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A brief overview of algebraic and number
theoretic foundations of computer interval
arithmetics, methods of their implementation
and their applications to problems of
(nondi�erentiable) optimization is given.
The implementation of interval arithmetic
on various classes of computers is presented.
Interval extensions of computational methods
are brie�y discussed. Selected methods
of interval analysis are presented and
discussed. We consider their applications
to the solution of a problem (related to a
problem by H. Minkowski) of parametrization
of the set of minima of a non-compact real
convex surface with a boundary when it is
embedded in a three-dimensional real space.
A brif presentation of categorical-algebraic
foundations of interval calculations is given.
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0. Introduction

In computer algebra systems (CAS), processed
constants, variables, coe�cients are polynomials,
matrix elements and other objects allowed by the
CAS language are usually integers or rational numbers
(arbitrary or unlimited bit width), or algebraic numbers.
Real numbers in most cases should be reduced to this
form. That is, we are talking about the approximation
of real numbers by rational ones. Therefore, our
�rst problem of minimizing will be associated with
such an approximation, which is called Diophantine
approximation.

0.1. Elements of Diophantine Approximations and
Minimization Problems [1, 2, 3, 4]

According to Khinchin (1935) [2] the rational number
p/q is a best Diophantine approximation of the real
number θ if ∣∣∣∣θ − p

q

∣∣∣∣ < ∣∣∣∣θ − p1

q1

∣∣∣∣ , (1)

for every rational number p1/q1 di�erent from p/q s.t.
0 < q1 ≤ q.
By other words we have to

minimize

∣∣∣∣θ − x

y

∣∣∣∣
subject to x, y ∈ Z, 0 < y ≤ q.

Nowadays some other de�nition is currently used.
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Recall some notations:
bθc , {θ}, ‖θ‖ denote respectively integer, fractional

parts of the real number θ and the minimum distance
from θ to the nearest integer. So

‖qθ‖ = min({qθ}, 1− {qθ})

.

Theorem 1 (L. Dirichlet) Let θ and Q be real numbers.
Then there exists integer q such that

0 < q < Q, ‖qθ‖ ≤ Q−1.

According to Cassels and others

De�nition 1 ([3, 4]). A fraction

p

q
, q > 0

is called the best (optimal) approximation of the real
number θ if

‖qθ‖ = |qθ − p|
i.e.

min({qθ}, 1− {qθ}) = |qθ − p|
and if

‖q′θ‖ > ‖qθ‖ for 0 < q′ < q.

The formula (1):

∣∣∣∣θ − p

q

∣∣∣∣ < ∣∣∣∣θ − p1

q1

∣∣∣∣ follows from this

de�nition .
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Theorem 2 ([1, 2, 3, 4]) . Let 0 < θ < 1 and let pn, qn, an
be de�ined as

p0 = 1, q0 = 0,

p1 = 0, q1 = 1,

for n ≥ 1

pn+1 = anpn + pn−1,

qn+1 = anqn + qn−1

where an =
⌊
|qn−1θ−pn−1|
|qnθ−pn

⌋
Theorem 2 gives the method for optimal

approximation of a real number.
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0.2. Equidistribution

This is important approach to approximation of real
numbers but I will present general review only

The concept of equidistribution was introduced by H.
Weyl at the beginning of the last century in connection
with the problem of small denominators in problems of
celestial mechanics.

Example 1 . The equidistribution of the sequence
({
√

2n}), n ∈ Z on the interval [0, 1]. This is the
equidistribution with density 1.

0.2.1. Methods for constructing sequences equidistributed with

non-unit density

Let X be a compact topological space and C(X) be the
Banach space of continuous complex-valued functions
on X. For f ∈ X let its norm ||f || = supx∈X |f(x)|. Let δx
be the Dirac measure associated to x ∈ X : δx(f) = f(x).

For a sequence (xn), n ≥ 1 let µn =
δx1+···+δxn

n
. Let µ be a

Radon measure on X.

De�nition 2 . The sequence (xn) is said to be
equidistributed with respect to measure µ (or µ-
equidistributed) if µn → µ (weakly) as n→∞.

Let G be a compact group and let X be the space
of conjugacy classes of G Let xv, v ∈ Σ be a family of
elements of X indexed by a countable (denumerable)
set Σ.

Theorem 3 (Chebotarev, Artin, Serre). The elements
xv, v ∈ Σ are equidistributed for the normalized Haar
measure of G if and only if the L−functions relative
to the non trivial irreducible characters of G are
holomorphic and non zero at s = 1.
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Sato-Tate conjecture.
Geometric analogous of Sato-Tate conjecture (Sato-
Tate conjecture over function �elds) are investigated
and proved by B. Birch [5] and by H. Yoshida [6].

Let
E : y2 = x3 + ax+ b, a, b ∈ Z

be the elliptic curve without complex multiplication.

#Ep(Fp) = 1 + p− ap

ap = 2
√
p cosϕp

Sato-Tate conjecture: Angles ϕp are distributed on the
interval [0, π) with the Sato-Tate density 2

π
sin2 t .

Sato-Tate conjecture, now Clozel�Harris�Shepherd-
Barron�Taylor Theorem

Theorem 4 (Clozel, Harris, Shepherd-Barron, Taylor).
Suppose E is an elliptic curve over Q with non-integral
j invariant. Then for all n > 0;L(s;E;Symn) extends to
a meromorphic function which is holomorphic and non-
vanishing for Re(s) ≥ 1 + n/2.

