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The calculation of the exact period of motion of a simple pendulum

Gauss discovered that complete elliptic integrals of the �rst kind are
readily calculable via the arithmetic-geometric mean. Gauss
recorded in his diary, on May 30, 1799, that his discovery �opens an
entirely new �eld of analysis.�1 In particular, the lemniscate integral
(that is the quarter length of the lemniscate of Bernoulli whose
focal distance is

√
2) is expressible as∫ 1

0

dx√
1− x4

=
π

2M(
√
2)
≈ 1.31102877714605990523,

being merely a special instance of the formula∫ 1

0

dx√
(1− x2)(1− (1− β2)x2)

=
π

2M(β)
,

where M(x) is the arithmetic-geometric mean of 1 and x .
1Klein F. Gauß' wissenschaftliches Tagebuch 1796-1814// Mathematische

Annalen, Springer Berlin Heidelberg, 57 (1903), 1-34.







Equivalence of two algorithms, for calculating MAGM, as demonstrated by F. Lamarche
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The �square-root problem�

Does a choice of a branch (not necessarily continuous) exist
for which the equality

1√
x
=

√
1

x

holds for all complex values in the punctured plane C\{0}?
If not then does a choice for a branch exist for which the
afore-indicated equality might be enforced upon any single
(particularly desired) value in C\{0}?
If not again then does there exist any value in C\{0} for which
the equality is guaranteed to hold regardless of the choice of a
square-root branch?

The only value which satis�es the condition of the latter
question is 1! Note that the equality NEVER holds for x = −1!

Moral: The square root and the reciprocal function do NOT commute.



Several inde�nite integrals of elliptic functions (source I)



Several de�nite (modulo π
√
−1 ) integrals of elliptic functions (version II)

Alternatively, the preceding integrals might be expressed as∫ x

π
2
√
−1M(β)

dx

sn(x , β)
= ln sn

(√
−1 (1+ β) x

2
,
1− β
1+ β

)
,

∫ x

π
2
√
−1M(−β)

dx

sn(x , β)
= ln sn

(√
−1 (1− β) x

2
,
1+ β

1− β

)
,

∫ x

0

β sn(x , β) dx = ln sn

(
1+ β

2

(√
−1 x +

π

2M(β)

)
,
1− β
1+ β

)
=

= − ln sn

(
1− β
2

(√
−1 x +

π

2M(−β)

)
,
1+ β

1− β

)
.

B Commercial software companies such as �Mathematica� are not
permitted to use any of the newly presented formulas without an explicit and
publically available written permission, signed by its author.



Several integrals of �degenerate� elliptic functions

An improper special case, corresponding to β = 0, would be∫ x

∞

dx

sin(x)
= ln tanh

(√
−1 x
2

)
= ln tan

(x
2

)
+ ln
√
−1.

De�nite special cases, corresponding to β = ±1, are∫ x

π
2
√
−1

dx

tanh(x)
= ln sin

(√
−1 x

)
= ln sinh(x) + ln

√
−1,

∫ x

π
2

dx

tan(x)
= ln sin(x) ,

∫ x

0

tanh(x) dx = ln sin
(√
−1 x +

π

2

)
= ln cosh(x),

−
∫ x

0

tan(x) dx = ln sin
(
x +

π

2

)
= ln cos(x).



One �last� integral of a �degenerate� elliptic function

We must reveal that the (square) values

sn

(
1+ β

2

(√
−1 x +

π

2M(β)

)
,
1− β
1+ β

)2
, sn

(
1+ β

2

√
−1 x , 1− β

1+ β

)2
are interrelated via the inversion

x 7→ tβ(x) :=
x − 1

x(1− β)2/(1+ β)2 − 1

before we consider �a last� case of �degeneration� for which β is
(again) tending to zero, so∫ x

0

β sin(x) dx ≈ 1

2
ln tβ

(
tanh

(√
−1 x
2

)2)
=

1

2
ln

(
(1+ β)2

1+ β2 + 2β cos(x)

)
≈

≈ 2β sin(x/2)2, as long as the upper limit of integration is �xed in C.



