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A brief overview of algebraic and number
theoretic foundations of computer interval
arithmetics, methods of their implementation
and their applications to problems of
(nondifferentiable) optimization 1is given.
The implementation of interval arithmetic
on various classes of computers is presented.
Interval extensions of computational methods
are briefly discussed. Selected methods
of interval analysis are presented and
discussed. We consider their applications
to the solution of a problem (related to a
problem by H. Minkowski) of parametrization
of the set of minima of a non-compact real
convex surface with a boundary when it is
embedded in a three-dimensional real space.
A brif presentation of categorical-algebraic
foundations of interval calculations is given.
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0. Introduction

In computer algebra systems (CAS), processed
constants, wvartables, coefficients are polynomaals,
matriz elements and other objects allowed by the
CAS language are usually integers or rational numbers
(arbitrary or unlimited bit width), or algebraic numbers.
Real numbers in most cases should be reduced to this
form. That is, we are talking about the approrimation
of real numbers by rational ones. Therefore, our
first problem of minimizing will be associated with
such an approxrimation, which is called Diophantine
approrimation.

0.1. Elements of Diophantine Approximations and
Minimization Problems [1, 2, 3, 4]

According to Khinchin (1935) [2] the rational number
p/q is a best Diophantine approximation of the real
number 0 if

o-2 <|o-2, o
q T

for every rational number p,/q different from p/q s.t.
0<aq <gq.
By other words we have to

minimaize

x
9__‘
)
subject tox,y € 7,0 <y < q.

Nowadays some other definition is currently used.



Recall some notations:

10],{0},]|0| denote respectively integer, fractional
parts of the real number 0 and the minimum distance
from 6 to the nearest integer. So

10| = min({gf}, 1 — {q0})

Theorem 1 (L. Dirichlet) Let 0 and Q be real numbers.
Then there exists integer q such that

0<g<Qllgd <Q".
According to Cassels and others

Definition 1 ([3, 4]). A fraction

is called the best (optimal) approximation of the real
number 0 if

101l = |g¢ — pl
i.e.
min({gf},1 — {¢0}) = |q0 — p|

and if
140l > [lg0]]  for 0<q <gq

The formula (1): ‘H—S‘ < ‘9—% follows from this

1
definition .




Theorem 2 ([1, 2, 8, 4]) . Let 0 < 0 < 1 and let p,, q,, a,

be defiined as

pozlaqozou
b1 :07511 :17
forn>1

Pnt1 = AnDp + Pn-1,
n+1 = QnQn + Qn-1

‘anle_pnfl‘J

where a, = { 20—

Theorem 2 gives the method for
approximation of a real number.

optimal



0.2. Equidistribution

This is tmportant approach to approximation of real
numbers but I will present general review only

The concept of equidistribution was introduced by H.
Weyl at the beginning of the last century in connection
with the problem of small denominators in problems of
celestial mechanics.

Example 1 . The equidistribution of the sequence
({v2n}), n € Z on the interval [0,1]. This is the
equidistribution with density 1.

0.2.1. Methods for constructing sequences equidistributed with
non-unit density

Let X be a compact topological space and C(X) be the
Banach space of continuous complex-valued functions
on X. For f € X let its norm ||f|| = sup.ex|f(z)|. Let 0,
be the Dirac measure associated to x € X : 0,(f) = f(x).
For a sequence (z,),n > 1 let p, = M. Let 11 be a
Radon measure on X.

Definition 2 . The sequence (z,) s said to be
equidistributed with respect to measure p (or -
equidistributed) if p, — p (weakly) as n — oc.

Let G be a compact group and let X be the space
of conjugacy classes of G Let x,, v € X be a family of
elements of X indered by a countable (denumerable)
set .

Theorem 3 (Chebotarev, Artin, Serre). The elements
Ty, U € X are equidistributed for the normalized Haar
measure of G if and only if the L—functions relative
to the non trivial irreducible characters of G are
holomorphic and non zero at s = 1.



Sato-Tate conjecture.
Geometric analogous of Sato-Tate conjecture (Sato-
Tate conjecture over function fields) are investigated
and proved by B. Birch [5] and by H. Yoshida [6].

Let
E:y=2>+ar+b, a,beZ

be the elliptic curve without complex multiplication.

#E,(F,)=1+p—a,

a, = 2,/pcos g,
Sato-Tate conjecture: Angles ¢, are distributed on the
interval [0,7) with the Sato-Tate density %sith .
Sato-Tate conjecture, now Clozel-Harris—Shepherd-
Barron—Taylor Theorem

Theorem 4 (Clozel, Harris, Shepherd-Barron, Taylor).
Suppose E 1s an elliptic curve over Q with non-integral
j tnvariant. Then for all n > 0; L(s; E; Sym™) extends to
a meromorphic function which is holomorphic and non-
vanishing for Re(s) > 1+ n/2.

