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Major Swindon: What will history say, sir?

General Burgoyne: History, sir, will tell lies, as usuall

From “The Devil's Disciple” by George Bernard Shaw.



An essential elliptic function and its associated curve

Introduce, for a parameter a > 1,

» a polynomail p,(x) := x? + 2ax + 1
» an elliptic function R, with a (double) pole at zero,
satisfying the differential equation

X = 4xpa(x)

> A,: the lattice of R,

» a complex projective elliptic curve (associated with R,,)

Eo: y® = 4xpa(X)



Two correspondences

The map
C/Ny — Eo

z — (Ra(2), Ro(2)),

which turns out being an isomorphism of Riemann surfaces, as well
as, an isomorphism of groups, enables an identification (exploiting
the j-invariant) of isomorphism classes of projective complex
elliptic curves with the homothety classes of lattices £/C*, which
might, in turn, be identified with the fundamental domain for the
action of the modular group upon the (extended) upper half plane
PSL(2,Z)\'H.
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In a previous paper [1], a justification for defining an essential elliptic function was made.
Yet, enabling an inversion of the modular invariant is, perhaps, even more convincing. We
shall not elaborate upon describing previous attempts for inverting the modular invariant
aside from mentioning two typical references [2, 3]. The first reference provides a glimpse
upon Ramanujan latest efforts, whereas the appendix of the second concludes with a well-
known expression for a point 7 in the fundamental domain as a ratio of hypergeometric
functions, thereby linking 7 with an intermediate variable A\. Formula (3.3), in the same
paper, yields the modular invariant j as a (well-known) fractional transformation of A, of
degree 6. We point out this transformation so as to suggest that verifying a formula for an
inverse of the modular invariant is as straightforward as verifying a root of a given hexic.

An inversion of the modular invariant is afforded via successively composing the functions

iG(V1—2a?) Ve+d-\/x 3( x
ko(z) = ————=, k() = ———, k == ks(z) | —1,
0(7’) G(T) ’ 1('E) 2 ) 2(.%') 2 k‘d(’lf) + 3('17) )
where
and G(z) is the arithmetic-geometric mean of 1 and z. In other words, the function

k=kyokyoks

is an inverse of the modular invariant, which (we need not point out) is not single-valued.



23.7 Quarter Periods

p(3w1) =e1 4+ /(e1 —e3)(e1 — €2)
— e w2 (K(R)K,

23.7.1

272  Plowe) =e2 - iv/(e1 — e2)(e2 — e3)
= ey — iwy Y(K (k))*kK,

2azs Plaws) = e - Vie —e)le - )
=3 —wi (K(k))%k,
where k, k' and the square roots are real and positive

when the lattice is rectangular; otherwise they are de-
termined by continuity from the rectangular case.



R? =R (R + ) (R +
at the nodes of the lattice A/8.
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Perimeter of an Ellipse

(See abridged version at original location.)

Circumference of an ellipse: Exact series and approximate formulas.
Ramanujan | and Lindner formulas: The journey begins...

Ramanujan I1: An awesome approximation from a mathematical genius.
Hudson's Formula and other Padé approximations.

Peano's Formula: The sum of two approximations with cancelling errors.
The YNOT formula (Maertens, 2000. Tasdelen, 1959).

Euler's formulais the first step in an exact expansion.

Naiveformula © (a+b) featuresa -21.5% error for elongated ellipses.
Cantrell's Formula: A modern attempt with an overall accuracy of 83 ppm.
From Kepler to Muir. Lower bounds and other approximations.

Relative error cancellations in symmetrical approximative formulas.
Complementary convergences of two series. A nice foolproof algorithm.
Elliptic integrals & elliptic functions. Traditional symbols vs. computerese.
Padé approximants are used in awhole family of approximations...
Improving Ramanujan 11 over the whole range of eccentricities.

