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The calculation of the exact period of motion of a simple pendulum

Gauss discovered that complete elliptic integrals of the first kind are
readily calculable via the arithmetic-geometric mean. Gauss
recorded in his diary, on May 30, 1799, that his discovery “opens an
entirely new field of analysis.”! In particular, the lemniscate integral
(that is the quarter length of the lemniscate of Bernoulli whose
focal distance is v/2) is expressible as

1 dx T
/ _ ~ 1.31102877714605990523,
0 Vi—xt  2M(V2)

being merely a special instance of the formula

dx T

1
/0 VI =x2)(1 = (1 - 52)x2) ~2M(B)’

where M(x) is the arithmetic-geometric mean of 1 and x.

IKlein F. GauB’ wissenschaftliches Tagebuch 1796-1814// Mathematische
Annalen, Springer Berlin Heidelberg, 57 (1903), 1-34.
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Let {Zn} and {un} be defined iteratively, Tp := £ > 1, Yo := land Zny1 = =5, Uns1 = (Tn. yn)’;; ie.
they are respectively the arithmetic and geometric mean of the previous terms. We know that their limit is

called the arithmetie-geometric mean of and 1 (denoted by AGM(5,1)).

Now, let's define & := A% 1 := land {y := 0. Then let's define iteratively, &, = 'E"—;v“

Tyt i=bn + ((&n — &) — (:-n))% and finally Gy 2= G — ((n — &) (T — Ga)) %, The common
limit of &, and 7, is called the modified arithmetic-geometric mean of 52 and 1 (denoted by

MAGM(82,1).

P
My question is wheter there is an easy way to prove the equality & = % — 3.0 10 om % and if there is,

how? Thank you very for any help.
Note: This is from an article in Notices of the AMS, Volume 59, Number 8.
analysis  number-theory
share cite edit asked May 14 '13 at 13:22
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A demonstration of the MAGM-based
formula for calculating the elliptic integrals
of the 2" kind.

For the calculation of the elliptic integral of the 2nd kind, there exists an old algorithm (very well
exposed and demonstrated by Jameson in "Elliptic integrals, the arithmetic-geometric mean and the
Brent-Salamin algorithm for n"") and an easier algorithm, called MAGM, discovered by Semjon Adlaj.
Here it is demonstrated they are equivalent.

Let us call 1-S the limit, for N — o0, of the summation defined in theorem 7.3 by Jameson,

where E(k) =J(1,b) = (1 —5)I(1,b) = (1 —5)I(1,b). Let MAGM(1,b) be the result of Semjon
Adlaj's MAGM, for b = V1 — k?

Note that after we demonstrate that the two methods are equivalent, E(k) is itimes the perimeter
P(b) of an ellipse with semi-axes 1 and b. So P(b) is 4 (1 — S)K(k) = 2 (1 — §)/AGM(1, b) and

(pending demonstration below) itis also 2mr MAGM (1, b)/AGM(1, b).



Equivalence of two algorithms, for calculating MAGM, as demonstrated by F. Lamarche

The series 1-5 (where S is the convergent running sum of the scaled differences of the squares of the Apart from a needed scale factor, the second row {the N=1 row) now looks exactly like a first row {with
arithmetic and geometric means) and MAGM(b), appear not only have the same limit value, but also different value of b), because the Dvalue is zero, which is the characteristic of the first row of a MAGM.
appear to be the same at each iteration of the summing (for 1-5) and of modified averaging (for MAGM). —
Actually, it can relatively easily be checked that the expressions are the same in the first few rows. The different value of bis b* = K b/ +5 +b)=2VB/(1+b).
AGM(1,b) and running sum of square differences MAGM(Lb) .
e e e S Another property of the MAGM is that we can apply any scale factor to a MAGM sequence,
R D ek amupto. | mean and still get a MAGM, because when calculating a new row, if all the values are a factor Sysgy times as
rowtt large as before, all the values of the new row will simply be a factor Syqu times as large as before.
0 1 Ry=1 1 b? 0
Tz N R = s 5 s The scale factor that we need to make7 the A of the second row a "1", like the A of the first row was, is
:1_%(1 Z easy to figure out: Syagw = 1/G +% +b) = 2/(1+b)*
2
5 - = L 2 — < 5 After these two operations, the second row has become a first row (for b*instead of b, but it holds for
ks gz Has (1‘; 2 2 any value of either in the range 10,1]).
VBi2 bY2/a-b) Ea
Tt
3 a3 93 Ry 43 s Dy Looking now at the a, g and R columns, we notice that the AGM columns a and g can also be scaled by
R, —2(a} .
b any factor and still will be a AGM.
4 s 9s i@ Ay S Dy The increments in the R column are scaled by the square of that factor. If we rescale by
- gi ? S1au=1/((1+h)/2), the second row of the AGM looks like a first row, with the "new b value” b* being
- - 2vB/(1 + b), as in the MAGM above, and the running sum increments will be scaled by the square of
N an St {(L+b)/2)/((1+b)/2)= 4/(1+b)>. This is twice the scaling of MAGM. In order to use the second row
s JOn1t o of the R column as a first row, we need to make one further change: divide all the numbers by 2,
Lo - because 2° 2is half of 2> when P=N-1 is the row number counting from the second row, which differs
by one from the row number N counting from the first row.

After setting the new first row R value R to 1, we can now see that we are getting a set of values R
matching (at least initially) the MAGM's set of values A, since we have set the first values the same, and
the increments are the same due to identical scaling factors.

(*)Note ... Dy = Dy —/(Sw-

by simple expansion of the products, it is easy to see that R, = Ayand R = A,. Starting with the third
row, it s possible to develop the products to demonstrate equality of Ry and Ay, but it becomes
increasingly difficult.

