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Introduction

Numerical solving PDEs

Solving PDEs in Practice

PDE(s) + IC(s) or/and BC(s)
⇓

Discretization (FDM, FEM, FVM)
⇓

Algebraic (difference) equations
⇓

Numerical solving
⇓

Approximate solution

In the finite difference method (FDM) differential equations (PDE(s)) are
replaced with their finite difference approximation (FDA) on a grid with
spacings h := {h1, . . . ,hn}.

PDE(s) =⇒ FDA

The initial conditions (ICs) and/or boundary conditions (BCs) are also
discretized. Then, together with FDA it gives a finite difference scheme (FDS).
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Introduction

FDA requirements

Convergence of an approximate solution to a solution to PDE(s) at |h| −→ 0.

Challenge: find FDA whose solutions converge to solutions to PDE(s).

⇓

Such FDA must inherit at the discrete level all algebraic properties of PDE(s)
such as conservation laws, symmetries, maximum principle, etc.).

⇓

For polynomially nonlinear PDE(s) s(trong)-consistency of FDA (Gerdt’12).

S-consistency

Definition. FDA is s-consistent with PDE(s) if any difference consequence of
FDA in the limit |h| → 0 is reduced to a differential consequence of PDE(s).

Theorem. For polynomial nonlinear PDE(s) its FDA is s-consistent iff all
elements in a canonical form of FDA (Gröbner basis) are reduced to
differential consequences of PDEs.
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KdV-like PDEs 5-parameter Family of PDEs

Family of KdV-like equations

We consider a 5-parameter family of the 3rd order quasilinear PDEs

Φ :=
{

ut +
(
f1u + f2u2 + f3u3)

x + uxxx + s2uxx + su = 0 | f1, f2, f3, s, s2 ∈ R
}
.

Motivation
1 Korteveg-de Vries (KdV) and modified KdV (MKdV) equations are

contained in Φ

ut + uxxx + 6uux = 0 ∈ Φ, ut + uxxx + 6u2ux = 0 ∈ Φ .

They possess infinitely many conservation laws and symmetries.
2 Equations in Φ admit a wide class of exact solutions.
3 Equations in Φ describe propagation of nonlinear deformation waves in

elastic cylinder shells containing viscous incompressible liquid
(Blinkov,Ivanov,Mogilevich’2012). The sign of s characterizes the shell
material: nonorganic (s < 0), living organisms (s > 0), rubber (s = 0).
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KdV-like PDEs Finite Difference Approximation

Generation of FDA
We use our algorithmic approach (Gerdt,Blinkov,Mozzhilkin’06) based on
FVM combined with numerical integration and difference elimination

1 Convert into integral form (Green’s theorem)∮
∂Ω

−(F +uxx +s2ux ) dt +u dx +s
∫∫

Ω

u dt dx = 0 , F := f1u+f2u2+f3u3 .

Ω is arbitrary region in the plane (t , x) bounded by ∂Ω.
2 Choose of a “control volume” Ω

j j + 1 j + 2

n

n+ 1

3 Add the integral relations∫ xj+1

xj

ux dx = u(t , xj+1)− u(t , xj ),

∫ xj+1

xj

uxx dx = ux (t , xj+1)− ux (t , xj ).
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KdV-like PDEs Finite Difference Approximation

Discretization

4 Set tn+1 − tn = τ , xj+1 − xj = h and apply
the trapezoidal rule for integration over t , for integration of u and uxx over
x and for integration of ux in the additional relation
the midpoint rule for the other integrations

In the standard notations for a grid function φn
j := φ(tn, xj ) this gives

−
((

F n
j + F n+1

j − F n
j+2 − F n+1

j+2

)
+
(

uxx
n
j + uxx

n+1
j − uxx

n
j+2 − uxx

n+1
j+2

)
+

s2

(
ux

n
j + ux

n+1
j − ux

n
j+2 − ux

n+1
j+2

))
· τ

2
+

+ (un+1
j+1 − un

j+1) · 2h + s(un+1
j+1 + un

j+1) · hτ = 0,

(ux
n
j+1 + ux

n
j ) · h

2
= un

j+1 − un
j , uxx

n
j+1 · 2h = ux

n
j+2 − ux

n
j .
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KdV-like PDEs Finite Difference Approximation

Difference elimination I

5 Elimination of ux and uxx by computing a difference Gröbner basis for an
elimination monomial ordering extending the ranking uxx � ux � u � F .
The input for the Maple package LDA (Gerdt,Robertz’12)
> restart:
> libname:=libname, "/usr/local/lib/LDA"":

> L:=[-((F(n,j)+F(n+1,j)-F(n,j+2)-F(n+1,j+2)) +
> (uxx(n,j)+uxx(n+1,j)-uxx(n,j+2)-uxx(n+1,j+2))+
> s2(ux(n,j)+ux(n+1,j)-ux(n,j+2)-ux(n+1,j+2)) )tau/2+
> (u(n+1,j+1)-u(n,j+1))2h,
> s(ux(n,j+1)+ux(n,j))h/2-(u(n,j+1)-u(n,j)),
> 2uxx(n,j+1)h-(ux(n,j+2)-ux(n,j))];

> JanetBasis(L, [n,j], [uxx,ux,u,F],2):
> collect(%[1,1]/(4*tau*h^3),[s,s2,tau,h]);
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KdV-like PDEs Finite Difference Approximation

Difference elimination II

s
u(n + 1, j + 2) + u(n, j + 2)

