
Resolving sequences of operators for linear
ordinary differential and difference systems of

arbitrary order

S. A. Abramov∗

Federal Research Center
“Computer Science and Control” of
the Russian Academy of Science

Vavilova str., 40
Moscow, 119333

Russia
sergeyabramov@mail.ru

M. Petkovšek†

University of Ljubljana
Faculty of Mathematics and Physics
Jadranska 19, SI-1000 Ljubljana

Slovenia
Marko.Petkovsek@fmf.uni-lj.si

A. A. Ryabenko∗

Federal Research Center
“Computer Science and Control” of
the Russian Academy of Science

Vavilova str., 40
Moscow, 119333

Russia
anna.ryabenko@gmail.com

Abstract

We introduce the notion of a resolving sequence of (scalar) operators
for a given differential or difference system with coefficients in some
differential or difference field K. We propose an algorithm to construct
such a sequence, and give some examples of the use of this sequence as a
suitable auxiliary tool for finding certain kinds of solutions of differential

∗Supported in part by the Russian Foundation for Basic Research, project no. 16-01-
00174.
†Supported in part by the Ministry of Education, Science and Sport of Slovenia research

programme P1-0294

1

and difference systems of arbitrary order. Some experiments with our
implementation of the algorithm are reported.

Key words: higher-order linear systems of differential and difference equa-
tions, resolving sequence of operators, embracing system, companion ma-
trix, cyclic vector, hypergeometric solutions of difference systems, formal
exponential-logarithmic solutions of differential systems.

Bib. 29, Tab. 1.

1 Introduction
As a rule, both in scientific literature and in practice, algorithms for finding

certain kinds of solutions for scalar differential or difference equations appear
earlier than for systems of such equations. It may also be that a direct al-
gorithm for systems is known in theory but does not yet have an available
computer implementation (e.g., there is no such implementation in commonly
used software packages). In this case one makes an effort to find solutions of a
system through some auxiliary scalar equations which are constructed for the
system.

We will consider linear systems over a differential or difference field
K of characteristic zero supposing that the components of solutions y =
(y1, . . . , ym)T belong to an extension Λ of K. Our approach allows in specific
cases to reduce the problem to the search for simpler solutions (on occasion
belonging to K). It is based on the notion of a resolving sequence of operators,
i.e, such a finite sequence L1, . . . , Lp of scalar operators with coefficients in K
that for fixed indices l1, . . . , lp, first, the equalities yl1 = · · · = ylj = 0 imply
Lj+1(ylj+1

) = 0 when j < p , and second, the equalities yl1 = · · · = ylp = 0
imply y1 = y2 = · · · = ym = 0.

We will propose an algorithm to construct a resolving sequence for a given
system. For the case when K is the rational function field K(x) over an
algebraically closed field K we derive an algorithm to find hypergeometric
(other names: exponential, hyperexponential, ...) solutions of systems. Note
that in [27, 25, 23], algorithms for finding hypergeometric solutions of scalar
linear difference equations with rational-function coefficients were described.
Algorithms for the q-difference scalar equations (a special case of difference
scalar equations) can be found in [10], [23, Sect. 12], the differential case is
considered in [22].

For differential systems with coefficients in K(x), resolving systems allow
to reduce the search for formal exponential-logarithmic solutions to the search
for exponential parts of solutions of scalar equations and the subsequent search
for regular solutions of systems with coefficients in K(x).

Generally, direct algorithms work faster than algorithms that first uncouple
the system, i.e., those algorithms which preliminary transform a given system
into scalar equations. Thus, most probably, the search for, e.g., hypergeometric
solutions of systems will be faster with advent of full direct algorithms for
systems. (It is known that work is underway on such an algorithm for normal
first-order system

y(x+ 1) = A(x)y(x), (1)

where A(x) is a square matrix whose entries are rational functions [19]). A
direct algorithm for finding formal exponential-logarithmic solutions of normal

2

first-order differential systems

y′(x) = A(x)y(x) (2)

with rational-function coefficients has been proposed in [18], but it does not
have yet an available full implementation, although such an implementation
will be hopefully available in the future. Currently, our algorithms can be
useful for solving systems of arbitrary order — the more so as our experiments
show that these algorithms work in reasonable time.

