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Working with Ziming

Ziming, thanks for your supervising and collaborations!
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Ziming, Happy Birthday!
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Integration Problems

Indefinite Integration. Given a function f (x) in certain class C,
decide whether there exists g(x) ∈ C such that

f =
dg
dx
, g ′.

Example. For f = log(x), we have g = x log(x)− x.

Definite Integration. Given a function f (x) that is continuous in the
interval I ⊆ R, compute the integral∫

I
f (x)dx.

Example. For f = log(x) and I = [1,2] , we have∫
I
f (x)dx = 2log(2)−1.
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Fundamental Theorem of Calculus

Newton–Leibniz Theorem. Let f (x) be a continuous function on
[a,b] and let F(x) be defined by

F(x) =
∫ x

a
f (t)dt for all x ∈ [a,b].

Then F(x) ′ = f (x) for all x ∈ [a,b] and∫ b

a
f (x)dx = F(b)−F(a). (Newton–Leibniz formula)

Definite Integration  Indefinite Integration
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F(x) =
∫ x

a
f (t)dt for all x ∈ [a,b].

Then F(x) ′ = f (x) for all x ∈ [a,b] and∫ b

a
f (x)dx = F(b)−F(a). (Newton–Leibniz formula)

Definite Integration  Indefinite Integration

∫ 2

1
log(x)dx=F(2)−F(1)= 2log(2)−1, where F(x) = x log(x)− x.
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Fundamental Theorem of Calculus

Newton–Leibniz Theorem. Let f (x) be a continuous function on
[a,b] and let F(x) be defined by

F(x) =
∫ x

a
f (t)dt for all x ∈ [a,b].

Then F(x) ′ = f (x) for all x ∈ [a,b] and∫ b

a
f (x)dx = F(b)−F(a). (Newton–Leibniz formula)

Definite Integration  Indefinite Integration

∫+∞
0

exp(−x2)dx = ?
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What is Elementary Functions?

E := ({C,x}, {+,−,×,÷}, {exp(·), log(·),RootOf(·)}) .

Definition. An elementary function is a function of x which is the
composition of a finite number of

binary operations: +,−,×,÷;

unary operations: exponential, logarithms, constants,
solutions of polynomial equations.

Example.
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Differential Algebra

Differential Ring and Differential Field. Let R be an integral
domain. An additive map D : R → R is called a derivation on R if

D(f ·g) = f ·D(g)+g ·D(f ). (Leibniz’s rule)

The pair (R,D) is called a differential ring. If R is a field, it is then
called a differential field.

Example.
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Differential Ring and Differential Field. Let R be an integral
domain. An additive map D : R → R is called a derivation on R if

D(f ·g) = f ·D(g)+g ·D(f ). (Leibniz’s rule)

The pair (R,D) is called a differential ring. If R is a field, it is then
called a differential field.

Example.
Polynomial ring: (C[x], ′ )

P =

n∑
i=0

pixi  P ′ =
n∑

i=0

ipixi−1.
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Differential Algebra

Differential Ring and Differential Field. Let R be an integral
domain. An additive map D : R → R is called a derivation on R if

D(f ·g) = f ·D(g)+g ·D(f ). (Leibniz’s rule)

The pair (R,D) is called a differential ring. If R is a field, it is then
called a differential field.

Example.
Rational-function field: (C(x), ′ )

f =
P
Q

 f ′ =
P ′Q−PQ ′

Q2 .
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Differential Algebra

Differential Ring and Differential Field. Let R be an integral
domain. An additive map D : R → R is called a derivation on R if

D(f ·g) = f ·D(g)+g ·D(f ). (Leibniz’s rule)

The pair (R,D) is called a differential ring. If R is a field, it is then
called a differential field.

Example.
Elementary-function field: algebraic case

(C(x)(α), ′ ) with α algebraic over C(x)

rdα
d + rd−1α

d−1 + · · ·+ r0 = 0  α
′(x) = −

r ′dαd + · · ·+ r ′0
drdαd−1 + · · ·+ r1
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Differential Algebra

Differential Ring and Differential Field. Let R be an integral
domain. An additive map D : R → R is called a derivation on R if

D(f ·g) = f ·D(g)+g ·D(f ). (Leibniz’s rule)

The pair (R,D) is called a differential ring. If R is a field, it is then
called a differential field.