2
+ s2

1
2h2 (−2u(n + 1, j + 2) + u(n, j + 3) +

+u(n, j + 1) + u(n + 1, j + 1)− 2u(n, j + 2) + u(n + 1, j + 3)) +

+
F (n + 1, j + 3)− F (n + 1, j + 1) + F (n, j + 3)− F (n, j + 1)

4h
+

+
1

4h3 (−u(n, j)− 2u(n, j + 3) + 2u(n + 1, j + 1)− u(n + 1, j) +

+ 2u(n, j + 1) + u(n + 1, j + 4) + u(n, j + 4)− 2u(n + 1, j + 3)) +

+
u(n + 1, j + 2)− u(n, j + 2)

τ
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KdV-like PDEs Finite Difference Approximation

Strong consistency

FDA

un+1
j − un

j

τ
+

(F n+1
j+1 − F n+1

j−1 ) + (F n
j+1 − F n

j−1)

4h
+

+
(un+1

j+2 − 2un+1
j+1 + 2un+1

j−1 − un+1
j−2 ) + (un

j+2 − 2un
j+1 + 2un

j−1 − un
j−2)

4h3 +

+ s2
(un+1

j+1 − 2un+1
j + un+1

j−1 ) + (un
j+1 − 2un

j + un
j−1)

2h2 + s
un+1

j + un
j

2
= 0

S-consistency

If one chooses an admissible difference monomial ordering such that un+1
j+2 is

the leading monomial in the above FDA, then its left-hand side is a Gröbner
basis. In the limit τ,h −→ 0 it is reduced to the original PDE.
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KdV-like PDEs Exact Solutions
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KdV-like PDEs Exact Solutions

Exact solutions

Let s = 0, U,n0,n1,d0,d1, k , ω,∈ R and solution be the form

u = U
n0 + n1 exp(ζ) + exp(2ζ)

d0 + d1 exp(ζ) + exp(2ζ)
, ζ = kx − ωt

Then the method of indefinite coefficients gives the following multi-parametric
solution

f1 =
ω

k
+ 2k2 +

6k2d2
0 (2n0 − n2

1)

d2
0 (n1 − d1)2 + (n1d0 − n0d1)2

,

f2 = −
6(d0 + n0 − n1d1)d2

0 k2

U(d2
0 (n1 − d1)2 + (n1d0 − n0d1)2)

,

f3 =
2k2d2

0 (2d0 − d2
1 )

U2(d2
0 (n1 − d1)2 + (n1d0 − n0d1)2)

,

s2 = −3kd1(d0 − n0)(d0d1 − 2n1d0 + n0d1)

d2
0 (n1 − d1)2 + (n1d0 − n0d1)2

.
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KdV-like PDEs Exact Solutions

Exact solutions with u 6= const

There are 4 types of such solutions:

1
{

d0 = 0, n0 = −d2
1 + n1d1

}
⇒
{

f1 = (2k3 + ω)/k , f2 = 0, f3 = 0, s2 = 3k
}

In this case the equation is linear and its solution is given by

u = U
n1 − d1 + exp(ζ)

exp(ζ)
,

2 d0 = d2
1/6, n0 = d2

1/6 ,

3 d1 =
n1(n0 + d0)± (d0 − n0)

√
n2

1 − 4n0

2n0
,

4 d0 = −d2
1 , n0 = d1

(
1±
√

5
2

n1 −
3±
√

5
2

d1

)
.

This solution is blowup.
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exp(ζ)
,

2 d0 = d2
1/6, n0 = d2

1/6 ,

3 d1 =
n1(n0 + d0)± (d0 − n0)

√
n2

1 − 4n0

2n0
,

4 d0 = −d2
1 , n0 = d1

(
1±
√

5
2

n1 −
3±
√

5
2

d1

)
.

This solution is blowup.
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KdV-like PDEs Numerical Experiments

Linearization

The above FDA contains nonlinear terms for the grid function on the next
time layer. To treat them in construction of a numerical solution we used the
following linearization

v3
k+1 = v3

k+1 − v3
k + v3

k = (vk+1 − vk )(v2
k+1 + vk+1vk + v2

k ) + v3
k ≈

≈ vk+1 · 3v2
k − 2v3

k ,

v2
k+1 = v2

k+1 − v2
k + v2

k = (vk+1 − vk )(vk+1 + vk ) + v2
k ≈

≈ vk+1 · 2vk − v2
k .

We implemented numerical procedure for construction of a solution in Python
with the use of package SciPy. In doing so, we fixed τ := h/2.
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Exact solution of type 2

100 50 0 50
x

0.2

0.0

0.2

0.4

0.6

0.8

1.0

u

U=1.00, n0 =1.50, n1 =−3.00, d0 =1.50, d1 =3.00, f1 =0.00, f2 =−0.04, f3 =−0.01, s2 =−0.00, s=0, t=0.00

Gerdt & Blinkov (JINR & SSU) CA aided solving nonlinear PDEs CAIM 2013 18 / 44



KdV-like PDEs Numerical Experiments

Exact solution of type 2

100 50 0 50
x

0.2

0.0

0.2

0.4

0.6

0.8

1.0

u

U=1.00, n0 =1.50, n1 =−3.00, d0 =1.50, d1 =3.00, f1 =0.00, f2 =−0.04, f3 =−0.01, s2 =−0.00, s=0, t=60.12

