АНАЛИТИЧЕСКОЕ РЕШЕНИЕ ЛЮБОГО УРАВНЕНИЯ ВИДА МНОГОЧЛЕН ОТ ПЕРЕМЕННЫХ И ПРОИЗВОДНЫХ

Александр Брюно e-mail: abruno@keldysh.ru http://brunoa.name

Институт прикладной математики им. М.В.Келдыша РАН

Аннотация

Разработано исчисление [Bruno, 2023], позволяющее вычислять асимптотические разложения решений для уравнений, являющихся многочленами от переменных и производных, а также для систем таких уравнений. Это исчисление применимо к уравнениям любого типа: алгебраическим, обыкновенным дифференциальным (ОДУ) и в частных производных, а также — к системам таких уравнений. Исчисление основано на алгоритмах степенной геометрии: (а) выделение укороченных уравнений, состоящих из всех ведущих слагаемых, а также из (б) степенных, (в) логарифмических и (г) нормализующих преобразований координат. Требуемое при этом программное обеспечение в основной части уже реализовано в системах компьютерной алгебры.

1. Введение

2. Одно алгебраическое уравнение

3. Одно ОДУ

4. Одно уравнение в частных производных

5. Уровни степенной геометрии

1. Введение (1)

Для одного уравнения последовательность вычислений такова:

- **А.** Сначала выделяются укороченные уравнения и указываются области, где они являются первыми приближениями исходного уравнения.
- **Б.** Затем каждое укороченное уравнение упрощается с помощью степенных и логарифмических преобразований координат, возможно, неоднократных, до уравнения, имеющего простое решение.
- В. Оно дополняется до решения укороченного уравнения.
- Г. Если его возмущение в полном уравнении имеет линейную часть, то посредством нормализующего преобразования получаем решение исходного уравнения.
- Д. Если это возмущение не имеет линейной части, то для него повторяем этот процесс, т.е. снова выделяем укороченные уравнения и упрощаем их, пока не придём к ситуации Г, т.е. к возмущению с линейной частью, для которой находим решение.

1. Введение (2)

Ниже дано описание методов применения этого исчисления в уравнениях разных типов.

В статье [Bruno, 2023] изложены объекты и последовательности вычислений для:

- 1 Одного алгебраического уравнения.
- **2** Одного обыкновенного дифференциального уравнения (ОДУ) порядка n.
- $\mathbf 3$ Автономной системы n ОДУ.
- Одного уравнения в частных производных.

Там же дан краткий обзор приложений.

Здесь приводим алгоритмы нелинейного анализа для случаев одного уравнения и обсуждаем уровни степенной геометрии.

- 1. Введение
- 2. Одно алгебраическое уравнение
- 3. Одно ОДУ
- 4. Одно уравнение в частных производных
- 5. Уровни степенной геометрии

2. Одно алгебраическое уравнение (1)

Пусть
$$X=(x_1,\dots,x_n)$$
, $Q=(q_1,\dots,q_n)$, тогда $X^Q=x_1^{q_1}\dots x_n^{q_n}$, $\|Q\|=|q_1|+\dots+|q_n|$.

2. Одно алгебраическое уравнение (2)

Теорема 1.

Пусть

$$f(X, \varepsilon, T) = \sum a_{Q,r}(T)X^{Q}\varepsilon^{r},$$

rде $0\leqslant Q\in\mathbb{Z}^n$, $0\leqslant r\in\mathbb{Z}$, сумма конечна и $a_{Q,r}(T)$ — некоторые функции от $T=(t_1,\ldots,t_m)$, причём $a_{00}(T)\equiv 0$, $a_{01}(T)\not\equiv 0$. Тогда решение уравнения $f(X,\varepsilon,T)=0$ имеет вид $\varepsilon=\Sigma b_R(T)X^R\stackrel{\mathrm{def}}{=}b(T,X)$, где $0\leqslant R\in\mathbb{Z}^n$, $0<\|R\|$, коэффициенты $b_R(T)$ — функции от T, которые являются полиномами от $a_{Q,r}(T)$ с $\|Q\|+r\leqslant \|R\|$, делёнными на $a_{01}^{2\|R\|-1}$. Разложение b(T,X) единственное. Пусть $\varepsilon=b(T,X)+\delta$ и

$$g(X, \delta, T) = f(X, \delta + b(T, X), T),$$

тогда $g(X,\delta,T)\equiv \delta h(X,\delta,T)$. Здесь $\delta h(X,\delta,T)$ – это нормальная форма функции $f(X,\delta,T)$.

2. Одно алгебраическое уравнение (3)

Пусть точка $X=X^0=0$ является особой. Запишем многочлен в виде $f(X)=\Sigma a_Q X^Q$, где $a_Q=\mathrm{const}\in\mathbb{R}$, или \mathbb{C} . Пусть $\mathbf{S}(f)=\{Q:a_Q\neq 0\}$. Множество \mathbf{S} называется *носителем* многочлена f(X). Пусть оно состоит из точек Q_1,\ldots,Q_k . Выпуклая оболочка носителя $\mathbf{S}(f)$ является множеством

$$\Gamma(f) = \left\{ Q = \sum_{j=1}^{k} \mu_j Q_j, \mu_j \geqslant 0, \sum_{j=1}^{k} \mu_j = 1 \right\},$$

которое называется многогранником Ньютона.