If a resolving sequence consists of a single operator (i.e., if p = 1) then in
the case of a normal first-order system, the row-vector (0, . . . , 0︸ ︷︷ ︸

l1−1

, 1, 0, . . . , 0︸ ︷︷ ︸
m−l1

) is

a cyclic vector for the system. Algorithms for constructing a cyclic vector and
related uncoupling algorithms for normal first-order systems are well known
in computer algebra. The paper [20] contains a review of such algorithms
applicable to systems of the form (1), (2) and the corresponding references.
In that paper, a new algorithm for constructing a cyclic vector based on fast
linear algebra algorithms ([28]) is also proposed. The existence of cyclic-vector
algorithms suggests that there is no need for resolving sequences at least in
the case of normal first-order systems — the more so as the cyclic vector and
the uncoupling are multi-purpose procedures which may be useful not only for
finding hypergeometric or formal exponential-logarithmic solutions of systems.
Besides, the resolving procedure only solves a part of the problem. Solutions of
the operators belonging to the resolving sequence are a “half-finished product”,
since we have in addition to find some “simple” solutions of other systems.

However, even in the case of normal first-order systems (1), (2), the re-
solving sequence approach can have some advantage over the cyclic vector
approach. First, this sequence is constructed in a single pass, while in practi-
cal cyclic vector algorithms numerous random candidates are considered (if a
candidate is not appropriate then another one is generated, and all calculations
are resumed from the beginning). Second, the resolving system constructed
by our algorithm is such that the sum of the orders of its operators is equal
to the order of the operator obtained by a cyclic vector algorithm. As a rule,
to solve a few equations of small orders is easier than to solve an equation of
a large order (this provides stimulation to develop factorization algorithms).
Even when a resolving sequence consists of a unique operator, we can profit
since such a cyclic vector is of a very simple form, and the scalar equation to
solve will not have cumbersome coefficients.

As for the second stage when some solutions of additional differential or
difference systems have to be found, this can quite often be done in reasonable
time. For example, the search for rational solutions of differential or difference
systems having rational-function coefficients is not time consuming ([2, 5, 6,
7, 15, 16, 24]).

Our experimental comparison demonstrates a definite advantage of a re-
solving sequence over a cyclic vector for systems of the form (1), (2).

Besides, we show that the resolving sequences can be used for higher-order
systems of full rank. In so doing we do not suppose that, say, the leading
matrix of the system is invertible. In this case, the cyclic vector methods are
not applicable. The algorithms are based on the EG-eliminations ([1, 3, 9]).
Possibly, these are the first algorithms for higher-order systems.

The rest of the paper is organized as follows. In Section 2 we propose an

3

algorithm for constructing resolving sequences for systems of the form (1), (2).
In Section 3 we consider systems of higher order. Sections 4, 5 are devoted
to algorithms for finding hypergeometric (hyperexponential) and, resp., formal
exponential-logarithmic solutions for systems of arbitrary order. In Section 6
we describe our implementation of the algorithms in Maple and report some
experiments with it.

A preliminary version of our algorithm for finding hypergeometric solutions
of normal first-order difference systems was published in [12].

2 First-order normal systems

2.1 The resolving equation and matrix

Let K be a differential or difference field with derivation δ or, resp., auto-
morphism (shift) σ. In this section we consider systems of the form

δy = Ay, (3)

and
σy = Ay (4)

(a generalization of systems (2), (1)). In both cases A ∈ Matm(K), y =
(y1, . . . , ym)T . Systems of this form we call normal first-order systems. For
systems (3), (4) we will use the short notation [A].

Note that the difference system (4) includes the so-called q-difference case;
q-calculus and the theory and algorithms for q-difference equations are of in-
terest in combinatorics, especially in the theory of partitions [13, Sect. 8.4],
[14]. However, we will not dwell on details related to this case.