The Arctangent Function as a component of several approximate formulas.
Abed's formula uses a parametric exponent to fine-tune the approximation.
Zafary'sformula. Improved looks for abrainchild of Shahram Zafary.
Rivera's formula gives the perimeter of an ellipse with 104 ppm accuracy.
Better accuracy from Cantrell, building on his own previous formula
Rediscovering awell-known exact expansion due to Euler (1773).

Exact expressions for the circumference of an ellipse: A summary.

Related topics on this website include:

« Hypergeometric functions.
Arithmetic-geometric mean.
Surface of an ellipse.
Volume of an ellipsoid.
o Ellipses and Hyperbolae.
Elliptic arc: Length of the arc of an ellipse between two points.
o Perimeter of an ellipse. Exact formulas and smple ones.

o Circumference of an ellipse: Unabridged discussion.
o Surface areaof an ellipsoid of revolution (oblate or prolate).

o Surface area of ageneral ellipsoid.

Volume of ahypersphere in any number of dimensions. Hyper-surface area too!

Related Links (Outside this Site)

Ellipse by Dr. James B. Calvert, University of Denver (Colorado).
Circumference of an Ellipse by Robert L. Ward in "MathForum@Drexel".

Perimeter of an Ellipse by Sanislav Sjkora (2005-05-30).
On the Perimeter of an Ellipse (pdf) by Paul Abbott (Avignon, June 2006).
How Euler Did It by Ed Sandifer (Western Connecticut State)

Related posts :

2009-02-08 :  Arithmetic-Geometric Mean & Elliptic Integrals by Michael Press.

A few articles posted by
David W. Cantrell :
2001-05-08: New

2004-05-23
2004-05-24

for [the] Perimeter of an Ellipse
in a Certain Form, for the Perimeter of an Ellipse

Two New

Modifying Ramanujan's Second for the Perimeter of an Ellipse

NRN1-17 - Arithmatic Annravimatinne af the Parimater nf an Ellinea



Circumference of an Ellipse

(Jaleigh. B. of Minonk, IL. 2000-11-26 twice) b \
What is the formulafor the perimeter of an ellipse? [oval] a
(S. H. of United Kingdom. 2001-01-25)

What is the formula for the circumference of an ellipse?

There is no simple exact formula: There are simple formulas but they are not exact,
and there are exact formulas but they are not simple. Here, wel'll discuss many
approximations, and 3 or 4 exact expressions (infinite sums).

The complementary convergence properties of two such sums allow an efficient

computation, at any prescribed precision, of the perimeter of any ellipse, by using one
series for eccentricities below 0.96 [say] and the other one for higher eccentricities.

For an ellipse of cartesian equation x2/a2 +y2/b2=1 with a>b :



The arithmetic-geometric mean and a modification thereof
Introduce a sequence of pairs {x,, yn}°,:

X, +
Xpt1 i= "Ty" Ynt1 := \/XnYn-

Define the arithmetic-geometric mean (AGM) of two positive
numbers x and y as the (common) limit of the sequences {x,}°°,

and {y,}7°; with xo = x, yo = y.

Introduce, next, a sequence of triples {x,, yn, z,}52:

Xn + Yn

5 Y11= 2Zp + \/(Xn — 2n)(Yn — Zn),

Xn+1 =

Zn+1 ‘= Zn — \/(Xn — 2p)(Yn — 2n)-
Define the modified arithmetic-geometric mean (MAGM) of two
positive numbers x and y as the (common) limit of the sequences
{xn}22; and {yn}22; with xo = x, yo =y and z = 0.



Calculating complete elliptic integrals of the first kind

Assume, unless indicated otherwise, that # and - are two positive
numbers whose squares sum to one: 32 +~° = 1.