2. Одно алгебраическое уравнение (4)

Его граница $\partial\Gamma(f)$ состоит из обобщённых граней $\Gamma_j^{(d)}$, где d – её размерность $0\leqslant d\leqslant n-1$, а j – номер. Каждой (обобщённой) грани $\Gamma_j^{(d)}$ соответствуют свои:

- ullet граничное подмножество $\mathbf{S}_{j}^{(d)} = \mathbf{S} \cap \Gamma_{j}^{(d)}$,
- ullet укороченный многочлен $\hat{f}_j^{(d)}(X) = \Sigma a_Q X^Q$ по $Q \in \mathbf{S}_j^{(d)}$,
- и нормальный конус $\mathbf{U}_{j}^{(d)}$, который состоит из всех нормалей $P=(p_{1},\ldots,p_{n})\in\mathbb{R}_{*}^{n}$ к грани $\Gamma_{j}^{(d)}$, внешних для Γ . При этом, пространство \mathbb{R}_{*}^{n} пространство сопряжённое (двойственное) к пространству \mathbb{R}^{n} , содержащему векторные показатели степени Q.

2. Одно алгебраическое уравнение (5)

Пусть $\ln X \stackrel{\mathrm{def}}{=} (\ln x_1, \dots, \ln x_n)$. Линейное преобразование логарифмов координат

$$(\ln y_1, \dots, \ln y_n) \stackrel{\text{def}}{=} \ln Y = (\ln X)\alpha, \tag{1}$$

где α – невырожденная квадратная n-матрица, называется *степенным преобразованием*. С помощью степенного преобразования (1) моном X^Q преобразуется в моном Y^R , где $R=Q\left(\alpha^*\right)^{-1}$, а звёздочка обозначает транспонирование.

Матрица α называется *унимодулярной*, если все ее элементы целые числа и $\det \alpha = \pm 1$. Для унимодулярной матрицы α ее обратная α^{-1} и транспонированная α^* также являются унимодулярными.

2. Одно алгебраическое уравнение (6)

Теорема 2.

Для грани $\Gamma_j^{(d)}$ существует степенное преобразование (1) с унимодулярной матрицей α , которое приводит укороченную сумму $\hat{f}_j^{(d)}(X)$ к сумме d координат, то есть $\hat{f}_j^{(d)}(X) = Y^S \hat{g}_j^{(d)}(Y)$, где $\hat{g}_j^{(d)}(Y) = \hat{g}_j^{(d)}(y_1, \ldots, y_d)$ - многочлен. Здесь $S \in \mathbb{Z}^n$. Дополнительные координаты y_{d+1}, \ldots, y_n являются локальными (малыми).

2. Одно алгебраическое уравнение (7)

В статье [Брюно, Азимов, 2023] указан алгоритм вычисления унимодулярной матрицы α теоремы 2. Пусть $\Gamma_j^{(d)}$ – грань многогранника Ньютона $\Gamma(f)$. Пусть полное уравнение f(X)=0 меняется на уравнение g(Y)=0 после степенного преобразования теоремы 2. Таким образом, $\hat{g}_j^{(d)}(y_1,\ldots,y_d)=g(y_1,\ldots,y_d,0,\ldots,0)$. Пусть многочлен $\hat{g}_j^{(d)}$ является произведением нескольких неприводимых многочленов

$$\hat{g}_j^{(d)} = \prod_{k=1}^m h_k^{l_k}(y_1, \dots, y_d), \tag{2}$$

где $0 < l_k \in \mathbb{Z}$. Пусть полином h_k является одним из них. Возможны три случая.

2. Одно алгебраическое уравнение (8)

Случай 1

Уравнение $h_k=0$ имеет полиномиальное решение $y_d=\varphi(y_1,\ldots,y_{d-1}).$ Тогда в полный полином g(Y) подставим координату $y_d=\varphi+z_d$, для полученного полинома $h(y_1,\ldots,y_{d-1},z_d,y_{d+1}\ldots,y_n)$ снова построим многогранник Ньютона, выделим укороченные многочлены и т.д.

2. Одно алгебраическое уравнение (9)

Случай 2

Уравнение $h_k=0$ не имеет полиномиального решения, но имеет параметризацию решений $y_j=\varphi_j(T),\ j=1,\dots,d,\quad T=(t_1,\dots,t_{d-1}).$ Тогда в полный полином g(Y) подставляем координаты

$$y_j = \varphi_j(T) + \beta_j \varepsilon, j = 1, \dots, d,$$
 (3)

где $eta_j=\mathrm{const}$, $\Sigma\,|eta_j|
eq 0$, и из полного полинома g(Y) мы получаем полином

$$h = \sum a_{Q'',r}(T)Y''^{Q''}\varepsilon^r,\tag{4}$$

где
$$Y''=(y_{d+1},\dots,y_n),\ 0\leqslant Q''=(q_{d+1},\dots,q_n)\in\mathbb{Z}^{n-d},\ 0\leqslant r\in\mathbb{Z}.$$
 Таким образом, $a_{00}(T)\equiv 0,\ a_{01}(T)=\sum\limits_{j=1}^d\beta_j\partial\hat{g}_j^{(d)}/\partial y_j(T).$