These conditions and statements are su�cient to
prove the Sato-Tate conjecture.
Under the prove of the Sato-Tate conjecture

the Taniyama-Shimura-Weil conjecture (Fermat last
theorem) oriented methods of A. Wiles and R. Taylor
are used.
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Kloosterman sums

Let

Tp(c, d) =

p−1∑
x=1

e2πi(
cx+ d

x
p

)

1 ≤ c, d ≤ p− 1; x, c, d ∈ F∗p
be a Kloosterman sum.
By A. Weil estimate

Tp(c, d) = 2
√
p cos θp(c, d)

There are possible two distributions of angles θp(c, d)
on semiinterval [0, π) :

a) p is �xed and c and d varies over F∗p; what is the distribution
of angles θp(c, d) as p→∞ ;

b) c and d are �xed and p varies over all primes not dividing c
and d.

In seventies the author of the communication (by
the request of S.A. Stepanov and J.-P. Serre) have
computed (≈ 1980) the distribution of angles θp(c, d)
(mainly for the case c = d = 1, prime p runs from 2
in interval [2, 10000], and unsystematically for some
prime from the interval with constant p and varying
1 ≤ c, d ≤ p− 1).

There are possible two distributions of angles θp(c, d)
on semiinterval [0, π) :
a) p is �xed and c and d varies over F∗p; what is the distribution
of angles θp(c, d) as p→∞ ;

b) c and d are �xed and p varies over all primes not dividing c
and d.
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Conjecture 1 . In the case b) when p varies over all
primes then angles θp(1, 1) are distributed on the interval
[0, π) with the Sato-Tate density 2

π
sin2 t .

For the case a) N. Katz [7] (1988) and A.
Adolphson [8] (1989) proved that θ are distributed on
[0, π) with density 2

π
sin2 t.

It is interesting to compare results of computer
experiments in cases a) and b). Such computations [9]
and [10] demonstrated that though in case b)
equidistribution is possible but results of computation
shows not so good compatibility with equidistribution as
in (proved) case a).
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0.3. Elements of Interval Algebra (of Validated
numerics)

The compact closed interval I = [a, b] is the set of all
real numbers x such that a ≤ x ≤ b.

Let IR be the set of all intervals over R. Arithmetic
interval operations +,−,+, / de�ne interval algebra on
the set of intervals.

Let x be a variable over R, x = ([x, x] be a compact
closed interval from IR, let x and x be the lower and
upper values of x on x.

Let's say that x > 0, (x ≥ 0) if x > 0, (x ≥ 0) and
x < 0, (x ≤ 0) if x < 0, (x ≤ 0).

We call such intervals constant sign. Non-constant
intervals are called alternating
When calculating the lower and upper estimates of

the values of functions on a computer, it is convenient
to express the arithmetic of intervals in terms of the
boundary points of the intervals.
For the sum, assuming xi = ([xi, xi], we have∑

i

xi =

[∑
i

x1,
∑
i

x1

]
Di�erence x − y, is reduced to the sum of x + z when
z = −y = [−y,−y].

For rational interval arithmetics and some other
types of interval arithmetics see ([14]: Íèêîëàé Ãëà-
çóíîâ. Ðàçðàáîòêà ìåòîäîâ îáîñíîâàíèÿ ãèïîòåç
ôîðìàëüíûõ òåîðèé.)

Let
X = ([x1, x1], · · · , [xn, xn]

be the n-dimensional real interval vector with

xi ≤ xi ≤ xi
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(�rectangle� or �box�).
Let f be a real continuous function of n variables

de�ned on X. The interval evaluation of f on the interval
X is the interval [f, f ] such that for any x ∈ X, f(x) ∈
[f, f ]. The interval evaluation is called optimal [11] if f =

min f, and f = max f on the interval X. Let Of be the
optimal interval evaluation of f on X.

De�nition 3 . The pair (X, Of) is called the interval
functional element. If Ef is an interval that contains Of
then we will call the pair (X, Ef) an extension of (X, Of)
or eif−element. Let f be a constant sign function on
X. If f > 0 (respectively f < 0) on X and Of > 0
(respectively Of < 0) then we will call (X, Of) the correct
interval functional element (or c−element).

More generally we will call the correct interval functional
element an extension (X, Ef) of (X, Of) that has the same
sign as Of.
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1. Problems and methods of (nondi�erentiable)
minimization

A general discussion in subsections 1.2-1.4 to
approaches to the nondi�erentiable optimization as well
as speci�c technical results at the �eld on can refer to
the l book by N. Shor [Nondi�erentiable Optimization
and Polynomial Problems, Kluwer Acad. Publ. 1998],
papers [17, 18, 19, 20] and in references therein.

1.1. Minkowski's conjecture concerning the critical
determinant

Let

|αx+ βy|p + |γx+ δy|p ≤ c| det(αδ − βγ)|p/2,
be a diophantine inequality de�ned for a given real

p > 1; hear α, β, γ, δ are real numbers with αδ − βγ 6= 0.
H. Minkowski in his monograph [15] raise the

question about minimum constant c such that the
inequality has integer solution other than origin.
Minkowski with the help of his theorem on convex body
has found a su�cient condition for the solvability of
Diophantine inequalities in integers not both zero:

c = κp
p, κp =

Γ(1 + 2
p
)
1/2

Γ(1 + 1
p
)
.