We suppose that Λ is an extension (differential or difference) of K, and will
discuss some general facts related to the solutions of [A] which belong to Λm.

First of all, recall how to find derivatives and shifts of a scalar t of the form
t = cy, where c is a given row-vector from Km, while y is supposed to be a
solution of [A] (i.e., how to differentiate, resp., to shift “along the solutions” of
[A]). Define a sequence c[0], c[1], c[2], . . . of row-vectors

c[0] = c, c[i] = c[i−1]A+ δc[i−1] (5)

in the differential case, and

c[0] = c, c[i] = σ(c[i−1])A (6)

in the difference case, i = 1, 2, . . . In the sequel we will often use a unified form
for the systems (3) and (4):

ξy = Ay, A ∈ Matm(K), y = (y1, . . . , ym)T , ξ ∈ {δ, σ}. (7)

The known fact is that
ξi(cy) = c[i]y

for any c ∈ Km and any solution y of [A].
It is also well known that for any i, 0 6 i 6 m, one can construct a scalar

equation over K of order 6 m which is satisfied by the i-th component yi of
any solution of [A]. (The order of a scalar operator L ∈ K[ξ] is the degree of L

4

as a polynomial in ξ, the order of the equation L(y) = 0 is equal to the order
of L.) We describe briefly a way to do this.

Since c[0], c[1], . . . , c[m] are linearly dependent over K, there is a least k ∈
{0, 1, . . . ,m} such that c[0], c[1], . . . , c[k] are linearly dependent over K. So there
are u0, u1, . . . , uk ∈ K, with uk 6= 0, such that

∑k
j=0 ujc

[j] = 0, hence also∑k
j=0 ujc

[j]y =
∑k

j=0 ujξ
jt = 0. This is a scalar equation of order k satisfied

by t = cy. In particular, for

c = (0, . . . , 0︸ ︷︷ ︸
i−1

, 1, 0, . . . , 0︸ ︷︷ ︸
m−i

) (8)

we have t = yi, hence
k∑
j=0

ujξ
jyi = 0 (9)

is a scalar equation of order k satisfied by yi for any solution y of [A].

Definition 1. Let the row vectors c[0], c[1], . . . , c[k] and u0, u1, . . . , uk ∈ K be
constructed as described above for c as given in (8). Then we call (9) the
yi-resolving equation, and the full-rank k × m matrix B whose j-th row, for
j = 1, . . . , k, is c[j−1], the yi-resolving matrix of [A].

2.2 The space of solutions with yi = 0

Here we are interested in the solutions of [A] with yi = 0.

Proposition 1. Let equation (9) with k < m be the yi-resolving equation for
system (7), 1 6 i 6 m. Then there exist m− k entries yi1 , . . . , yim−k

of y and
a system

ξỹ = Ãỹ (10)

where Ã is an (m− k)× (m− k) matrix whose entries are in K with

ỹ = (yi1 , . . . , yim−k
)T , (11)

such that if the system [A] has a solution with yi = 0 then

• the entries yi1 , . . . , yim−k
of the solutions satisfy system (10);

• each yj with j /∈ {i1, . . . , im−k} can be expressed as a linear form in
yi1 , . . . , yim−k

.

If k = m in (9) then yi = 0 implies yj = 0 for all j = 1, . . . ,m.

Proof. Note that if yi = 0 then

yi = ξyi = ξ2yi = · · · = ξk−1yi = 0. (12)

Let c be as in (8). Since c[j]y = ξj(c y) = ξjyi = 0, this gives us a system of k
independent linear algebraic equations

By = 0 (13)

for the unknown y, where B is the yi-resolving matrix of [A]. The matrix B
has full rank, and hence there exist m− k entries yi1 , . . . , yim−k

of y such that
by means of this system, the other k entries of y can be expressed as linear
forms in yi1 , . . . , yim−k

having coefficients from K. Now we can transform [A]
as follows: for each 1 6 j 6 m such that j /∈ {i1, . . . , im−k} we

5

(a) remove the equation

ξyj = aj1y1 + · · ·+ ajmym

from [A],

(b) in all the other equations, we replace yj by the corresponding linear
form in yi1 , . . . , yim−k

(in particular, yi will be replaced by 0, since i /∈
{i1, . . . , im−k} and the system By = 0 contains the equation yi = 0).