2. Одно алгебраическое уравнение (10)

Если в разложении (2) $l_k=1$, то $a_{01}\not\equiv 0$. По теореме 1 все решения уравнения h=0 имеют вид $\varepsilon=\Sigma b_{Q''}(T)Y''^{Q''}$, т.е., согласно (3) решения уравнения g=0 имеют вид $y_j=\varphi_j(T)+\beta_j\Sigma b_{Q''}(T)Y''^{Q''}$, $j=1,\ldots,d$. Подобные вычисления были предложены в [Брюно, 2019а].

Если в (2) $l_k>1$, то в (4) $a_{01}(T)\equiv 0$ и для полинома (4) от Y'',ε строим многогранник Ньютона по носителю $\mathbf{S}\left(h\right)=\left\{Q'',r:a_{Q'',r}(T)\not\equiv 0\right\}$, отделяем укорочения и так далее.

Случай 3

Уравнение $h_k=0$ не имеет ни полиномиального, ни параметрического решения. Тогда, используя многогранник Адамара [Брюно, 2019а], можно вычислить кусочно-приближенное параметрическое решение уравнения $h_k=0$ и искать приближенное параметрическое разложение.

2. Одно алгебраическое уравнение (11)

Аналогично можно исследовать положение ветвей алгебраического многообразия в бесконечности.

В [Bruno, Azimov, 2023; 2024] этим методом были получены параметрические разложения многообразия трёх параметров вырожденных потоков Риччи [Abiev (и др.), 2014], изучаемых в астрофизике.

- 1. Введение
- 2. Одно алгебраическое уравнение
- 3. Одно ОДУ
- 4. Одно уравнение в частных производных
- 5. Уровни степенной геометрии

3.Одно ОДУ. Постановка задачи (1)

Здесь мы рассматриваем обыкновенное дифференциальное уравнение вида

$$f\left(x, y, y', \dots, y^{(n)}\right) = 0,\tag{5}$$

где x — независимая переменная, y — зависимая переменная, y' = dy/dx, а f — многочлен от аргументов.

Вблизи $x^0=0$ или ∞ мы ищем решения уравнения (5) в виде асимптотического ряда

$$y = \sum_{k=1}^{\infty} b_k x^{s_k},\tag{6}$$

где b_k – функции от $\log x$ и $\omega s_k > \omega s_{k+1}$ с

$$\omega = \begin{cases} -1, & \text{если } x^0 = 0, \\ 1, & \text{если } x^0 = \infty. \end{cases}$$
 (7)

3.Одно ОДУ. Постановка задачи (2)

Положим X=(x,y). Под дифференциальным мономом a(x,y) мы понимаем произведение обычного монома

$$cx^{r_1}y^{r_2} \stackrel{\mathsf{def}}{=} cX^R, \tag{8}$$

и конечного числа производных $d^l y/dx^l$. Их сумма называется **дифференциальной суммой**. В уравнении (5) многочлен f является дифференциальной суммой.

Каждому дифференциальному моному $a\left(X\right)$ соответствует его (векторный) показатель степени $Q(a)=(q_1,q_2)\in\mathbb{R}^2$ по следующим правилам:

- ullet для монома вида (8) $Q\left(cX^{R}\right)=R$, то есть $Q\left(cx^{r_{1}}y^{r_{2}}\right)=(r_{1},r_{2})$;
- для производной $Q\left(d^{l}y/dx^{l}\right)=(-l,1);$
- при умножении дифференциальных мономов их показатели суммируются как векторы: $Q(a_1a_2) = Q(a_1) + Q(a_2)$.

3.Одно ОДУ. Постановка задачи (3)

- Множество $\mathbf{S}(f)$ показателей $Q\left(a_{i}\right)$ всех дифференциальных мономов $a_{i}(X)$ в дифференциальной сумме называется *носителем* суммы $f\left(X\right)$. Очевидно, что $\mathbf{S}(f)\in\mathbb{R}^{2}.$
- Выпуклая оболочка $\Gamma(f)$ носителя $\mathbf{S}(f)$ называется многоугольником суммы f(X).
- Граница $\partial \Gamma(f)$ многоугольника $\Gamma(f)$ состоит из вершин $\Gamma_j^{(0)}$ и рёбер $\Gamma_j^{(1)}$. Эти объекты называются (обобщёнными) *гранями* $\Gamma_j^{(d)}$, где верхний индекс указывает на размерность грани, а нижний её номер.
- ullet Каждой грани $\Gamma_j^{(d)}$ соответствует *граничное подмножество* $\mathbf{S}_j^{(d)} = \mathbf{S}(f) \cap \Gamma_j^{(d)}$ множества \mathbf{S} и *укороченная сумма*

$$\hat{f}_j^{(d)}(X) = \sum a_i(X) \quad \text{no} \quad Q(a_i) \in \mathbf{S}_j^{(d)}. \tag{9}$$