These conditions and statements are sufficient to
prove the Sato-Tate conjecture.

Under the prove of the Sato-Tate conjecture
the Taniyama-Shimura-Weil conjecture (Fermat last
theorem) oriented methods of A. Wiles and R. Taylor
are used.



Kloosterman sums
Let

cm+%

p—1
Ty(c,d) = Ze%i( 7
=1

1<c¢d<p-1; r,cdeF,
be a Kloosterman sum.
By A. Weil estimate

Ty(c,d) =2/pcosb,(c,d)

There are possible two distributions of angles 0,(c,d)
on semiinterval [0,7) :

a) p is fired and ¢ and d varies over F; what is the distribution
of angles 0,(c,d) as p — 00 ;

b) ¢ and d are fized and p varies over all primes not dividing ¢
and d.

In seventies the author of the communication (by
the request of S.A. Stepanov and J.-P. Serre) have
computed (~ 1980) the distribution of angles 0,(c,d)
(mainly for the case ¢ = d = 1, prime p runs from 2
in interval [2,10000], and wunsystematically for some
prime from the interval with constant p and varying
1<c¢,d<p-1).

There are possible two distributions of angles 0,(c,d)
on semiinterval [0, ) :
a) p is fired and ¢ and d varies over F; what is the distribution
of angles 0,(c,d) as p — 00 ;

b) ¢ and d are fized and p varies over all primes not dividing ¢

and d.



Conjecture 1 . In the case b) when p varies over all
primes then angles 0,(1,1) are distributed on the interval
0,7) with the Sato-Tate density 2sin®t .

For the case a) N. Katz [7] (1988) and A.

Adolphson [8] (1989) proved that 0 are distributed on
0,7) with density 2 sin*¢.
It s interesting to compare results of computer
experiments in cases a) and b). Such computations [9]
and [10] demonstrated that though 1in case b)
equidistribution is possible but results of computation
shows not so good compatibility with equidistribution as
in (proved) case a).

10



0.3. Elements of Interval Algebra (of Validated
numerics)

The compact closed interval I = [a,b] is the set of all
real numbers x such that a < x <b.

Let IR be the set of all intervals over R. Arithmetic
interval operations +,—,+,/ define interval algebra on
the set of intervals.

Let = be a variable over R, x = ([z,T] be a compact
closed interval from IR, let x and T be the lower and
upper values of r on x.

Let’s say that x > 0, (x > 0) if 2 > 0, (x > 0) and
x<0, (x<0)ifT<0, (<0).

We call such intervals constant sign. Non-constant
intervals are called alternating

When calculating the lower and upper estimates of
the values of functions on a computer, it is convenient
to express the arithmetic of intervals in terms of the
boundary points of the intervals.

For the sum, assuming x; = ([z;,7;], we have

Sre[parn

Difference x — y, 1s reduced to the sum of x + z when
Z=-y= [_y7 _g]'

For rational interval arithmetlics and some other
types of interval arithmetics see ([14]: Huxoaat Iaa-
3ynos. Pa3zpaborka MeTOA0B OOOCHOBAHHUS THUIIOTE3
dbopmanbuBIX TEOpWUIi. )

Let
X = ([thl]? Tty [Q'mfn]

be the n-dimensional real interval vector with

11



(“rectangle” or “boz”).

Let f be a real continuous function of n variables
defined on X. The interval evaluation of f on the interval
X is the interval [f, f] such that for any v € X, f(z) €

[f, f]. The interval evaluation is called optimal [11] if f =

min f, and f = max f on the interval X. Let Of be the
optimal interval evaluation of f on X.

Definition 8 . The pair (X,0f) is called the interval
functional element. If Ef 1s an interval that contains Of
then we will call the pair (X, Ef) an extension of (X,0f)
or eif—element. Let f be a constant sign function on
X. If f > 0 (respectively f < 0) on X and Of > 0
(respectively Of < 0) then we will call (X,0f) the correct
interval functional element (or c—element).

More generally we will call the correct interval functional
element an extension (X, Ef) of (X,0f) that has the same
sign as Of.

12



1. Problems and methods of (nondifferentiable)
minimization

A general discussion n subsections 1.2-1.4 to
approaches to the nondifferentiable optimization as well
as specific technical results at the field on can refer to
the 1l book by N. Shor [Nondifferentiable Optimization
and Polynomial Problems, Kluwer Acad. Publ. 1998],
papers [17, 18, 19, 20] and in references therein.

1.1. Minkowski’s conjecture concerning the critical
determinant

Let

oz + BylP + |z + oyl < c| det(ad — By) P2,

be a diophantine inequality defined for a given real
p > 1; hear «, 3,7, are real numbers with ad — Sy # 0.

