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k ⊂ C, k[x ], k(x), Matm(k[x ]), Matm(k(x))

We consider systems of the form

Ar (x)y(x + r) + · · ·+ A1(x)y(x + 1) + A0(x)y(x) = b(x), (1)

where

A0(x),A1(x), . . . ,Ar (x) ∈ Matm(k[x ]) with the assumption that the
leading and trailing matrices Ar (x),A0(x) are nonzero,

b(x) = (b1(x), b2(x), . . . , bm(x))T ∈ k[x ]m is the right-hand side of
the system,
y(x) = (y1(x), y2(x), . . . , ym(x))T is a column of unknown functions.

The number r is called the order of the system.

Let the homogeneous system S ′ be obtained by dropping the right-hand
side of the original system S of the form (1). We assume that equations of
S ′ are independent over k[x , φ], where φ is the shift operator:

φ(y(x)) = y(x + 1).
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One can consider analytical and, in particular, meromorphic solutions of
the system (1). For a meromorphic function f (x) and α ∈ C, the
valuation valx−αf (x) is defined as the lowest degree of x − α for which
the Laurent series expansion of f (x) about the point α has a nonzero
coefficient (by convention, valx−α0 =∞).

For two meromorphic functions the following relations hold:

valx−α(f (x)g(x)) = valx−αf (x) + valx−αg(x),

valx−α(f (x) + g(x)) ≥ min{valx−αf (x), valx−αg(x)}.
(2)

For a vector y(x) = (y1(x), y2(x), . . . , ym(x))T consisting of meromorphic
functions, valx−αy(x) is defined to be minmi=1 valx−αyi (x).
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Remark on valuations of rational functions

The set of monic irreducible polynomials from k[x ] is denoted as Irr(k[x ]).
If p(x) ∈ Irr(k[x ]) and f (x) ∈ k[x ], then
valp(x)f (x) is defined to be the greatest n ∈ N such that pn(x)|f (x), and

valp(x)F (x) = valp(x)f (x)− valp(x)g(x) (3)

for F (x) = f (x)
g(x) , f (x), g(x) ∈ k[x ].

If F (x) ∈ k(x), p(x) ∈ Irr(k[x ]), α ∈ k̄ and p(α) = 0, then evidently

valx−αF (x) = valp(x)F (x). (4)
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There is a significant difference between the solution spaces of linear
ordinary differential and linear ordinary difference systems: the solutions of
the latter may be multiplied not only by constants, but also by functions
with the period equal to 1.

Along with a meromorphic solution y(x) the system has also, for example,
solutions (sin 2π(x + β))y(x) and (sin 2π(x + β))−1y(x) for any β ∈ C.

The singularities of solutions of a differential system similar to (1) with
equations which are independent over k[x , d

dx ] constitute a finite set.

The situation is different for difference systems and even for scalar
difference equations with polynomial coefficients — it is enough to
mention the gamma function, which satisfies the scalar equation
y(x + 1)− xy(x) = 0.
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We take an interest in two problems.

The first problem is the computation of a lower bound for

valx−αy(x), α ∈ C. (5)

It is assumed that a common lower bound for the valuations

valx−αy(x + n), n = N,N + 1, . . . ,N + r − 1 (6)

is given for some integer N.
(Note that valx−αy(x + n) = valx−α−ny(x).)

The second problem, a refinement of the first one, is the computation of
separate lower bounds for each

valx−αyi (x), i = 1, 2, . . . ,m. (7)

It is assumed that separate lower bounds for the valuations

valx−αyi (x + n), i = 1, 2, . . . ,m, n = N,N + 1, . . . ,N + r − 1 (8)

are given for some integer N.
S. Abramov, D. Khmelnov On valuations of meromorphic solutions 6/28



We take an interest in two problems.

The first problem is the computation of a lower bound for

valx−αy(x), α ∈ C. (5)

It is assumed that a common lower bound for the valuations

valx−αy(x + n), n = N,N + 1, . . . ,N + r − 1 (6)

is given for some integer N.
(Note that valx−αy(x + n) = valx−α−ny(x).)