As a whole, this gives a system of the form (10). If [A] has a solution such that
yi is zero then (11) satisfies the system (10), and each yj with j /∈ {i1, . . . , im−k}
can be expressed as a linear form in yi1 , . . . , yim−k

having coefficients from K.
If k = m then the matrix B in the linear algebraic system (13) is an

invertible m×m matrix, hence y = 0. 2

Remark 1. The matrix Ã of system (10) can be found using matrix multi-
plication. Let S be the m × (m − k) matrix whose jth row is the row of the
coefficients of the corresponding linear form for yj in yi1 , . . . , yim−k

. In particu-
lar, its jth row is equal to (0, . . . , 0︸ ︷︷ ︸

j−1

, 1, 0, . . . , 0︸ ︷︷ ︸
m−j

) for each j ∈ {i1, . . . , im−k}. Let

A− be the matrix consisting of the rows of A having the numbers i1, . . . , im−k.
Then Ã = A−S.

2.3 Resolving sequence of operators

Definition 2. Let l1, . . . , lp be pairwise distinct positive integers which do not
exceed the number m of solution entries of a given differential or difference
system, and let L1, . . . , Lp be scalar operators from K[ξ] such that if yl1 =
· · · = ylj = 0 (where j 6 p) for a solution y then

• in case of j = p, all entries of this solution are equal to zero: y1 = y2 =
· · · = ym = 0,

• in case of j < p, for the entry ylj+1
of this solution the equality

Lj+1(ylj+1
) = 0 holds.

Then the finite sequence of operators L1, . . . , Lp is a resolving sequence for the
given system, and the vector (l1, . . . , lp) is the indicator of this sequence.

Verification of existence of a resolving sequence for an arbitrary system of
the form (7) as well as an algorithm for constructing a resolving sequence are
actually contained in Sections 2.1, 2.2. It is easy to describe this algorithm.
The description is particularly simple if it does not include the calculation of
the indicator:

1. Set t = 0.
2. Set t = t + 1. Select any yi from the unknowns under consideration,

and set lt = i. Construct Lt as the yi-resolving operator and the yi-resolving
matrix B of the system [A].

3. If the order of Lt is less than the order of the matrix A then execute the
transformations (a), (b) of [A] as it is described in the proof of Proposition 1
(A and [A] will be changed), and go to 2.

6

Remark 2. The simplest way to select yi on step 2 is just to pick the first
unknown from those under consideration. However, it is probably more rea-
sonable to find such a row of the matrix of the system which is the least
“cumbersome” of all the rows which contain the largest number of zero entries
(the “cumbersome” criterion should be clarified). Then we select the unknown
yi so that ξyi corresponds to the selected row in A.

In addition, we propose another description of basically the same algorithm.
This version is based entirely on Gaussian elimination of unknowns, and deals
with a (m+ 1)× (2m+ 1) matrix V whose rows are filled gradually. If the first
w − 1 entries of a non-zero row of V are zeros, but the w-th entry is not zero
then w is the level of that row.

1. Set t = d = 0.
2. Set t = t + 1. Select any integer i, 1 6 i 6 m, which coincides with no

level of the rows of V having numbers 1, . . . , d, and set lt = i. Set c to be equal
to the row (8) and, using the corresponding recurrence relation from (5), (6)
find step-by-step c[0], c[1], . . . filling the rows of V with numbers d+1, d+2, . . . :
if c[j] = (cj1, . . . , cjm) then the (d+ j + 1)-st row of V becomes equal to

(cj1, . . . , cjm, 0, . . . , 0︸ ︷︷ ︸
d+j

, 1, 0, . . . , 0︸ ︷︷ ︸
m−d−j

).