H. Minkowski in his monograph [15] raise the
question about minimum constant c¢ such that the
inequality has integer solution other than origin.
Minkowsk: with the help of his theorem on convex body
has found a sufficient condition for the solvability of
Diophantine inequalities in integers not both zero:

(1 +2)"2
r(i+3)

c= Kyl kp =
But this result is not optimal, and Minkowskt also raised
the issue of not improving constant c. For this purpose
Minkowsk: has proposed to use the critical determinant.
Given any set R C R", a lattice A is admissible for
R (or is R-admissible) tf R(N\A =10 or {0}. The infimum
A(R) of the determinants (the determinant of a lattice A
is written d(A)) of all lattices admissible for R is called
the critical determinant of R. A lattice A s critical for R
if d(A) = A(R).

13



The Minkowski’s problem can be reformulated as a
conjecture concerning the critical determinant of the
region |z [P + |y [P <1, p > 1. Recall once more that
mentioned mathematical problems are closely connected
with Diophantine Approximation.

For the given 2-dimension region D, C R* = (z,y), p >
1:

2l + gl < 1,

let A(D,) be the critical determinant of the region.

I will present the (interval) computation of the
critical determinant at the next section (Section 2.
Critical determinants and critical lattices of the region
|z[P + |y|P < 1 for p>1.)

1.2. Matrix nondifferentiable optimization and
Compressed sensing (with Kuzik O.V.)

The problem of restoring a matriz from a sample of
its elements, which can be correlated with source coding,
is formulated as a convex optimization problem [16,
21, 22, 23]. An initially inherent feature of the
consitdered problem recovery of a matrix from a
sample of its elements is the non-differentiability of
this problem, which causes problematic application of
classical methods of differentiable optimization. In
connection with this circumstance to solve 1it, the
application of r— algorithms [16] is proposed [23].

ITocranoBku 3amaum u npuMeHeHus. B pamxax xodu-
POBAHUSA UCTMOYHUKA CHCAMOE 0NO3HABAHUE UHMEPNE-
mupyemcs Kaxk 80CCMAHOBAEHUE UHPOPMAUUYU UCTOY-
HUKA NO HENOAHBIM OGHHBIM, KOOUPYNOULUM IAEMEHMBL
amotli ungopmayuu. Xoms HudHce peus udem o sewe-
CNMBEHHBIL MAMPUUAT, GAKMUYECKU NPU BBLHUCAEHU-
AT MAMPUUDBL UEAOHYUCAEHHDBL, UAU UMEIOM PAUUOHAAD-
Hote Koapduuyuenmus. 3adawa soccmarosaeHUA MaM-

14



puusbl NO 8bvlbOPKE €€ INemMeHMmo8 603HUKAEM 60 MHO-
2UT MAMEMAMUYECKUT U NPUKAGOHBLT UCCACI08AHUAL.
Ynomanem caedyrowue npuraadnsie 3adanwu: Basve dan-
wotx; Tpuanayasauyus no Henoanwvim darnvim; Cocamoe
onosnasanue (Compressed Sensing); Mawunroe o6y«e-
nue (Machine Learning).

ITyemv X ecmvb uckomasn mampuua, M; ; useecmmvie
anavenus. O0na u3 mamemamuueckur Gopmysuposox
8BHLULENEPEYUCAEHHBLT 3a0ay umeem caedyrouLee npeo-
cmasaerue:

minimize rank(X)
subject to X; ; = M, j, (i,7) € Q,

ede (i,j) ecmb muoorcecmso undexcos, M;; € ) na-
b6ar00daemvie 3navenus. K coorcanenuro, xax 0doxka3aHo
8 [22], 6 maxol nocmanoske 3a0a4a CYNEPIKCNOHEHUU-
aAbBHA NO CAOHCHOCTIU.

3adava noayonpedenerro2o NPO2PAMMUPOBAHUS CO-
cmoum [16] 6 munumuszayuu aunetinoli yuryuu om
m BEULECTNIBEHHBLL TEPEMEHHBIL OMHOCUMEABHO MAM-
PUHHO20 HEPABEHCINBA

minimize ¢l x

subject to F(x) > 0,

ede F(x) = Fy + > xiFi w Fy, Fy, ..., F, ecmv cum-
MEMPUNECKUE MAMPUUBL. 3a0a4a TNOAYONPEJEeNEeHH020
NPO2PAMMUPOSAHUS, ABAAEMCH 30004et 8BINYKAOU ON-
MuUMU3AUUU, MAK KAK Ueaesas PYHKUUSL U 02paHuve-
Hua sunykavt: ecau F(x) >0 u F(y) > 0, mo dasa ecex
MO<SA<TFz+(1—Ny)=AF(z)+ (1—NF(y) > 0.