The second problem, a refinement of the first one, is the computation of
separate lower bounds for each

valx−αyi (x), i = 1, 2, . . . ,m. (7)

It is assumed that separate lower bounds for the valuations

valx−αyi (x + n), i = 1, 2, . . . ,m, n = N,N + 1, . . . ,N + r − 1 (8)

are given for some integer N.
S. Abramov, D. Khmelnov On valuations of meromorphic solutions 6/28



We take an interest in two problems.

The first problem is the computation of a lower bound for

valx−αy(x), α ∈ C. (5)

It is assumed that a common lower bound for the valuations

valx−αy(x + n), n = N,N + 1, . . . ,N + r − 1 (6)

is given for some integer N.
(Note that valx−αy(x + n) = valx−α−ny(x).)

The second problem, a refinement of the first one, is the computation of
separate lower bounds for each

valx−αyi (x), i = 1, 2, . . . ,m. (7)

It is assumed that separate lower bounds for the valuations

valx−αyi (x + n), i = 1, 2, . . . ,m, n = N,N + 1, . . . ,N + r − 1 (8)

are given for some integer N.
S. Abramov, D. Khmelnov On valuations of meromorphic solutions 6/28



We take an interest in two problems.

The first problem is the computation of a lower bound for

valx−αy(x), α ∈ C. (5)

It is assumed that a common lower bound for the valuations

valx−αy(x + n), n = N,N + 1, . . . ,N + r − 1 (6)

is given for some integer N.
(Note that valx−αy(x + n) = valx−α−ny(x).)

The second problem, a refinement of the first one, is the computation of
separate lower bounds for each

valx−αyi (x), i = 1, 2, . . . ,m. (7)

It is assumed that separate lower bounds for the valuations

valx−αyi (x + n), i = 1, 2, . . . ,m, n = N,N + 1, . . . ,N + r − 1 (8)

are given for some integer N.
S. Abramov, D. Khmelnov On valuations of meromorphic solutions 6/28



We solve the problems by means of embracing systems.

For any system S of the form (1) one can construct an l-embracing system
S̄

Ār (x)y(x + r) + · · ·+ Ā1(x)y(x + 1) + Ā0(x)y(x) = b̄(x), (9)

with the leading matrix Ār (x) being invertible in Matm(k(x)), and with
the set of solutions containing all the solutions of the system S .

Similarly, one can construct a t-embracing system ¯̄S

¯̄Ar (x)y(x + r) + · · ·+ ¯̄A1(x)y(x + 1) + ¯̄A0(x)y(x) = ¯̄b(x), (10)

with the trailing matrix ¯̄A0(x) being invertible in Matm(k(x)), and with
the set of solutions containing all the solutions of the system S .
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The construction of the embracing systems can be performed with the
algorithms EG or EG′; the algorithm EG′ is an improved version of the
algorithm EG.
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Let y(x) be a meromomorphic solution of (1) and α ∈ C. Then in view of
the existence of the l- and t-embracing systems, the value valx−αy(x + n)
is bounded from below when n runs through Z:

Let p(α) = 0 for p(x) ∈ Irr(k[x ]). Let Ār (x) be the leading matrix of an

l-embracing system and ¯̄A0(x) be the trailing matrix of a t-embracing
system for (1). Let

V (x) = det Ā−1r (x − r), W (x) = det ¯̄A−10 (x)

and N0,N1 ∈ Z be such that p(x) - V (x + n)W (x + n) for all n ≥ N0 and
all n ≤ N1.
Then there exist λ, µ ∈ Z such that

n0+r−1
min
n=n0

valx−αy(x + n) = λ for all integer n0 ≥ N0,

and
n1

min
n=n1−r+1

valx−αy(x + n) = µ for all integer n1 ≤ N1.

S. Abramov, D. Khmelnov On valuations of meromorphic solutions 9/28



Let y(x) be a meromomorphic solution of (1) and α ∈ C. Then in view of
the existence of the l- and t-embracing systems, the value valx−αy(x + n)
is bounded from below when n runs through Z:

Let p(α) = 0 for p(x) ∈ Irr(k[x ]). Let Ār (x) be the leading matrix of an
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The first problem of computing lower bounds: computing a lower
bound on valx−αy(x)

Theorem. The following inequality holds for any mutual disposition of
the point α and the roots of the polynomials W (x),V (x):

valx−αy(x) ≥ max

{
λ−

∑
n∈N

valp(x)V (x − n),

µ−
∑
n∈N

valp(x)W (x + n)

}
(11)

(the sums in the right-hand side of the inequality are finite).