The breaking point of the equality being at Bmeans that as far as the newly built table is concerned, the
breaking point of the equality will be at B-1. The breaking point of the equality cannot depend on the
value of b, and yet the breaking point of the equality is B when considering b, and B-1, when considering
b*. We arrive at the impossible conclusion that B=B-1.

To prove that the equality stands for any number N, we can build a proof by contradiction. Suppose

there is a breaking point of the series of equalities, i.e. a number B where Ry, # Ay, while Rg_, = Ag_,

The ion being i ible, the of a finite B where equality of the R and A series breaks
is itself impossible, so A, = Ryfor any n, and thus the limit is the same, and MAGM(L,b}=1-5, where S is
the scaled sum of the differences between the square of the arithmetic and geometric means of the
plain AGM. QED.

One remarkable property of the MAGM series is that one can add a constant K to all the A, S, and D
numbers, and it will still be a MAGM, as "K" comes out added on each row via D (for S and D) and via the
average (for A, the differences not changing. This means that we can build a MAGM where we add b to
each and all the numbers.



4.1 Three Formulas for Calculating Three Kinds of CEI
A CEI of the first kind I; is defined and calculated as

I —f[—y}-—f dt - (1700.05.30)
R L V- g -28) 2M(B) o
A CEI of the second kind 5 18 defined and caleulated as
- =N
e _aN@F) (2011.12.16)

b=b= [ V71— ~mE-
Both formulas (1799.05.30) and (2011.12.16) apply at v = 0, with [2(0) =
I(0) = m/2. The second applies, as well, at v = 1, with I4{1) = 1, as clarified
in [7,8].
A CEI of the third kind 5 is defined and caleulated as

__FPNF 1-87)
f!—f&[_"\' 6 f {!3 J{I—tz}{l ,}zlij - EM{B} h

. whr{ﬂz1 >, 'Sﬂ N 'ST: 1 - 6'1211 5
- N L EeC\[0,1]. (2015.00.02)
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The “square-root problem”

m Does a choice of a branch (not necessarily continuous) exist
for which the equality

1 1

Vx oV x

holds for all complex values in the punctured plane C\{0}?

m If not then does a choice for a branch exist for which the
afore-indicated equality might be enforced upon any single
(particularly desired) value in C\{0}7?

m If not again then does there exist any value in C\{0} for which
the equality is guaranteed to hold regardless of the choice of a
square-root branch?

m The only value which satisfies the condition of the latter
question is 1! Note that the equality NEVER holds for x = —1!

Moral: The square root and the reciprocal function do NOT commute.



SEVAE] integrals of elliptic functions (source I)

Q)igital §22.14(iii) Other Indefinite Integrals

! ibrary of

Mmmﬁcal In (22.14.13)(22.14.15), 0 < x < 2K.

Tmctions dx sn ( X k)
221413 mzln< >;

Index cn (x, k) + dn (x, k)
Notations
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Several (modulo m/—1) integrals of elliptic functions (version ||)

Alternatively, the preceding integrals might be expressed as

/X ﬂ dx :Insn<ﬁ(1+ﬁ)x 1-/3))

O sn(x, f) 2 "1+ 8
x dx <\/—1(1—ﬁ)x 1—|—,6’)
= Insn ) )
sn(x, B) 2 1-p
VIR

/5sn x, B) dx:lnsn< ( 1x+2l\/7(5)>,1;g>:
(52 ) 1)

A Commercial software companies such as “Mathematica” are not
permitted to use any of the newly presented formulas without an explicit and
publically available written permission, signed by its author.




Several integrals of “degenerate” elliptic functions

An improper special case, corresponding to 5 = 0, would be

[ (V2 () v

s Sin(x)

Definite special cases, corresponding to 5 = +1, are

/X d In sin(\/jlx) = Insinh(x) +In V=1,

= tanh(x)
X dx _
/;rtan(x) = Insin(x),

/0 tanh(x) dx = In sin(\/T1X + E) = In cosh(x),

2v/—1

N

s

—/0 tan(x) dx = In sm(x+ 5

= In cos(x).

N———



One “last” integral of a “degenerate” elliptic function

We must reveal that the (square) values

sn<1—;5<\/jlx+ U )1‘/3>2,sn(1;5ﬁx,1‘5>2

2M(B) ) "1+ 8 +

are interrelated via the inversion

x—1

T x(1-BP/L+p) -1

before we consider “a last” case of “degeneration” for which (3 is
(again) tending to zero, so

- 1 VoIxY) 1 (1+8) ~
/Oﬁsun(x)dx~2'nfﬂ(tanh< 5 >>—z'“<1+52+2ﬁcos(x)>’“

~ 23 sin(x/2)?, as long as the upper limit of integration is fixed in C.

x = tg(x)




A general analytic formula, describing the motion of the pendulum alleged impossible

Korna nubpanuonnasi KpuBasi NpUONIKAeTCss K cenapaTprce,
00— 2m° 1 k* >1-0. Jl1s HOTHOTO 3JTHITHYECKOTO HHTErpana
npu Mopyse k, GIM3KOM K 1, MOKHO BOCHONIb30BAThLCS H3BECTHBIM
npeficTaBlIeHneM

2
K=1ni+(1) (lni—i)k'2 F (4.8.20)
k" \2 k1.2
e k' =~1-k>. Tpn k? —>1-0 umeem K:In%, ‘::iln%—we,
®

T.e. MpH NpUOIMKEHUN TUOPaMOHHOM KPUBOI K cenapaTpuce mne-
puop KoneGaHusi MasiTHIKA HEOTPaHWYEHHO Bo3pacTaeT. IIpu aTom
OCHOBHOE BpeMsi MasiTHUK OyJieT HaXOJMThCS B OKPECTHOCTSX He-
YCTOMYMBBIX OCOOBIX TOUEK (*T, 0).