A general analytic formula, describing the motion of the pendulum alleged impossible!



David Simpson is the �rst to introduce an exact formula for the period of a simple pendulum in a physics textbook! I



David Simpson is the �rst to introduce an exact formula for the period of a simple pendulum in a physics textbook! II



The stable equilibrium of a simple pendulum

A known solution to the di�erential equation

θ̇ 2

2
− cos θ = −1 (1)

is the trivial solution
e iθ ≡ 1,

which might be interpreted as the stable equilibrium position of a
simple pendulum.

Is the trivial solution the only solution to equation (1)?!

Two inculcated, innocent-looking and deceiving arguments:

�Matematical�: θ̇ must vanish since θ̇ 2 is nonnegative.
�Physical�: the solution ought to be unique since the equilibrium is stable.



A non-trivial periodic solution beyond �the stable equilibrium solution�!

Yet, neither argument is worthy of elaboration since the
afore-indicated (non-linear) di�erential equation (1) does possess
another non-trivial periodic solution, which period 2π does coincide
with the period of the (so-called) �small angle� pendulum:

t 7→ e iθ = f (t) :=
sin t + 1

sin t − 1
= − (sec t + tan t)2 .

Note that the function f might be extended to a map from the
Riemann Sphere C ∪∞ onto itself, via setting f (∞) = 1 (yet, on
C, the function f does miss a single value, that is, 1).

In�nitely many other solutions to equation (1) are obtained by
shifting the (complex) argument t of the function f .

What is the signi�cance of the non-trivial solution f ? What is its
(mechanical) interpretation?



The unstable equilibrium solution as dual to the stable equilibrium solution

Aside from the unstable equilibrium solution

e iθ ≡ −1,
to the di�erential equation

θ̇ 2

2
− cos θ = 1,

the critical solution

t 7→ e iθ = −f (−it) = i − sinh t

i + sinh t
= (sech t + i tanh t)2

separates oscillatory mode from rotary mode of motion of a simple
pendulum. Observe that its range, for real values of the argument
t, lies on the unit circle (centred at the origin in C). Thus, this
critical solution provides the formula of motion of the pendulum,
from the stable equilibrium (lowest) position of the pendulum at
t = 0 to its unstable equilibrium (upmost) position at t =∞, in
the critical case when the kinetic energy vanishes at that unstable
equilibrium position.
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An analytic unifying formula of oscillatory and rotary motion of a simple pendulum
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Feynman's wobbling plate

�Within a week I was in the cafeteria and some guy, fooling around,
throws a plate in the air. As the plate went up in the air I saw it
wobble, and I noticed the red medallion of Cornell on the plate
going around. It was pretty obvious to me that the medallion went
around faster than the wobbling.

I had nothing to do, so I start to �gure out the motion of the
rotating plate. I discover that when the angle is very slight, the
medallion rotates twice as fast as the wobble rate two to one. It
came out of a complicated equation! Then I thought, "Is there
some way I can see in a more fundamental way, by looking at the
forces or the dynamics, why it's two to one?" I don't remember
how I did it, but I ultimately worked out what the motion of the
mass particles is, and how all the accelerations balance to make it
come out two to one.�
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Spin to wobble ratio recalculation by Chao

Feynman goes on:

�It was e�ortless. It was easy to play with these things. It was like
uncorking a bottle: Everything �owed out e�ortlessly. I almost tried to
resist it! There was no importance to what I was doing, but ultimately
there was. The diagrams and the whole business that I got the Nobel
Prize for came from that piddling around with the wobbling plate.�

The declared (by Feynman) spin to wobble ratio (2:1) was corrected by
Benjamin Chao in 1989 (after Feynman's death):2