Algorithm A1
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The second problem of computing lower bounds: computing lower
bounds on

valx−αyi (x), i = 1, 2, . . . ,m, (12)

assuming that for some non-negative integer n0 lower bounds on the
valuations

valx−αyi (x − n)

are given (separately for n = n0, n0 + 1, . . . , n0 + r − 1 and i = 1, 2, . . . ,m),
or that for some non-negative integer n1 lower bounds on the valuations

valx−αyi (x + n)

are given (separately for n = n1, n1 + 1, . . . , n1 + r − 1 and i = 1, 2, . . . ,m).
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A2M: operating on matrices with entries from k(x)

If M(x) ∈ Matm(k(x)) and 1 ≤ i ≤ m then the minimum of valuations of

the i-th row entries of a matrix M(x) will be denoted by val
(i)
x−αM(x).

The algorithm of M. van Hoeij for finding denominator bounds for rational
solutions of a system of the form

y(x + 1) = A(x)y(x) (13)

where A(x) ∈ Matm(k(x)) is an invertible matrix, is based on the
following observation.

If a meromorphic solution y(x) is such that valx−αy(x − n0) ≥ 0 for a
non-negative integer n0, then for any 1 ≤ i ≤ m we have

valx−αyi (x) ≥ val
(i)
x−α (A(x − 1)A(x − 2) . . .A(x − n0)) . (14)

Similarly, if valx−αy(x + n1) ≥ 0 for a non-negative integer n1, then for
any 1 ≤ i ≤ m we have

valx−αyi (x) ≥ val
(i)
x−α

(
A−1(x)A−1(x + 1) . . .A−1(x + n1 − 1)

)
. (15)
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Using l- and t-embracing systems, the algorithm of M. van Hoeij can be
generalized to estimate the valuations of components of meromorphic
solutions of a system of the form (1). But the computational complexity
of such an approach would be high since the entries of the matrix product
“swell” quickly when the number of factors grows.

Below we describe an algorithm which is applicable to arbitrary-order
systems of the form (1), and is based on the so-called tropical operations
on matrices with entries from Z ∪ {∞}, rather than on the costly
operations on matrices with entries from k(x).
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A2T : tropical calculations

We will consider the set Z◦ = Z ∪ {∞} with operations

a� b = a + b, a⊕ b = min{a, b }, (16)

which replace the usual operations of multiplication · and addition +. The
neutral element for � is 0, and ∞ plays the analogous role for ⊕. Both
operations are associative, and � is distributive over ⊕.

The operations (16) can be extended to matrices and vectors with entries
from Z◦.

Let p(x) ∈ Irr(k[x ]) be fixed. For an arbitrary function f (x) ∈ k(x) we
consider the double-sided sequence

f ◦(n) = valp(x)f (x + n), n = 0,±1,±2, . . . (17)

of elements of Z◦. Similarly, for an arbitrary matrix A(x) ∈ Matm(k(x))
we consider the matrix A◦(n) whose entries are sequences of the
mentioned form. The same for rational function vectors.
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The resulting l- and t-embracing systems for the original system (1) might
be rewritten in the form

y(x) = B1(x)y(x − 1) + · · ·+ Br (x)y(x − r) + ϕ(x), (18)

y(x) = C1(x)y(x + 1) + · · ·+ Cr (x)y(x + r) + ψ(x). (19)
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Theorem. Let the components of a vector
v(n) = (v1(n), v2(n), . . . , vm(n))T be sequences of elements of Z◦. Let
y(x) be a meromorphic solution of a system of the form (18), and
valx−αyi (x + n) ≥ vi (n) for n = n0, n0 − 1, . . . , n0 − r + 1, where n0 ∈ Z is
such that if n > n0 then the equation

v(n) = B◦1 (n)� v(n − 1)⊕ · · · ⊕ B◦r (n)� v(n − r)⊕ ϕ◦(n) (20)

holds. Then valx−αyi (x + n) ≥ vi (n) for all n > n0.