Gauss had discovered a highly efficient (unsurpassable) method for
calculating complete elliptic integrals of the first kind:

™

! dx
/0 V(1= x2)(1 —42x2) N 2M(B)’

(1)

where M(x) is the arithmetic-geometric mean of 1 and x. In
particular, equality (1) holds if (in violation of the assumption,
otherwise imposed) 72 = —1:

L dx T

/ = ~ 1.31102877714605990523.
0o VI—x* 2M(V2)

The integral on the left hand side of the latter equation is referred

to as the lemniscate integral and is interpreted as the quarter

length of the lemniscate of Bernoulli whose focal distance is /2.



Real and imaginary periods of a simple pendulum

T = 27rk\/z, where k = k(0) =

| is the length of the pendulum,

g is the acceleration due to
gravity (positive or negative),

0 is the angle of the maxi-
mal inclination from the vertical
(whose positive direction might
be chosen to be pointing down-
wards as shown).

1/M(cos(6/2)): g >0

V—=1/M(sin|0/2]) :

g<a0

L+



Calculating the perimeter of an ellipse

A recent survey? of formulae (approximate and exact) for
calculating the perimeter of an ellipse is erroneously resuméd:

“There is no simple exact formula: There are simple formulas but
they are not exact, and there are exact formulas but they are not
simple.”

The formula for calculating complete elliptic integrals of the second
kind (which refutes the preceding statement) be now known:

1= WN 62)
/ 1—x2 (8)’ (2)

where N(x) is the modified arithmetic-geometric mean of 1 and x.
The integral on the left hand side of equation (2) is interpreted as
the quarter length of an ellipse with a semi-major axis of unit
length and a semi-minor axis of length 3 (and eccentricity 7).

2Michon G. P. Final Answers: Perimeter of an Ellipse
//www.numericana.com/answer/ellipse.htm (updated May 17, 2011)



Computing 7 via power series
Ramanujan’s formula

1 2v/2 S (4k)1(1103 + 26390k)

© 9801 pn (k1)4396%4k ’

0

producing 8 digits of 7 per term, was used by Bill Gosper in 1985
to set a record of 17 million digits.

The Chudnovsky formula (developed in 1987)

426880110005 < (6k)!(13591409 + 545140134k)

™ £ (3k)1(K1)3(—640320)%

producing 14 digits of 7 per term, was used for calculating over
one billion digits in 1989 by the Chudnovsky brothers, 2.7 trillion
digits by Fabrice Bellard in 2009, and 10 trillion digits in 2011 by
Alexander Yee and Shigeru Kondo.



Computing 7 via iterative methods

Legendre relation (relating complementary complete elliptic
integrals of the first and the second kind to each other) might now
be rewritten yielding a parametric (uncountably infinite) family of

identities for m: O M(B\M
co2MOMG) G
N(B%) + N(»?) — 1
and, in particular, yielding a countably infinite family of identities

(where the ratio of M(y) to M(f3) is an integer power of /2 )
from which, setting ¢ := V2 — 1, we list a few:

M) 2 m(va) M oM@
- N(4ﬁc2) —2c V2N(2¢) -1 - V2N (c?) — ¢ CON(ct) -




where the first of the latter chain of identities for m might be
inferred from a special case (where 3 = «), of Legendre relation,
discovered by Euler. Iteratively calculating for the sequences {x,}
and {yn} (converging to the AGM of 1 and ﬂ) one arrives at the
(so-called) Brent-Salamin algorithm for computing 73. Setting

2
<\/§+ 1- an_zll Xm — }/m)
Tp 1= s
T V21 2 (X — Yim)?2

we enlist, for n < 4, approximations for the ratios m, (descendingly
and quadratically converging to 7):

neN,

m ~ 3.18, m A 3.1416, 73 ~ 3.1415926538,

4 ~ 3.141592653589793238466.