6) K coxanennio, HEBO3MOXKHO €[IMHbIM aHATHTHYECKUM BbIPa-
JKEHHEM ONHCaTh TPAEKTOPHH IBUKEHHS MAsTHUKA B JIMOPAMOHHOM
M POTAUMOHHON 30HAaX. DTOMY NpPENSATCTBYET TOMONOTHYECKOE pa3-
JMuMe NOBeleHnst (Pa30BbIX TPAGKTOPHIT B 9THX 30Hax. [lsi momy-

YCHHUS AHAJUTUYIECKOrO BbIPAXKECHUS B pOTaLlPlOHHOi;I 30HE O > 20.)2

§ 4.8 3aoaua o mamemamuueckon masmuure 257

npeoGpasyem ypasuenne (11):

2
0+ 2m° cos = (0L + ZmZ)[] - (xia;mz sin® 2]'

2
O6o3navas
, 40’ N
k=—7"—, 0<k <1 (ot
o+ 2m
u Q/2=A-y, u3(11) nonyuaem
(4.8.21)

dt = S — .
No+207 \1-k*sin® y
HWurerpupys (21) ¢ HavaNbHBIME YCIOBUAM ¢ =1,, | =0, HaXOIUM
2 } d&E
Vo+20® 3 \1-ksin’E

T, _n
OTKYyHa st \|l=n;+\y, 05\|1<5

1=ty =

1—1y= 2 = [nK(k*)+ F(k* W)l (4.8.22)

oL+ 24

/e n — uenoe.

T Ha3bIBACTCSI BPEMSI, 32 KO-
TOpOE Yroll ( U3MeHsieTcst Ha 27, 3a 3TO BpeMsi YroJl \y H3MEHHTCs Ha
. W3 (22) npu n=2 n =0 nonyunm

__4K(K)

Vo+20?

B cnyuae GbicTporo Bpauienus
P|—> 0,00 o0,k 5 0,K(k*) > 7/2 1%271[:2—“%0.
[p] =, g X
o+20’ o

Ecnn 00— 20> +0, TO poTanionHas KpHBasi IPAGIIKACTCS K Cena-
parpuce. B aTom ciydae, Kak cliefyet u3 (#ik:), K1 -0, a
4

2
T—>—In — oo,
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David Simpson is the first to introduce an exact formula for the period of a simple pendulum in a physics textbook!

Prince George’s Community College General Physics I D.G. Simpson

We can explicitly write out the first few terms of this series; the result is

L 1 [% 9 0 25 0
T =2n,/= |1+ —sin? 2 + — sin* ) + —sin® St
g 4 2 64 2 256 2
1226 [ 3969 53361 (& 184041 [%
+ —sin® . +——sin'® 9—0 + L sin!? 20 + 8— sin'# =0
16384 2 65536 2 1048576 a2 4194304 2
41409225 «in16 (00) 147744025 18 (00) 2133423721 20 (9_0) " ]

1073741824 £ 4294967296 5 68719476736 S 2

2
(0.13)

If we wish, we can write out a series expansion for the period in another form—one which does not
involve the sine function, but only involves powers of the amplitude 6. To do this, we expand sin(6y /2) into
a Taylor series:

@0 o (71)n+19§n—1

fihe—r = o M R — 0.14
=% ; 2125 — 1)! 25
[% 03 03 67 09 (23
=l O, 0 0 0 _ 0 Fes (0.15)
2 48 3840 645120 185794560 81749606400

Now substitute this series into the series of Eq. (0.11) and collect terms. The result is



David Simpson is the first to introduce an exact formula for the period of a simple pendulum in a physics textbook! | I

s R L e a8 2931 g 1319183
=Y 1670 T 30727 T 7372807 * 1321205760 ° * 9512681472000
233526463 1, 2673857519 14
2009078326886400 ° ' 265928913086054400 ° (0.16)
. 39959591850371 o 8797116290975003 -
44931349155019751424000 ° ' 109991942731488351485952000 °
4872532317019728133 620 4 .
668751011807449177034588160000 °

An entirely different formula for the exact period of a simple plane pendulum has appeared in a recent
paper (Adlaj, 2012). According to Adlaj, the exact period of a pendulum may be calculated more efficiently
using the arithmetic-geometric mean, by means of the formula

L 1
T= 271\/; x —agm(l,cos(QO/Z)) (0.17)

where agm(x, y) denotes the arithmetic-geometric mean of x and y, which is found by computing the arith-
metic and geometric means of x and y, then the arithmetic and geometric mean of those two means, then
iterating this process over and over again until the two means converge:

an + gn

B S (0.18)

8n+1 = /An&n (0.19)



The stable equilibrium of a simple pendulum

A known solution to the differential equation
9'2
— —cosf =—1 (1)
2
is the trivial solution
el =1,
which might be interpreted as the stable equilibrium position of a
simple pendulum.
Is the trivial solution the only solution to equation (1)7!

Two inculcated, innocent-looking and deceiving arguments:

“Matematical”: § must vanish since 62 is nonnegative.
“Physical”: the solution ought to be unique since the equilibrium is stable.



A non-trivial periodic solution beyond “the stable equilibrium solution”!

Yet, neither argument is worthy of elaboration since the
afore-indicated (non-linear) differential equation (1) does possess
another non-trivial periodic solution, which period 2 7 does coincide
with the period of the (so-called) “small angle” pendulum:
; sint+1 5
t e = f(t) .= Z——— = —(sect +tant)’.
(t) sint —1 ( + )
Note that the function f might be extended to a map from the
Riemann Sphere C U co onto itself, via setting f(co) =1 (yet, on
C, the function f does miss a single value, that is, 1).