IIycms X ecmv mampuua pa3mepa n X m, X* ecmo
mampuua, conpasrcenmass x X . Toeda cobecmeernmwvie
anavenus mampuy XX* u X*X cosenadarom u asasn-
0MCA NoAoAHCUMENbHBIMU. Apudmemuneckue 3Havue-

15



HUA Keadpamuuvlr xKopHel obuwuxr cobcmseeHHbT 3HAYE-
Hul mampuy X X* u X*X wnaswearom cuH2yaapHBIMU
anavenuamu mampuust X. anee nosazaem, wmo oy
ecms k—oe CuH2YAAPpHOE 3HAYEHUE MAMPuybt X, U 4Mo
MU CUHYAAPHBIE 3HAUEHUS 3AHYMEPOBAHDB, 8 NOPA]-
Ke ybwieanus o, > oy > ... > o, > 0 2de 0, ecmv Hau-
MeHvuwee cunyaaproe 3navenue. CuHeyaaproie 3Have-
HUSA T,y 0 NOAA2ZAIOM HYAEEBILMU.

Maremarudeckas moaeib. Ckaasaproe npoussederue
(X,Y) mampuy X u Y pasmepa n X m onpedeastom Kax
caed Tr(X*'Y) npoussedenus yrazannwvxr mampuy. Ha-
NOMHUM, 4MO cYybpzadueHmom mMampuuHoli 8bNYKAOU
Ppynryuu f naswearom mampuyy gr(Xo), ydosaemeops-
rouwyro nepasencmsy f(X)— f(Xo) > (9/(Xo), X — Xo) daa
B8CET BEWECMBEHHBLT Mampuy pa3mepa n X m. Sdep-
HOU HOPpMOT mampuybt X Haswearom seauvuny || X | =
Y1 0k(X) ede ox(X) k—oe cuneyaaproe 3nauenue X.
Hccaedyemes 3adaua onmumusayuu (¢ sadepHoti HOp-
Moti):

minimize ||(X)]]«
subject to X; ; = M, j, (i,7) € L.

Meron perienus. Memod peweHus 8vluenpusedeHHoU
ONMUMUZAUUOHHOU 3a0a4U OCHOBBLBAEMCA HA MATNPUN-
HOM pacwupenuu r— aazopumma H.3. Ilopa [16]. das
CUH2YAAPHO20 PA3AOHCEHUS, MAMPUUDL PAH2A S BbLPA-
otcenue das cybezpaduenma A0epHoOtl HOPMbBL IMOT MaAM-
puust udeecmno. B npouecce svinoanenus r— aszopum-
Ma npeobpasyemca nNPocmpaHcmeo NOUCKa U 8blNOAHA-
HMCA OPMO20HAADHBLE NPOEKMUPOBAHUS.

1.3. Shape optimization of elastic bodies(with
Nagornyak T.)

Shape optimization problems for elastic bodies, that
can withstand extreme stress have been considered by
Bernoulli and Euler [25]. By elastic body we understand

16



a solid body for which the additional deformation
produced by an wncrement of stress completely
disappears when the increment is removed. Consider
the column (rod) with wvariable, but geometrically
stmilar and equally oriented cross sections, loaded
longitudinal force. Evolving the work [25], researches of
J. L Lagrange, T. Clausen, E. Nicolai, and others, N.
Olhoff and S. Rasmunssen have found [26], that the
shape optimization problems can be reduced to problems
of mnon-differentiable optimization. The author of
review [27] believes, that the modality situation may
occur in many optimization problems in terms of
stability criteria. At first we formulate the problem of
shape optimization of elastic bodies on the example
of following problem of FEuler, Lagrange, Pearson and
others:

To find the curve which by its revolution about an
axes in its plane determine the column of the structures
resistance to buckling under axial compression.

INTERVAL ANALYSIS
s - interval calculations
interval mathematics
interval arithmetic
v - COMPUTATIONAL MATHEMATICS
a - INTERVAL ANALYSIS METHODS

INTERVAL ARITHMETIC
n - REAL INTERVAL ARITHMETIC
RATIONAL INTERVAL ARITHMETIC
COMPLEX INTERVAL ARITHMETIC

INTERVAL
s - interval number
closed real interval
n - CONSTANT-SIGN INTERVAL
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SIGN-VARIABLE INTERVAL