After putting the new row into the matrix V we immediately perform elimina-
tions by the rows having smaller numbers. Thus, the rows which are already in
V form a sub-matrix which is in row echelon form. (Elimination by a row pro-
duces zero in the column whose number is equal to the level of that row.) At
some point we get in V a row having only zeros in the columns with numbers
1, . . . ,m. If it is the sth row then

Lt =
s−1∑
j=d

vs,m+j+1ξ
j−d. (14)

3. Set d = d+ ordLt. If d = m then a resolving sequence has been found.
Otherwise, go to 2.

Remark 3. (a) The entries vs,m+1, . . . , vs,m+d do not appear in (14). Those
useless entries of the sth row need not be calculated: before computing the
next Lt, t > 1, set vij = 0 for i = 1, . . . , d, j = m+ 1,m+ 2, . . . , 2m+ 1.

(b) After computing Lt, t > 1, the lt-th column of A can be replaced by
the zero column. The modified matrix A is used when we compute c[1], c[2], . . .
for constructing the next operators belonging to the resolving sequence (if A
is needed for another computation after constructing the resolving sequence
then a copy of the initial A must be stored).

Proposition 2. The version of the algorithm described below Remark 2 com-
putes a resolving sequence of operators for [A].

Proof. Let L1, . . . , Lp be the sequence computed by the described algorithm.
Then the statement can be proved by induction on p using Proposition 1 for
the inductive step.

The entries vs,m+1, . . . , vs,m+d do not appear in (14) (Remark 3(a)), and the
firstm entries of each row of V having the number 6 d define a linear combina-
tion of y1, . . . , ym, which is equal to zero when we consider the operator Lt+1.

2

7

This version of the algorithm is very close to the classical algorithm for
transforming a matrix into row echelon form by Gaussian elimination. Some
additional work is needed to generate the rows of the matrix V . The complexity
of both versions of the algorithm as the number of operations in K is bounded
by Cm3 with a reasonably small constant C.

The indicator of a resolving sequence of operators is actually not needed in
some applications of resolving sequences, see, e.g., Sections 4, 5.

3 Higher-order systems
In this section we consider systems of the form

Anξ
ny + · · ·+ A1ξy + A0y = 0 (15)

with Ai ∈ Matm(K), i = 0, 1, . . . , n. Following Definition 2, we will consider
resolving sequences of operators and their indicators for such systems.

3.1 The companion matrix

We distinguish two cases, according to whether the leading matrix of the
system is invertible or not. If An is invertible in Matm(K) then the system
(15) is equivalent to the first-order system having mn equations:

ξY = AY, (16)

with a companion matrix A:

A =


0 Im . . . 0
...

...
0 0 . . . Im
Ā0 Ā1 . . . Ān−1

 , (17)

where Āk = −A−1
n Ak, k = 0, 1, . . . , n− 1, and

Y = (Y1, . . . , Ynm) =

=
(
y1 . . . , ym, ξy1 . . . , ξym, . . . , ξ

(n−1)y1, . . . , ξ
(n−1)ym

)T
. (18)

If the leading matrix An in (15) is not invertible but the system is of
full rank then the EG-eliminations method [1, 3, 9] allows us to obtain an
embracing system, i.e., a system of a similar form with an invertible leading
matrix, and all solutions of the original system are solutions of the new one. It
follows from Definition 2 that any resolving sequence of an embracing system
is also a resolving sequence of the original system.

3.2 Constructing resolving sequence without explicit use
of the companion matrix

A resolving sequence for the system ξY = AY can be constructed by appli-
cation of (5), (6). However, the first stage of the algorithm, i.e., constructing
L1 can be performed without the implicit use of the huge matrix (17). On the
next stages, the matrix of the transformed system will be of smaller size, and
the use of (5), (6) will be reasonable.

8

Proposition 3. Computing the first operator L1 of a resolving sequence for
the system (16) with (17) in the role of the matrix A, as well as computing
the matrix Ã of the corresponding transformed system can be produced with-
out explicit use of the companion matrix (17), but only by operating with the
matrices Ā0, Ā1, . . . , Ān−1.