Example.
Elementary-function field: exponential case

(C(x)(exp(x)), ′ )

f =
1+ x+ exp(x)

x2 + exp(x)
 f ′ =

x(xexp(x)−3exp(x)− x−2)
(x2 + exp(x))2 .

S. Chen, AMSS Stability Problems in Symbolic Integration 7/23



Differential Algebra

Differential Ring and Differential Field. Let R be an integral
domain. An additive map D : R → R is called a derivation on R if

D(f ·g) = f ·D(g)+g ·D(f ). (Leibniz’s rule)

The pair (R,D) is called a differential ring. If R is a field, it is then
called a differential field.

Example.
Elementary-function field: logarithmic case

(C(x)(log(x)), ′ )

f =
1+ x+ log(x)

x2 + log(x)
 f ′=−

2 log(x)x2 + x3 − log(x)x+ x2 + x+1

(x2 + log(x))2 x
.
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Differential Algebra

Differential Ring and Differential Field. Let R be an integral
domain. An additive map D : R → R is called a derivation on R if

D(f ·g) = f ·D(g)+g ·D(f ). (Leibniz’s rule)

The pair (R,D) is called a differential ring. If R is a field, it is then
called a differential field.

Example.
Elementary-function field: general case

(C(x)(t1, t2, t3, . . . , tn), ′ )

t1 =
√

x2 +1, t2 = log(1+ t2
1), t3 = exp

(
1+ t1
t1 + t2

2

)
, . . .
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Elementary Extensions

Differential Extension. (R∗,D∗) is called a differential extension
of (R,D) if R⊆ R∗ and D∗ |R= D.

Elementary Extension. Let (E,D) be a differential extension
of (F,D). An element t ∈ E is elementary over F if one of the
following conditions holds:

t is algebraic over F;
D(t)/t = D(u) for some u ∈ F, i.e., t = exp(u);
D(t) = D(u)/u for some u ∈ F, i.e., t = log(u).

Example. (F,D) = (C(x), ′ ) and (E,D) = (C(x, log(x)), ′ ).
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Elementary Functions

Definition. An function f (x) is elementary if ∃ a differential
extension (E, ′ ) of (C(x), ′ ) s.t. E = C(x)(t1, . . . , tn) and ti is
elementary over C(x)(t1, . . . , ti−1) for all i = 2, . . . ,n.

Example.

f (x) =
π√

log
(

exp
(√

1
3x2+3x+1

)2
+ x2 +1

)
Then f (x) is elementary since ∃ a differential extension

E = C(x)(t1, t2, t3, t4),

where

t1 =

√
1

3x2 +3x+1
, t2 = exp(t1), t3 = log(t2

2+x2+1), t4 =
√

t3.

S. Chen, AMSS Stability Problems in Symbolic Integration 9/23



Elementary Functions

Definition. An function f (x) is elementary if ∃ a differential
extension (E, ′ ) of (C(x), ′ ) s.t. E = C(x)(t1, . . . , tn) and ti is
elementary over C(x)(t1, . . . , ti−1) for all i = 2, . . . ,n.

Example.

f (x) =
π√

log
(

exp
(√

1
3x2+3x+1

)2
+ x2 +1

)
Then f (x) is elementary since ∃ a differential extension

E = C(x)(t1, t2, t3, t4),

where

t1 =

√
1

3x2 +3x+1
, t2 = exp(t1), t3 = log(t2

2+x2+1), t4 =
√

t3.

S. Chen, AMSS Stability Problems in Symbolic Integration 9/23



Symbolic Integration

Let (F,D) and (E,D) be two differential fields such that F ⊆ E.

Problem. Given f ∈ F, decide whether there exists g ∈ E
s.t. f = D(g). If such g exists, we say f is integrable in E.
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Let (F,D) and (E,D) be two differential fields such that F ⊆ E.

Problem. Given f ∈ F, decide whether there exists g ∈ E
s.t. f = D(g). If such g exists, we say f is integrable in E.

Elementary Integration Problem. Given an elementary function f (x)
over C(x), decide whether

∫
f (x)dx is elementary or not.