DEGENERATE INTERVAL

a - ARITHMETICAL OPERATIONS OVER
INTERVALS

DEGENERATE INTERVAL
s - point interval number
v - INTERVAL

ARITHMETICAL OPERATIONS OVER
INTERVALS
n - BINARY OPERATIONS OVER INTERVALS
UNARY OPERATIONS OVER INTERVALS

BINARY OPERATIONS OVER INTERVALS
n - ADDITION OF INTERVALS

s - [a,b] + [c,d] = [a +c, b+ d]
SUBTRACTION OF INTERVALS

MULTIPLICATION OF INTERVALS
DIVISION OF INTERVALS

s [a,bl/[c,d] = [min (a/c, a/d, b/c, b/d), max (a/c, a/d, b

INTERVAL ANALYSIS METHODS
n - INTERVAL METHODS IN THE LINEAR
ALGEBRA
METHODS FOR NARROWING OF THE
INTERVALS CONTAINING RANGE OF THE
FUNCTION
INTERVAL METHODS FOR THE SOLVING NON-
LINEAR ALGEBRAIC EQUATIONS
INTERVAL METHODS FOR THE SOLVING
DIFFERENTIAL EQUATIONS
a - INTERVAL EXTENSION
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INTERVAL ASSESSMENT

INTERVAL METHODS IN THE LINEAR
ALGEBRA
v - INTERVAL ANALYSIS METHODS
n - DIRECT METHODS FOR SYSTEMS OF THE
LINEAR ALGEBRAIC EQUATIONS
INTERVAL AND ANALYTICAL METHOD OF
DRIVING
INTERVAL ITERATIVE METHODS FOR SLAE

DIRECT METHODS FOR SYSTEMS OF THE
LINEAR ALGEBRAIC EQUATIONS v - INTERVAL
METHODS IN THE LINEAR ALGEBRA n -
INTERVAL METHOD OF GAUSS

METHODS FOR NARROWING OF THE
INTERVALS CONTAINING RANGE OF THE
FUNCTION v - INTERVAL ANALYSIS METHODS
n - SKELBOU’S METHOD APPLICATION OF
THE GENERALIZED INTERVAL ARITHMETICS
METHOD COMPUTATION METHOD BY MFEANS
OF NON-STANDARD ARITHMETICS

INTERVAL METHODS FOR THE SOLVING
NON-LINEAR ALGEBRAIC EQUATIONS v -
INTERVAL ANALYSIS METHODS n - MOORE’S
METHOD ANALOGUE OF CHEBYSHEV’S
METHOD HANSEN’S METHOD KRAVCHIK’S

METHOD
INTERVAL METHODS FOR THE SOLVING
DIFFERENTIAL EQUATIONS v - INTERVAL

ANALYSIS METHODS n - EXPLICIT METHODS
FOR ORDINARY DIFFERENTIAL EQUATIONS
IMPLICIT METHODS FOR ORDINARY
DIFFERENTIAL EQUATIONS INTERVAL
METHODS FOR THFE SOLUTION OF THE
CAUCHY PROBLEM INTERVAL METHODS
FOR THE SOLUTION OF BOUNDARY VALUE
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PROBLEMS FOR THE ODE INTERVAL METHODS
FOR THE SOLUTION OF DIFFERENTIAL
EQUATIONS WITH PRIVATE DERIVATIVES AND
INTEGRABLE EQUATIONS

EXPLICIT METHODS FOR ORDINARY
DIFFERENTIAL EQUATIONS v - INTERVAL
METHODS FOR THE SOLVING DIFFERENTIAL
EQUATIONS n - MOORE’S METHODS S-TH
ORDER INTERVAL METHODS LIKE RUNGE-
KUTT’S METHOD INTERVAL METHODS
LIKE ADAMS’ METHOD INTERVAL METHOD
ON THE BASIS OF THE RECTANGULAR
FORMULA THE INTERVAL METHOD USING THE
TRAPEZOID FORMULA THE FOURTH ORDER
INTERVAL METHOD BASED ON THE "THREE
FIGHTH"QUADRATURE FORMULA THE BASES
ON APPLICATION OF THE SIMPSON FORMULA
METHOD

IMPLICIT METHODS FOR ORDINARY
DIFFERENTIAL EQUATIONS v - INTERVAL
METHODS FOR THE SOLVING DIFFERENTIAL
EQUATIONS n - ANALOGUE OF THE IMPLICIT
EULER’S METHOD IMPLICIT INTERVAL AND
ANALYTICAL METHOD OF THE SECOND
ORDER IMPLICIT INTERVAL AND ANALYTICAL
METHODS OF HIGHER ORDERS IMPLICIT
METHOD BASED ON THE SIMPSON’S FORMULA

INTERVAL METHODS FOR THE SOLUTION
OF THE CAUCHY PROBLEM v - INTERVAL
METHODS FOR THE SOLVING DIFFERENTIAL
EQUATIONS n - KRYUKEBERG’S METHOD
METOD OF BAUKH INTERVAL METHOD FOR
BAUKH’S EQUATION INTERVAL METHOD FOR
THE EQUATION y = f(y) USING CHAPLYGIN
THEOREM METHOD FOR SOLVING EQUATION
/:f(x,)

INTERVAL METHODS FOR THE SOLUTION OF
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BOUNDARY VALUE PROBLEMS FOR THE ODE

v - INTERVAL METHODS FOR THE SOLVING
DIFFERENTIAL EQUATIONS

n - ANALOGUE OF FINITE-DIFFERENCE
METHODS

OLIVEIRA’S METHOD

1.4. Jet engine nozzle profiles ( Stetysuk P.I. with
colleagues)

By P.I. Stetsyk and others [A set of programs for
constructing theoretical contours of the outer and inner
surfaces nozzles with a central body according to a

given law of changes in areas (Glushkov Institute of
cybernetics NASU, stage 2, 2020].