Gerdt & Blinkov (JINR & SSU) CA aided solving nonlinear PDEs CAIM 2013 18 / 44



KdV-like PDEs Numerical Experiments

Exact solution of type 2

100 50 0 50
x

0.2

0.0

0.2

0.4

0.6

0.8

1.0

u

U=1.00, n0 =1.50, n1 =−3.00, d0 =1.50, d1 =3.00, f1 =0.00, f2 =−0.04, f3 =−0.01, s2 =−0.00, s=0, t=120.24

Gerdt & Blinkov (JINR & SSU) CA aided solving nonlinear PDEs CAIM 2013 18 / 44



KdV-like PDEs Numerical Experiments

Exact solution of type 2

100 50 0 50
x

0.2

0.0

0.2

0.4

0.6

0.8

1.0

u

U=1.00, n0 =1.50, n1 =−3.00, d0 =1.50, d1 =3.00, f1 =0.00, f2 =−0.04, f3 =−0.01, s2 =−0.00, s=0, t=180.36

Gerdt & Blinkov (JINR & SSU) CA aided solving nonlinear PDEs CAIM 2013 18 / 44



KdV-like PDEs Numerical Experiments

Exact solution of type 2

100 50 0 50
x

0.2

0.0

0.2

0.4

0.6

0.8

1.0

u

U=1.00, n0 =1.50, n1 =−3.00, d0 =1.50, d1 =3.00, f1 =0.00, f2 =−0.04, f3 =−0.01, s2 =−0.00, s=0, t=240.48

Gerdt & Blinkov (JINR & SSU) CA aided solving nonlinear PDEs CAIM 2013 18 / 44



KdV-like PDEs Numerical Experiments

Exact solution of type 2

100 50 0 50
x

0.2

0.0

0.2

0.4

0.6

0.8

1.0

u

U=1.00, n0 =1.50, n1 =−3.00, d0 =1.50, d1 =3.00, f1 =0.00, f2 =−0.04, f3 =−0.01, s2 =−0.00, s=0, t=300.60

Gerdt & Blinkov (JINR & SSU) CA aided solving nonlinear PDEs CAIM 2013 18 / 44



KdV-like PDEs Numerical Experiments

Exact solution of type 2

100 50 0 50
x

0.2

0.0

0.2

0.4

0.6

0.8

1.0

u

U=1.00, n0 =1.50, n1 =−3.00, d0 =1.50, d1 =3.00, f1 =0.00, f2 =−0.04, f3 =−0.01, s2 =−0.00, s=0, t=360.72

Gerdt & Blinkov (JINR & SSU) CA aided solving nonlinear PDEs CAIM 2013 18 / 44



KdV-like PDEs Numerical Experiments

Exact solution of type 2

100 50 0 50
x

0.2

0.0

0.2

0.4

0.6

0.8

1.0

u

U=1.00, n0 =1.50, n1 =−3.00, d0 =1.50, d1 =3.00, f1 =0.00, f2 =−0.04, f3 =−0.01, s2 =−0.00, s=0, t=420.84

Gerdt & Blinkov (JINR & SSU) CA aided solving nonlinear PDEs CAIM 2013 18 / 44



KdV-like PDEs Numerical Experiments

Exact solution of type 2

100 50 0 50
x

0.2

0.0

0.2

0.4

0.6

0.8

1.0

u

U=1.00, n0 =1.50, n1 =−3.00, d0 =1.50, d1 =3.00, f1 =0.00, f2 =−0.04, f3 =−0.01, s2 =−0.00, s=0, t=480.96

Gerdt & Blinkov (JINR & SSU) CA aided solving nonlinear PDEs CAIM 2013 18 / 44



KdV-like PDEs Numerical Experiments

Exact solution of type 2

100 50 0 50
x

0.2

0.0

0.2

0.4

0.6

0.8

1.0

u

U=1.00, n0 =1.50, n1 =−3.00, d0 =1.50, d1 =3.00, f1 =0.00, f2 =−0.04, f3 =−0.01, s2 =−0.00, s=0, t=541.08

Gerdt & Blinkov (JINR & SSU) CA aided solving nonlinear PDEs CAIM 2013 18 / 44



KdV-like PDEs Numerical Experiments

Exact solution of type 2

100 50 0 50
x

0.2

0.0

0.2

0.4

0.6

0.8

1.0

u

U=1.00, n0 =1.50, n1 =−3.00, d0 =1.50, d1 =3.00, f1 =0.00, f2 =−0.04, f3 =−0.01, s2 =−0.00, s=0, t=601.20

Gerdt & Blinkov (JINR & SSU) CA aided solving nonlinear PDEs CAIM 2013 18 / 44



KdV-like PDEs Numerical Experiments

Exact solution of type 2

100 50 0 50
x

0.2

0.0

0.2

0.4

0.6

0.8

1.0

u

U=1.00, n0 =1.50, n1 =−3.00, d0 =1.50, d1 =3.00, f1 =0.00, f2 =−0.04, f3 =−0.01, s2 =−0.00, s=0, t=661.32

Gerdt & Blinkov (JINR & SSU) CA aided solving nonlinear PDEs CAIM 2013 18 / 44



KdV-like PDEs Numerical Experiments

Exact solution of type 2

100 50 0 50
x

0.2

0.0

0.2

0.4

0.6

0.8

1.0

u

U=1.00, n0 =1.50, n1 =−3.00, d0 =1.50, d1 =3.00, f1 =0.00, f2 =−0.04, f3 =−0.01, s2 =−0.00, s=0, t=721.44