Example. The following integrals are not elementary over C(x):

∫
exp(x2)dx,

∫
1

log(x)
dx,

∫
sin(x)

x
dx,

∫
dx√

x(x−1)(x−2)
, · · ·
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Symbolic Integration

Let (F,D) and (E,D) be two differential fields such that F ⊆ E.

Problem. Given f ∈ F, decide whether there exists g ∈ E
s.t. f = D(g). If such g exists, we say f is integrable in E.

Selected books on Symbolic Integration:
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Liouville’s Theorem

Theorem (Liouville1835). Let f (x) be elementary over C(x), i.e.,

f ∈ F = C(x)(t1, t2, . . . , tn).

If
∫

f (x)dx is elementary, then∫
f (x)dx = g0︸︷︷︸

F-part

+

n∑
i=1

ci log(gi)︸ ︷︷ ︸
transcendental part

,

where g0,g1, . . . ,gn ∈ F and c1, . . . ,cn ∈ C.

Remark. With the above theorem, Liouville proved that the
integrals ∫

exp(x2)dx,
∫

1
log(x)

dx,
∫

sin(x)
x

dx, . . .

are not elementary.
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Two classical theorems

Liouville-Hardy Theorem. Let f ∈ C(x). Then f · log(x) is
elementary integrable over C(x) if and only if

f =
c
x
+g ′ for some c ∈ C and g ∈ C(x).

Liouville’s Theorem. Let f ,g ∈ C(x). Then f · exp(g) is elementary
integrable over C(x) if and only if

f = h ′+g ′h for some h ∈ C(x).
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Why exp(x2) is not Elementary Integrable?

Let t = exp(x2). We prove by contradiction.

Proof. If
∫

t dx is elementary, Liouville’s theorem implies that
∃g0, . . . ,gn ∈ C(x, t) and c0, . . . ,cn ∈ C s.t.∫

t dx = g0 +

n∑
i=1

ci log(gi) ⇔ t = g ′0 +
n∑

i=1

ci
g ′i
gi

⇓
t = (ft) ′ for some f ∈ C(x) ⇔ 1 = f ′+2xf

Claim. The differential equation

y(x) ′+2x · y(x) = 1

has no rational-function solution!
S. Chen, AMSS Stability Problems in Symbolic Integration 13/23



The irrationality of π

Suppose that π/2 = a/b ∈Q. Consider

In(x) =
∫ 1

−1
(1− z2)n · cos(xz)dz (n ∈ N)

Let Jn(x) := x2n+1In(x). Then

Jn(x) = 2n(2n−1)Jn−1(x)−4n(n−1)x2Jn−2(x).

⇓
Jn(x) = x2n+1In(x) = n! (Pn(x)sin(x)+Qn(x)cos(x)) ,

where Pn,Qn ∈ Z[x] are of degree ≤ n. Taking x = π/2 yields

a2n+1

n!
In(π/2) = Pn(π/2)b2n+1 ∈ N.

But 0 < In(π/2)< 2, which implies

a2n+1

n!
In(π/2)→ 0 (as n →+∞). a contradiction!
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Stability in dynamical systems

A (discrete) dynamical system is a pair (X,φ) with X being any set
and φ : X → X a self-map on X.

Subset of fixed points:

Fix(φ ,X) = {x ∈ X | φ(x) = x}.

Subset of periodic points:

Per(φ ,X) = {x ∈ X | φ n(x) = x for some n ∈ N\ {0}}.

Subset of stable points:

Stab(φ ,X)= {x∈X |∃{xi}i≥0 s.t. x0 = x and φ(xi+1) = xi for i ∈ N}.

Subset of attractive points:

Attrac(φ ,X) =
⋂
i∈N

φ
i(X).

Fix(φ ,X)⊆ Per(φ ,X)⊆ Stab(φ ,X)⊆ Attrac(φ ,X).
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Godelle’s example

Example. Let X = {(i, j) ∈ Z2 | 0≤ j≤max{i−1,0}} and φ : X → X
be such that

φ((i, j)) = (i, j−1) if j > 0 andφ((i,0)) = (min i−1,0,0).