Introduction

Laval nozzle
Frenkl nozzle

1. General provisions and problem statement
2. Constructing the outer contour of the nozzle
3. Constructing the contour of the central body

4. Constructing the contour of the central body
by geometric averaging

5. Optimization of parameters in the
generalized Delambert formula for a function
of two variables
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2. Critical determinants and critical lattices of
the region |z|P + |y’ < 1 for p > 1

2.1 Minkowsk analytic conjecture

In considering the question of the minimum value
taken by the expression |r|? + |y|P, with p > 1, at points,
other that the origin, of a lattice A of determinant d(A),
Minkowski [15] shows that the problem of determining
the mazximum wvalue of the minimum for different
lattices may be reduced to that of finding the minimum
possible area of a parallelogram with one vertex at the
origin and the three remaining vertices on the curve
|z|P +|y|? = 1. The problem with p = 1,2 and oo is trivial:
in these cases the minimum areas are 1/2, \/3/2 and
1 respectively. Let D, C R?* = (z,y), p > 1 be the 2-
dimension region:

|z|? + |ylP < 1.

Let A(D,) be the critical determinant of the region.
Recall considerations of the previous section. For p > 1,
let

D, = {(z,y) € R* | |z + [y < 1}.

Minkowski [15] raised a question about critical
determinants and critical lattices of regions D, for

varying p > 1. Let Aéo) and Az(;l) be two D,-admissible
lattices each of which contains three pairs of points
on the boundary of D, and with the property that
(1,0) € AL, (=27 2-1r) ¢ ALV (under these conditions
the lattices are wuniquely defined). Using analytic
parameterization Cohn [28] gives analytic formulation
of Minkowski’s conjecture.
Let

1

Alp,o) = (r+a)(1+7) 7 (1+0") 77, (1)
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be the function defined in the domain
M:oo>p>11<0<a,=(2"—1)r,

of the {p,o} plane, where o is some real parameter;
here T = 7(p,0) is the function uniquely determined by
the conditions

AP+ B =1, 0< 7 <1,

where

_1 1

A=Ap,o)=Q1+7")7r—(1+0")7
B=B(p.o)=0(1+0") v +7(1+77) %,
7, ts defined by the equation

21— 7m)P =147, 0<7, <1

In this case needs to extend the notion of parameter
variety to parameter manifold. The function A(p,o) in
region M determines the parameter manifold.

Let AV = A(p,1) =4 v 17,

1-7p
0
Aé) = A(p,0,) = %O'p.

Minkowski’s analytic (p,c)—conjecture:

For any real p with conditions p>1, p#2, 1<o<o,,

A(p,o) > mm(A](Jl), A,

p

In the vicinity of the point p = 1 and in the vicinity
of the point (2,09) the (p,7) variant of the Minkowski’s
analytic conjecture s used.
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Minkowski’s analytic (p, 7)—conjecture:
Let A(p,7) = A(p,0), 0 =o(p,7): AP + BP = 1.

For any real p and 7 with conditions p>1, p#2, 0 <7<
Tp »

A(p,7) > min(AY, AD),

p p

For investigation of properties of function A(p,o)
which are need for proof of Minkowski’s conjecture [15,
28] we considered the value of A = A(p,0) and its
derivatives A | A’ A A7 A//;p on some

g2 v —p v =op 1 g

subdomains of the domain M [32].

2.2. Interval evaluation of functions, algorithms,
software and computations

Let X = (x1,-',%x,) = (lzy,71], -+ ,[z,,Ts] be the
n-dimensional real interval vector with z; < z; <
Z; ("rectangle"or "box"). The interval evaluation of a
function G(z1,--- ,x,) on an interval X is the interval
(G, G such that for any v € X, G(r) € [G,G)]. The interval
evaluation is called optimal if G = min G, and G = maxG
on the interval X.