Gerdt & Blinkov (JINR & SSU) CA aided solving nonlinear PDEs CAIM 2013 18 / 44



KdV-like PDEs Numerical Experiments

Exact solution of type 3

50 0 50 100
x

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

u

U=1.00, n0 =2.00, n1 =3.00, d0 =3.00, d1 =4.00, f1 =0.00, f2 =1.51, f3 =−0.72, s2 =−0.48, s=0, t=0.00

Gerdt & Blinkov (JINR & SSU) CA aided solving nonlinear PDEs CAIM 2013 19 / 44



KdV-like PDEs Numerical Experiments

Exact solution of type 3

50 0 50 100
x

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

u

U=1.00, n0 =2.00, n1 =3.00, d0 =3.00, d1 =4.00, f1 =0.00, f2 =1.51, f3 =−0.72, s2 =−0.48, s=0, t=6.01

Gerdt & Blinkov (JINR & SSU) CA aided solving nonlinear PDEs CAIM 2013 19 / 44



KdV-like PDEs Numerical Experiments

Exact solution of type 3

50 0 50 100
x

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

u

U=1.00, n0 =2.00, n1 =3.00, d0 =3.00, d1 =4.00, f1 =0.00, f2 =1.51, f3 =−0.72, s2 =−0.48, s=0, t=12.02

Gerdt & Blinkov (JINR & SSU) CA aided solving nonlinear PDEs CAIM 2013 19 / 44



KdV-like PDEs Numerical Experiments

Exact solution of type 3

50 0 50 100
x

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

u

U=1.00, n0 =2.00, n1 =3.00, d0 =3.00, d1 =4.00, f1 =0.00, f2 =1.51, f3 =−0.72, s2 =−0.48, s=0, t=18.04

Gerdt & Blinkov (JINR & SSU) CA aided solving nonlinear PDEs CAIM 2013 19 / 44



KdV-like PDEs Numerical Experiments

Exact solution of type 3

50 0 50 100
x

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

u

U=1.00, n0 =2.00, n1 =3.00, d0 =3.00, d1 =4.00, f1 =0.00, f2 =1.51, f3 =−0.72, s2 =−0.48, s=0, t=24.05

Gerdt & Blinkov (JINR & SSU) CA aided solving nonlinear PDEs CAIM 2013 19 / 44



KdV-like PDEs Numerical Experiments

Exact solution of type 3

50 0 50 100
x

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

u

U=1.00, n0 =2.00, n1 =3.00, d0 =3.00, d1 =4.00, f1 =0.00, f2 =1.51, f3 =−0.72, s2 =−0.48, s=0, t=30.06

Gerdt & Blinkov (JINR & SSU) CA aided solving nonlinear PDEs CAIM 2013 19 / 44



KdV-like PDEs Numerical Experiments

Exact solution of type 3

50 0 50 100
x

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

u

U=1.00, n0 =2.00, n1 =3.00, d0 =3.00, d1 =4.00, f1 =0.00, f2 =1.51, f3 =−0.72, s2 =−0.48, s=0, t=36.07

Gerdt & Blinkov (JINR & SSU) CA aided solving nonlinear PDEs CAIM 2013 19 / 44



KdV-like PDEs Numerical Experiments

Exact solution of type 3

50 0 50 100
x

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

u

U=1.00, n0 =2.00, n1 =3.00, d0 =3.00, d1 =4.00, f1 =0.00, f2 =1.51, f3 =−0.72, s2 =−0.48, s=0, t=42.08

Gerdt & Blinkov (JINR & SSU) CA aided solving nonlinear PDEs CAIM 2013 19 / 44



KdV-like PDEs Numerical Experiments

Exact solution of type 3

50 0 50 100
x

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

u

U=1.00, n0 =2.00, n1 =3.00, d0 =3.00, d1 =4.00, f1 =0.00, f2 =1.51, f3 =−0.72, s2 =−0.48, s=0, t=48.10

Gerdt & Blinkov (JINR & SSU) CA aided solving nonlinear PDEs CAIM 2013 19 / 44



KdV-like PDEs Numerical Experiments

Exact solution of type 3

50 0 50 100
x

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

u

U=1.00, n0 =2.00, n1 =3.00, d0 =3.00, d1 =4.00, f1 =0.00, f2 =1.51, f3 =−0.72, s2 =−0.48, s=0, t=54.11

Gerdt & Blinkov (JINR & SSU) CA aided solving nonlinear PDEs CAIM 2013 19 / 44



KdV-like PDEs Numerical Experiments

Exact solution of type 3

50 0 50 100
x

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

u

U=1.00, n0 =2.00, n1 =3.00, d0 =3.00, d1 =4.00, f1 =0.00, f2 =1.51, f3 =−0.72, s2 =−0.48, s=0, t=60.12

Gerdt & Blinkov (JINR & SSU) CA aided solving nonlinear PDEs CAIM 2013 19 / 44



KdV-like PDEs Numerical Experiments

Exact solution of type 3

50 0 50 100
x

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

u

U=1.00, n0 =2.00, n1 =3.00, d0 =3.00, d1 =4.00, f1 =0.00, f2 =1.51, f3 =−0.72, s2 =−0.48, s=0, t=66.13

Gerdt & Blinkov (JINR & SSU) CA aided solving nonlinear PDEs CAIM 2013 19 / 44



KdV-like PDEs Numerical Experiments

Exact solution of type 3

50 0 50 100
x

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

u

U=1.00, n0 =2.00, n1 =3.00, d0 =3.00, d1 =4.00, f1 =0.00, f2 =1.51, f3 =−0.72, s2 =−0.48, s=0, t=72.14

