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When the search for solutions can be terminated

Sergei A. Abramov
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of his 60th birthday

Abstract As a rule, search algorithms for those solutions of differential equations
and systems that belong to a fixed class of functions are designed so that nonexistence
of solutions of the desired type is detected only in the last stages of the algorithm. In
some cases, performing additional tests on the intermediate results makes it possible
to stop the algorithm as soon as these tests imply that no solutions of the desired type
exist. We will consider these questions in connection with the search for rational
solutions of linear homogeneous differential systems with polynomial coefficients.
(Some approaches are already known for the case of scalar equations.)

1.1 Introduction

One of actual computer algebra problems is the development of algorithms for
finding solutions to differential equations and systems of such equations. Usually
solutions belonging to some fixed class are discussed. Often the proposed algorithms
are such that the absence of solutions of the desired form is detected only in the final
stages, when many of the quantities required to construct such a (potential) solution
are already computed.
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However, it is possible that in the algorithm one can choose some checkpoints
and, accordingly, associate with them some tests which make it possible to ascertain
already at an early stage that there are no solutions of the desired type. This will
save time and other computing resources. Thus there is the problem of choosing
checkpoints and tests. On the one hand, one can think about this choice already in
the development of the algorithm and seek the appearance in the algorithm of such
points equipped with easily performable tests; on the other hand, one can take a
known algorithm and insert checkpoints in it. In this case, it may be necessary to
modify the algorithm in order for suitable checkpoints to be discovered and for these
points to precede some resource-consuming fragments of the algorithm.

In the present paper, we consider this problem as applied to the search for rational
solutions.

Let K be a field of characteristic 0. The ring of polynomials and the field of
rational functions of x are conventionally denoted as K[x] and K(x), respectively.
The ring of formal Laurent series is denoted as K((x)). If R is a ring (in particular,
a field), then Mat m(R) denotes the ring of m × m-matrices with entries from R. We
consider systems of the form

Ar (x)Dr y(x) + · · · + A1(x)Dy(x) + A0(x)y(x) = 0 (1.1)

where D = d
dx , and Ai(x), for i = 0, 1, . . . , r , are matrices of size m ×m with entries

from K[x]. Here Ar (x) is the leading matrix (we suppose that Ar (x) is non-zero),
and y(x) = (y1(x), y2(x), . . . , ym(x))T is a column of unknown functions (T denotes
transposition). The number r is called the order of the system. The system under
study is assumed to be of full rank; i.e., the equations of the system are linearly
independent over the ring of operators K(x)[D]. In some cases, the trailing matrix
of a system is also considered. (If k = min{l | Al , 0} then Ak is the trailing matrix
of (1.1).)

The system (1.1) can be written in the form

L(y) = 0 (1.2)

where
L = Ar (x)Dr + · · · + A1(x)D + A0(x). (1.3)

A solution y(x) = (y1(x), y2(x), . . . , ym(x))T ∈ K(x)m of (1.1) is called a rational
solution. If y(x) ∈ K[x]m, it is called a polynomial solution (a particular case of a
rational solution). Algorithms for finding all rational solutions to a first-order system
of the form

Dy(x) = A(x)y(x), (1.4)

where A(x) ∈ Mat m(K(x)), are well known (see, e.g., [3], [10]). The problem of
finding rational solutions for full-rank systems (1.1) in the case where the matrix
Ar (x) may be singular, were considered much less frequently. Nevertheless, an
appropriate algorithm was suggested in [9]. This algorithm is based on finding
a universal denominator of rational solutions to the original system (for brevity,
we call it the universal denominator for the original system), i.e., a polynomial
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U(x) ∈ K[x] such that, if the system has a rational solution y(x) ∈ K(x)m, then it
can be represented as 1

U(x) z(x), where z(x) ∈ K[x]m. If a universal denominator is
known, we can make the substitution

y(x) = 1
U(x) z(x) (1.5)

where z(x) = (z1, . . . , zm)T is a vector of new unknowns, and then apply one of the
algorithms for finding polynomial solutions (see, e.g., [3], [11], [17]). A denominator
bound for the original system is a rational function S(x) such that any rational solution
of the original system can be represented in the form S(x) f (x) with f (x) ∈ K[x]m.
So a denominator bound can also be used for finding rational solutions by using the
substitution

y(x) = S(x)z(x) (1.6)

instead of (1.5). (If U(x) is a universal denominator for (1.2) then 1
U(x) is obviously

a denominator bound for the same system.)
Other approaches are also possible. For example, the approach presented in [2]

is based on expanding a general solution of the original system (1.2) into a series
whose coefficients linearly depend on arbitrary constants. After multiplication by a
universal denominator U(x) (or by S−1(x), where S(x) is a denominator bound) the
series corresponding to rational solutions turn into polynomials.

In the sequel, it will be useful to consider formal Laurent series, i.e., for example,
elements of the field K((x)) (or the field K̄((x)), where K̄ is the algebraic closure of
K). Recall that the valuation val y(x) of y(x) ∈ K((x)) is the minimal integer i such
that the coefficient of xi in y(x) is non-zero. If y(x) is the zero series then we set
val y(x) = +∞. We can also consider the field K((x − α)) of formal Laurent series
in x − α and, correspondingly, valx−αt(x) for t ∈ K((x − α)).