But this result is not optimal, and Minkowski also raised
the issue of not improving constant c. For this purpose
Minkowski has proposed to use the critical determinant.
Given any set R ⊂ Rn, a lattice Λ is admissible for

R (or is R-admissible) if R
⋂

Λ = ∅ or {0}. The in�mum
∆(R) of the determinants (the determinant of a lattice Λ
is written d(Λ)) of all lattices admissible for R is called
the critical determinant of R. A lattice Λ is critical for R
if d(Λ) = ∆(R).
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The Minkowski's problem can be reformulated as a
conjecture concerning the critical determinant of the
region | x |p + | y |p ≤ 1, p > 1. Recall once more that
mentioned mathematical problems are closely connected
with Diophantine Approximation.

For the given 2-dimension region Dp ⊂ R2 = (x, y), p >
1 :

|x|p + |y|p < 1,

let ∆(Dp) be the critical determinant of the region.
I will present the (interval) computation of the

critical determinant at the next section (Section 2.
Critical determinants and critical lattices of the region
|x|p + |y|p < 1 for p > 1.)

1.2. Matrix nondi�erentiable optimization and
Compressed sensing (with Kuzik O.V.)

The problem of restoring a matrix from a sample of
its elements, which can be correlated with source coding,
is formulated as a convex optimization problem [16,
21, 22, 23]. An initially inherent feature of the
considered problem recovery of a matrix from a
sample of its elements is the non-di�erentiability of
this problem, which causes problematic application of
classical methods of di�erentiable optimization. In
connection with this circumstance to solve it, the
application of r− algorithms [16] is proposed [23].
Ïîñòàíîâêè çàäà÷è è ïðèìåíåíèÿ. Â ðàìêàõ êîäè-

ðîâàíèÿ èñòî÷íèêà ñæàòîå îïîçíàâàíèå èíòåðïðå-
òèðóåòñÿ êàê âîññòàíîâëåíèå èíôîðìàöèè èñòî÷-
íèêà ïî íåïîëíûì äàííûì, êîäèðóþùèì ýëåìåíòû
ýòîé èíôîðìàöèè. Õîòÿ íèæå ðå÷ü èäåò î âåùå-
ñòâåííûõ ìàòðèöàõ, ôàêòè÷åñêè ïðè âû÷èñëåíè-
ÿõ ìàòðèöû öåëî÷èñëåííû, èëè èìåþò ðàöèîíàëü-
íûå êîýôôèöèåíòû. Çàäà÷à âîññòàíîâëåíèÿ ìàò-
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ðèöû ïî âûáîðêå å¼ ýëåìåíòîâ âîçíèêàåò âî ìíî-
ãèõ ìàòåìàòè÷åñêèõ è ïðèêëàäíûõ èññëåäîâàíèÿõ.
Óïîìÿíåì ñëåäóþùèå ïðèêëàäíûå çàäà÷è: Áàçû äàí-
íûõ; Òðèàíãóëÿöèÿ ïî íåïîëíûì äàííûì; Ñæàòîå
îïîçíàâàíèå (Compressed Sensing); Ìàøèííîå îáó÷å-
íèå (Machine Learning).
Ïóñòü X åñòü èñêîìàÿ ìàòðèöà, Mi,j èçâåñòíûå

çíà÷åíèÿ. Îäíà èç ìàòåìàòè÷åñêèõ ôîðìóëèðîâîê
âûøåïåðå÷èñëåííûõ çàäà÷ èìååò ñëåäóþùåå ïðåä-
ñòàâëåíèå:

minimize rank(X)

subject to Xi,j = Mi,j, (i, j) ∈ Ω,

ãäå (i, j) åñòü ìíîæåñòâî èíäåêñîâ, Mi,j ∈ Ω íà-
áëþäàåìûå çíà÷åíèÿ. Ê ñîæàëåíèþ, êàê äîêàçàíî
â [22], â òàêîé ïîñòàíîâêå çàäà÷à ñóïåðýêñïîíåíöè-
àëüíà ïî ñëîæíîñòè.
Çàäà÷à ïîëóîïðåäåëåííîãî ïðîãðàììèðîâàíèÿ ñî-

ñòîèò [16] â ìèíèìèçàöèè ëèíåéíîé ôóíêöèè îò
m âåùåñòâåííûõ ïåðåìåííûõ îòíîñèòåëüíî ìàò-
ðè÷íîãî íåðàâåíñòâà

minimize cTx

subject to F (x) ≥ 0,

ãäå F (x) = F0 +
∑m

i=1 xiFi è F0, F1, . . . , Fm åñòü ñèì-
ìåòðè÷åñêèå ìàòðèöû. Çàäà÷à ïîëóîïðåäåëåííîãî
ïðîãðàììèðîâàíèÿ ÿâëÿåòñÿ çàäà÷åé âûïóêëîé îï-
òèìèçàöèè, òàê êàê öåëåâàÿ ôóíêöèÿ è îãðàíè÷å-
íèÿ âûïóêëû: åñëè F (x) ≥ 0 è F (y) ≥ 0, òî äëÿ âñåõ
λ, 0 ≤ λ ≤ 1 F (λx+ (1− λ)y) = λF (x) + (1− λ)F (y) ≥ 0.
Ïóñòü X åñòü ìàòðèöà ðàçìåðà n × m, X∗ åñòü

