T =

1√
3

1 1 r2

1 r2 1
1 r r

 , T−1 =
1√
3

1 1 1
1 r r2

r 1 r2


r is primitive 3d root of unity embedding into C: −1±i

√
3

2 or e±2πi/3

Matrices of 2D faithful representation for generators

U2 =

(
0 r2

r 0

)
, U6 =

(
r 0
0 r2

)
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S3. Projecting States into Invariant 2D Subspace
State vectors in:

I “permutation basis”

|n〉 =

n1
n2
n3

 , |m〉 =

m1
m2
m3


I “quantum basis”

∣∣∣ψ̃〉 = T−1 |n〉 =
1√
3

 n1 + n2 + n3
n1 + n2r + n3r2

n1r + n2 + n3r2

 ,
∣∣∣φ̃〉 = T−1 |m〉 = · · ·

Projections onto U:

|ψ〉 =
1√
3

(
n1 + n2r + n3r2

n1r + n2 + n3r2

)
, |φ〉 = · · ·

V. V. Kornyak ( LIT, JINR ) Finite Groups & Quantum Physics 19 October 2011 22/28



S3. Quantum Interference in Invariant Subspace
Born’s probability for 2D state vectors in terms of 3D parameters

P(φ, ψ) =
|〈φ | ψ〉|2

〈φ | φ〉 〈ψ | ψ〉 =

(
Q3 (m, n)− 1

3 L3 (m) L3 (n)
)2(

Q3 (m,m)− 1
3 L3 (m)2

)(
Q3 (n, n)− 1

3 L3 (n)2
)

LN (n) =
N∑

i=1
ni and QN (m, n) =

N∑
i=1

mini are (common to all groups)

linear and quadratic invariants of N-dimensional permutation representations

Condition for destructive quantum interference

3 (m1n1 + m2n2 + m3n3)− (m1 + m2 + m3) (n1 + n2 + n3) = 0

has infinitely many solutions in natural numbers, e.g., |n〉 =

1
1
2

 , |m〉 =

1
3
2


Thus, we obtained essential features of quantum behavior
from “permutation dynamics” and “natural” interpretation of quantum
amplitude by simple transition to invariant subspace
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Icosahedral Group A5. Main Properties
•Smallest simple non-commutative group
•Very important in mathematics and applications:
F. Klein devoted a whole book to it “Vorlesungen über das Ikosaeder”, 1884

•“Physical incarnation”: carbon molecule fullerene C60 “is” Cayley graph of A5

• Presentation by generators and relators:〈
a,b | a5(pentagons),b2, (ab)3(hexagons)

〉
• 5 irreducible representations (4 faithful):

1,3,3′,4,5

• 3 primitive permutation representations:

5 ∼= 1⊕ 4, 6 ∼= 1⊕ 5, 10 ∼= 1⊕ 4⊕ 5
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Action of A5 on Icosahedron

1

5

11

7

6

10

4

12

9

2

8

3

• Permutation action on 12 vertices
12 ∼= 1⊕ 3⊕ 3′ ⊕ 5 is transitive
but imprimitive

• Imprimitivity (block) system:
{| B1 | · · · | Bi | · · · | B6 | } =

{| 1,7 | · · · | i , i + 6 | · · · |6,12 |}
Blocks are pairs of opposite vertices

• Notations for further use:
“Complementarity”:
q = pC and p = qC if p,q ∈ Bi

Example: 1 = 7C and 7 = 1C

“Neighborhood” of vertex:
N (p) is set of vertices adjacent to p
Example: N (1) = {2,3,4,5,6}
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Transformation Matrix Decomposing Action on Icosahedron
Unitary matrix T such that T−1

(
12
)

T = 1⊕ 3⊕ 3′ ⊕ 5

T =



√
3

6 α β 0 α β 0 1
4 − 1

2 0 0
√

15
12√

3
6 0 α β −β 0 α −φ4 0 − 1

2 0 γ√
3

6 β 0 α 0 −α −β φ−1
4 0 0 − 1

2 δ√
3

6 0 α −β −β 0 −α −φ4 0 1
2 0 γ√

3
6 −β 0 α 0 α −β φ−1

4 0 0 1
2 δ√

3
6 α −β 0 −α β 0 1

4
1
2 0 0

√
15

12√
3

6 0 −α β β 0 α −φ4 0 1
2 0 γ√

3
6 β 0 −α 0 −α β φ−1

4 0 0 1
2 δ√

3
6 −α β 0 α −β 0 1

4
1
2 0 0

√
15

12√
3

6 −α −β 0 −α −β 0 1
4 − 1

2 0 0
√

15
12√

3
6 0 −α −β β 0 −α −φ4 0 − 1

2 0 γ√
3

6 −β 0 −α 0 α β φ−1
4 0 0 − 1

2 δ


φ =

1 +
√

5
2

is “golden ratio”, α =
φ

4

√
10− 2

√
5, β =

√
5
√

10− 2
√

5
20

,

γ =

√
3

8

(
1−
√

5
3

)
, δ = −

√
3

8

(
1 +

√
5

3

)
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Invariant Inner Products in Invariant Subspaces
in Terms of Permutation Invariants
n = (n1, . . . , n12)T , m = (m1, . . . ,m12)T are natural vectors

1 〈Φ1 | Ψ1〉 = 1
12 L12 (m) L12 (n)

2 〈Φ3⊕3′ | Ψ3⊕3′〉 = 1
2 (Q12 (m, n)− A (m, n))

1 〈Φ3 | Ψ3〉 = 1
20

(
5Q12 (m, n)− 5A (m, n) +

√
5 (B (m, n)− C (m, n))

)
2 〈Φ3′ |Ψ3′〉 = 1

20

(
5Q12 (m, n)− 5A (m, n)−

√
5 (B (m, n)− C (m, n))

)
Here irrationality is consequence of imprimitivity:
one can not move vertex without simultaneous moving of its opposite

3 〈Φ5 | Ψ5〉 = 1
12 (5Q12 (m, n) + 5A (m, n)− B (m, n)− C (m, n))

A (m, n) = A (n,m) =
12∑

k=1

mk nkC

B (m, n) = B (n,m) =
12∑

k=1

mk

∑
i∈N(k)

ni

C (m, n) = C (n,m) =
12∑

k=1

mk

∑
i∈N(kC)

ni

Identity: A (m, n) + B (m, n) + C (m, n) + Q12 (m, n) = L12 (m) L12 (n)
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Conclusions
1 Quantum mechanics is a priori mathematical scheme based on

fundamental impossibility to trace identity of indistinguishable objects
in their evolution — some kind of “calculus of indistinguishables”

2 Any quantum mechanical problem can be reduced to permutations
3 Quantum interferences are appearances observable in invariant

subspaces of permutation representation and expressible in terms
of permutation invariants

4 Interpretation of quantum amplitudes (“waves”) as vectors of “population
numbers” of underlying entities (“particles”) leads to rational quantum
probabilities — in line with frequency interpretation of probability

I Idea of natural quantum amplitudes is very promising. It requires
verification — evidences may be expected in particle physics.
If it is valid quantum phenomena in different invariant subspaces
are different manifestations — visible in different “observational
set-ups” — of single process of permutations of underlying things

I Otherwise, trivial assumption of arbitrary amplitudes leads — up to
physically inessential difference between “finite” and “infinite” — to
usual quantum mechanics reformulated in terms of permutations
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