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Abstract

We use the method for computing an exact solutions of the ordinary differ-
ential equation and apply it to the sixth Painlevé equation (PVI) and other
Painlevé equations.
This method is essentially uses algorithms of Power Geometry for comput-
ing power expansions of solutions to an ordinary differential equation and
computer algebra algorithms (Gröbner basis).
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Description of the method Power Geometry essentials

Differential monomial
Let x be independent and y be dependent variables, x , y ∈ C. A differential
monomial a(x , y) is a product of an ordinary monomial cx r1y r2 , where c =
const ∈ C, (r1, r2) ∈ R2, and a finite number of derivatives of the form
d ly/dx l , l ∈ N.

Differential sum
A sum of differential monomials

f (x , y) =
∑

ai (x , y)

is called the differential sum.

Let a differential equation be given

f (x , y) = 0,

where f (x , y) is a differential sum.
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Description of the method Power Geometry essentials

Power Geometry objects

Power exponent
To each differential monomial a(x , y), we assign its (vector) power exponent
Q(a) = (q1, q2) ∈ R2 by the following rules:

Q(cx r1y r2) = (r1, r2); Q(d ly/dx l ) = (−l , 1);

when differential monomials are multiplied, their power exponents must be
added as vectors Q(a1a2) = Q(a1) + Q(a2).

The Newton–Bruno polygon
The set S(f ) of power exponents Q(ai ) of all differential monomials ai (x , y)
present in the differential sum is called the support of the sum f (x , y).
Obviously, S(f ) ∈ R2.
The convex hull Γ(f ) of the support S(f ) is called the Newton–Bruno polygon
of the sum f (x , y). The boundary ∂Γ(f ) of the polygon Γ(f ) consists of
generalized faces Γ

(d)
j .
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Description of the method Power Geometry essentials

Power Geometry objects

Truncated sum

Each face Γ
(d)
j corresponds to the truncated sum

f̂ (d)j (x , y) =
∑

ai (x , y) over Q(ai ) ∈ Γ
(d)
j ∩ S(f ).

Normal cone

Let the plane R2
∗ be dual to the plane R2 such that for P = (p1, p2) ∈ R2

∗
and Q = (q1, q2) ∈ R2, the scalar product

〈P,Q〉 def
= p1q1 + p2q2

is defined. Each face Γ
(d)
j in R2

∗ corresponds to its own normal cone U(d)
j

formed by the outward normal vectors P to the face Γ
(d)
j .
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Description of the method Power Geometry essentials

Computation of truncated equations

Each face Γ
(d)
j corresponds to the normal cone U(d)

j in the plane R2
∗ and to

the truncated equation f̂ (d)j (x , y) = 0.

Theorem (Bruno)

If the power expansion y = crx r +
∑

csx s , cr = const ∈ C, cr 6= 0, satisfies
the equation f (x , y) = 0, and ω(1, r) ∈ U(d)

j , where ω = −1, if x → 0 or
ω = 1, if x → ∞ then the truncation y = crx r of the power expansion is
the solution to the truncated equation f̂ (d)j (x , y) = 0.

As truncated equations are quasi–homogeneous it is not difficult to find its
power solutions. For each truncated equation f̂ (d)j (x , y) = 0, we need to
find all its solutions y = crx r which have one of the vectors ±(1, r) lying in
the normal cone U(d)

j .
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Description of the method Matching “heads” and “tails” of power expansions

Matching “heads” and “tails” of power expansions
The modification of method for computing exact solutions, proposed in
[Bruno, Gashenenko, 2006] for finding of exact solutions to N. Kovalewski
equations, is used.
This method is based on fitting of two power series expansions near the origin
and at infinity and getting conditions on the coefficients of expansions in the
form of system of algebraic equations. It is possible to get the exact solution
in the form of finite sum of power functions with rational degrees by solving
this system of equations.

The modification of the method consists in the fact that, using the form of
asymptotic expansions of solutions to the equation PVI at the origin and at
infinity, the general form of exact solution is composed. After substituting
such solution into the equation PVI one can obtain the system of algebraic
equations for unknown coefficients of exact solution and parameters of the
equation. The obtained system is solved with the help of computer algebra
system using Gröbner basis.
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Painlevé equations and their properties Painlevé equations

Painlevé property

Definition
An ordinary non-linear differential equation
possesses the Painlevé property if all its solu-
tions have not the movable singularities except
poles.