ìàòðèöà, ñîïðÿæåííàÿ ê X . Òîãäà ñîáñòâåííûå
çíà÷åíèÿ ìàòðèö XX∗ è X∗X ñîâïàäàþò è ÿâëÿ-
þòñÿ ïîëîæèòåëüíûìè. Àðèôìåòè÷åñêèå çíà÷å-
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íèÿ êâàäðàòíûõ êîðíåé îáùèõ ñîáñòâåííûõ çíà÷å-
íèé ìàòðèö XX∗ è X∗X íàçûâàþò ñèíãóëÿðíûìè
çíà÷åíèÿìè ìàòðèöû X. Äàëåå ïîëàãàåì, ÷òî σk
åñòü k−îå ñèíãóëÿðíîå çíà÷åíèå ìàòðèöû X, è ÷òî
ýòè ñèíãóëÿðíûå çíà÷åíèÿ çàíóìåðîâàíû â ïîðÿä-
êå óáûâàíèÿ σ1 ≥ σ2 ≥ . . . ≥ σn > 0 ãäå σn åñòü íàè-
ìåíüøåå ñèíãóëÿðíîå çíà÷åíèå. Ñèíãóëÿðíûå çíà÷å-
íèÿ σn+1 · · · ïîëàãàþò íóëåâûìè.
Ìàòåìàòè÷åñêàÿ ìîäåëü. Ñêàëÿðíîå ïðîèçâåäåíèå

(X, Y ) ìàòðèö X è Y ðàçìåðà n×m îïðåäåëÿþò êàê
ñëåä Tr(X∗Y ) ïðîèçâåäåíèÿ óêàçàííûõ ìàòðèö. Íà-
ïîìíèì, ÷òî ñóáðãàäèåíòîì ìàòðè÷íîé âûïóêëîé
ôóíêöèè f íàçûâàþò ìàòðèöó gf (X0), óäîâëåòâîðÿ-
þùóþ íåðàâåíñòâó f(X)− f(X0) ≥ (gf (X0), X −X0) äëÿ
âñåõ âåùåñòâåííûõ ìàòðèö ðàçìåðà n × m. ßäåð-
íîé íîðìîé ìàòðèöû X íàçûâàþò âåëè÷èíó ‖X‖∗ =∑n

k=1 σk(X) ãäå σk(X) k−îå ñèíãóëÿðíîå çíà÷åíèå X.
Èññëåäóåòñÿ çàäà÷à îïòèìèçàöèè (ñ ÿäåðíîé íîð-
ìîé):

minimize ‖(X)‖∗
subject to Xi,j = Mi,j, (i, j) ∈ Ω.

Ìåòîä ðåøåíèÿ. Ìåòîä ðåøåíèÿ âûøåïðèâåäåííîé
îïòèìèçàöèîííîé çàäà÷è îñíîâûâàåòñÿ íà ìàòðè÷-
íîì ðàñøèðåíèè r− àëãîðèòìà Í.Ç. Øîðà [16]. Äëÿ
ñèíãóëÿðíîãî ðàçëîæåíèÿ ìàòðèöû ðàíãà s âûðà-
æåíèå äëÿ ñóáãðàäèåíòà ÿäåðíîé íîðìû ýòîé ìàò-
ðèöû èçâåñòíî. Â ïðîöåññå âûïîëíåíèÿ r− àëãîðèò-
ìà ïðåîáðàçóåòñÿ ïðîñòðàíñòâî ïîèñêà è âûïîëíÿ-
þòñÿ îðòîãîíàëüíûå ïðîåêòèðîâàíèÿ.

1.3. Shape optimization of elastic bodies(with
Nagornyak T.)

Shape optimization problems for elastic bodies, that
can withstand extreme stress have been considered by
Bernoulli and Euler [25]. By elastic body we understand
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a solid body for which the additional deformation
produced by an increment of stress completely
disappears when the increment is removed. Consider
the column (rod) with variable, but geometrically
similar and equally oriented cross sections, loaded
longitudinal force. Evolving the work [25], researches of
J. L Lagrange, T. Clausen, E. Nicolai, and others, N.
Olho� and S. Rasmunssen have found [26], that the
shape optimization problems can be reduced to problems
of non-di�erentiable optimization. The author of
review [27] believes, that the modality situation may
occur in many optimization problems in terms of
stability criteria. At �rst we formulate the problem of
shape optimization of elastic bodies on the example
of following problem of Euler, Lagrange, Pearson and
others:

To �nd the curve which by its revolution about an
axes in its plane determine the column of the structures
resistance to buckling under axial compression.