We consider also the formal series in terms of decreasing powers (this can also be
viewed as expansion at∞); the field of such series is denoted by K((x−1)). Each series
of this kind contains only a finite number of powers of x with nonnegative exponents
and, possibly, an infinite number of powers with negative ones. The greatest exponent
of x with a nonzero coefficient occurring in a series y(x) is the valuation val∞y(x).
If y(x) ∈ K((x−1)) is the zero series, then we set val∞ y(x) = −∞.

For a vector f (x) = ( f1(x), . . . , fm(x))T ∈ K((x))m we set val f (x) = minm
i=1 val fi

(similarly for valx−α f (x)). For g(x) = (g1(x), . . . , gm(x))T ∈ K((x−1))m we set
val∞ g(x) = maxm

i=1 val∞ gi . It is easy to see that val∞p(x) = deg p(x) for a
polynomial p(x) and v( f (x)

g(x) ) = v( f (x)) − v(g(x)) for f (x), g(x) ∈ K[x], v ∈
{val, valx−α, val∞}. It is also significant that the valuation of any type under consid-
eration of a product is the sum of the valuations of the factors.

The checkpoints and testsmentioned at the beginning of the Introductionmay help
detect situations where substitutions of the series in question lead to a system that
obviously has no polynomial solutions. In this case, we would like to obtain tests that
do not require a complete calculation of the universal denominators or denominator
bounds, but involve just some preliminary estimates. For scalar difference equations,
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such points and tests were found by A. Gheffar in [13, 14]. In the present paper, we
generalize those ideas for linear systems of differential equations with polynomial
coefficients.

1.2 Preliminaries: indicial polynomials

A rational solution of a system of the form (1.1) can be represented by formal Laurent
series both at an arbitrary finite point α and at∞.

It is well known (see, e.g., [7, Sect. 7.2]) that it is possible to construct for (1.1) a
finite set of irreducible polynomials over K

p1(x), . . . , pk(x) (1.7)

such that if for some α ∈ K there exists a solution F ∈ K((x − α))m such that
valx−αF < 0 then pi(α) = 0 for some 1 6 i 6 k, and for each pi(x) a polynomial
IL,pi (λ) ∈ K[λ] can be constructed such that for a solution F ∈ K((x − α))m,
pi(α) = 0, one has IL,pi (valx−αF) = 0 [7]. It is also possible to construct such a
polynomial IL,∞(λ) ∈ K[λ] that if a system L(y) = 0 has a solution y ∈ K((x−1)) then
IL,∞(val∞y(x)) = 0. In particular, the degree of a polynomial solution is a root of
IL,∞(λ). The polynomials IL,∞(λ), IL,p1 (λ), . . . , IL,pk (λ) are the indicial polynomials
connected with L.

Remark In the context of this paper, by the indicial polynomial for a given operator
L we mean a certain polynomial, a root of which may give useful information on
solutions of the initial differential system. Absence of roots of a certain type also
gives information on solutions of the initial differential system. Note that it is not
necessary that every root of such a polynomial corresponds to some specific solution
of the initial system, as in classical theory. To construct the needed polynomials we
can use the so-called induced recurrence system and bring its leading or trailing
matrix to non-singular form. Based on the determinants of those matrices, some
polynomials can be obtained that play the role of the indicial polynomials ([1, 7]).
(Thementioned induced recurrence system is satisfied by the sequence of coefficients
of any Laurent series solution of the original differential system; the elements of such
a sequence belong to Km or K̄m.)

1.3 Scheme equipped with control tests

The following proposition is the main statement of the paper.

Proposition Let L, p1(x), . . . , pk(x) be as in (1.3), (1.7). Let IL,∞(λ),
IL,p1 (λ), . . . , IL,pk (λ) be the corresponding indicial polynomials. In this case

(i) if IL,∞(λ) has no integer root then (1.2) has no rational solution;
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(ii) if at least one of the polynomials IL,p1 (λ), . . . , IL,pk (λ) has no integer root
then (1.2) has no rational solution;

(iii) if b1, . . . , bk ∈ Z are lower bounds for integer roots of polynomials
IL,p1 (λ), . . . , IL,pk (λ) (e.g., b1, . . . , bk can be equal to the minimal integer roots
of those polynomials), N is an upper bound for integer roots of the polynomial
IL,∞(λ) (e.g., N can be equal to the maximal integer root of that polynomial), and
N −∑k

i=1 bi deg pi < 0, then (1.2) has no rational solution;
(iv) if N − ∑k

i=1 bi deg pi > 0 (see (iii)) and the system (1.2) has a rational
solution then that solution is of the form pb1

1 (x) . . . pbk

k
(x) f (x), where f (x) =

( f1(x), . . . , fm(x))T ∈ K[x]m with deg fj(x) 6 N −∑k
i=1 bi deg pi , j = 1, . . . ,m.