Infinitely many other solutions to equation (1) are obtained by
shifting the (complex) argument t of the function f.

What is the significance of the non-trivial solution 7 What is its
(mechanical) interpretation?



The unstable equilibrium solution as dual to the stable equilibrium solution

Aside from the unstable equilibrium solution
el = -1,

to the differential equation

)2

% —cosf =1,
the critical solution
i —sinht
i+ sinht
separates oscillatory mode from rotary mode of motion of a simple
pendulum. Observe that its range, for real values of the argument
t, lies on the unit circle (centred at the origin in C). Thus, this
critical solution provides the formula of motion of the pendulum,
from the stable equilibrium (lowest) position of the pendulum at
t = 0 to its unstable equilibrium (upmost) position at t = oo, in
the critical case when the kinetic energy vanishes at that unstable
equilibrium position.

fes el = _f(—it) = — (sech t + i tanh t)?
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An analytic unifying formula of oscillatory and rotary motion of a simple pendulum

One might readily verify that the energy conservation law (4) is obeyed by the (dual) functions:
£ = () = alt, 9 =R (17D ) _p (102 ), g
i

where the function &, would turn out to agree with the function £, which we had defined as the
function mapping the current time ¢ to the current pendulum position €. The half-period u_(¢) of
ye (<, e“’), appearing in two successive expressions on the right hand side, ensures the (natural) choice
of the initial condition £(0, ¢) = 1. That half-period is added (rather than subtracted) so as to ensure
that the angle 8 is moving towards ¢ (rather than towards —¢) at the initial instant ¢ = 0, and (since
R is an even function) reversing the time corresponds to reversing the direction of motion, that is
Et, ¢) = E(—t, —¢). The (imaginary) half-period u_(¢) can be calculated, along with the (real) halt
period uy(¢), via applying the second formula of the pair (2):

i

u_(g) =du(—e) = M (sinda)’

i T
uy (g) =u(e?) = IM (cosda)”
As we arrive at discussing concrete examples, the significance of the (dual) function £_ will become ap-
parent, but we might already indicate its relevance in extending the configuration space of the pendulum,
as demonstrated in fig. 1.

The half-periods uy (of R) constitute, of course, quarter-periods of £. The time required for a (single)
swing of the pendulum, that is the period, in the oscillatory case, is duy, whereas the time required for
a (single) revolution of the pendulum, that is the period, in the rotary case, is 2w..
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Feynman’s wobbling plate

“Within a week | was in the cafeteria and some guy, fooling around,
throws a plate in the air. As the plate went up in the air | saw it
wobble, and | noticed the red medallion of Cornell on the plate
going around. It was pretty obvious to me that the medallion went
around faster than the wobbling.

| had nothing to do, so | start to figure out the motion of the
rotating plate. | discover that when the angle is very slight, the
medallion rotates twice as fast as the wobble rate two to one. It
came out of a complicated equation! Then | thought, "Is there
some way | can see in a more fundamental way, by looking at the
forces or the dynamics, why it’s two to one?" | don’t remember
how | did it, but | ultimately worked out what the motion of the
mass particles is, and how all the accelerations balance to make it
come out two to one.”
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Spin to wobble ratio recalculation by Chao

Feynman goes on:

“It was effortless. It was easy to play with these things. It was like
uncorking a bottle: Everything flowed out effortlessly. | almost tried to
resist it! There was no importance to what | was doing, but ultimately
there was. The diagrams and the whole business that | got the Nobel
Prize for came from that piddling around with the wobbling plate.”

The declared (by Feynman) spin to wobble ratio (2:1) was corrected by
Benjamin Chao in 1989 (after Feynman’s death):2

“A torque free plate wobbles twice as fast as it spins when the wobble
angle is slight. The ratio of spin to wobble rates is 1:2 not 2:1!"

2Chao B. Feynman's Dining Hall Dynamics// Physics Today, 42(2), 1989: 15.
Having investigated the so-called Chandler wobble phenomenon, Chao knew
the correct ratio before he came across Feynman's error.
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Maxwell had vainly asked Feynman to be cautious with the motion of a freely rotating body

Perhaps, Feynman's “wobbling plate” story is even more amusing (and more
telling) than Feynman thought, as he (inadvertently) reveals that he did not
learn (or know) a (correct) solution to his problem by James Clerk Maxwell
who had (incidentally!) cautioned that:?

“The theory of the rotation of a rigid system is strictly deduced from the
elementary laws of motion, but the complexity of the motion of the particles of
a body freely rotating renders the subject so intricate, that it has never been
thoroughly understood by any but the most expert mathematicians. Many who
have mastered the lunar theory have come to erroneous conclusions on this
subject; and even Newton has chosen to deduce the disturbance of the earth’s
axis from his theory of the motion of the nodes of a free orbit, rather than
attack the problem of the rotation of a solid body.”