Proof. To construct L1, we split the row-vector c[i] into n parts of equal length:

c[i] =
(
c

[i]
0 , c

[i]
1 , . . . , c

[i]
n−1

)
.

We rewrite recursive formulas (5), (6) as

c
[i]
0 = c

[i−1]
n−1 Ā0 + δc

[i−1]
0 ,

c
[i]
1 = c

[i−1]
0 + c

[i−1]
n−1 Ā1 + δc

[i−1]
1 ,

. . . (19)

c
[i]
n−1 = c

[i−1]
n−2 + c

[i−1]
n−1 Ān−1 + δc

[i−1]
n−1

and
c

[i]
0 = σ(c

[i−1]
n−1)Ā0,

c
[i]
1 = σ(c

[i−1]
0) + σ(c

[i−1]
n−1)Ā1,

. . . (20)

c
[i]
n−1 = σ(c

[i−1]
n−2) + σ(c

[i−1]
n−1)Ān−1

for i = 1, 2, . . . In both cases c[0] = c, and all the components of c are equal
to 0, save the one belonging to the part c[0]

0 which is equal to 1 (note that the
total number of components of c is mn).

When an operator L1 is constructed, one constructs other operators of a
resolving sequence using the transformed system [A] (this transformation uses
the resolving matrix B, see Section 2.2). This transformed system can be
obtained without first explicitly constructing the matrix (17): Select mn − k
components of Y with indices i1 < i2 < · · · < is 6 m(n − 1) < is+1 <
· · · < imn−k such that other components can be expressed by them using the
system BY = 0. Construct the mn× (mn− k) matrix S as in Remark 1. For
j = 1, . . . , s the jth row of the transformed matrix Ã is equal to the (ij +m)th
row of S: Ãj,∗ = Sij+m,∗ (we use the standard notation Mp,∗ for the pth row
of a matrix M). For j = s + 1, s + 2, . . . ,mn − k, the jth row Ãj,∗ of Ã can
be computed as the product A^ij−m(n−1),∗S, where A

^ is the m ×mn matrix(
Ā0 Ā1 . . . Ān−1

)
. 2

3.3 The final step of constructing a resolving sequence

Let L1, . . . , Lp be a resolving sequence for (16) with the indicator
(l1, . . . , lp). The elements of this indicator are some of the indices of the el-
ements of Y = (Y1, . . . , Ymn), and hence belong to the set {1, . . . ,mn}. Let
li = aim+ bi, 0 6 ai 6 n− 1, 1 6 bi 6 m for i = 1, . . . , p. In accordance with
(18), we have

Yli = ξaiybi .

9

Therefore, if we put L̃i = Liξ
ai then by Definition 2, L̃1, . . . , L̃p is a resolving

sequence for the original system (15), and (b1, . . . bp) is its indicator.
It will be shown in Sections 4.3, 5.2 that for finding certain kinds of solutions

of systems it is sufficient to know a resolving sequence for (16), and that it is
even not necessary to know its indicator.

3.4 Resolving sequences and cyclic vectors

If a resolving sequence consists of a single operator L1 then, as we men-
tioned in Section 1, the row-vector c which is used to construct L1 is a cyclic
vector. In Section 1 we have compared resolving sequences and cyclic vectors,
so it is not necessary to repeat that here. But our attention was aimed at nor-
mal systems of the form (7). As for constructing a cyclic vector for a system
of the form (15), there the preliminary transformation of the original system
to one with an invertible leading matrix gives rise to extra solutions that have
to be thrown away – which is not an easy task. In some cases this can annul
the possible advantages of the cyclic method.

Besides this, our experiments show that even for normal first-order systems
the resolving sequence approach works faster than the cyclic vector approach
— see Example 9.

In our experiments, we used a traditional randomized version of a cyclic
vector algorithm which is applicable to systems of the form (7), supposing that
K = K(x). The algorithm allows to obtain

• a scalar differential or, resp., difference equation of orderm with rational-
function coefficients, and

• an invertible m×m matrix B(x) with rational-function entries.