3Evidently, “Gauss-Euler algorithm” would be a naming less exotic, yet
restoring the credit to whom it rightfully belongs.



uio nrax
Dypbe». O6HEM BEMMCIEHTI TT0 9TOMY AITOPHTMY ABYX IEBIX 7-DasPsia-
HEIX THCEJT TT0 CDABHEHWIO ¢ MeTOZIOM YMHOKEHIS «B CTONGHK» yMeHb-

maercs B

n
Togmn TogTog,m P2 Touek ABYX

216-pagpaauEIx commoRuTENEl yoKOPAETCA GoNee uem B ThICATY (210) pas
110 CPABHEHMIO ¢ OOBIYHBIM wst. I
Has SKOHOMHUA /117 51K TPORHBIX BHIUHC AT el TOHbIX BHAKOB THCIa 1!

«CBepX3dhEKTHEHLI» aNrOPHTM
[Iwonarana u Mutepa Bopaeiinos

Kanaackue 1 Iutep
HAILIH yAMBHTe LB PA:

51987 rogy

12§ -1y @)t %
Z an+
70| (u1y* (3n)! (5280(236674 + 30303V6T))
X(212175710912V61 + 1657145277365 +
+n(13773980892672V61 + 107578229802750)) |,

raen!=1-2-3-..-n,a0!

IlocnenoBaTeIbHOCTS CTOAIIMX MO/ 3HAKOM CYMMBI CJIAraeMBIX IIDH
n=0, 1, 2, .. f0GABAAET OKONO 25 TOUHBIX MUGP UUCHA T ¢ KAMABIM
HOBBIM WieHoM. IIepBbIii wieH (cOOTBeTCTBYIOM 1 = 0) ZAéT THCI0, Co-
Brajamomee ¢ 1 B 24 ecATUUHBIX SHAKAX [6].

Ilsxonaran n Iurep TaKIKe ANTOPATM pac-
uBTa JeCATHUHBIX BHAKOB YHCIIA T, HMEIOIIMil PaHTACTHIECKYIO addheK-
THBHOCT: Kay LIl HOBBI mar 5T0r0 A1TOP! y
KOJIMYECTBO BEPHBIX IU(P B PasIoXKeHNH YncIa 1 Goee ueM BUeTBepO!
[6, 7]. Bot 9T0T yAMBUTeBHEL ATTOPUTM.

Brawase moxomnm yo = V2 — 1, ay = 6 — 412, a satem kax10e HOBOE
3HAUEHIHE Y, ,, 6Y/leM HAXOMIHTS, OTIIPABIAACH OT IPE/IbUIYIEro 3HAUCHHS
o hopmyre

i
1-Vig

Ypi1 = —5—=> n=0,1,2, ..

ST

Tloxosm 00pasoM GyAeM HAXOMT TWICHB MOCIeAOBATENBHOCTH dg, @1,
16

@y, ..., BBIUHCIAS HX TIO GOPMYITE

@iy = (L Hy)ta, =223y, (L+y, +yh), n=0,1,2, .

1
o 110 Mepe HOMEpA IIATa 1 BEMNHA o OUeH:

BBICTPO NPUOIMIAKAETCH K T, & HMEHHO, HMeeT MEeCTO OlleHKa

0<a,~ L <z P,

. 1
Tax, yaxe , 1aér 694 BePHEIX SHAKOB wHCIA 1.

¥ ucroxos aroro aarop nesxann 5
0B1ACTH TaK HATHIBACMELX SLIURMUNECKUL UNMEZPAO6 1 mema-DyNK-
yuii — Bhicmmx [7]. ABTOpsI aT0TO

[ODASHTENBHOTO ANTOPUTMA TAK’KE YTBEPIKAAIOT, HTO MM TOMOTIN
HEKOTOPHIe WJeH TeHMAIBHOTO WHAMACKOTO MaTeMaTHka CPHEMBA3HI
Pamanyaana (1887—1920).

TNpogomsetye «mapadoHan

Vausnrensuntit «Mapadon», HAUATHIH ¢ BHIYMCTEHHA APXIMEZOM
TPEX TOYHBIX 3HAKOB UHCJIA T, CETOAHA TaK JKe JaJéK OT 3aBepuIeHms,
KAK U Be THICAUH JIeT Hasaz.