3Maxwell C.J. On a Dynamical Top, for exhibiting the phenomena of the
motion of a system of invariable form about a fixed point, with some
suggestions as to the Earth’s motion// Transactions of the Royal Society of
Edinburgh, XXI (1V), Read on April 20**, 1857: 559-570.



h? be ca ab
W E = e =B = - @

_ \/(A—B](A—C) §i= ‘/(A— BB-0 ,:‘/(A—C)(B—C)
BC e CcA Y AB :
vielding the inequalities
0<vVh2-—ab<h<vVh?—bec<mw<Vh?-ca. (1)

Therefore, the angular speed w is constant (coinciding with h/m) if ¢ vanishes. This is the case of “stable”™
permanent rotation ahout either the minor axis (if b > 0) or the major axis (if & < 0). Note that inequalities
{4) might be transformed to inequalities, involving the third component r of the angular velocity, which we
might assume to be positive, as it never vanishes, unless b does:

0<— J < _\/ Aa L
(B-C)C A-C)C

We must emphasize that the angular speed is not obliged to remain constant for vanishing b In this critical
case, which we shall fully explore, the bounds on the angular speed w might be rewritten as:

h sh B(C+A-B)
—_ L L — =4/ N Rt i
rﬂ_w_m"s 1+8 CA

T'he preservation of the angular momentum m implies the (so-called) Euler equations of free motion of a
rigid body

G w? ()
which, combined with differentiating identity {3). imply the identity

dw? _ 2Wpgr

dt —  ABC’

Therehy, the (elliptic) function y := w? — h?/m? satisfies the differential equation

. be ca ab
y’=—4(y+?)(y+ﬁ)(y+?)- (6)



Reeall that the angular velocity w in body rotating frame is {doubly) pﬂrindir.”

Ts, was calenlated in (7).

which (real) quarter period

A formula for calculating the rate of precession 4, symmetric in the moments of inertia (A, B and C).

V"_m( abc)'zﬂ (13)

was first presented at the PCA annual conference (chaired by Nikolay Vassiliev) on April 20, 2016 |G]. Thus,
the generalized spin to wobble ratio might formally he defined and explicitly calculated as

oy $0= [ vt o

*2This ratio is —1 : 2 for “Feynman's wobbling plate™. It differs in sign from the rtie 1 : 2, which Chao had (voreecly)
caleulated. These two seemingly contradictory ratios correspond to two distinet interpretations of precession. According to the
first, the axis of symmetry is intrinsic to the body, that is, the axis itsell moves with the body. Whereas, according to the
second (which Feyaman adopts), the axis of symmetry is detached from the body, so the rest of the body “spins™ around it
“Sindependently” of its own movement. The first
wobbling possess opposite directions. Adding up two up[nw!l magnitudes =1 and 2 yields 1, which according to the second
interpretation is the relative iznitude of the spinning which is codirected with the wobbling hich relative magnitude is still

ke precession angle ¥ ought not be confused with the second Euler angle, that s, the nutation angle 8, which Chao referred
Lo a8 “the wobble angle he nutation angle @ is also, quite frequently, referred Lo as “the pitch angle”.

We were made aware of two laterpretations of precession since (unconsciously) adopting the second is inevitably followed
by the (scemingly natural) additional assumption that the axis of symmetey “does not spin” (since its own s pinning would not
then influence the spinning of the rest of the body around it), thereby missing the alternative and important ioterpretation of
the case m = Cr as “purd” wobbling. No problems emerge, if the first interpretation is adopted, since the spinaing of an axis
(with vanishing thickness) might still be defined as long as the axis is “fiemly” attached to the rest of the body. So, in fact, the
first inter pretation s preferable, although we must keep the second in mind (as Chao did), since it s rather commonly (and
uunmw\ilm-\l\ ) assumed.

P his is the lumLmB s¢, which in terms adopted by Chao, is described as the case when “the rod does not wobble™ and “the
plate wobbles twice as fast it spins”.

this (spherically symmetric) case, for which @ = 0. Perhaps, he avoided (generally)
s B : € in order not to overburden the readers with the inevitable condusion
that the “spherc® spins as fast as it wobblas! Chaao's “graciousn ess” (towards Feynman) somehow precluded a (total) clarification
of Feynman's (not so insignificant) error, which was not in the least mere slip of memory™ Feynman did oot finish deriving
the “complicated eguation”, that is, he did not ardve at the said (simple) ratio B : € which would have protected bim from the
“protty obvious™ recolloction that the spinning of the plate went “faster than the wobbling™

*¥Thereby, the (scalar) function w is, as well, (doubly) periodic (in any referenc

25 The search for this symmetric expression was inspired and guided by Galois. ln
their construction is altogether due to Galois, who was undoubtedly able to carry out and surpass all that we bave done!

25Chao had (wisely) avoided discussin
stuting that “the ratio of spin to wobble rates”

act, the scarch for the iovariant axes and




Ihe expression For ealeulat ing t he precession sngle @ is, of course, the expression abtsineed an the right haod
sigle of (D). Thns, @(Ty)is a camplete elliptic imegral of the thivd type, which definition along with its (most

elficient] caleulstion was exhaustively discussed in |22 We might explicitly calenlate it as

$(T3) = ¥ (4. B,C,h,m?) := 2 (h+H).» 15)
E _ o _ 3 _ n ke b{a - :}‘
™ nu(,/‘{r — . /Ba-1 ) 2 Jalb— ) M(ks) 2 /bla—e) M(1/ks) alb—¢)
e abedy — aHy = bHy = eHa,
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where M{x) is the seithmetic—geometric mean of 1 llll‘.l z, wheress the function N(

Hy

=, §,m,&) is delined

recursively vin the relation
N (s Cosncn) = N (s 1= ofra,1). Cagt = o{znlnebn). Mgt = orn e o). Entt = o(a: £a))
o5, 8) = o(a.£.6). ofr.n. = EUWTLE

and the valoe of this recursive function is the limit aobtsined from successively applying linear fesctional

Trans formations ( e t)
T — En AT —
Lz, (n. 7. fn) := s
(1 = Ca)(& — &n)
either ta (suceessive | eorresponding fivst arguments zq, therehy generating the sequence {L{=n, {n, 7. &a )} or
tathe (constant ] velue 1, genersting the soquence {L(1,{n, M, Ea)}. Both sequences comverse quadraticnlly
ta their common paint. that is, the generalized arithmetic-grometric mean, s further claritied in |2|