Gerdt & Blinkov (JINR & SSU) CA aided solving nonlinear PDEs CAIM 2013 19 / 44



Navie-Stokes Equations Involutive Navier-Stokes System

Contents

1 Introduction

2 KdV-like PDEs
5-parameter Family of PDEs
Finite Difference Approximation
Exact Solutions
Numerical Experiments

3 Navie-Stokes Equations
Involutive Navier-Stokes System
Finite Difference Approximation
Consistency Analysis
Numerical Experiments

4 Conclusions

5 References

Gerdt & Blinkov (JINR & SSU) CA aided solving nonlinear PDEs CAIM 2013 20 / 44



Navie-Stokes Equations Involutive Navier-Stokes System

Navier-Stokes PDE system
Involutive PDE system of the Navier-Stokes equations for unsteady
two-dimensional motion of incompressible viscous liquid of constant viscosity
can be written in the following form (G.,Blinkov’09) obtained by the method
suggested in (G.,Blinkov, Mozzhilkin’06)

F :=


f1 := ux + vy = 0 ,
f2 := ut + uux + vuy + px − 1

Re (uxx + uyy ) = 0 ,
f3 := vt + uvx + vvy + py − 1

Re (vxx + vyy ) = 0 ,
f4 := u2

x + 2vxuy + v2
y + pxx + pyy = 0 .

Here
f1 - the continuity equation,

f2, f3 - the proper Navier-Stokes equations,
f4 - the pressure Poisson equation which is

the integrability condition for {f1, f2, f3},
(u, v) - the velocity field,

p - the pressure,
Re - the Reynolds number.
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Navie-Stokes Equations Involutive Navier-Stokes System

Divergence form

The involutive Navier-Stokes system admits two-dimensional conservation law
form

∂P
∂t

+
∂Q
∂x

+
∂R
∂y

= 0 .

In terms of {f1, f2, f3, f4} this form reads

Conservation law form



f1 : ∂
∂x u + ∂

∂y v = 0 ,

f2 : ∂
∂t u + ∂

∂x

(
u2 + p − 1

Re ux
)

+ ∂
∂y

(
vu − 1

Re uy
)

= 0 ,

f3 : ∂
∂t v + ∂

∂x

(
uv − 1

Re vx
)

+ ∂
∂y

(
v2 + p − 1

Re vy
)

= 0 ,

f4 : ∂
∂x (uux + vuy + px ) + ∂

∂y (vvy + uvx + py ) = 0 .
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Navie-Stokes Equations Finite Difference Approximation

Computational grid

The l.h.s. of the Navier–Stokes system (NSS) can be considered as elements in
the differential polynomial ring R

fi = 0 (1 ≤ i ≤ 4), F := {f1, f2, f3, f4} ⊂ R := K[u, v ,p] ,

where K := Q(Re) is the differential field of constants.

We use an orthogonal and uniform computational grid as the set of points

(jh, kh,nτ) ∈ R3, τ > 0, h > 0, (j , k ,n) ∈ Z3.

In a grid node (jh, kh,nτ) a solution to NSS is approximated by the triple of
grid functions

{un
j,k , v

n
j,k ,p

n
j,k} := {u, v ,p} |x=jh,y=kh,t=τn .

We introduce differences {σx , σy , σt} acting on a grid function φ(x , y , t) as

σx ◦ φ = φ(x + h, y , t), σy ◦ φ = φ(x , y + h, t), σt ◦ φ = φ(x , y , t + τ)

and denote by R the ring of difference polynomials over K.
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where K := Q(Re) is the differential field of constants.

We use an orthogonal and uniform computational grid as the set of points

(jh, kh,nτ) ∈ R3, τ > 0, h > 0, (j , k ,n) ∈ Z3.

In a grid node (jh, kh,nτ) a solution to NSS is approximated by the triple of
grid functions

{un
j,k , v

n
j,k ,p

n
j,k} := {u, v ,p} |x=jh,y=kh,t=τn .

We introduce differences {σx , σy , σt} acting on a grid function φ(x , y , t) as

σx ◦ φ = φ(x + h, y , t), σy ◦ φ = φ(x , y + h, t), σt ◦ φ = φ(x , y , t + τ)

and denote by R the ring of difference polynomials over K.
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Navie-Stokes Equations Finite Difference Approximation

Integration contour

To discretize NSS on the grid choose the integration contour Γ in the (x , y)
plane

-

6
�

?

u
uu

uk

k + 1

k + 2

j j + 1 j + 2
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Navie-Stokes Equations Finite Difference Approximation

The Navie-Stokes system in integral form

Integral conservation law form



∮
Γ

−vdx + udy = 0 ,

xj+2∫
xj

yk+2∫
yk

udxdy

∣∣∣∣∣
tn+1

tn

−
tn+1∫
tn

(∮
Γ

(
vu − 1

Re uy
)

dx −
(
u2 + p − 1

Re ux
)

dy
)

dt = 0 ,

xj+2∫
xj

yk+2∫
yk

vdxdy

∣∣∣∣∣
tn+1

tn

−
tn+1∫
tn

(∮
Γ

(
v2 + p − 1

Re vy
)

dx −
(
uv − 1

Re vx
)

dy
)

dt = 0 ,

∮
Γ

−
(
(v2)y + (uv)x + py

)
dx +

(
(u2)x + (vu)y + px

)
dy = 0 .
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Navie-Stokes Equations Finite Difference Approximation