3.Одно ОДУ. Постановка задачи (4)

Пусть \mathbb{R}^2_* — плоскость, сопряжённая с плоскостью \mathbb{R}^2 так, что внутреннее (скалярное) произведение $\langle P,Q \rangle \stackrel{\mathrm{def}}{=} p_1 q_1 + p_2 q_2$ определяется для любых $P=(p_1,p_2)\in \mathbb{R}^2_*$ и $Q=(q_1,q_2)\in \mathbb{R}^2_*$. Любой грани $\Gamma_j^{(d)}$ соответствуют её нормальный конус

$$\mathbf{U}_{j}^{(d)} = \left\{ P : \left\langle P, Q \right\rangle = \left\langle P, Q' \right\rangle, \left\langle P, Q \right\rangle > \left\langle P, Q'' \right\rangle, Q, Q' \in \mathbf{S}_{j}^{(d)}, Q'' \in \mathbf{S}(f) \setminus \mathbf{S}_{j}^{(d)} \right\}$$

и укороченная сумма (9). Все эти конструкции применимы к уравнению (5), где f — дифференциальная сумма.

Пусть $x \to 0$ или $x \to \infty$ и предположим, что решение уравнения (5) имеет вид

$$y = c_r x^r + o\left(|x|^{r+\varepsilon}\right),\tag{10}$$

где c_r – коэффициент, $c_r=\mathrm{const}\in\mathbb{C}$, $c_r\neq 0$, показатели r и ε находятся в \mathbb{R} , и $\varepsilon\omega<0$.

3.Одно ОДУ. Постановка задачи (5)

Тогда мы говорим, что выражение

$$y = c_r x^r, \quad c_r \neq 0 \tag{11}$$

даёт *степенную асимптотику* решения (10). Таким образом, любой грани $\Gamma_j^{(d)}$ соответствует нормальный конус $\mathbf{U}_j^{(d)}$ в \mathbb{R}^2_* и укороченное уравнение

$$\hat{f}_j^{(d)}(X) = 0. {(12)}$$

Теорема 3.

Если уравнение $f\left(x,y,y',\ldots,y^{(n)}\right)=0$ имеет решение вида $y=c_rx^r+o\left(|x|^{r+\varepsilon}\right)$ и если $\omega(1,r)\in \mathbf{U}_j^{(d)}$, то укорочение $y=c_rx^r, \ c_r\neq 0$ этого решения является решением укороченного уравнения $\hat{f}_j^{(d)}(X)=0$.

3. Одно ОДУ. Решение укороченного уравнения (1)

Здесь мы рассматриваем отдельно два случая:

- ullet вершину $\Gamma_j^{(0)}$ и
- ребро $\Gamma_j^{(1)}$.

Вершине $\Gamma_j^{(0)}=\{Q\}$ соответствует укороченное уравнение (12) с одноточечным носителем Q и с d=0. Зададим $g(X)\stackrel{\mathrm{def}}{=} X^{-Q}\hat{f}_j^{(0)}(X)$. Тогда решение (9), (12) удовлетворяет уравнению g(X)=0.

3. Одно ОДУ. Решение укороченного уравнения (2)

Подставляя $y=cx^r$ в g(X), мы видим, что $g\left(x,cx^r\right)$ не зависит от x,c и является полиномом от r, то есть, $g\left(x,cx^r\right)\equiv\chi(r)$, где $\chi(r)$ – характеристический многочлен дифференциальной суммы $\hat{f}_j^{(0)}(X)$. Следовательно, в решении (11) уравнения (12) показатель r является корнем характеристического уравнения

$$\chi(r) \stackrel{\text{def}}{=} g(x, x^r) = 0, \tag{13}$$

а коэффициент c_r произвольный.

Среди корней r_i уравнения (13) нужно выделить только те, для которых один из векторов $\omega(1,r)$, где $\omega=\pm 1$, принадлежит нормальному конусу $\mathbf{U}_j^{(0)}$ вершины $\Gamma_j^{(0)}$. В этом случае значение ω однозначно определено. Соответствующие выражения суммы с произвольной константой c_r являются кандидатами на роль укороченных решений уравнения (5).

3. Одно ОДУ. Решение укороченного уравнения (3)

Более того, по (7), если $\omega=-1$, то $x\to 0$, а если $\omega=1$, то $x\to \infty$. Комплексные корни r характеристического уравнения (13) могут приводить к экзотическим разложениям решений (6), где коэффициенты b_k являются степенными рядами по $x^{\alpha i}$ с действительными $\alpha\in\mathbb{R}$ и $i^2=-1$.

Ребру $\Gamma_j^{(1)}$ соответствует укороченное уравнение (12) с d=1, нормальный конус которого $\mathbf{U}_j^{(1)}$ является лучом $\{\lambda N_j, \lambda>0\}$. Если $\omega(1,r)\in \mathbf{U}_j^{(1)}$, то это условие однозначно определяет показатель r укороченного решения (11) и значение $\omega=\pm 1$ в (7).