INTERVAL ANALYSIS
s - interval calculations
interval mathematics
interval arithmetic
v - COMPUTATIONAL MATHEMATICS
à - INTERVAL ANALYSIS METHODS

INTERVAL ARITHMETIC
n - REAL INTERVAL ARITHMETIC
RATIONAL INTERVAL ARITHMETIC
COMPLEX INTERVAL ARITHMETIC

INTERVAL
s - interval number
closed real interval
n - CONSTANT-SIGN INTERVAL
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SIGN-VARIABLE INTERVAL
DEGENERATE INTERVAL
à - ARITHMETICAL OPERATIONS OVER
INTERVALS

DEGENERATE INTERVAL
s - point interval number
v - INTERVAL

ARITHMETICAL OPERATIONS OVER
INTERVALS
n - BINARY OPERATIONS OVER INTERVALS
UNARY OPERATIONS OVER INTERVALS

BINARY OPERATIONS OVER INTERVALS
n - ADDITION OF INTERVALS

s - [a,b] + [c,d] = [a + c, b + d]

SUBTRACTION OF INTERVALS

MULTIPLICATION OF INTERVALS
DIVISION OF INTERVALS

s [a,b]/[c,d] = [min (a/c, a/d, b/c, b/d), max (a/c, a/d, b/c, b/d)]

INTERVAL ANALYSIS METHODS
n - INTERVAL METHODS IN THE LINEAR
ALGEBRA
METHODS FOR NARROWING OF THE
INTERVALS CONTAINING RANGE OF THE
FUNCTION
INTERVAL METHODS FOR THE SOLVING NON-
LINEAR ALGEBRAIC EQUATIONS
INTERVAL METHODS FOR THE SOLVING
DIFFERENTIAL EQUATIONS
à - INTERVAL EXTENSION
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INTERVAL ASSESSMENT

INTERVAL METHODS IN THE LINEAR
ALGEBRA
v - INTERVAL ANALYSIS METHODS
n - DIRECT METHODS FOR SYSTEMS OF THE
LINEAR ALGEBRAIC EQUATIONS
INTERVAL AND ANALYTICAL METHOD OF
DRIVING
INTERVAL ITERATIVE METHODS FOR SLAE

DIRECT METHODS FOR SYSTEMS OF THE
LINEAR ALGEBRAIC EQUATIONS v - INTERVAL
METHODS IN THE LINEAR ALGEBRA n -
INTERVAL METHOD OF GAUSS
METHODS FOR NARROWING OF THE

INTERVALS CONTAINING RANGE OF THE
FUNCTION v - INTERVAL ANALYSIS METHODS
n - SKELBOU'S METHOD APPLICATION OF
THE GENERALIZED INTERVAL ARITHMETICS
METHOD COMPUTATION METHOD BY MEANS
OF NON-STANDARD ARITHMETICS
INTERVAL METHODS FOR THE SOLVING

NON-LINEAR ALGEBRAIC EQUATIONS v -
INTERVAL ANALYSIS METHODS n - MOORE'S
METHOD ANALOGUE OF CHEBYSHEV'S
METHOD HANSEN'S METHOD KRAVCHIK'S
METHOD
INTERVAL METHODS FOR THE SOLVING

DIFFERENTIAL EQUATIONS v - INTERVAL
ANALYSIS METHODS n - EXPLICIT METHODS
FOR ORDINARY DIFFERENTIAL EQUATIONS
IMPLICIT METHODS FOR ORDINARY
DIFFERENTIAL EQUATIONS INTERVAL
METHODS FOR THE SOLUTION OF THE
CAUCHY PROBLEM INTERVAL METHODS
FOR THE SOLUTION OF BOUNDARY VALUE
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PROBLEMS FOR THE ODE INTERVAL METHODS
FOR THE SOLUTION OF DIFFERENTIAL
EQUATIONS WITH PRIVATE DERIVATIVES AND
INTEGRABLE EQUATIONS
EXPLICIT METHODS FOR ORDINARY

DIFFERENTIAL EQUATIONS v - INTERVAL
METHODS FOR THE SOLVING DIFFERENTIAL
EQUATIONS n - MOORE'S METHODS S-TH
ORDER INTERVAL METHODS LIKE RUNGE-
KUTT'S METHOD INTERVAL METHODS
LIKE ADAMS' METHOD INTERVAL METHOD
ON THE BASIS OF THE RECTANGULAR
FORMULA THE INTERVAL METHOD USING THE
TRAPEZOID FORMULA THE FOURTH ORDER
INTERVAL METHOD BASED ON THE "THREE
EIGHTH"QUADRATURE FORMULA THE BASES
ON APPLICATION OF THE SIMPSON FORMULA
METHOD
IMPLICIT METHODS FOR ORDINARY

DIFFERENTIAL EQUATIONS v - INTERVAL
METHODS FOR THE SOLVING DIFFERENTIAL
EQUATIONS n - ANALOGUE OF THE IMPLICIT
EULER'S METHOD IMPLICIT INTERVAL AND
ANALYTICAL METHOD OF THE SECOND
ORDER IMPLICIT INTERVAL AND ANALYTICAL
METHODS OF HIGHER ORDERS IMPLICIT
METHOD BASED ON THE SIMPSON'S FORMULA
INTERVAL METHODS FOR THE SOLUTION

OF THE CAUCHY PROBLEM v - INTERVAL
METHODS FOR THE SOLVING DIFFERENTIAL
EQUATIONS n - KRYUKEBERG'S METHOD
METOD OF BAUKH INTERVAL METHOD FOR
BAUKH'S EQUATION INTERVAL METHOD FOR
THE EQUATION y′ = f(y) USING CHAPLYGIN
THEOREM METHOD FOR SOLVING EQUATION
′ = f(x, )
INTERVAL METHODS FOR THE SOLUTION OF
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BOUNDARY VALUE PROBLEMS FOR THE ODE
v - INTERVAL METHODS FOR THE SOLVING
DIFFERENTIAL EQUATIONS
n - ANALOGUE OF FINITE-DIFFERENCE
METHODS
OLIVEIRA'S METHOD

1.4. Jet engine nozzle pro�les ( Stetysuk P.I. with
colleagues)

By P.I. Stetsyk and others [A set of programs for
constructing theoretical contours of the outer and inner
surfaces nozzles with a central body according to a
given law of changes in areas (Glushkov Institute of
cybernetics NASU, stage 2, 2020].