Additional relations
Now we add integral relations between dependent variables and derivatives

Exact integral relations



xj+1∫
xj

(u2)x dx = u(xj+1, y)2 − u(xj , y)2 ,
yk+1∫
yk

(v2)y dy = v(x , yk+1)
2 − v(x , yk )

2 ,

xj+1∫
xj

(uv)x dx = u(xj+1, y)v(xj+1, y)− u(xj , y)v(xj , y) ,

yk+1∫
yk

(uv)y dy = u(x , yk+1)v(x , yk+1)− u(x , yk )v(x , yk ) ,

xj+1∫
xj

ux dx = u(xj+1, y)− u(xj , y) ,
yk+1∫
yk

uy dy = u(x , yk+1)− u(x , yk ) ,

xj+1∫
xj

vx dx = v(xj+1, y)− u(xj , y) ,
yk+1∫
yk

vy dy = v(x , yk+1)− u(x , yk ) ,

xj+1∫
xj

px dx = p(xj+1, y)− u(xj , y) ,
yk+1∫
yk

py dy = p(x , yk+1)− u(x , yk ) .
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Navie-Stokes Equations Finite Difference Approximation

Finite difference approximation 1
By using the midpoint integration approximation for the integrals over x and
y and the top-left corner approximation for integration over t . Then
elimination of partial derivatives from the obtained difference system gives the
following FDA with a 5× 5 stencil (G.,Blinkov’09)

FDA 1 =



e1
n
j,k :=

un
j+1,k−un

j−1,k
2h +

vn
j,k+1−vn

j,k−1
2h = 0,

e2
n
j,k :=

un+1
jk −un

jk

τ +
un

j+1,k
2−un

j−1,k
2

2h +
vn

j,k+1un
j,k+1−vn

j,k−1un
j,k−1

2h +
pn

j+1,k−pn
j−1,k

2h

− 1
Re

(
un

j+2,k−2un
jk +un

j−2,k

4h2 +
un

j,k+2−2un
jk +un

j,k−2

4h2

)
= 0,

e3
n
j,k :=

vn+1
jk −vn

jk

τ +
un

j+1,k vn
j+1,k−un

j−1,k vn
j−1,k

2h
vn

j,k+1
2−vn

j,k−1
2

2h +
pn

j,k+1−pn
j,k−1

2h

− 1
Re

(
vn

j+2,k−2vn
jk +vn

j−2,k

4h2 +
vn

j,k+2−2vn
jk +vn

j,k−2

4h2

)
= 0,

e4
n
j,k :=

un
j+2,k

2−2un
j,k

2+un
j−2,k

2

4h2 +
vn

j,k+2
2−2vn

j,k
2+vn

j,k−2
2

4h2

+ 2 un
j+1,k+1vn

j+1,k+1−un
j+1,k−1vn

j+1,k−1−un
j−1,k+1vn

j−1,k+1+un
j−1,k−1vn

j−1,k−1

4h2

+
pn

j+2,k−2pn
jk +pn

j−2,k

4h2 +
pn

j,k+2−2pn
jk +pn

j,k−2

4h2 = 0 .
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Navie-Stokes Equations Finite Difference Approximation

Finite difference approximation 2

If one applies the trapezoidal approximation to the integral relations for
ux ,uy , vx , vy ,u2)x , (v2)y and p instead of the midpoint approximation, then it
produces FDA with a 3× 3 stencil (G.,Blinkov’09)

FDA 2 =



e1
n
j,k :=

un
j+1,k−un

j−1,k
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vn
j,k+1−vn

j,k−1
2h = 0,

e2
n
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jk

τ + un
jk

un
j+1,k−un

j−1,k
2h + vn

jk
un

j,k+1−un
j,k−1

2h +
pn

j+1,k−pn
j−1,k

2h

− 1
Re

(
un

j+1,k−2un
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j−1,k

h2 +
un

j,k+1−2un
jk +un

j,k−1

h2

)
= 0,

e3
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j,k :=

vn+1
jk −vn

jk

τ + un
jk

vn
j+1,k−vn

j−1,k
2h + vn

jk
vn

j,k+1−vn
j,k−1

2h +
pn

j,k+1−pn
j,k−1

2h

− 1
Re

(
vn

j+1,k−2vn
jk +vn

j−1,k

h2 +
vn

j,k+1−2vn
jk +vn

j,k−1

h2

)
= 0,

e4
n
j,k :=

(
un

j+1,k−un
j−1,k

2h

)2
+ 2 vn

j+1,k−vn
j−1,k

2h
un

j,k+1−un
j,k−1

2h +
(

vn
j,k+1−vn

j,k−1
2h

)2

+
pn

j+1,k−2pn
jk +pn

j−1,k

h2 +
pn

j,k+1−2pn
jk +pn

j,k−1

h2 = 0
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Navie-Stokes Equations Finite Difference Approximation

Finite difference approximation 3

The third approximation with 3× 3 stencil is obtained from NSS by the
conventional discretization what consists of replacing the temporal derivatives
with the forward differences and the spatial derivatives with the central
differences.

FDA 3 =
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Navie-Stokes Equations Consistency Analysis
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Navie-Stokes Equations Consistency Analysis

Differential and difference consequences
A perfect difference ideal JF̃ K generated by F̃ ⊂ R is the smallest difference
ideal containing F̃ and such that for any f̃ ∈ R and k1, k2, k3 ∈ N≥0

(σx ◦ f̃ )k1 (σy ◦ f̃ )k2 (σt ◦ f̃ )k3 ∈ JF̃ K =⇒ f̃ ∈ JF̃ K .