Definition
Painlevé equations are second order non-linear
ordinary differential equations which are not
generally solvable in term of elementary func-
tions.
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Painlevé equations and their properties Painlevé equations

List of Painlevé equtions and their polygons

1 y ′′ = 6y2 + x

2 y ′′ = 2y3 + xy + α

3 xyy ′′ =
x(y ′)2 − yy ′ + δx + βy + αy3 + γxy4

4 yy ′′ =
1
2(y ′)2 + β + 2(x2 − α)y2 + 4xy3 + 3

2y
4

5 y ′′ =
(

1
2y + 1

y−1

)
(y ′)2 − 1

x y
′ +

(y−1)2
x

(
αy + β

y

)
+ γ y

x + δ y(y+1)
y−1

6 y ′′ =
(

1
y + 1

y−1 + 1
y−x

)
(y ′)2

2 −(
1
x + 1

x−1 + 1
y−x

)
y ′ +

y(y−1)(y−x)
x2(x−1)2

[
α + β x

y2 + γ x−1
(y−1)2 + δ x(x−1)

(y−x)2

]

q2

q10 1

1
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Painlevé equations and their properties Painlevé equations

Connections between Painlevé equations

PVI PV

PIV

PIII

PII PI

(1/2, 1/2, 1/2, 1/2) (1/2, 1, 1/2)

(1/2, 3/2)

(1, 1)

(2) (2)
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Painlevé equations and their properties PVI and its properties

The six Painlevé equation

Original form

y ′′ =

(
1
y

+
1

y − 1
+

1
y − x

)
(y ′)2

2
−
(
1
x

+
1

x − 1
+

1
y − x

)
y ′+

+
y(y − 1)(y − x)

x2(x − 1)2

[
α + β

x
y2 + γ

x − 1
(y − 1)2 + δ

x(x − 1)

(y − x)2

]
,

Differential monomials form

f (x , y)
def
= 2y ′′x2(x − 1)2y(y − 1)(y − x)− (y ′)2[ x2(x − 1)2(y − 1)(y − x)+

+ x2(x − 1)2y(y − x) + x2(x − 1)2y(y − 1) ]+

+ 2y ′[ x(x − 1)2y(y − 1)(y − x) + x2(x − 1)y(y − 1)(y − x)+

+ x2(x − 1)2y(y − 1) ]− [ 2αy2(y − 1)2(y − x)2 + 2βx(y − 1)2(y − x)2+

+ 2γ(x − 1)y2(y − x)2 + 2δx(x − 1)y2(y − 1)2 ] = 0.
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Painlevé equations and their properties PVI and its properties

q2

q1Q1

Q2

Q3

Q4

Γ
(1)
1

Γ
(1)
2

Γ
(1)
3

Γ
(1)
4

0 1

1
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(0)
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Painlevé equations and their properties PVI and its properties

Bäcklund transformations

PVI is invariant under the finite group of order 24 with 3 generators of
Bäcklund transformations. Let y(x) = y(x ;α, β, γ, δ) be a solution of PVI
for definite values of equation’s parameters. The transformation Tj : y → yj
determines the new solution

1 y1(x ;−β,−α, γ, δ) = 1/y(1/x);
2 y2(x ;−β,−γ, α, δ) = 1− 1/y(1/(1− x));
3 y3(x ;−β,−α, 1/2− δ, 1/2− γ) = x/y(x);
4 y4(x ;α, β, 1/2− δ, 1/2− γ) = x/y(1/x), T4 = T1 ◦ T3;

References
For more details about Painlevé equations in general and PVI in particular
see Its, Novokshenov, 1986, Iwasaki et al., 1991, Gromak et al., 2002, Conte,
Musette, 2008, NIST Handbook of Mathematical Functions, §32, 2010.
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Computed Solutions Known elementary solution

Known elementary solution

Rational solutions

Some rational solutions of the form y(x) = κx j , j = −2,−1, 1, 2 are pre-
sented by Clarkson in NIST Handbook of Math Functions (2010).

