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We consider an ordinary differential equation

F (z, u, δu, . . . , δnu) = 0 (1)

of order n, where F (z, y0, y1, . . . , yn) 6≡ 0 is a holomorphic (in some domain) function of n + 2 variables
and δ = z d

dz .
According to Maillet’s theorem [6], if a formal power series ϕ̂ =

∑∞
k=0 ckz

k ∈ C[[z]] satisfies the
equation (1), where F is a polynomial, then there is a real number s > 0 such that the power series∑∞
k=0(ck/(k!)s)zk converges in some neighbourhood of zero. In other words,

|ck| 6 ABk (k!)s (2)

for some A,B > 0. In this case one says that the formal power series ϕ̂ has the Gevrey type of order s.
Furthermore if there is no a real number s′ < s such that the series has the Gevrey type of order s′, then
the order s is called precise.

First precise estimates for the Gevrey order s were obtained by J.-P. Ramis [8] in the case of a linear
equation

Lu = an(z)δnu+ an−1(z)δn−1u+ . . .+ a0(z)u = 0, ai ∈ C{z},
in terms of the Newton polygon N (L) of the linear operator L. He has shown that any formal power
series satisfying the equation Lu = 0 has the Gevrey type of precise order s ∈ {0, 1/r1, . . . , 1/rm}, where
0 < r1 < . . . < rm <∞ are all of the positive slopes of the N (L) edges. In a general case of the equation
(1) corresponding results were obtained by B. Malgrange [7] and Y. Sibuya [10, App. 2] (see also [3]) with
the use of N (Lϕ̂), where

Lϕ̂ =

n∑
i=0

∂F

∂yi
(z, ϕ̂, . . .) δi

is a linearization of F along the formal solution ϕ̂. In particular, if

ord0
∂F

∂yi
(z, ϕ̂, . . .) > ord0

∂F

∂yn
(z, ϕ̂, . . .), i = 0, 1, . . . , n− 1, (3)

then s = 0, that is, the series ϕ̂ converges in some neighbourhood of zero. The last assertion concerning
the convergence has an alternative analytic proof proposed by A. D. Bruno and I. V. Goryuchkina [2] (see
also [4]), which allows to estimate the radius of convergence.

We recall that a function f holomorphic in an open sector V ⊂ C with the vertex at the origin has an
asymptotic expansion f̂ =

∑∞
i=0 akz

k ∈ C[[z]] on V (in the classical sense of Poincaré), if for any proper
subsector W ⊂ V ∪ {0} and N ∈ N there is a number M = M(W,N) > 0 such that∣∣∣f(z)−

N−1∑
k=0

akz
k
∣∣∣ < M |z|N ∀z ∈W.

If M(W,N) = C(N !)sAN for some C,A > 0 depending only on W , then the above asymptotic expansion
is called the asymptotic expansion in Gevrey sense of order s.

The importance of Maillet’s theorem is explained by the following fundamental result of Ramis–Sibuya
[9] on asymptotic expansions in Gevrey sense: if a formal power series solution ϕ̂ of the equation (1) has
the Gevrey type of order s, then there exists a number r > 0 such that for any open sector V ⊂ C with
the vertex at the origin, of the opening < π/r and sufficiently small radius there is an actual solution ϕ
that has the asymptotic expansion ϕ̂ on V in Gevrey sense of order s.

Now we pass to the generalized power series of the form

ϕ̂ =

∞∑
k=0

ckz
sk , ck ∈ C, s0 ≺ s1 ≺ . . . ∈ C, lim

k→∞
Re sk = +∞, (4)
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were ≺ is a usual ordering by first difference: sk ≺ sk+1 iff Re sk < Re sk+1 or Re sk = Re sk+1,
Im sk < Im sk+1.

Note that substituting the series (4) into the equation (1) makes sense, as only a finite number of
terms in ϕ̂ contribute to any term of the form czs in the expansion of F (z, ϕ̂, δϕ̂, . . . , δnϕ̂) in powers of z.
Indeed, δjϕ̂ =

∑∞
k=0 cks

j
kz
sk and an equation s = sk0 + sk1 + . . . + skm has a finite number of solutions

(sk0 , sk1 , . . . , skm), since Re sk → +∞. Furthermore, for any integer N an inequality sk0 +sk1 +. . .+skm �
N has also a finite number of solutions, so powers of z in the expansion of F (z, ϕ̂, δϕ̂, . . . , δnϕ̂) are well
ordered with respect to ≺.

Earlier in the paper [5] generalized power series of the form (4), with s0 < s1 < . . . ∈ R, were studied.
There was proved (without the assumption sk → +∞) that they form a differential ring, and if the series
(4) satisfies the equation (1), then limk→∞ sk = +∞. Furthermore, the exponents sk ∈ R of the formal
solution (4) generate a finite Z-module. One can prove the last fact also in the case of the complex
exponents sk ∈ C.

For the generalized power series (4) one may naturally define the order

ord ϕ̂ = s0,

and this is also well defined for any polynomial in ϕ̂, δϕ̂, . . . , δnϕ̂ with coefficients of the form α zβ ,
α, β ∈ C. As a generalization of results of Malgrange and Sibuya concerning the convergence to the case
of series (4), one has the following assertion.

Let the generalized power series (4) formally satisfy the equation (1),
∂F

∂yn
(z, ϕ̂, δϕ̂, . . . , δnϕ̂) 6= 0 and

ord
∂F

∂yi
(z, ϕ̂, δϕ̂, . . . , δnϕ̂) � ord

∂F

∂yn
(z, ϕ̂, δϕ̂, . . . , δnϕ̂), i = 0, 1, . . . , n− 1.

Then for any sector S of sufficiently small radius with the vertex at the origin and of the opening less
than 2π, the series ϕ̂ converges uniformly in S.

This theorem in a somewhat different form has been formulated by A. D. Bruno [1, Th. 3.4] for the
case of the real exponents sk ∈ R, and is proved in the present form by I. V. Goryuchkina. The proof is
based on majorant methods and allows to estimate also the radius of the convergence sector S.

In the conclusion we would like to propose some questions for further investigations.

a) As we have estimates for the radius of convergence of the series ϕ̂ =
∑∞
k=0 ckz

k when the conditions
(3) hold, further one may try to estimate the number B from (2) for divergent series ϕ̂ satisfying (1).

b) To obtain estimates of the form (2) for the growth of the coefficients of divergent generalized power
series (4) satisfying (1) (a Maillet type theorem).

c) To propose a kind of theory of asymptotic expansions connected with generalized power series
solutions of (1) (of a Ramis–Sibuya type).
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