Introduction

Laval nozzle
Frenkl nozzle

1. General provisions and problem statement

2. Constructing the outer contour of the nozzle

3. Constructing the contour of the central body

4. Constructing the contour of the central body
by geometric averaging

5. Optimization of parameters in the
generalized Delambert formula for a function
of two variables
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2. Critical determinants and critical lattices of
the region |x|p + |y|p < 1 for p > 1

2.1 Minkowsk analytic conjecture

In considering the question of the minimum value
taken by the expression |x|p + |y|p, with p ≥ 1, at points,
other that the origin, of a lattice Λ of determinant d(Λ),
Minkowski [15] shows that the problem of determining
the maximum value of the minimum for di�erent
lattices may be reduced to that of �nding the minimum
possible area of a parallelogram with one vertex at the
origin and the three remaining vertices on the curve
|x|p + |y|p = 1. The problem with p = 1, 2 and ∞ is trivial:
in these cases the minimum areas are 1/2,

√
3/2 and

1 respectively. Let Dp ⊂ R2 = (x, y), p > 1 be the 2-
dimension region:

|x|p + |y|p < 1.

Let ∆(Dp) be the critical determinant of the region.
Recall considerations of the previous section. For p > 1,
let

Dp = {(x, y) ∈ R2 | |x|p + |y|p < 1}.
Minkowski [15] raised a question about critical
determinants and critical lattices of regions Dp for

varying p > 1. Let Λ
(0)
p and Λ

(1)
p be two Dp-admissible

lattices each of which contains three pairs of points
on the boundary of Dp and with the property that

(1, 0) ∈ Λ
(0)
p , (−2−1/p, 2−1/p) ∈ Λ

(1)
p , (under these conditions

the lattices are uniquely de�ned). Using analytic
parameterization Cohn [28] gives analytic formulation
of Minkowski's conjecture.
Let

∆(p, σ) = (τ + σ)(1 + τ p)−
1
p (1 + σp)−

1
p , (1)
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be the function de�ned in the domain

M : ∞ > p > 1, 1 ≤ σ ≤ σp = (2p − 1)
1
p ,

of the {p, σ} plane, where σ is some real parameter;
here τ = τ(p, σ) is the function uniquely determined by
the conditions

Ap +Bp = 1, 0 ≤ τ ≤ τp,

where

A = A(p, σ) = (1 + τ p)−
1
p − (1 + σp)−

1
p

B = B(p, σ) = σ(1 + σp)−
1
p + τ(1 + τ p)−

1
p ,

τp is de�ned by the equation

2(1− τp)p = 1 + τ pp , 0 ≤ τp ≤ 1.

In this case needs to extend the notion of parameter
variety to parameter manifold. The function ∆(p, σ) in
region M determines the parameter manifold.

Let ∆
(1)
p = ∆(p, 1) = 4−

1
p

1+τp
1−τp ,

∆
(0)
p = ∆(p, σp) = 1

2
σp.

Minkowski's analytic (p, σ)−conjecture:

For any real p with conditions p > 1, p 6= 2, 1 < σ < σp ,

∆(p, σ) > min(∆(1)
p ,∆(0)

p ).

In the vicinity of the point p = 1 and in the vicinity
of the point (2, σ2) the (p, τ) variant of the Minkowski's
analytic conjecture is used.
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Minkowski's analytic (p, τ)−conjecture:

Let ∆̃(p, τ) = ∆(p, σ), σ = σ(p, τ) : Ap +Bp = 1.

For any real p and τ with conditions p > 1, p 6= 2, 0 < τ <
τp ,

∆̃(p, τ) > min(∆(1)
p ,∆(0)

p ).

For investigation of properties of function ∆(p, σ)
which are need for proof of Minkowski's conjecture [15,
28] we considered the value of ∆ = ∆(p, σ) and its
derivatives ∆

′
σ , ∆

′′

σ2 , ∆
′
p , ∆

′′
σp , ∆

′′′

σ2p on some

subdomains of the domain M [32].

2.2. Interval evaluation of functions, algorithms,
software and computations

Let X = (x1, · · · ,xn) = ([x1, x1], · · · , [xn, xn] be the
n-dimensional real interval vector with xi ≤ xi ≤
xi ("rectangle"or "box"). The interval evaluation of a
function G(x1, · · · , xn) on an interval X is the interval
[G,G] such that for any x ∈ X, G(x) ∈ [G,G]. The interval
evaluation is called optimal if G = minG, and G = maxG
on the interval X.
Let D be a subdomain of M. Under evaluation in D a
mentioned function the domain is covered by rectangles
of the form

[p, p; σ, σ].