These objects are such that the one-to-one correspondence

B(x)y(x) = (t(x), ξt(x), . . . , ξm−1t(x))T

between solutions t(x) of the scalar equation and solutions y(x) of [A(x)] holds.

1. Randomly choose a row vector c[0] containing polynomials of degree 0.

2. Create an m×m matrix B(x) and a row c[m]:
for i from 1 to m do

the i-th row of B(x) is c[i−1];

c[i] :=

{
c[i−1]A(x) + ξc[i−1], ξ = δ,
ξ(c[i−1])A(x), ξ = σ

od.
3. If the linear algebraic inhomogeneous system u(x)B(x) = c[m] is

compatible and has a unique solution then find that solution u(x) =
(u0(x), . . . , um−1(x)). Otherwise go to step 2 with a new random row vector
c[0] of polynomials of degree m− 1.

4. Return the scalar equation for a new unknown t(x)

ξmt = um−1(x)ξm−1t+ · · ·+ u0(x)t

and the matrix B(x).

10

4 Hypergeometric solutions

4.1 First-order normal systems

Let K be an algebraically closed field of characteristic 0. Let K = K(x).
Denote by HK the K-linear space of finite linear combinations of hypergeo-
metric terms over K (i.e., h(x+1)

h(x)
∈ K(x) for each hypergeometric term h(x)

under consideration) with coefficients in K.
Let E be the shift operator (a concretization of σ): Ev(x) = v(x+ 1), and

let A(x) be an m×m matrix whose entries are in K(x). We consider systems
of the form

Ey = A(x)y, y = (y1(x), . . . , ym(x))T . (21)

Using the resolving sequences of operators, we can describe an algorithm which
for a given system of the form (21) constructs a basis for the space of its
solutions belonging to Hm

K . The basis consists of elements of the form

h(x)R(x), (22)

where h(x) is a hypergeometric term and R(x) ∈ K(x)m.
We will say that an element of Hm

K is related to a hypergeometric term h(x)
if it can be represented in the form (22) (i.e., if each of its nonzero components
is similar to h(x)).

Remark 4. If an element of Hm
K is related to a hypergeometric term h(x) then

this element is related to any hypergeometric term which is similar to h(x).

4.2 Reduction to search for rational solutions

Let
L1, . . . , Lp ∈ K(x)[E] (23)

be a resolving sequence for system (21), i.e., for [A(x)].

Proposition 4. Let (22) be a non-zero solution of (21). Then there exists
k, 1 6 k 6 p, such that Lk has a non-zero solution of the form h(x)f(x),
f(x) ∈ K(x).

Proof. Let (l1, . . . , lp) be the indicator of resolving sequence (23). By definition
of a resolving sequence (the case j = p of Definition 2), among components
of (22) having numbers l1, . . . , lp there is at least one non-zero. Take the non-
zero component with the minimal number of the form lk, 1 6 k 6 p. By the
case j < p of Definition 2, this component is a solution of Lk. 2

Thus, if (22) is a solution of [A(x)] then the term h(x) is similar to a
hypergeometric term which satisfies at least one of operators (23). Let hj(x)
satisfy such an operator. We can substitute y(x) = hj(x)z(x) into [A(x)],
where z(x) = (z1(x), . . . , zm(x))T is a new unknown vector. If hj(x+1)

hj(x)
= rj(x) ∈

K(x) then we get the system

Ez(x) =
1

rj(x)
A(x)z(x). (24)

11

If Rj,1(x), . . . , Rj,sj(x) ∈ K(x)m is a basis for rational solutions of system (24)
then we obtain K-linearly independent hypergeometric solutions

hj(x)Rj1(x), . . . , hj(x)Rj,sj(x) (25)

of [A(x)].
Rational solutions of (24) and hypergeometric solutions of the scalar equa-

tion Ls(y) = 0 can be found by the algorithms from [2, 24, 5] resp. from
[27, 25, 23]. The algorithm for finding a basis for solutions of [A(x)] belonging
to Hm

K is as follows:

1. Construct the resolving sequence (23) and set ` = ∅.
2. For s = 1, . . . , p compute such a basis bs for solutions of Ls belonging

to HK , that each element of bs is a hypergeometric term. Include into ` those
elements of bs that are not similar to any of the elements already in `.