Чтобы найти коэффициент c_r , нужно подставить выражение (11) в укороченное уравнение (12). После сокращения на степень x, мы получим алгебраическое определяющее уравнение для коэффициента c_r : $\tilde{\tilde{f}}(c_r) \stackrel{\text{def}}{=} x^{-s} \hat{f}_j^{(1)}(x, c_r x^r) = 0$.

3. Одно ОДУ. Решение укороченного уравнения (4)

Каждому корню $c_r=c_r^{(i)}\neq 0$ этого уравнения соответствует выражение вида (11), которое является кандидатом на роль укороченного решения уравнения (5). Более того, по (7), если $p_1<0$ в нормальном конусе $\mathbf{U}_j^{(1)}$, то $x\to 0$, а если $p_1>0$, то $x\to \infty$.

Если в укороченном уравнении (12) мы сделаем *степенное преобразование* $y=x^pz$ и *логарифмическое преобразование* $\xi=\log x$, тогда получим ОДУ

$$\varphi(\xi, z) = 0, \tag{14}$$

где φ – дифференциальная сумма, т.е. имеет вид (5).

3. Одно ОДУ. Решение укороченного уравнения (5)

Если уравнение (14) имеет решение в виде $z=\sum\limits_{j=1}^{\infty}c_{j}\xi^{r_{j}},\quad r_{j}>r_{j+1}$, тогда в разложении (6) коэффициенты b_{k} являются функциями от $\log x$. Если $b_{1}=\mathrm{const}$, то это c степенно-логарифмическое разложение, где остальные b_{k} — многочлены от $\log x$. Если b_{1} зависит от $\log x$, то все b_{k} являются степенными рядами по $\log x$ и разложение (6) является cложным.

3. Одно ОДУ. Решение уравнения (5) в виде разложения (6) (1)

Из многоугольника Γ исходного уравнения (5) берём вершину или ребро $\Gamma_j^{(d)}$. Затем находим степенное решение $y=b_1x^{p_1}$ укороченного уравнения $\hat{f}_j^{(d)}(X)=0$, как это было описано выше, положим $y=b_1x^{p_1}+z$ и получим новое уравнение g(x,z)=0.

Построим многоугольник $_1\Gamma$ для нового уравнения, возьмём вершину или ребро $_1\Gamma_k^{(\mathrm{e})}$, решим укороченное уравнение $\hat{g}_k^{(\mathrm{e})}(x,z)=0$, и получаем второй член $b_2x^{p_2}$ разложения (6) и так далее. В [Брюно, 2004] указаны некоторые свойства, которые упрощают вычисления.

Получив решение $y=Cx^{\alpha}$ укороченного уравнения, в полное уравнение f(x,y)=0 делаем подстановку $y=Cx^{\alpha}+z$, получаем уравнение $g(x,z)\stackrel{\mathrm{def}}{=} f(x,Cx^{\alpha}+z)=0.$ Если оно не имеет линейного члена по y, то продолжаем вычисления до получения уравнения с линейно частью по y. Его приводим к нормальной форме по теореме 4 (ниже).

3. Одно ОДУ. Решение уравнения (5) в виде разложения (6) (2)

Условие 1.

Точка (v,1) является вершиной многоугольника $\Gamma(f)$. В сумме f(x,y) ей соответствует слагаемое $\mathcal{L}(x)y$ и только оно. Здесь $\mathcal{L}(x)$ – это линейный оператор без логарифмов.

Теорема 4.

Если уравнение (5) удовлетворяет условию 1, то оно имеет формальное решение $y=\sum\limits_{k=1}^{\infty}\beta_k(\ln x)x^{s_k}$, где $\beta_k(\ln x)$ суть многочлены от $\ln x$, $\omega s_k>\omega s_{k+1}$, $|s_k|\to\infty$ при $k\to\infty$.

3. Одно ОДУ. Решение уравнения (5) в виде разложения (6) (3)

Таким образом, мы получаем 2 вида разложений (6) решений уравнения (5):

- **1.** *Степенные*: когда все $b_k = \text{const}$ [Брюно, 2004];
- **2.** Степенно-логарифмические: когда $b_1 = {\rm const}$ и остальные b_k полиномиальны по $\log x$ [Брюно, 2004].

Другие виды разложений решений:

- **3.** *Сложные*: когда все b_k являются степенными рядами по $\log x$ [Брюно, 2006];
- **4.** Экзотические: когда все b_k являются степенными рядами по $x^{i\alpha}$ [Брюно, 2007].

Кроме них существуют экспоненциальные разложения $y=\sum_{k=1}^\infty b_k(x) \exp{[k\varphi(x)]}$, где $b_k(x)$ и $\varphi(x)$ – степенные ряды по x [Брюно, 2012b] и многие другие. Также существуют решения в виде трансрядов [Брюно, 2019b].

- 1. Введение
- 2. Одно алгебраическое уравнение
- 3. Одно ОДУ
- 4. Одно уравнение в частных производных
- 5. Уровни степенной геометрии

4. Одно УрЧП. Носитель [Брюно, 1998, Гл. 6] (1)

Пусть $X=(x_1,\ldots,x_n)\in\mathbb{C}^n$ или \mathbb{R}^n – независимые переменные (n>1), а $y\in\mathbb{C}$ или \mathbb{R} – зависимое.