Algebraic solutions
Algebraic solutions that determine algebraic curves with different values of
genus are presented by Dubrovin, Mazzocco (2000), Gromak et al. (2002),
Hitchin (2003), Boalch (2005, 2006). The full list of algebraic solutions and
their classification see in Lisovyy, Tikhyy (2008).
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Computed Solutions Select suitable power expansions

Suitable power expansions: Expansion corresponding vertex Q4

q2

q1Q1

Q2

Q3

Q4

Γ
(1)
1

Γ
(1)
2

Γ
(1)
3

Γ
(1)
4

0 1

1

Truncated sum f̂ (0)4

f̂ (0)4
def
= 2x2yy ′2 − 2xy2y ′ − 2x2y2y ′′ = 0

Normalized cone U(0)
4

U(0)
4 = −(1, r), r ∈ C, 0 < Re r < 1

Truncated solution
y = crx r , cr ∈ C, Re r ∈ (0, 1)

Family A0 [BrunoGoryuchkina2010]

A0 : y = crx r +
∑

csx s , r ∈ C, Re r ∈ (0, 1), s ∈ {r +kr +m(1−r); k ,m >
0; k + m > 0; k ,m ∈ Z}
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Computed Solutions Select suitable power expansions

Search for suitable power expansions

There are only four pairs of power expansions near
the origin and near the infinity that suitable for
matching procedure:

1 the vertex Q4 and the vertex Q2;
2 the edge Γ

(1)
4 and the edge Γ

(1)
3 ;

3 the vertex Q4 and the edge Γ
(1)
3 ;

4 the edge Γ
(1)
4 and the vertex Q2.

The exact solutions should be sought in the general form

y(x) =
l∑

k=0

akxk/l , l ∈ N. (1)
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Computed Solutions Linear solution

Linear solution

If all ak = 0 for k = 1, . . . , l − 1 then (1) gives the linear solution

y = a0 + a1x

of the equation PVI. The following table summaries the families of linear
solutions for different values of parameters of the equation PVI.

Sol. Parameters Free
α β γ δ param.

ax + 1 1/2 − (a + 1)2

2
0 a− a2/2 a

ax + 1− a γ/a2 −1/2 γ 1/2− γ(1− 1/a)2 a, γ

x + b 1/2 − (b + 1)2

2
(b − 1)2

2
1/2 b
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Computed Solutions Computed elementary solution

Computed elementary solution

Here we present the list of solutions of the form

y(x) =
l∑

k=0

akxk/l

for l = 2, . . . , 6.
There is an elementary solution y = axn, n ∈ C to the equation PVI for
α = β = 0, γ = n2/2, δ = n(2− n)/2, therefore we list only those solutions
of the general form, for which at least more then one coefficient ak 6= 0.
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Computed Solutions List of computed solutions

Elementary solution for l = 2

l = 2 Parameters Coefficients
Sol. No α β γ δ a0 a1 a2

2-1 1/2 0 −5/8 1/8 1/2 ±1/2 0
2-2 1/2 0 9/8 3/8 0 ±1/2 1/2
2-3 1/32 −25/32 9/32 15/32 −2 ±3 0
2-4 1/32 −25/32 1/32 7/32 0 ±3 −2

One parameter family: y(x) = a2(1∓√x)2±√x for PVI parameters values

α =
1
8a2

2
, β = −(4a2 − 1)2

8a22 , γ =
(a2 − 1)2

8a2
2

, δ =
3a2

2 + 2a2 − 1
8a2

2

Pairs of solutions (2-1, 2-2) and (2-3, 2-4) are connected by the Bäcklund
transformation

T4 : y4(x ;α, β,−δ + 1/2,−γ + 1/2) = xy(1/x ;α, β, γ, δ)
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Computed Solutions List of computed solutions

Elementary solution for l = 3

l = 3 Parameters Coefficients
Sol. No α β γ δ a0 a1 a2 a3

3-1 1/18 −2/9 0 1/2 0 −1 −1 0
3-2 2/9 −1/18 1/2 0 0 1/2 1/2 0
3-3 2/9 −1/18 1/2 0 0 −(1 + z0)/2 z0/2 0
3-4 1/2 0 2/9 −7/18 1/3 1/3 1/3 0
3-5 1/2 0 2/9 −7/18 1/3 −(1 + z0)/3 z0/3 0
3-6 1/2 0 8/9 5/18 0 1/3 1/3 1/3
3-7 1/2 0 8/9 5/18 0 −(1 + z0)/3 z0/3 1/3
3-8 1/18 −8/9 0 1/2 1 1 1 1
3-9 1/18 −8/9 0 1/2 1 −1− z0 z0 1

where z0, is the root of the equation z2 + z + 1 = 0. Solutions 3-4 and 3-6
are connected by the Bäcklund transformation

T4 : y4(x ;α, β,−δ + 1/2,−γ + 1/2) = xy(1/x ;α, β, γ, δ)
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Computed Solutions List of computed solutions