In the case of the formula that expressing
∆
′
σ , ∆

′′

σ2 , ∆
′
p , ∆

′′
σp , ∆

′′′

σ2p

in terms of a sum of derivatives of "atoms"si =

σp−i, ti = τ p−i, ai = (1 + σp)−i−
1
p , bi = (1 + τ p)−i−

1
p , A =
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b0 − a0, B = τb0 + σa0, αi = Ap−i, βi = Bp−i (i = 0, 1, 2, . . .)
one applies the rational interval evaluation to construct
formulas for lower bounds and upper bounds of the
functions, which in the end can be expressed in terms
of p, p, σ, σ, τ , τ , ; here the bounds τ , τ , are obtained
with the help of the iteration process:

ti+1 = (1+ tpi )
1
p ((1− ((1+ tpi )

− 1
p − (1+σp)

− 1
p )p)

1
p −σ(1+σp)

− 1
p ),

ti+1 = (1+ t
p

i )
1
p ((1− ((1+ t

p

i )
− 1

p − (1+σp)−
1
p )p)

1
p −σ(1+σp)−

1
p ).

i = 0, 1, · · ·
As interval computation is the enclosure method, we

have to put:

[τ , τ ] = [tN , tN ]
⋂

[τ 0, τ 0] .

N is computed on the last step of the iteration.

For initial values we may take : [t0, t0] = [τ 0, τ 0] =
[0, 0.36].

Algorithms and software modules

Here we give names, input and output of
algorithms and and software modules for interval
evaluation only. All these algorithms and and
software modules are implemented, tested and applied
under the computer-assisted proof of Minkowski`s
conjecture [29, 30, 33, 34, 32] .

First two algorithms are auxiliary and described
in [35].
Algorithm MonotoneFunction
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Input: A real function F (x, y) monotonous by x and
by y.
Interval [x, x; y, y].

Output: The interval evaluation of F.

Algorithm RationalFunction

Input: A rational function R(x, y). Interval [x, x; y, y].

Output: The interval evaluation of R.

Next algorithms and software modules compute
functions of Malyshev`s method.
Algorithm TAUPV

Input: An implicitly de�ned function τp from Section
4.
Interval [p, p; σ, σ].

Method: Iterative interval computation.

Output: The interval evaluation of τp.

Algorithm TAUV
Input: Implicitly de�ned function τ from this Section.

Interval [p, p; σ, σ].

Method: Described in this Section.

Output: The interval evaluation of τ .

Algorithm L0V

Input: Function l0 = ∆(p, σ)−∆
(0)
p .
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Interval [p, p; σ, σ].

Method: Interval computations.

Output: The interval evaluation of l0.

Algorithm L1V

Input: Function l1 = ∆(p, σ)−∆
(1)
p .

Interval [p, p; σ, σ].

Method: Interval computations.

Output: The interval evaluation of l1.

Algorithm GV

Input: A function g(p, σ) which has the same sign as
function ∆

′
σ.

Interval [p, p; σ, σ].

Method: Interval computations.

Output: The interval evaluation of g(p, σ).

Algorithm HV

Input: A function h(p, σ) which is the partial
derivative by σ the function g(p, σ).

[p, p; σ, σ].

Method: Interval computations.
Output: The interval evaluation of h(p, σ).
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Algorithm DHV

This is the most complicated function and there
are several algorithms and software modules for its
computation [?].
Input: A function Dh(p, σ) which is the partial

derivative by p the function h(p, σ).

[p, p; σ, σ].

Method: Interval computations.
Output: The interval evaluation of Dh(p, σ).

Remark 1 (p, τ)−method implemented using algorithms
and software modules SIG and SIGV with input
parameters respectively (p, τ, E1) and (p, τ , δp, δτ , E1).
Here E1 is the accuracy of computations of σ and (σ, σ);
p = p+ δp, τ = τ + δτ .

2.3. Results of Computations

It is important to note that Malyshev`s method gives
possibility to prove that a value of the target minimum
is an analytic function but is not a point. Ordinary
numerical methods do not allow to obtain results of the
kind.
In notations [32] next result have proved:

Theorem 5 [32].

∆(Dp) =

{
∆(p, 1), 1 < p ≤ 2, p ≥ p0,
∆(p, σp), 2 ≤ p ≤ p0;

here p0 is a real number that is de�ned unique by
conditions ∆(p0, σp) = ∆(p0, 1), 2, 57 ≤ p0 ≤ 2, 58.

Corollary 1

κp = ∆(Dp)
− p

2 .
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2.4. Minkowski's problem generalizations

Strengthened Minkowski`s analytic conjecture

Strengthened Minkowski's analytic (MAS) conjecture:
A.V. Malishev and the author on the base of some
theoretical evidences and results of mentioned
computation have proposed the strengthened
Minkowski`s analytic conjecture (MAS) [33].

For given p > 1 and increasing σ from 1 to σp the function
∆(p, σ)

1) increase strictly monotonous if 1 < p < 2 and p ≥ p(1),

2) decrease strictly monotonous if 2 ≤ p ≤ p(2),

3) has a unique maximum on the segment (1, σp); until
the maximum ∆(p, σ) increase strictly monotonous and then
decrease strictly monotonous if p(2) < p < p(1);

4) constant, if p = 2;

here

p(1) > 2 is a root of the equation ∆
′′

σ2|σ=σp = 0;

p(2) > 2 is a root of the equation ∆
′′

σ2|σ=1 = 0 .