Let D be a subdomain of M. Under evaluation in D a
mentioned function the domain is covered by rectangles
of the form

[p,7; 0,7).
In the case of the formula that expressing
A, AUZ , A Aap , Amp

mn terms of a sum of deriwvatives of "atoms's; =
O'p_l, ti:Tp_Z, a; = (1+0-p) ! P, bzz (1+7-p) ! P, A=
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bo—ao, B = Tbg—i-O'Clo, a; = Ap—i7 Bl = Bp—i (Z = 071,2,...)
one applies the rational interval evaluation to construct
formulas for lower bounds and upper bounds of the
functions, which in the end can be expressed in terms
of p, p, o, o, 7, T, ; here the bounds 7, 7, are obtained
with the help of the iteration process:

tioy = (L+E)F (1= ((1+£)77 — (1 +32)

[ISIES
|
—~
[a—
_l_
Q
3
~—
[
=
~—
b1
~
=
|
S
—~
[S—Y
_I_
)
iS)
~
|
=
~

frn = (1482 (11— (1+8)

i=0,1,

As interval computation is the enclosure method, we
have to put:

[17 ﬂ = [sz zN] m[lm ?0] :

N 1is computed on the last step of the iteration.

For initial values we may take : [t,, to] = [1,, To] =
[0, 0.36].

Algorithms and software modules

Here we give mnames, nput and output of
algorithms and and software modules for interval
evaluation only. All these algorithms and and
software modules are implemented, tested and applied
under the computer-assisted proof of Minkowski‘s
conjecture [29, 30, 33, 34, 32] .

First two algorithms are auziliary and described

in [35].
Algorithm MonotoneFunction
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Input: A real function F(x,y) monotonous by r and
by y.
Interval [z,7;y,7].

Output: The interval evaluation of F.

Algorithm RationalFunction

Input: A rational function R(z,y). Interval [z,T;y,7].

Output: The interval evaluation of R.

Next algorithms and software modules compute

functions of Malyshev‘s method.
Algorithm TAUPV

Input: An implicitly defined function 7, from Section

4.
Interval [p,p; c,7].

Method: Iterative interval computation.

Output: The interval evaluation of 7,.

Algorithm TAUV
Input: Implicitly defined function 7 from this Section.

Interval [p,p; c,7).
Method: Described in this Section.
Output: The interval evaluation of 7.

Algorithm LOV

Input: Function I° = A(p,0) — AW,
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Interval |p,p; 0,7].

Method: Interval computations.

Output: The interval evaluation of 1°.
Algorithm L1V

Input: Function I' = A(p,0) — AW,
Interval [p,p; c,7).

Method: Interval computations.
Output: The interval evaluation of I'.
Algorithm GV

Input: A function g(p,o) which has the same sign as
function A

Interval |p,p; 0,7).

Method: Interval computations.
Output: The interval evaluation of g(p,o).
Algorithm HV

Input: A function h(p,o0) which 1is the partial
derivative by o the function g(p,o).

lp,p; 0,7].

Method: Interval computations.
Output: The interval evaluation of h(p,o).
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Algorithm DHV

This is the most complicated function and there
are several algorithms and software modules for its
computation [?].

Input: A function Dh(p,0) which s the partial
derivative by p the function h(p,o).

lp.7; a,3].
Method: Interval computations.
Output: The interval evaluation of Dh(p, o).

Remark 1 (p, 7)—method implemented using algorithms
and software modules SIG and SIGV with nput
parameters respectively (p,7,E1l) and (p,z,6,,0,,El).
Here E1 is the accuracy of computations of o and (0,7);
p=p+0,,T=1+0;.

2.3. Results of Computations

It 1s important to note that Malyshev‘s method gives
possibility to prove that a value of the target minimum
s an analytic function but s not a point. Ordinary
numerical methods do not allow to obtain results of the
kind.

In notations [32] next result have proved:

Theorem 5 [32].

_J A(p,1), 1<p <2, p>po,
ADy) = { A(p,0,), 2 <p < po;

here py ts a real number that i1s defined unique by
conditions A(pg,0,) = A(po, 1), 2,57 < py < 2,58.

Corollary 1
kp = A(D,) 2.
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2.4. Minkowski’s problem generalizations

Strengthened Minkowski‘s analytic conjecture

Strengthened Minkowski’s analytic (MAS) conjecture:
A.V. Malishev and the author on the base of some
theoretical evidences and results of mentioned
computation have proposed the strengthened
Minkowski‘s analytic conjecture (MAS) [33].

For given p > 1 and increasing o from 1 to o, the function

A(p, o)

1) increase strictly monotonous if 1 < p < 2 and p > pW,

2) decrease strictly monotonous if 2 < p < p?

3) has a unique mazimum on the segment (1,0,); until
the mazimum A(p,o) increase strictly monotonous and then
decrease strictly monotonous if p@ < p < pM;

4) constant, if p=2;

here

pM) > 2 is a root of the equation A:;Qla:gp =0;
p? > 2 is a root of the equation A;2|U:1 =0.