Elementary solution for l = 4

l =
4

Parameters Coefficients

Sol.
No

α β γ δ a0 a1 a2 a3 a4

4-1 9/32 −1/32 1/2 0 0 1/3 1/3 1/3 0
4-2 9/32 −1/32 1/2 0 0 ±1/3 0 ±1/3 0
4-3 1/32 −9/32 0 1/2 0 ∓i 1 ±i 0
4-4 1/2 0 9/32 −9/32 1/4 ±1/4 1/4 ±1/4 0
4-5 1/2 0 9/32 −9/32 1/4 ∓i/4 −1/4 ±i/4 0
4-6 1/2 0 25/32 7/32 0 ±1/4 1/4 ±1/4 1/4

Solutions 4-4 and 4-6 are connected by the Bäcklund transformation T4 as
mentioned above.
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Computed Solutions List of computed solutions

Elementary solution for l = 5

l =
5

Parameters Coefficients

Sol.
No

α β γ δ a0 a1 a2 a3 a4 a5

5-1 8/25 −1/50 1/2 0 0 1/4 1/4 1/4 1/4 0
5-2 8/25 −1/50 1/2 0 0 A1 z3

0/4 z2
0/4 z0/4 0

5-3 1/50 −8/25 0 1/2 0 −1 −1 −1 −1 0
5-4 1/50 −8/25 0 1/2 0 B1 z3

1 z2
1 z1 0

5-5 1/2 0 8/25 −11/50 1/5 1/5 1/5 1/5 1/5 0
5-6 1/2 0 8/25 −11/50 1/5 C1 z3

0/5 z2
0/5 z0/5 0

where z0 is the root of the equation z4 + z3 + z2 + z + 1 = 0, A1 =
−1

4 − a2 − a3 − a4, C1 = −1/5 − a2 − a3 − a4 and z1 is the root of the
equation z4 − z3 + z2 − z + 1 = 0, B1 = 1− a2 − a3 − a4.
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Computed Solutions List of computed solutions

Elementary solution for l = 6

l =
6

Parameters Coefficients

Sol.
No

α β γ δ a0 a1 a2 a3 a4 a5 a6

6-1 1
72 − 25

72 0 1
2 0 ±1 1 ±1 1 ±1 0

6-2 1
72 − 25

72 0 1
2 0 −1− z0 −z0 1 1 + z0 z0 0

6-3 1
72 − 25

72 0 1
2 0 1− z1 z1 −1 1− z1 z1 0

6-4 1
2 0 25

72 − 13
72

1
6 ± 1

6
1
6 ± 1

6
1
6 ± 1

6 0

6-5 1
2 0 25

72 − 13
72

1
6 − 1+z0

6
z0
6

1
6 − 1+z0

6 z0/6 0

6-6 1
2 0 25

72 − 13
72

1
6

1−z1
6 − z1

6 − 1
6

z1−1
6 z1/6 0

where z0 is the root of the equation z2 +z +1, z1 is the root of the equation
z2 − z + 1.
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Computed Solutions List of computed solutions

Generalization of computed solutions

Solution 3-1 can be obtained from elementary solutions y = x4/3 or y = x1/3

by the Bäcklund transformations

T8 : y8(x ;−δ + 1/2,−γ,−β,−α + 1/2) =
x(y(x ;α, β, γ, δ)− 1)

y(x ;α, β, γ, δ)− x

and
T9 : y9(x ; γ, δ − 1/2, α, β + 1/2) =

y(x ;α, β, γ, δ)− x
y(x ;α, β, γ, δ)− 1

,

correspondingly. The same transformations connect the solution 5-3 with
elementary solutions y = x6/5 and y = x1/5, correspondingly. It is pos-
sible that some other solutions among mentioned above may be obtained
from the known elementary solutions of the equation PVI by the Bäcklund
transformations but the authors does not known anything about it.
All the found solutions are algebraic solutions and can be written in the
polynomial parametrization.
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Computed Solutions List of computed solutions

Generalization of computed solutions

Solutions 3-4, 3-8, 4-4, 5-5, 6-1 can be written as the sum of finite geo-
metrical progression and then can be generalized for the case of any power
exponents. The direct substitution shows that the function

y = b
x − 1
xb − 1

is the exact solution of the equation PVI for α = 1/2, β = 0, γ = (1−b)2/2,
δ = −(2 + b)2/2, b ∈ C.

A.Batkhin (KIAM) EXACT SIMPLE SOLUTIONS TO PVI February 5, 2012 27 / 29



References

A.D. Bruno, Power Geometry in
Algebraic and Differential Equations,
Elsevier Science (North-Holland),
Amsterdam, 2000. 385 pp.

Gromak, V. I., Laine, I.,
Shimomura, S. Painlevé Differential
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