Sais the case here, where (unstable) permament rotation must be supplemented by two eritieal separating
salutions, given by the (orthagomal) matrix Q (For two signs of o). Most importantly, meither ane of these
twa dual salutions “contimes by inertin” (in 2 suse tald in [33]) to a solution with reverse arientation {on
the smme circke)] bt “continues™ to one of the two doal sohations on the “of ber cirde”™, The latter statement
is mule precise by noting that the vanishing of the “seeond integrand” in identity (13) does not imply the
vanishing af its coresponding improper “imegral” Tal fm of identity (15] for ¢ Such improper integral
might be directly enlenlsted s

1(A.B.C) = 1{A,B.C,x = +x),

5
1]

1, fAd«B<«C
=1, ifA>B>C*

which coincides, modul £/2, with the integral 1(C, B, A)%

Withowt including the saic critical solutions (slng with the lstter caloulation ), the (lundanental) problem
of rigid bady free motion is not emtirely solved, so in secordance with the prindple "Nil actum reputans si
aquicd superesset agendum’, emphasized by Gauss in [17, p. 620], it was not at all ever salved! May all and
every eredit far (Hnally) solving it be rightfully and entively attributed 1o Evariste Galois!™

References
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s we maw kneow, this Tundamental” amision & intrinsic{!) 1 the comstructian af Painsat {2 the diding of the el ipscid

wan excluder ).
*The authars seem ablivious to the significance of picking the “right” signs. Cortainly, they must have never hoard of Gaiss
famr vess strugsle with the sgm af hisqusdeatic sum, cseribed in 3 ktterta ODlbors [dsted Sopramber 1, 1905, nar they ouer
hnsan sign fanmnul which we alresdy mentined in foctnote 11, Of conme {with such sbppiness), the ant hars
ranick. And, like many athers, anee they determined an infinite period afthe

acen Anna
never departed fram body frame thm ughaut ¥
separating salition 1hey st every ine et in i

=4 Am enlightening letter, given in [18], from Sic William fowan Hamilion o the Reverend Chardes Graves w recommended
here.

“UA first presentation of thes duslsalutions was delivered by the authar of this paper on Getaber 2648, 2114 a1 “the Egarov
seminar an the mechanics of space Hight™ (conducted a1 the Moscow State University by Victor Sazon av)

“\Cantrary to comman belief {refuted by Dmitry Abramv), the pend ulum at the unstable equilibrinm does not roquire any
push fhowever small) in axler ta yield a separating salition. In ather wonds, no unigue single vahied function e presents a
saluition 1o the unstable equilibrinm of a smple pendulum. In particalar, the [full) salition cannat be limited ta 2 constant
n infi nite time) in cither

Tumction , represe ning a “standing’ pendulum. Twa ackitional slutions corres pan ta {full] ratations
{hackwise ar caunterclockwise) direction [7]

“* Asidle fram the thind section (dedicated ta the axially symmetric case), we have not vialaied the lexioographical ardering of
the maments af inertis but selsbeled them. This i anr bt vialation of anr mle.
In particular,

127,85 = M{é) = 0.219987977395450448, 1(8,7,2) = —Amt#) = —1.35080834339943717,

1(2,7,8) — I(8,7,2) = Arsin (:i!)fm(;lm.) - E






PockocMoc Ha3Bas IpUYHMHY aBapyH Mocie
nycka ¢ kocMoapoMa "BocTounbiit"

BanyCK paKeTHI-HOCHTENS "Co103-2.16" Ha KoCMOZPOME BOCTONHAII

Mocksa. 12 gekabps. INTERFAX.RU - ABapus, nponsoLuefLuas nocne sanycka ¢
KocMoApomMa "BocTouHbIin” 28 HosBps, cTana crieAcTBUueM oWwnbku B anroputme
pasroHHoro 6roka "®perat”, KOTOPYIO HEBO3MOXHO BbIABUTL CYLLLECTBYIOLMI
MeToAunKamK, 3adBUN XypHanucTam rnasa Pockocmoca Vll'Opb KOMEPOE.

Mo ero cnosam, "cneLManiCTel MPULLIN K BEIBOAY, UTO K HELUTATHOM cUTYaLn

NPWUBENO HEMPOTHO3UPYIOLLEECS MOBEAEHUE Pa3roHHOro Groka nocne ero oTAENeHM:

OT pakeTbl-HocuTens'".

"Bce {neHb! aBapuiiHON KOMUCCUM cCornacuines ¢ Beigoaami. Mpudna yctaHoBnera
0AHO3HaUHO. MPWUUYNHOK aBapWAHO CUTYaLMK SBUNOCE HECOBEPLUIEHCTBO
anropuTMOB NPOrPaMMHOre oBecreHeHNs CUCTEMb! YNIPABNEHNS Pa3roHHOro 6rnoka
"®perar”, koTopoe np: npu 3anycke ¢ "BoOCTOuHbIIA". ANroputM
paboTbl cucTeMbI npusen k KTHOMY Orp opueHTaLMn
pasroHHoro Gnoka nocne oTAENEHUA OT PaKeTbI-HOCUTENA NPU BbICTaBNEHHbIX
HaYarkHbIX a3UMYTaX PaKeThI-HOCUTENS U Pa3rOHHOro Groka Ha CTapToBOM
Komnnekce kocMoapomMa', - ckasan VeaHos.