In difference algebra, perfect ideals play the same role as radical ideals in
commutative and differential algebra.

Set F ⊂ R (NSS) generates radical differential ideal JF K.

Let a finite set of difference polynomials

f̃1 = · · · = f̃p = 0 , F̃ := {f̃1, . . . f̃p} ⊂ R

be a FDA to F . Generally, p needs not to be equal 4.

Differential and difference consequences

A differential (resp. difference) polynomial f ∈ R (resp. f̃ ∈ R) is
differential-algebraic (resp. difference-algebraic) consequence of F (resp. F̃ ) if
f ∈ JF K (resp. f̃ ∈ JF̃ K).

Gerdt & Blinkov (JINR & SSU) CA aided solving nonlinear PDEs CAIM 2013 32 / 44



Navie-Stokes Equations Consistency Analysis

Differential and difference consequences
A perfect difference ideal JF̃ K generated by F̃ ⊂ R is the smallest difference
ideal containing F̃ and such that for any f̃ ∈ R and k1, k2, k3 ∈ N≥0

(σx ◦ f̃ )k1 (σy ◦ f̃ )k2 (σt ◦ f̃ )k3 ∈ JF̃ K =⇒ f̃ ∈ JF̃ K .

In difference algebra, perfect ideals play the same role as radical ideals in
commutative and differential algebra.

Set F ⊂ R (NSS) generates radical differential ideal JF K.

Let a finite set of difference polynomials

f̃1 = · · · = f̃p = 0 , F̃ := {f̃1, . . . f̃p} ⊂ R

be a FDA to F . Generally, p needs not to be equal 4.

Differential and difference consequences

A differential (resp. difference) polynomial f ∈ R (resp. f̃ ∈ R) is
differential-algebraic (resp. difference-algebraic) consequence of F (resp. F̃ ) if
f ∈ JF K (resp. f̃ ∈ JF̃ K).

Gerdt & Blinkov (JINR & SSU) CA aided solving nonlinear PDEs CAIM 2013 32 / 44



Navie-Stokes Equations Consistency Analysis

Differential and difference consequences
A perfect difference ideal JF̃ K generated by F̃ ⊂ R is the smallest difference
ideal containing F̃ and such that for any f̃ ∈ R and k1, k2, k3 ∈ N≥0

(σx ◦ f̃ )k1 (σy ◦ f̃ )k2 (σt ◦ f̃ )k3 ∈ JF̃ K =⇒ f̃ ∈ JF̃ K .

In difference algebra, perfect ideals play the same role as radical ideals in
commutative and differential algebra.

Set F ⊂ R (NSS) generates radical differential ideal JF K.

Let a finite set of difference polynomials

f̃1 = · · · = f̃p = 0 , F̃ := {f̃1, . . . f̃p} ⊂ R

be a FDA to F . Generally, p needs not to be equal 4.

Differential and difference consequences

A differential (resp. difference) polynomial f ∈ R (resp. f̃ ∈ R) is
differential-algebraic (resp. difference-algebraic) consequence of F (resp. F̃ ) if
f ∈ JF K (resp. f̃ ∈ JF̃ K).

Gerdt & Blinkov (JINR & SSU) CA aided solving nonlinear PDEs CAIM 2013 32 / 44



Navie-Stokes Equations Consistency Analysis

Differential and difference consequences
A perfect difference ideal JF̃ K generated by F̃ ⊂ R is the smallest difference
ideal containing F̃ and such that for any f̃ ∈ R and k1, k2, k3 ∈ N≥0

(σx ◦ f̃ )k1 (σy ◦ f̃ )k2 (σt ◦ f̃ )k3 ∈ JF̃ K =⇒ f̃ ∈ JF̃ K .

In difference algebra, perfect ideals play the same role as radical ideals in
commutative and differential algebra.

Set F ⊂ R (NSS) generates radical differential ideal JF K.

Let a finite set of difference polynomials

f̃1 = · · · = f̃p = 0 , F̃ := {f̃1, . . . f̃p} ⊂ R

be a FDA to F . Generally, p needs not to be equal 4.

Differential and difference consequences

A differential (resp. difference) polynomial f ∈ R (resp. f̃ ∈ R) is
differential-algebraic (resp. difference-algebraic) consequence of F (resp. F̃ ) if
f ∈ JF K (resp. f̃ ∈ JF̃ K).

Gerdt & Blinkov (JINR & SSU) CA aided solving nonlinear PDEs CAIM 2013 32 / 44



Navie-Stokes Equations Consistency Analysis

Differential and difference consequences
A perfect difference ideal JF̃ K generated by F̃ ⊂ R is the smallest difference
ideal containing F̃ and such that for any f̃ ∈ R and k1, k2, k3 ∈ N≥0

(σx ◦ f̃ )k1 (σy ◦ f̃ )k2 (σt ◦ f̃ )k3 ∈ JF̃ K =⇒ f̃ ∈ JF̃ K .

In difference algebra, perfect ideals play the same role as radical ideals in
commutative and differential algebra.

Set F ⊂ R (NSS) generates radical differential ideal JF K.

Let a finite set of difference polynomials

f̃1 = · · · = f̃p = 0 , F̃ := {f̃1, . . . f̃p} ⊂ R

be a FDA to F . Generally, p needs not to be equal 4.