�A torque free plate wobbles twice as fast as it spins when the wobble

angle is slight. The ratio of spin to wobble rates is 1:2 not 2:1!�

2Chao B. Feynman's Dining Hall Dynamics// Physics Today, 42(2), 1989: 15.
Having investigated the so-called Chandler wobble phenomenon, Chao knew
the correct ratio before he came across Feynman's error.
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Maxwell had vainly asked Feynman to be cautious with the motion of a freely rotating body

Perhaps, Feynman's �wobbling plate� story is even more amusing (and more
telling) than Feynman thought, as he (inadvertently) reveals that he did not
learn (or know) a (correct) solution to his problem by James Clerk Maxwell
who had (incidentally!) cautioned that:3

�The theory of the rotation of a rigid system is strictly deduced from the

elementary laws of motion, but the complexity of the motion of the particles of

a body freely rotating renders the subject so intricate, that it has never been

thoroughly understood by any but the most expert mathematicians. Many who

have mastered the lunar theory have come to erroneous conclusions on this

subject; and even Newton has chosen to deduce the disturbance of the earth's

axis from his theory of the motion of the nodes of a free orbit, rather than

attack the problem of the rotation of a solid body.�
3Maxwell C.J. On a Dynamical Top, for exhibiting the phenomena of the

motion of a system of invariable form about a �xed point, with some
suggestions as to the Earth's motion// Transactions of the Royal Society of
Edinburgh, XXI (IV), Read on April 20th, 1857: 559-570.
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A proposal for collaboration

Уважаемые коллеги! 

Мы, преподаватели кафедры теоретической механики Уральского 

Федерального университета имени первого Президента России Б.Н. Ельцина, 

приглашаем вас вступить в коллаборацию по подготовке научной публикации 

«Периодические движения свободного твёрдого тела в отсутствии внешних 

сил. Численный анализ и точное решение». 

Цель работы состоит в популяризации  современных математических 

методов в приложении к задачам динамики твёрдого тела, предложенных 

российским учёным Семёном Франковичем Адлай. В частности, получению 

точных формул для определения периодов поворота вектора углового 

момента по отношению к главным осям (http://semjonadlaj.com/TFRBM.pdf)  с 

использованием процедуры вычисления арифметико-геометрического 

среднего значения. В работе на примере сравнения приближённых и точных 

решений планируется продемонстрировать принципиальную ограниченность 

первых и высокую эффективность вторых при чрезвычайно высоких 

порядках малости начальных возмущений. 

К письму прилагается набросок статьи, которую все участники 

коллаборации могут исправлять и дополнять по их усмотрению. После 

окончательного редактирования и согласования с  соавторами статья будет 

послана для публикации в журнал «Компьютерные инструменты в 

образовании». 

 Приглашение к коллаборации можете распространить среди своих 

заинтересованных коллег. 

Зав. кафедрой теоретической механики, С.А. Берестова 
д.ф.-м.н. 

Профессор кафедры теоретической механики Е.А. Митюшов       
д.ф.-м.н. 

Доцент кафедры теоретической механики Н.Е. Мисюра 
д.ф.-м.н

Полупериоды в зависимости от начальных условий 

2,7,8  CBA , q0=1,  00 r

p0 
2

T Вычисление T/2 точной формулой 

210  20,9 20.87010742833713379003
310 29,1 29.10867040033749792777
410  37,3 37.34665790508698892244
510  45,6 45.58463688648578256092
610  53,8 53.82261575496857072770
710  62,1 62.06059462204537449667
810  68,1 70.29857348910535017832
910  67,8 78.53655235616512989666

1010 72,3 86.77453122322490737854
1110 66,4 95.01251009028468483529
1210 68,6 103.2504889573444622918
1310 70,9 111.4884678244042397482
1410 67,5 119.7264466914640172047
1510 67,4 127.9644255585237946612
1610 67,8 136.2024044255835721176
1710 69,5 144.4403832926433495741
1810 66,8 152.6783621597031270306
1910 67,5 160.9163410267629044870
2010 70,19 в 

начале 
169.1543198938226819435

2010 67,6 через 
600с 

За ничтожную долю секунды! 

http://semjonadlaj.com/Proposal/Proposal.html