Рассмотрим $Z=(z_1,\dots,z_n,z_{n+1})=(x_1,\dots,x_n,y).$ Дифференциальным мономом a(Z) называется произведение обыкновенного монома $cZ^R=cz_1^{r_1}\dots z_{n+1}^{r_{n+1}}$, где $c=\mathrm{const}$, и конечного числа производных следующего вида

$$\frac{\partial^l y}{\partial x_1^{l_1} \dots \partial^{l_n} x_n} \stackrel{\text{def}}{=} \frac{\partial^l y}{\partial X^L}, \ 0 \leqslant l_j \in \mathbb{Z}, \sum_{j=1}^n l_j = l, \ L = (l_1, \dots, l_n).$$

Векторный *показатель степени* $Q(a) \in \mathbb{R}^{n+1}$ соответствует дифференциальному моному a(Z), он строится по следующим правилам:

$$Q(c)=0,$$
 если $c \neq 0, \quad Q\left(Z^{R}\right)=R, \quad Q\left(\partial^{l}y_{j}/\partial X^{L}\right)=(-L,1).$

4. Одно УрЧП. Носитель [Брюно, 1998, Гл. 6] (2)

Произведению мономов соответствует сумма их векторных показателей степеней:

$$Q(ab) = Q(a) + Q(b).$$

Дифференциальная сумма – это сумма дифференциальных мономов.

$$f(Z) = \sum a_k(Z). \tag{15}$$

Если f(Z) не имеет подобных членов, то множество $\mathbf{S}(f) = \{Q(a_k)\}$ называется **носителем** суммы (15).

4. Одно УрЧП. Резонансные мономы

Пусть носитель $\mathbf{S}(f)$ дифференциальной суммы a(Z) состоит из одной точки $E_{n+1}=(0,\dots,0,1).$ Тогда подстановка

$$y = cX^P, \quad P = (p_1, \dots, p_n) \in \mathbb{R}^n$$
 (16)

в дифференциальную сумму a(Z) даёт моном $c\omega_P(P)X^P$, где $\omega_P\left(P\right)$ – полином от P, коэффициенты которого зависят от P.

Моном (16) будет называться **резонансным** для a(Z), если для него $\omega_P(P)=0$.

4. Одно УрЧП. Нормальная форма (1)

Для дифференциальной суммы f(Z) обозначим через $f_k(Z)$ сумму всех дифференциальных мономов в f(Z), у которых n+1 координата q_{n+1} векторных степенных показателей $Q=(q_1,\ldots,q_n,q_{n+1})$ равна k: $q_{n+1}=k$. Обозначим $\mathbb{Z}_+^n=\{P:0\leqslant P\in\mathbb{Z}^n\}$.

Рассмотрим УрЧП

$$f(Z) = 0. (17)$$

4. Одно УрЧП. Нормальная форма (2)

Теорема 5.

Пусть $f(Z)=\sum_{k=0}^\infty f_k(Z)$, где все $\mathbf{S}(f_k)\subset \mathbb{Z}_+^n\times\{q_{n+1}=k\}$. Предположим, что

- $\mathbf{1}$ $f_0(Z)=arphi(X)$ степенной ряд по X без свободного члена,
- 2 $f_1(Z)=a(Z)+b(Z)$, rge $\mathbf{S}(a)=E_{n+1}=(0,\ldots,0,1)$, $\mathbf{S}(b)\subset \left(\mathbb{Z}_+^{n+1}\backslash 0\right)\times \{q_{n+1}=1\}.$

Тогда существует подстановка $y=\zeta+\psi(X)$, где $\psi(X)$ – степенной ряд по X без свободного члена, которая приводит уравнение (17) к нормальной форме

$$g(X,\zeta) = 0, (18)$$

где $g_0(X) = \sum c_P X^P$ – степенной ряд без свободного члена с $P \in \mathbb{Z}_+^n$, содержащий только резонансные мономы $c_P X^P$ для суммы a(Z).

4. Одно УрЧП. Многогранник и укороченные уравнения (1)

Выпуклая оболочка

$$\Gamma(f) = \left\{ Q = \sum \lambda_j Q_j, Q_j \in \mathbf{S}, \lambda_j \geqslant 0, \sum \lambda_j = 1 \right\}$$

носителя $\mathbf{S}(f)$ называется многогранником суммы f(Z).

Граница $\partial \Gamma$ многогранника $\Gamma(f)$ состоит из обобщённых граней $\Gamma_j^{(d)}$, где $d=\dim \Gamma_j^{(d)}$.

4. Одно УрЧП. Многогранник и укороченные уравнения (2)

Каждой грани $\Gamma_j^{(d)}$ соответствует *нормальный конус*

$$\mathbf{U}_{j}^{(d)}\!=\!\left\{P\in\mathbb{R}_{*}^{n+1}:\left\langle P,Q'\right\rangle =\left\langle P,Q'\right\rangle >\left\langle P,Q'\right\rangle ,\text{ rge }Q,Q'\in\mathbf{\Gamma}_{j}^{(d)},Q'\in\mathbf{\Gamma}\backslash\mathbf{\Gamma}_{j}^{(d)}\right\} ,$$

где пространство \mathbb{R}^{n+1}_* является сопряжённым к пространству \mathbb{R}^{n+1} , $\langle\cdot,\cdot\rangle$ — скалярное произведение, и *укороченная сумма* $\hat{f}_j^{(d)}(Z) = \sum a_k(Z)$ по $Q(a_k) \in \Gamma_j^{(d)} \cap \mathbf{S}$.