Differential and difference consequences

A differential (resp. difference) polynomial f ∈ R (resp. f̃ ∈ R) is
differential-algebraic (resp. difference-algebraic) consequence of F (resp. F̃ ) if
f ∈ JF K (resp. f̃ ∈ JF̃ K).
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Navie-Stokes Equations Consistency Analysis

Conventional (weak) consistency of FDA

We shall say that a difference equation f̃ = 0 implies (in the continuous limit)
the differential equation f = 0 and write f̃ B f if f does not contain the grid
spacings h, τ and the Taylor expansion about a grid point (un

j,k , v
n
j,k ,p

n
j,k )

transforms equation f̃ = 0 into f + O(h, τ) = 0 where O(h, τ) denotes
expression which vanishes when h and τ go to zero.

Definition

The difference approximation F̃ is (weakly or w-)consistent with F if p = 4
and

(∀f̃ ∈ F̃ ) ( ∃f ∈ F ) [ f̃ B f ] .

The requirement of w-consistency which has been universally accepted in the
literature, is not satisfactory by the following two reasons:

1 The cardinality of FDA to a system of differential equations may be
different from that in the system.

2 A w-consistent FDA may not be good in view of inheritance of properties
of the underlying differential equation(s) at the discrete level.
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Navie-Stokes Equations Consistency Analysis

Strong consistency

Definition
An FDA to PDE(s) is strongly consistent or s-consistent if

(∀f̃ ∈ JF̃ K ) ( ∃f ∈ [F ] ) [ f̃ B f ] .

The algorithmic approach (G’12) to verification of s-consistency is based on
the following statement.

Theorem

A difference approximation F̃ ⊂ R to F ⊂ R is s-consistent iff a (reduced)
standard basis G of the difference ideal [F̃ ] satisfies

(∀g ∈ G ) ( ∃f ∈ [F ] ) [ g B f ] .

Given a differential polynomial f ∈ R, one can algorithmically check its
membership in JF K by performing the involutive (Janet) reduction.
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Navie-Stokes Equations Consistency Analysis

S-consistency analysis of FDA 1,2 and 3

All three FDAs are w-consistent. This can be easily verified by the Taylor
expansion of the finite differences in the set

F̃ := {e1
n
j,k ,e2

n
j,k ,e3

n
j,k ,e4

n
j,k}

about the grid point {hj ,hk ,nτ} when the grid spacings h and τ go to zero.

Proposition [Amodio,Blinkov,G.,La Scala’13]

Among weakly consistent FDAs 1,2, and 3 only FDA 1 is strongly consistent.

Corollary

A standard basis G of the difference ideal generated by the set of polynomials
in FDA 1 satisfies the condition

(∀g ∈ G ) ( ∃f ∈ [F ] ) [ g B f ] .
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Navie-Stokes Equations Numerical Experiments
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Navie-Stokes Equations Numerical Experiments

Numerical Experiments

Suppose (Amodio,Blinkov,G.,La Scala’13) that the NSS is defined for t ≥ 0 in
the square domain Ω = [0, π]× [0, π] and provide initial conditions for t = 0
and boundary conditions for t > 0 and (x , y) ∈ ∂Ω according to the exact
solution (Pearson’64)

u := −e−2t/Re cos(x) sin(y) ,
v := e−2t/Re sin(x) cos(y) ,
p := −e−4t/Re(cos(2x) + cos(2y))/4 .

Let [0, π]× [0, π] be discretized in the (x , y)-directions by means of the
(m + 2)2 equispaced points xj = jh and yk = kh, for j , k = 0, . . .m + 1, and
h = π/(m + 1).
Then, starting from IC, the 2nd and the 3rd equations in every FDA give
explicit formulae to compute un+1

jk and vn+1
jk for j , k = 1, . . . ,m. The 4th

equation can be used to derive a m2 ×m2 linear system that computes the
unknowns pn+1

jk for j , k = 1, . . . ,m. The 1st equation is unnecessary and may
be used to validate the obtained solution. This procedure is iterated for
n = 0,1, . . . ,N being tf = Nτ the end point of the time interval.
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Navie-Stokes Equations Numerical Experiments

Relative error for Re = 105

We computed error by means of the formula

eg = max
j,k

|gN
j,k − g(xj , yk , tf )|

1 + |g(xj , yk , tf )|
.

where g ∈ {u, v ,p} and g(x , y , t) belongs to the exact solution.
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Navie-Stokes Equations Numerical Experiments

Computed value of ux + vy
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Navie-Stokes Equations Numerical Experiments

Relative error for Re = 102
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Navie-Stokes Equations Numerical Experiments

Relative error in u, v and p with FDA 1 for Re = 102
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Conclusions

Conclusions

Main results obtained
We applied the finite volume method, numerical integration and
difference elimination to obtain FDA to the KdV-like PDEs and to the
NSS for unsteady two-dimensional motion of incompressible viscous liquid
of constant viscosity.
The structure of FDA depends on the numerical methods used to
approximate integrals.
By using algorithmic methods of differential and difference algebra we
shown that the FDA for the KdV-like PDEs is s-consistent whereas for
NSS one of the approximations which is characterized by a 5× 5 stencil is
s-consistent whereas the other two with a 3× 3 stencil are not.
This result is at variance with universally accepted opinion that
discretization with a more compact stencil is numerically favoured.
Our computer experimentation revealed much better numerical behavior
of the s-consistent approximation in comparison with the considered
s-inconsistent ones.
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