Proof (i), (ii): If (1.2) has a rational solution F ∈ K(x)m then (1.2) has a solution
in K((x−1))m as well, since F(x) can be represented by a series from K((x−1)). Let
s(x) be a formal Laurent series over Km for F(x−1), then t(x) = s(x−1) ∈ K((x−1)) is
the series for F(x). So IL,∞(val∞t(x)) = 0, proving (i). Let α be such that pi(α) = 0,
1 6 i 6 k, and let s ∈ K((x − α))m be the Laurent series expansion of F(x). Then
IL,pi (x)(valx−αs) = 0, proving (ii).

(iii): S(x) = pb1
1 (x) . . . pbk

k
(x) is a denominator bound for (1.2) (among b1, . . . , bk

there may be numbers of different signs). If F(x) ∈ K(x)m is a rational solution
of (1.2) then F(x) = S(x) f (x) for some f (x) ∈ K[x]m. We have 0 6 val∞ f (x) =
val∞F(x) − val∞S(x) 6 N − val∞S(x) = N −∑k

i=1 bi deg pi . Thus, if there exists a
rational solution then N −∑k

i=1 bi deg pi > 0.
(iv): The upper bound N −∑k

i=1 bi deg pi > 0 for val∞ f (x) = maxm
j=1 deg fj was

obtained in the proof of (iii). �

A scheme equipped with control tests may be, for example, as follows.

1. Find IL,∞(λ). If this polynomial does not have integer roots, then STOP. Other-
wise, let N be the largest integer root of IL,∞(λ).

2. Find p1(x), . . . , pk(x) and polynomials IL,p1 (λ), . . . , IL,pk (λ). If at least one of
IL,p1, . . . , IL,pk does not have integer roots, then STOP. Otherwise, let e1, . . . , ek
be the smallest integer roots of these indicial polynomials and d = e1 deg p1 +
· · · + ek deg pk .

3. If N+d < 0 then STOP.Otherwise, perform in (1.1) the substitution y = Sz, where
S(x) = p1(x)e1 . . . pk(x)ek , and z is a new unknown vector. Find all polynomial
solutions of the new system L̃(z) = 0, using the fact that the degree of each
such solution does not exceed N + d. If there are no such solutions, then STOP.
Otherwise, rational solutions of the system L(y) = 0 are obtained frompolynomial
solutions of the system L̃(z) = 0 by multiplying each component of z by S(x).
In this scheme, the STOP command means stopping all calculations with the

message to the user: "The system has no rational solutions".
Having computed the upper bound N − d for the degrees of polynomial solutions

allows us to use the method of undetermined coefficients for finding polynomial
solutions of the system L̃(z) = 0 (the problem of finding polynomial solutions is
reduced to solving a system of linear algebraic equations). There exist methods which



6 Sergei A. Abramov

are more effective than the method of undetermined coefficients (see, for example,
[17]). However, to apply the algorithm from [17], it is necessary to construct an
induced recurrent system and bring its trailing matrices to non-singular form (we
have mentioned induced recurrent systems in Remark 1). This preparatory work is
equivalent in cost to obtaining the indicial polynomial IL̃,∞. One can also use the
approach from [2], for which one does not need the substitution y = Sz into L(y) = 0
(we have mentioned it in Section 1.1).

1.4 Examples

Example For a system L(y) = 0 of the form(
x 1
1 1

)
y′ +

(
x2 x
1 x

)
y = 0

we get IL,∞(λ) as a non-zero constant. The polynomial has no integer roots and the
system has no rational solutions (there is no need to look for a universal denominator
and so on). If we apply the usual approach, then we would have to find the universal
denominator U(x) = x, make the substitution (1.5) into the original system, then a
search should be made for polynomial solutions. Finally, it would show that there
are no such solutions. �

Example If a system L(y) = 0 is of the form(
2 0
0 x(x + 1)

)
y′ +

(
−1 1
x 2(x + 1)

)
y = 0

then IL,∞(λ) = −λ − 3. The only integer root is −3. We can find U(x) = x2 as
a universal denominator (or S(x) = x−2 as a denominator bound). We see that
−3 + 2 = −1 < 0. This implies that the system has no rational solutions (there is no
need to produce the substitution y = S(x)z and try to find polynomial solutions). �

1.5 Conclusion

The present paper shows that an approach similar to the proposed in [13, 14] can
be applied not only to scalar equations, but to systems of equations as well. Small
changes in the scheme of the algorithm allow one to mark the points that we call
the checkpoints, and write down the corresponding control tests so that without
increasing the cost of the algorithm as a whole, in some cases, performing the tests
on the intermediate results makes it possible to stop the algorithm as soon as these
tests imply that no solutions of the desired type exist.
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Apparently, this approach may be useful in the development of algorithms for
finding solutions that are more complicated than rational solutions (we would em-
phasize that the search for many types of solutions ultimately boils down to finding
rational solutions for some auxiliary systems).

This type of problem can also be posed for the case of systems of linear difference
equations. In the book [16] of P. Paule and M. Kauers, in particular, the basic tools
for working with scalar difference equations are described. Regarding systems, it is
possible, for example, to mention publications [3] – [7], [8], [11], [15]. The question
of checkpoints and control tests for systems of linear difference equations remains a
topic for future research.
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