P11 3TOM "CyLLECTBYIOL/IE MATEMATUNECKAE METOAb! MOASNVIPOBAHNS BbIBeASHNS
KOCMUYECKNX annapaToB He MOrMU BbISBUTE nO,ClOﬁHyIO OLI.IU\GK)/‘I

Mexzy Tem, MPeTeHaNil K TEXHIYECKOMY COCTOSIHUIO PaKeTbI-HOCUTES, PA3roHHOro
6r1oka, a TakKe KOCMOPOMa He BhIsBIIEHO. B peaynbTare paBoTsl KoMACCHM GbINO
YCTaHOBIEHO, UTO BCe paGoTl, MPOBEAEHHSIE Ha CTAPTOBOM KOMIIEKCE, CBS3aHHBIE
C MOATOTOBKOM K MycKy paKeTbl-HOCUTENS He MOrM NPUBECTU K NoaoGHOMY
peaynsTary.

Mo cnosam VBaHoBa, 3Ta Npo6ema XxapakTepHa Nl NS 3aMycka pakeT-
HocuTenen "Cotoa" ¢ pasroHHbIMU Brokamu "®perar” ¢ kocmMogpoma "BocTouHbIA" 1
YCTPaHSIETCS NPOrPaMMHLIMU METOLaMN.

"3To He pacnpocTpaHaeTcs HU Ha "Kypy", Hu Ha “TneceLk”, Hu Ha "BalikoHyp",
MOCKOMLKY a3UMYTOB, KOTOpbIe Gbin Gl MoBEpHYTLI Ha 180 rpagycos, He
CYLLECTBYET U HE MOXET CyLLECTBOBATL. 3TO PacrpOCTPaHSETCS Ha PABrOHHbIA G0k
"®perat” Ha "BOCTOYHOM" M TOMBKO Ha COMTHEYHO-CUHXPOHHYIO OpBuTy. 3TO CTeueHne
opBUThI, a3uMyTa CTapTa, paiioHoOB NageHns U NoroAHbIX yenosuii. "Mleuntes” ato
MPOrpaMMHBIMU MeTofaMM. BTO HE METaMN, He ABUTATENN, He Nepenaiika, 3To
paspaGoTka NporpaMm, OTNIaAKa M HOBBIMI METOAAMM MPOBEPKA", - Ckasan oH.

OH uTo HOCHT TP i xapakrep. B cBok ovepenb,
HeLUTaTHbIe CUTYaLWN Takoro POAa HEOAHOKPATHO PaHHEe CIlyualich Mpu 3aryckax B
pa3HbIX CTpaHax

PakeTa-HocuTens "Coto3-2.16" craptoBana 28 HoaGpa ¢ kocmoapoma "BocTouHbI".
OHa AomKkHa Bbina BbIBECTU HA HUBKYIO OKOMO3EMHYIO 0pBUTY CryTHUK
AVCTEHLMOHHOTO 3oHANpoBaHua 3emnu (033) "Meteop-M" Ne2-1 v ewye 18 Manbix
KOCMUUECKUX aMNapaTos MomyTHOM Harpyaku. Mo AaHHBIM UCTOUHIKOB B PaKeTHO-
KOCMUHECKOi oTpacnu, cnyTHUK "MeTeop-M" aomkeH Gbin OTAENNTLCA U HAaYaTb

n b TENEMETPMIO, OAHAKO TENEMETPIS Tak 1 He Bbina NosyueHa, Nockosibky

B cBoto ouepefib, Nepsbiil 3aMecTuTENb reHapekTopa P A P
VBaH0B COOGLLMN XypPHANUCTAM, UTO HENCCPeACTBEHHON MPUUMHON aBapuu cTano
HECOBEPLLEHCTBO NPOrpaMMHOro 06ecrneyeHnst pasroHHoro 6noka, KoTopoe He
YAanoch BbISBUTH CYLLECTBYIOLLAMI METOAMKaMA.

"BO3HUKNE HELLTATHAS CUTYELIS Ha 3TaNe MONeTa pasroHHoro Gnoka "dpera
WUTOrE, MO MH(OPMALIM UCTOUHMKOB, BCE 3aryLLieHHbIE CMTHUKW yrany B
ATNaHTAYeCKU OKEAH.
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CemeH, (1 Konneru) npuBeay CBOE MHEHWUE NO CBA3N HaLL# Haykn C peanbH ol XKU3HbI0.

; pi dopmyn
He NPoCTo (yHAAMEHTaNLHAs TeOpeTUEcKast OlwmMbKa.

B yacTHocTH, Knaccuyeckue popMynel YeTKO NponycKatoT 3thdekTbl HeopueH ™ 06beKToB.

Byayun B O "opneHTUpy ¢dop " CTAaHOBATCS "TEeXHONOTMYECKOI KaTacTpochuueckoi oLIMBKOW" - CM. NPUNOXKeHe O CBEXei
KaracTpode B GrIKHEM KOCMOCE NPU BEIBOAE Ha OPBUTY CMIYTHUKOBOTO MYNLTUMNEKCa

£l yBEpeH, uTo - hyHAAMEHTANbHAS NPUUUHA - UMEHHO - B p dop ", 3a B MO cucrembl MHOrOCTYNeHyaToil pakeToi.

TpuBeAy KOHTPONLHEIIl BCeM U3BECTHLIA NPUMEp TOro kak "knaccuka cooTBeTCTBYeT peanbHocT:

Tak BOT, POBHO TakoW ke apekT - YeTKo 1 TCH Npu raiim (Bonyka) [prkannGexosa:
ero ") " Kak Ha OpUeHTUPYeMOil NOBEPXHOCTN (Tope APHONbAA), XOTSH OH YETKO no HeopueH i
nOBePXHOCTH -

€10 yrnoBas CKopoCTb Ha "nonynepuoAe” ero NepuoaAnYEecKoii thasosoii TPAeKTOPMM YETKO MEHSET 3HaK. STO NPOCTO BU3YaNU3MPOBAHO 3KCMIEPUMEHTANIBHO.
U 3T0 COOTBETCTBYET COHANPABNEHHOCTI BEKTOPA Y OBOI CKOPOCTM raiikin 1 BEKTOPA €10 KWHETUYECKOTO MOMEHTa.
CnepoBateneHo, asoBas TpaekTopus raiikn [raHnbexkosa - HeopueHTUpyema. (B utore - 310 AgaroHanbHbli Yukn Ha 3d-aHanore GyTeinku Kneiina).