Then Stab(φ ,X) = /0 and Attrac(φ ,X) = {(i,0) | i≤ 0}.
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Stability in differential fields

Idea. Viewing a differential field (K,D) as a dynamical system.

D(f +g) = D(f )+D(g) and D(fg) = gD(f )+ fD(g).

Definition. CK := {c ∈ K | D(c) = 0} is called the constant subfield
of (K,D).

Remark. K is a CK-vector space and D : K → K is CK-linear.

Proposition. Let (K,D) be a differential field of char. zero. Then

Stab(D,K) = Attrac(D,K).

Stability Problem. Given f ∈ K, decide whether f is stable or not,
i.e., for all i ∈ N, f = Di(gi) for some gi ∈ K.
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Structure theorem

Lemma. Let (K,D) be a differential field with D(x) = 1 and f ∈ K.
Then
(i) f = Dn(g) for some g ∈ K iff for any i with 0≤ i≤ n−1,
∃hi ∈ K s.t. xif = D(hi).

(ii) f is stable iff for all i ∈ N, xif = D(gi) for some gi ∈ K.

Theorem. Let (K,D) be a differential field with D(x) = 1. Then
Stab(D,K) forms a differential CK [x]-module.

Problem. Is Stab(D,K) always a free CK [x]-module?

Example. exp(c · x) is stable, so are

xn exp(c · x), xn sin(c · x), xn cos(c · x), . . .
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Stable elementary functions

Let EC(x) be the field of all elementary functions over C(x).

Theorem. Let D = d/dx and f ,g ∈ C(x) with g /∈ C. Then
(i) f is always stable in (EC(x),D).
(ii) f is stable in (C(x),D) iff f ∈ C[x].
(iii) f · log(x) is stable in (EC(x),D) iff f ∈ C[x,x−1].
(iv) f · exp(g) is stable in (EC(x),D) iff f ∈ C[x] and g = ax+b with

a,b ∈ C with a 6= 0.

Examples. Stable elementary functions: f (x) ∈ C(x), exp(ax+b),

log(f (x)), sin(x), cos(x), arcsin(x) arccos(x), arctan(x), . . .

Non-stable elementary functions: tan(x), cot(x), sec(x), csc(x), . . .
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D-finite power series and exact integration

Definition. f (x) ∈ C[[x]] is D-finite over C(x) if ∃ L =
∑r

i=0 `i ·Di
x

in C(x)〈Dx〉 with `r 6= 0 s.t. L(f ) = 0, equivalently

dimC(x)
(
spanC(x){D

i
x(f ) | i ∈ N}

)
<+∞.

If L is monic and of minimal order r, then call L the minimal
annihilator for f and call r the order of f , denoted by ord(f ).

Remark. In general, the formal integral int(f):=
∫

f (x)dx has the
minimal annihilator of order ord(f )+1.

Exact Integration. In 1997, Abramov and van Hoeij gave an
algorithm to decide whether

∫
f (x)dx has an annihilator of the

same order as that of f .
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Stable D-finite power series

Let f (x) ∈ C[[x]] be a D-finite power series.

Definition. f (x) is stable if ∃ {gi}i∈N ∈ C[[x]] s.t. g0 = f and

gi = Dx(gi+1) and ord(gi) = ord(f ) for all i ∈ N.

f (x) is eventually stable if ∃ m ∈ N s.t. intm(f ) is stable.

Theorem. Any D-finite power series is eventually stable.

Example (Z.-W. Guo). The Airy function Ai(x) satisfies

y ′′(x) = xy(x).

By Abramov-van Hoeij’s algorithm, we have Ai(x) is not stable,
but is eventually stable with ord(intm(Ai(x))) = 3 for all m≥ 2.
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Open problems

Problem. Characterizing stable algebraic functions in (C(x),d/dx).

Conjecture. An algebraic function f (x) is stable in (C(x),d/dx) iff

f (x) =
n∑

i=1

pi · (x− ci)
ri ,

where pi ∈ C[x], ci ∈ C and ri ∈Q\ {−1,−2, . . .}.

Problem. Characterizing stable elementary functions over C(x).

Conjecture. Let f (x) be an elementary function over C(x). Then

{i ∈ N | xif (x) is elementary integrable over C(x)}

is a union of finitely many arithmetic progressions.
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Thank You!
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