Similarly, let w(n) = (w1(n),w2(n), . . . ,wm(n))T be a vector of sequences
of elements of Z◦. Let y(x) be a meromorphic solution of a system of the
form (19), and let valx−αyi (x + n) ≥ wi (n) for
n = n1, n1 + 1, . . . , n1 + r − 1, where n1 ∈ Z is such that if n < n1 then the
equation

w(n) = C ◦1 (n)� w(n + 1)⊕ · · · ⊕ C ◦r (n)� w(n + r)⊕ ψ◦(n) (21)

holds. Then valx−αyi (x + n) ≥ wi (n) for all n < n1.
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Our implementation: experiments

We use the first-order system given on the help page of the procedure
LinearFunctionalSystems[RationalSolutions] in Maple:

{(x+3)(x+6)(x+1)(x+5)xy1(x+1)− (x−1)(x+2)(x+3)(x+6)(x+1)y1(x)−
−x(x6+11x5+41x4+65x3+50x2−36)y2(x)+6(x+2)(x+3)(x+6)(x+1)xy4(x) = 0,

(x+6)(x+2)y2(x+1)−x2y2(x) = 0,

(x+6)(x+1)(x+5)xy3(x+1)+(x+6)(x+1)(x−1)y1(x)− (22)

−x(x5+7x4+11x3+4x2−5x+6)y2(x)−
−y3(x)(x+6)(x+1)(x+5)x+3(x+6)(x+1)x(x+3)y4(x) = 0,

(x+6)y4(x+1)+x2y2(x)−(x+6)y4(x) = 0}

For this system:
W (x) = (x − 1)(x + 2)(x + 3)(x + 6)(x + 1)(x + 5)x2,

V (x) = (x + 1)(x + 2)(x + 5)x(x + 4)(x − 1).
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Let λ = 0, µ = 0 for the solutions to be found. A1 gives for example:

valx−4y(x) ≥ 0,

valx−1y(x) ≥ −1, (23)

valx+4y(x) ≥ −2,

valx+8y(x) ≥ 0.

If λ = 0, µ = −1 instead then

valx−4y(x) ≥ 0,

valx−1y(x) ≥ −1, (24)

valx+4y(x) ≥ −3,

valx+8y(x) ≥ −1.
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If we know that valx+4yi (x + 10) ≥ 0, valx+4yi (x − 10) ≥ 0 for
i = 1, . . . , 4 then A2T gives

valx+4y1(x) ≥ −2,

valx+4y2(x) ≥ −1, (25)

valx+4y3(x) ≥ −2,

valx+4y4(x) ≥ −1.

A2M gives the same result. It is more accurate than the bound with A1,
which gives valx+4yi (x) ≥ −2 for each i .
But A1 took 0.093 sec., A2T took 0.405 sec., and A2M took 0.967 sec.
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The system under consideration has rational solutions:

y1(x) =
4(−7108272c2+c1)

(x−1)(x+2)(x+3)(x+4)
,

y2(x) = 0,

y3(x) =
(5x5c2+50x4c2+175x3c2+250x2c2−35541240xc2+5xc1−28433088c2+4c1)

5x(x+1)(x+2)(x+3)(x+4)
,

y4(x) = 0.

For this solution

valx+4y1(x) = −1,

valx+4y2(x) = ∞, (26)

valx+4y3(x) = −1,

valx+4y4(x) = ∞.
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It is interesting that when the problem of bounding the valuation is an
auxiliary task for solving another problem, it can happen that the bounds
obtained with A2T (or A2M), although more accurate than the bounds
obtained with A1, save no computation time, or even lead to additional
costs when used on the further steps in solving the main problem.

For example, our experiments which use the valuation bounding as an
auxiliary task for computing rational solutions of systems of the form (1),
show that this phenomenon occurs for the system (22). This is related to
the fact that the more accurate bounds for denominators of the desired
rational solutions, obtained by means of A2T (or A2M), in this case yield a
system whose polynomial solutions take longer to find on the next step
than those of the system resulting by using the less accurate bounds
obtained with A1.

Nevertheless, in most cases the more accurate bounds lead to shorter
overall running times, which is why efficient computation of more accurate
bounds is of practical value for this problem as well.
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Let us consider an example of a system of higher order. We modify
system (22) by shifting some of the equations (x → x + 1 in the first and
second equations, x → x + 4 in the fourth equation).