4. Одно УрЧП. Степенные преобразования (1)

Чтобы упростить укороченное уравнение $\hat{f}_j^{(d)}(Z)=0$, удобно использовать степенное преобразование.

Пусть α – квадратная вещественная невырожденная блочная матрица размерности n+1 вида

$$\alpha = \begin{pmatrix} \alpha_{11} & \alpha_{12} \\ 0 & \alpha_{22} \end{pmatrix},\tag{19}$$

где α_{11} и α_{22} – квадратные матрицы размерности n и 1, соответственно.

Обозначим $\ln Z = (\ln z_1, \dots, \ln z_{n+1})$, а звёздочкой * обозначим транспонирование. Замена переменных

$$ln W = (ln Z) \alpha$$
(20)

называется степенным преобразованием.

4. Одно УрЧП. Степенные преобразования (2)

Теорема 6 ([Брюно, 1998]).

Степенное преобразование (18) приводит дифференциальный моном a(Z) с показателем степени Q(a) к дифференциальной сумме b(W) с показателем степени Q(b):

$$R = Q(b) = Q(a)\alpha^{-1*}.$$

4. Одно УрЧП. Степенные преобразования (3)

Теорема 7.

Для укороченного уравнения

$$\hat{f}_j^{(d)}(Z) = 0$$

существует степенное преобразование (20) и моном Z^T , переводящие уравнение указанное выше в уравнение

$$g(W) = Z^T \hat{f}_j^{(d)}(Z) = 0,$$

где g(W) — дифференциальная сумма, носитель которой имеет n+1-d нулевых координат. При этом в (19) блок α_{11} — унимодулярная матрица и $\alpha_{22}=\pm 1.$

4. Одно УрЧП. Логарифмическое преобразование

Пусть z_j – одна из координат x_k или y. Преобразование $\zeta_j = \ln z_j$ называется логарифмическим.

Теорема 8.

Пусть f(Z) — дифференциальная сумма такая, что у всех ее мономов j-я компонента q_j векторного показателя степени $Q=(q_1,\ldots,q_{m+1})$ равна нулю, тогда логарифмическое преобразование приводит дифференциальную сумму f(Z) к дифференциальной сумме от $z_1,\ldots,\zeta_j,\ldots,z_n$.

Если нас интересуют только решения с ограничениями на их порядки $P=(p_1,\ldots,p_{n+1})$, то допустимые порядки решений образуют *конус задачи* K. Например, если $x_i\to 0$, то в K координата $p_i\leqslant 0$, а если $|x_i|\to \infty$, то $p_i\geqslant 0$ в K.

4. Одно УрЧП. Вычисление асимптотик решений

Обычно граничные и начальные условия позволяют найти конус задачи K. Пусть с K пересекаются нормальные конусы $\mathbf{U}_{jl}^{(d_l)}$, $l=1,\ldots,k$. Тогда для каждого укороченного уравнения $\hat{f}_{il}^{(d_l)}=0$ берём его решения. Если оно не решается, то следует выполнить степенное преобразование теоремы 7, а затем логарифмическое преобразование теоремы 8. Это даёт уравнение с многогранником размерности n+1. Его укороченные уравнения проще, чем его собственное уравнение $\hat{f}_i^{(d)}(Z) = 0$. Если это новое укороченное уравнение снова не разрешимо, то вышеописанная процедура повторяется до тех пор, пока мы не получим разрешимое уравнение. Имея его решения, мы можем вернуться к исходным координатам, выполнив обратные преобразования координат. Таким образом получаем решения, записанные в исходных координатах, которые являются асимптотиками решений исходного уравнения (17).

Этим методом в [Bruno, Batkhin, 2023] были вычислены асимптотики решений системы двух уравнений, описывающих модель турбулентных всплесков.

- 1. Введение
- 2. Одно алгебраическое уравнение
- 3. Одно ОДУ
- 4. Одно уравнение в частных производных
- 5. Уровни степенной геометрии

5. Уровни степенной геометрии (1)

Все, что было рассказано, относится к нулевому уровню степенной геометрии, ибо там было «запаяно», что

$$\operatorname{ord} y' = \operatorname{ord} y - 1.$$

Но это не всегда так. Отказываясь от этого свойства, получаем более широкое множество решений. Обсудим это подробнее.

В алгебраическом уравнении

$$f(X) \stackrel{\text{def}}{=} \sum a_Q X^Q = 0,$$

с $X\in\mathbb{R}^n$ или \mathbb{C}^n каждому моному a_QX^Q можно поставить точку $\check{Q}=\{Q,\ln|a_Q|\}$ в \mathbb{R}^{n+1} . Их множество образует *сверхноситель* $\check{S}(f)$, а его выпуклая оболочка $\check{H}(f)$ – это *многогранник Адамара* [Брюно, 2019а].