Ilo anropurmy [lsxonarana u [Inrepa Bopseitnos B simsape 1986 ro-
na Topug X. Beitm nomyumn 29360000 JeCATHUHBIX 3HAKOB T HA CY-
neprommsiotepe Cray-2, a 8 1987 roay §. Kanana u ero coTpyasnkn —
134217000 araxos s cynepkonmsiotepe NEC SX-2. Peaysrar [louza
1 Tperopu U: 3 K 5 Huo-Vopxe,
BprupcauBmux B 1989 roxy 1011196691 smax umcra m, moman: gaxe
B KEHry pexopaor I'mmmecca. JIIf CBOMX DACYGTOB OHH MCIIOMB30BAII
cyneprommsiotep Cray-2 m CeTh KOMIBIOTEpOB IBM-3090. K oxratpio
1995 rona T v it Kana-
noit u Haiicyxe T GbL10 caerure 6 wap.
Omu sxe B 1999 rogy ma xommeiorepe HITACHI SR 8000 Berumcsmmm
206158430000 nudp uncra « [8].

B KOHIe MPOTIIOTo CTONETHS MOCeTHTEH caiita [9] BeTpegarn 06m-
ABJIeHMe, IPUTMIAMIAIONIEe UX IPUHATH YIACTHE B TIOGAIBHOM IIPOCKTE
«Pi-Hex». JI1060it sxuTess 3eMiIH, NOKIOUNB CBON KOMIBIOTED K CeTH

Mor craTh y KoL BIYHCIIEHMI OTHeNb-

HEIX 1P ABOMUHOI 3amucH unca 1. KOODAMHATOPOM 5TOTO FIOBATEHO-
TO MpOeKTa BEICTYIHJ CTyXeHT yHMBepcutera Cnmona Pdpesepa (CIIIA)
17




Revision as of 13:19, 4 April 2012 (view source)
Noleander (talk | contribs)
m (—Monte Carlo methods: punctuation)
«— Previous edit

Line 131:

:<math>\scriptstyle \pi \approx \frac{(a_n+b_n)"2} {4
t_n}.\!</math>

i

The iterative algorithms used following 1980 were
independently published in 1976 by [[Eugene Salamin]] and
[[Richard Brent]].<ref>Arndt, p 87.</ref> These algorithms
were unique because they utilized an iterative approach rather
than an infinite series. However, Salamin and Brent were not
the first to discover the approach: it was actually invented
over 160 years earlier by [[Carl Friedrich Gauss]], in what is
now termed the [[AGM method|Arithmetic-geometric mean
method]] (AGM method) or [[Gauss—Legendre algorithm]].
<ref>Arndt, p 87.</ref> The algorithm, as modified by
Salamin and Brent, is also referred to as the "Brent-Salamin
algorithm".

Whereas series typically increase the accuracy with a fixed
amount for each added term, there exist iterative algorithms
that "multiply" the number of correct digits at each step, with
the downside that each step generallv reauires an exvensive
calculation. A breakthrough was made in 1975, when
[IRichard Brent (scientist)IRichard Brentll and [[Eugene
Salamin (mat ici: ugene Salaminl|

ind di dthe B in algorithm,
which uses only arithmetic to double the number of correct
digits at each step.<ref name="brent">{ {Citc news|

t—Sal

Pi: Difference between revisions

From Wikipedia, the free encyclopedia

Revision as of 13:32, 4 April 2012 (view source)
Noleander (talk | contribs)
(—Computer era and the AGM algorithm: clarify
wording; fix date)

Next edit —

Line 131:

+

:<math>\scriptstyle \pi \approx \frac{(a_n+b_n)"2} {4
t_n}.\</math>

i

The iterative algorithms were independently published in
1975&ndash;1976 by [[Eugene Salamin]] and [[Richard
Brent]].<ref>Arndt, p 87.</ref> These algorithms were
unique because they utilized an iterative approach rather than
an infinite series. However, Salamin and Brent were not the
first to discover the approach: it was actually invented over
160 years earlier by [[Carl Friedrich Gauss]], in what is now
termed the [[AGM methodjarithmetic-geometric mean
method]] (AGM method) or [[Gauss—Legendre algorithm]].
<ref>Arndt, p 87.</ref> The algorithm, as modified by
Salamin and Brent, is also referred to as the "Brent-Salamin
algorithm".