It seems that the conjecture (MAS) has not been
proved for any parameter except the trivial p = 2.
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3. Computer Interval Algebra

3.1. Computer Interval Algebraic Systems

A set of intervals with the inclusion relation forms a
category CIP of preorder.

Definition 4 . A contravariant functor from CIP to the
category of sets is called the interval presheaf.

For a finite set 'S = {X;} of m-dimensional intervals
i R", m < n, the union V of the intervals forms a
piecewise-linear manifold in R". Let G be the graph
of the adjacency relation of intervals from FS. The
manzifold V 1s connected if G is a connected graph.
In this paper we are considering connected manifolds.
Let f be a constant sign function on X € FS. The set
{(X;,0f)} of c—elements (if it exists) is called a constant
sign continuation of f on {X;}. If {X,;} ts the mazximal
subset of F'S relative to constant signs function f then
{(X;,0f)} s called the constant signs continuation of f on
FS.

3.2. Interval Cellular Covering

Definition 5 . For any n and any j, 0 < j < n, a j-
dimensional interval cell, or j-I-cell, in R" is a subset Ic
of R" that (possibly after permutation of variables) has
the form

Ie={zeR"|ga,r, € R, <z, <a;,1 <i<jaxjyg=r,...

Here a; < a,.

If ) =n then we have an n-dimensional interval vector.
Let P be the hyperplane that contains Ic. The dimension
of Ic 1s equal to the minimal dimension of hyperplanes
that contain Ic.

Let P be such a hyperplane of the minimal dimension,
Int Ic the set of interior points of Ic in P, Bd Ic =
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Ic\ Int Ic. For an m-dimensional I-cell Ic let d; be an
(m — 1)-dimenstonal I-cell from Bd Ic. Then d; is called
an (m — 1)—dimensional face of the I-cell Ic.

Definition 6 . Let D be a bounded set in R". By an
interval cellular covering Cov we will understand any
finite set of n—dimensional I-cells such that their union
contains D and adjacent [-cells intersect only in faces.
By |Cov| we will denote the union of all I-cells from Cov.

Let Cov be the interval covering. By its subdivision
we will understand an interval covering Cov' such that
|Cov| = |Cov'| and each I-cell from Cov' is contained
i an I[-cell from Cov. In our computations we have
used mainly bounded horizontal and vertical strips in
R?, their interval coverings and subdivisions.

3.3. Categories and Functors of Interval Mathematics

A contravariant functor from CIP to the category of
sets s called the interval presheaf.

Let A = IR be the interval algebra [11] with interval
arithmetic operations. In many cases extra interval
operations are required. So we have to extend the
notion of interval algebra. Let us define the "operator
domain"Q) of wnterval computations as sequence of
sets Q (interval constants and variables), ; (unary
interval operations), (s (binary interval operations).

In these mnotations the set To of all "non-

branching"programs in €} is defined as the least subset of
(U2 2. U{O})* such that following azioms are satisfied:
(t) Qo C To;
(tt) forn>1, we Q, and ty,... t, € T, w(ty,...,t,) € Tq.
Q—1interval algebra is constructed from the interval
algebra A and functions wy : A" — A, w € (,. Below
in the section our results follows Gougen [36] who
discussed the non-interval case.
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Proposition 1 T, 1s an tnitial object in the category of
Q— wnterval algebras.

. Let IP be the interval program that implements an
interval computation, G = G(IP) the graph of the flow
diagram of IP, G® the category of all paths in G. Let
IPF be the category of interval sets with partial interval
functions.

Proposition 2 . Interval program IP defines a functor
IP:G% - IPF.

3.4. On Interval Operads

Operads was introduced by J. May [37]. Operadic
language 1s useful for investigation of many problems
in mathematics and physics. Here we give a short
description of interval operad. The space of continuous
interval functions of j wvariables forms the topological
space IC(j). Its points are operations 'R — IR of arity
j. IC(0) s a single point x. The class of interval spaces
I"R, n > 0 forms the category [14]. We will consider
the spaces with base points and denote the category of
those spaces by IU. Let X € IU and for k > 0 let IE(k) be
the space of maps M(X"* X). There is the action (by
permuting the inputs) of the symmetric group S, on
IE(k). The identity element 1 € IE(1) is the identity map
of X.

Proposition-Definition 1 . In the above mentioned
conventions let k > 0 and ji,...,j5, > 0 be integers. Let
for each choice of k and j,...,J. there 1s a map

v IE(k) x IE(G1) ... x IE(Jr) = IE(G1 + - . + Ji)

given by multivariable composition. If maps v satisfy
associativity, equivalence and unital properties then IE
1s the endomorphism interval operad [Ex of X.
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Cnacubo 3a BHuMaHue!

Thank you for your attention!
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