It seems that the conjecture (MAS) has not been
proved for any parameter except the trivial p = 2.
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3. Computer Interval Algebra

3.1. Computer Interval Algebraic Systems

A set of intervals with the inclusion relation forms a
category CIP of preorder.

De�nition 4 . A contravariant functor from CIP to the
category of sets is called the interval presheaf.

For a �nite set FS = {Xi} of m-dimensional intervals
in Rn, m ≤ n, the union V of the intervals forms a
piecewise-linear manifold in Rn. Let G be the graph
of the adjacency relation of intervals from FS. The
manifold V is connected if G is a connected graph.
In this paper we are considering connected manifolds.
Let f be a constant sign function on X ∈ FS. The set
{(Xj, Of)} of c−elements (if it exists) is called a constant
sign continuation of f on {Xj}. If {Xj} is the maximal
subset of FS relative to constant signs function f then
{(Xj, Of)} is called the constant signs continuation of f on
FS.

3.2. Interval Cellular Covering

De�nition 5 . For any n and any j, 0 ≤ j ≤ n, a j-
dimensional interval cell, or j-I-cell, in Rn is a subset Ic
of Rn that (possibly after permutation of variables) has
the form

Ic = {x ∈ Rn | ai, ai, rk ∈ R,ai ≤ xi ≤ ai, 1 ≤ i ≤ j, xj+1 = r1, . . . , xn = rn−j}.

Here ai ≤ ai.

If j = n then we have an n-dimensional interval vector.
Let P be the hyperplane that contains Ic. The dimension
of Ic is equal to the minimal dimension of hyperplanes
that contain Ic.
Let P be such a hyperplane of the minimal dimension,

Int Ic the set of interior points of Ic in P , Bd Ic =
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Ic \ Int Ic. For an m-dimensional I-cell Ic let di be an
(m− 1)-dimensional I-cell from Bd Ic. Then di is called
an (m− 1)−dimensional face of the I-cell Ic.

De�nition 6 . Let D be a bounded set in Rn. By an
interval cellular covering Cov we will understand any
�nite set of n−dimensional I-cells such that their union
contains D and adjacent I-cells intersect only in faces.
By |Cov| we will denote the union of all I-cells from Cov.

Let Cov be the interval covering. By its subdivision
we will understand an interval covering Cov′ such that
|Cov| = |Cov′| and each I-cell from Cov′ is contained
in an I-cell from Cov. In our computations we have
used mainly bounded horizontal and vertical strips in
R2, their interval coverings and subdivisions.

3.3. Categories and Functors of Interval Mathematics

A contravariant functor from CIP to the category of
sets is called the interval presheaf.
Let A = IR be the interval algebra [11] with interval

arithmetic operations. In many cases extra interval
operations are required. So we have to extend the
notion of interval algebra. Let us de�ne the "operator
domain"Ω of interval computations as sequence of
sets Ω0 (interval constants and variables), Ω1 (unary
interval operations), Ω2 (binary interval operations).
. . .. In these notations the set TΩ of all "non-
branching"programs in Ω is de�ned as the least subset of
(
⋃∞
n=0 Ωn

⋃
{()})∗ such that following axioms are satis�ed:

(t) Ω0 ⊆ TΩ;
(tt) for n ≥ 1, ω ∈ Ωn and t1, . . . , tn ∈ TΩ, ω(t1, . . . , tn) ∈ TΩ.
Ω−interval algebra is constructed from the interval
algebra A and functions ωA : An → A, ω ∈ Ωn. Below
in the section our results follows Gougen [36] who
discussed the non-interval case.
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Proposition 1 TΩ is an initial object in the category of
Ω− interval algebras.

. Let IP be the interval program that implements an
interval computation, G = G(IP ) the graph of the �ow
diagram of IP, G⊗ the category of all paths in G. Let
IPF be the category of interval sets with partial interval
functions.

Proposition 2 . Interval program IP de�nes a functor
IP : G⊗ → IPF .

3.4. On Interval Operads

Operads was introduced by J. May [37]. Operadic
language is useful for investigation of many problems
in mathematics and physics. Here we give a short
description of interval operad. The space of continuous
interval functions of j variables forms the topological
space IC(j). Its points are operations IjR→ IR of arity
j. IC(0) is a single point ∗. The class of interval spaces
InR, n ≥ 0 forms the category [14]. We will consider
the spaces with base points and denote the category of
those spaces by IU . Let X ∈ IU and for k ≥ 0 let IE(k) be
the space of maps M(Xk, X). There is the action (by
permuting the inputs) of the symmetric group Sk on
IE(k). The identity element 1 ∈ IE(1) is the identity map
of X.

Proposition-De�nition 1 . In the above mentioned
conventions let k ≥ 0 and j1, . . . , jk ≥ 0 be integers. Let
for each choice of k and j1, . . . , jk there is a map

γ : IE(k)× IE(j1) . . .× IE(jk)→ IE(j1 + . . .+ jk)

given by multivariable composition. If maps γ satisfy
associativity, equivalence and unital properties then IE
is the endomorphism interval operad IEX of X.
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