The iterative aleorithms have been widelv used bv {{pi}}
hunters following 1980 because they tend to be faster
than infinite series algorithms: Whereas series typically
increase the accuracy with a fixed amount for each added
term, some iterative algorithms "multiply" the number of
correct digits at each step, with the downside that each sten
generally reauires an exnensive calculation. For example.
the Brent-Salamin algorithm doubles the number of digits
in each iteration. An iterative algorithm that auadruples
the number of digits in each step was discovered bv
[IJonathan Borwein|Jonathan]] and [[Peter Borwein]].
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Introduction to the Welerstrass utility functions (subsection WeierstrassUtilities/05)
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v () -2 -2 )

u FNC () —au_/2 PG (o) /2 - au_

Wa

vt 10300 OGO MATEIII NOTOI ACTKO OONADY AT 1 HCTpABHTE oGy B OTWOH 113 bop-
My, HPEAOCTABICHILX YKASAHHBIN HCTO'HIKOM. FTA OMINOKA OCTAETCH HeyCTpAEINOR b noCeeR bep-
€ *v. 8.0.1" nporpasosoro nakera “Wolfram Mathematica”, swinyiensofl 7-ro apra 2011 1.

3.2, Veaonst yeroftusocri pastosecibix dopy 69

e mrTpix Ha dymKmung o() 1 o.() o3MATACT BIATHE NPOBOAOI M0 APTYMERTY {
1DI HKCHPOBAHHON SHAYCHIN TapaMeTpa .

Brranesmme pemranibt w. Metosom Layeca [5]:

M) =VBG#), <1, B+ % =3a
‘

¢ (
ucen M(x) — apudaeriko-reoverpieckoe cpeaiice mucea 1t x, a G(-) — rimepreo-

serpiieckas dyukis Tayeea ¢ peryspiofi by 1 yaonie
undbpepermumaboNy ToACCTRY

dr(x—1)G"(x) +4(2x — 1) G'(z) + G(x) = 0.

er e ypasnene s s kax by

(2d/3)* ul +8au, +us = 0.

Tpiseaist 1 tiddeperuiaibioe ypasieriie, KoTopoy
storapudITIecKas IpOIIBOMA YK 141

N A ) a
91773(<7) +]>.e, it (3.12)

Tocicasee ypasieiiie SkpisaeTio Auddeperabionmy Toxeerny s GynKwm ta-
paxerpa

onitetaopsier dynkis Ox

/() + (1) + esch(2y)? =

ra Ha

APAMETPOR a 1y APYT B APYTA:
3a -2 2
y=1ln (722 +2>‘ = =3 coth ()

3JicCh BLPASHM OTHONICHIE | JUTHHbI HIITH K DACCTOSHIO MEALY JBYMst TOUKANI €8 Kperl-
stemus « ocu (i 3aase Anmes) kax dyukio napayerpa o (. npiioeie A)

1=1() = 1,(0,1) = 0, + %“ N1/, ). (3.13)

1 OTMETIIM, TO 3T hYHKIUIS CTPOrO MOHOTOHHO BOIPACTAIONASL

B autbieiitmes Gyt yo6iis
it

Co(wo) 425G (u4/2) = Go(us + uyt)

A=Afa, s, 1) oes

+a. (3.14)

t o (u_ t
B=Bla. ) = o, O=Cla s 1) :w

o (u- + ust)
2
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