5. Уровни степенной геометрии (2)

По его граням строим укороченные уравнения. Они проще, чем укороченные уравнения, соответствующие граням многогранника Ньютона, и позволяют исследовать случаи, где многогранник Ньютона не даёт результата.

Для одного ОДУ можно искать решения, у которых $\operatorname{ord} y - \operatorname{ord} y' \neq 1$, вводя для порядка производной y' новую координату. Это было сделано в [Bruno, 2015] и позволило получить решения в виде степенных разложений, коэффициентами которых являются тригонометрические или эллиптические функции.

Можно рассматривать решения, у которых $\operatorname{ord} y^{(k)} - \operatorname{ord} y^{(k+1)}$ произвольная величина, или несколько таких разностей произвольны, и получать новые типы решений. Подробнее см. [Bruno, 2012; Bruno, Parusnikova, 2012; Брюно, 2012a].

Аналогично можно поступать с УрЧП, но это пока не сделано.

Литература (1)

- Abiev N. A. [et al.]. The dynamics of the Ricci flow on generalized Wallach spaces. // Differential Geometry and its Applications. 2014. Vol. 35. P. 26–43.
- Bruno A. D. Chapter 6. Space Power Geometry for one ODE and P1–P4, P6. // Proceedings of the International Conference, Saint Petersburg, Russia, June 17-23, 2011 / ed. by A. D. Bruno, A. B. Batkhin. Berlin, Boston: De Gruyter, 2012. P. 41–52. DOI: doi:10.1515/9783110275667.41.
- Bruno A. D. Power geometry and elliptic expansions of solutions to the Painlevé equations. // International Journal of Differential Equations. 2015. Vol. 2015. P. 340715. DOI: 10.1155/2015/340715.
- Bruno A. D. Nonlinear Analysis as a Calculus. // London Journal of Research in Science: Natural and Formal. 2023. Vol. 23, no. 5. P. 1–31. URL: https://journalspress.com/LJRS_Volume23/Nonlinear-Analysis-as-a-Calculus.pdf; (open access).
- Bruno A. D., Azimov A. A. Parametric expansions of an algebraic variety near its singularities. // Axioms. 2023. Vol. 12, no. 5. P. 469. URL: https://doi.org/10.3390/axioms12050469; (open access).

Литература (2)

- Bruno A. D., Azimov A. A. Parametric expansions of an algebraic variety near its singularities II. // Axioms. 2024. Vol. 13, no. 2. P. 106. URL: https://doi.org/10.3390/axioms13020106; (open access).
- Bruno A. D., Batkhin A. B. Asymptotic forms of solutions to system of nonlinear partial differential equations. // Universe. 2023. Vol. 9, no. 1. P. 35. DOI: 10.3390/universe9010035. URL: https://doi.org/10.3390/universe9010035; (open access).
- Bruno A. D., Parusnikova A. V. Chapter 7. Elliptic and Periodic Asymptotic Forms of Solutions to P5. // Proceedings of the International Conference, Saint Petersburg, Russia, June 17-23, 2011 / ed. by A. D. Bruno, A. B. Batkhin. Berlin, Boston: De Gruyter, 2012. P. 53–66. DOI: doi:10.1515/9783110275667.53.
- **Брюно А. Д.** Степенная геометрия в алгебраических и дифференциальных уравнениях. М.: Наука, 1998. 288 с.
- **Б**рюно А. Д. Асимптотики и разложения решений обыкновенного дифференциального уравнения. // УМН. 2004. Т. 59, № 3. С. 429—480. DOI: https://doi.org/10.4213/rm736.

Литература (3)

- **Брюно А. Д. Сложные разложения решений обыкновенного дифференциального уравнения.** // Доклады Академии наук. 2006. Т. 406, № 6. С. 730—733.
- Брюно А. Д. Экзотические разложения решений обыкновенного дифференциального уравнения. // Доклады Академии наук. 2007. Т. 416, № 5. С. 583—587.
- **Б**рюно А. Д. Степенно-эллиптические разложения решений обыкновенного дифференциального уравнения. // ЖВММФ. 2012а. Т. 51, № 12. С. 2206—2218.
- **Брюно А. Д.** Экспоненциальные разложения решений обыкновенного дифференциального уравнения. // Доклады Академии Наук. 2012b. Т. 443, № 5. С. 539—544.
- Брюно А. Д. Алгоритмы решения одного алгебраического уравнения. // Программирование. 2019а. № 1. С. 59—72. ISSN 0132-3474. DOI: 10.1134/s0132347419010084. URL: http://dx.doi.org/10.1134/S0132347419010084.

Литература (4)

- **Брюно А. Д. Разложение решений обыкновенного дифференциального** уравнения в трансряды. // Доклады Академии Наук. 2019b. Т. 484, № 3. С. 260—264. DOI: 10.31857/S0869-56524843260-264.
- **Б**рюно А. Д., Азимов А. А. Вычисление унимодулярной матрицы степенного преобразования. // Программирование. 2023. Т. 49, № 1. С. 38—47. DOI: 10.31857/S013234742301003X.