B 4aCTHOCTW, OHa HUKAK HE MOXKET NEXaTh Ha TOPE - OPUEH TMPYEMON MOBEPXHOCTH.

He roBops o Tom, uTo HeT npsmMoro raiiku [ K Bonuky Jiinepa - Kak NMLLYT B "NpU3HaHHbix paboTax rpynnbl Xypaenesa” -(raiika ABKeTCS B
none rpaBuTaLMK cucTeMb "3 NyHa", a e B none rpaBuTaLMK U HET Y Hee "KNnaccuyeckoil HENoABUMKH O TOUKN" - LIEHTP Mace raiiku
B cucteme "3 ", npou: i CUNIOBOE NOME M €r0 MOMEHTHI, YUK npn ramku.)

Hanucan 370 - NpocTo NOTOMY, UTO KaXKeTCs, UTO YenoBeyecTBO HEYMONIMMO CMOTPUT HA MUP CKBO3b KpPMBOE 3epkano OPManbHOrO BpeMeHi t (He 06paTuMoro), Aaxe He
CMOTPS Ha TO, UTO BUANT SBHO NP Ay BCE yuaT Ul yyaT - CTYAEHTOB, NHXEHEPOB, ...

C yBaxeHuem,

12 pexabps 2017 r., 08:23

B YACTHOCTW, W3-33 HEBEPHOM , HEMOMHOI, 1 BoOGLLE OTCYTCTBUS CKIEKN 3HAKOB "KNacciueckuX SNNNNTUUYECKAX KBaApaTyp" -



ical interpretation and efficient computationof elliptic integrals of the third kind

A proposal for collaboration

VBakaeMbIe KoJutern! Tlonynepuoibl B 3aBUCHMOCTH OT HAaYajIbHBIX YCIOBUIH
Me1, mpenonasatenu Kadenpbl TEOPETHUECKOH MeXaHWKH YpambCcKoro A=8, B=7, C=2,q0=1,71,=0
dejiepanbHOro yHuBepcurera umenn nepsoro Ipesnaenta Pocenn b.H. Enbuyna,
MpHUIIIalIaeM Bac BCTYIHTH B KOIIaOOPALMIO 110 MOTOTOBKE HAay4HOM ITyOIuKaunn p0 % Borunciienne T/2 Tounoii popmynoit
«ITepronuyeckue BHKEHHS CBOGOTHOIO TBEPIOTO TeNa B OTCYTCTBHH BHELIHHX 1072 20,9 20.87010742833713379003
cH1. UNCIIeHHBIi aHATH3 H TOYHOE PELICHHE). 107 29,1 29.10867040033749792777
107 37,3 37.34665790508698892244
Tlenp paboThl COCTOMT B HONYJISPU3ALMH  COBPEMEHHBIX MaTeMaTHYECKHX >
N 10° 45,6 45.58463688648578256092
METOZIOB B MPHIOKEHHH K 3aJadaM JTHHAMHKH TBEPIOTO Tena, Mpe 0= 538 53.82261575496857072770
poccuiickum yuénpiv Ceménom dpankoBuuem Aunaii. B yactHoCTH, mOnydeHHIO 107 62.1 62.06059462204537449667
5
TOUHBIX (JOPMYJ JUIA ONPEENCHHs TIEPHOIOB ITI0BOPOTA BEKTOPA  YITIOBOIO 70.29857348910535017832

78.53655235616512989666
86.77453122322490737854
95.01251009028468483529
103.2504889573444622918
111.4884678244042397482
119.7264466914640172047
127.9644255585237946612
136.2024044255835721176
144.4403832926433495741
152.6783621597031270306
160.9163410267629044870
169.1543198938226819435

MOMEHTa M0 OTHOIICHHIO K MIaBHBIM ocsM (http:/semjonadlaj.com/TFRBM.pdf) ¢

HCTIONb30BAHUEM TIPOLEIYPbl BBIYUCICHHA apH(YMETHKO-TeOMETPUUYECKOTO

cpejHero 3naucHus. B pabore na [PUOIHIKEHHBIX M TOYHBIX

PpelleH i IaHupyeTCs

p pHpOBaTH JIbHYO OTp: b

TEPBBIX M BBICOKYIO Y((EKTHBHOCTh BTOPHIX TIPH UYPE3BBIYANHHO BBICOKHX

TOpAIKAX MAJIOCTH HAYANbHBIX BO3MYILIEHHH.

K nucemy npunmaraercs HabpOCOK CTaThH, KOTOPYK BCE YYaCTHHKH

KO/IaBopalMi MOTYT HCTIPaBIsTh M JIONONHATH 10 MX ycMoTpenmio. ITocie

OKOHHYATEILHOTO PeaKT u cor c ¢ MH CTaThs Oynaer

00pa3oBaHum».

Tlpurnamenne K KomiaGopaluy MOXKETe PaclpOCTPaHHTh CPEIH CBOMX 3a HUUYTOXKHYIO JONIO CeKyHApI!

nocnaka Juis myOnukauuu B KypHan «KommbloTepHbiC HHCTPYMEHTHI B i

3aMHTEPECOBAHHBIX KOJLIET.
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