{(x+4)(x+7)(x+2)(x+6)(x+1)y1(x+2)− x(x+3)(x+4)(x+7)(x+2)y1(x+1)−
−(x+1)(132+520x+x6+17x5+111x4+359x3+616x2)y2(x+1)+

+6(x+3)(x+4)(x+7)(x+2)(x+1)y4(x+1) = 0,

(x+7)(x+3)y2(x+2)−(x+1)2y2(x+1) = 0,

(x+6)(x+1)(x+5)xy3(x+1)+(x+6)(x+1)(x−1)y1(x)−
−x(x5+7x4+11x3+4x2−5x+6)y2(x)−y3(x)(x+6)(x+1)(x+5)x+

+3(x+6)(x+1)x(x+3)y4(x) = 0,

(x+10)y4(x+5)+(x+4)2y2(x+4)−(x+10)y4(x+4) = 0}

For this system:
W (x) = (x − 1)(x + 3)(x + 1)(x + 5)(x + 6)(x + 2)x2,

V (x) = (x + 2)x(x + 4)(x − 1)(x + 5)(x + 1).
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Let λ = 0, µ = 0 for the solutions to be found. A1 and A2T give the same
results as above (i.e., A2T gives a more accurate bound than A1).

But A1 took 0.125 sec., while A2T took 0.515 sec. (A2M is not applicable
in this case).
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Consider the system

{y1(x + 1)− (x + 2)y2(x + 1)− (x + 1)y1(x) + (x + 1)y2(x) = 0,

y1(x + 1) + (x + 2)y2(x + 1)− (x + 1)y1(x)− (x + 1)y2(x) = 0}

Its solution:

y1(x) = c1Γ(x + 1),

y2(x) =
c2

x + 1
.
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Let λ = 0, µ = 0 for the solutions to be found. A1 gives, for example:

valx−2y(x) ≥ 0,

valx+1y(x) ≥ −1, (27)

valx+2y(x) ≥ 0.

If λ = 0, µ = −1 instead then

valx−2y(x) ≥ 0,

valx+1y(x) ≥ −1, (28)

valx+2y(x) ≥ −1.
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If we know that valx−2y1(x + 10) ≥ 0, valx−2y2(x + 10) ≥ 0,
valx−2y1(x − 10) ≥ −1, valx−2y2(x − 10) ≥ 0. Then A2T gives

valx−2y1(x) ≥ 0,

valx−2y2(x) ≥ 0.

If we know that valx+1y1(x + 10) ≥ 0, valx+1y2(x + 10) ≥ 0,
valx+1y1(x − 10) ≥ −1, valx+1y2(x − 10) ≥ 0. Then A2T gives

valx+1y1(x) ≥ −1,

valx+1y2(x) ≥ −1.

If we know that valx+2y1(x + 10) ≥ 0, valx+2y2(x + 10) ≥ 0,
valx+2y1(x − 10) ≥ −1, valx+2y2(x − 10) ≥ 0. Then A2T gives

valx+2y1(x) ≥ −1,

valx+2y2(x) ≥ 0.
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First-order systems containing five equations, whose coefficients are
polynomials with random integer roots from [−9, 9] were generated; the
bounds in two fixed points with the same a-priori known bounds are
computed for each of the systems.

The generation approach leads to non-zero valuation bounds for almost all
generated system, e.g. for λ = 0, µ = 0.

The total time taken by each of the algorithms to compute bounds in two
fixed points for 10 generated systems:

Total time
A1 3.719
A2T 20.061
A2M 790.020
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The systems of order r > 1 containing five equations, whose coefficients
are polynomials with random integer roots from [−9, 9] were generated;
the bounds in two fixed points with the same a-priori known bounds are
computed for each of the systems (the same as the previous experiment,
but for the systems of higher order).

When the order of the systems generated in this way grows, the chance to
obtain non-zero valuation bounds decreases; for non-zero bounds, A2T
turns out to produce more accurate results than A1.

The total time taken by each of the algorithms to compute bounds in two
fixed points for 10 generated systems of each of the orders r = 2, 6, 10:

r=2 r=6 r=10
A1 8.766 12.155 13.954
A2T 56.294 181.676 288.379

Computation time of A2T on systems of order r grows linearly with r ,
provided that all the other size-related parameters are fixed.
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