3. For each hj(x) belonging to `, use the rational function rj(x) =
hj(x+1)

hj(x)

in (24) to construct a basis for the space of those solutions of the system [A(x)]
which are related to hj(x). The union of all such bases gives a basis for the
space of solutions of [A(x)] that belong to Hm

K .

Remark 5. On step 3 of the algorithm, if hj(x) ∈ K(x) for some j, then
the system transformation leading to (24) is not needed since if a solution is
related to a rational function then it is related to 1. More generally, if hj(x) is
a hypergeometric term and hj(x+1)

hj(x)
= rj(x) then we can construct the rational

normal form (RNF) of rj(x), i.e., represent rj(x) in the form Uj(x)
Vj(x+1)

Vj(x)
with

Uj(x), Vj(x) ∈ K(x) where Uj(x) has the numerator and the denominator of
minimal possible degrees [11]. We can use Uj(x) instead of rj(x) in (24). In
this case we must replace the hypergeometric term 1

Vj(x)
hj(x) in (25) by hj(x).

Example 1. Let

A(x) =



x− 1

x
0 −x− 1

x+ 1
0

1 0
2

x+ 1
−x

−1 1 x− 1 1

−x+ 2

x

x+ 1

x

x2 − x− 1

x(x+ 1)

x2 + x+ 1

x


.

With this matrix as input the algorithm proceeds as follows:

1. A resolving sequence of operators for [A(x)] is

L1 = x2(x− 1)(x+ 3)(x+ 2)E3−

(x− 1)(x+ 1)(x4 + 6x3 + 12x2 + 8x+ 4)E2+

2x(x+ 2)(x4 + x3 − x2 − x− 1)E− (26)

x(x− 1)(x+ 2)(x+ 1)(x2 − x− 1),

L2 = E − x

12

(with the indicator (1, 4) which is not of interest to us), ` = ∅.

2. b1 =
{

1
x−1

}
, b2 = {Γ(x)}, ` =

{
1

x−1
,Γ(x)

}
.

3. For the first element of `, we get r1(x) = 1 since RNF of x−1
x

is 1 1/x
1/(x−1)

(Remark 5). The system (24) with r1(x) = 1 has no rational solutions, thus
there is no solution of the original system which is related to 1

x−1
.

Since Γ(x+1)
Γ(x)

= x and the RNF of x is x1
1
, we use r2(x) = x in (24). This

system has a one-dimensional space of rational solutions, generated by the
element

R(x) = (0,−1, 0, 1)T .

Finally, we obtain the basis of the (one-dimensional) space of all solutions of
[A(x)] belonging to H4

K . It contains the single element

Γ(x)R(x) = (0,−Γ(x), 0,Γ(x))T .

Remark 6. Example 1 shows that the proposed resolving approach is not
a modification of the block diagonal form algorithm [17]: if the constructed
resolving operator (26) corresponds to a diagonal block of the original system
then the system would have a rational solution. However, this is not the case.

4.3 Hypergeometric solutions of higher-order systems

Let h(x+1)
h(x)

= r(x) ∈ K(x) for a hypergeometric solution h(x) of an operator
from a resolving sequence for An(x)y(x+n)+· · ·+A1(x)y(x+1)+A0(x)y(x) = 0
(see Section 3.3). Then the substitution y(x) = r(x)z(x) produces a new
system Dn(x)z(x+ n) + · · ·+D1(x)z(x+ 1) +D0(x)z(x) = 0, where Di(x) =
r(x + i − 1) . . . r(x + 1)r(x)Ai(x), i = 0, 1, . . . , n. For such a substitution,
we can also use a hypergeometric solution of an operator from a resolving
sequence for the normal first-order system that corresponds to the given higher-
order system, since hypergeometric terms h(x) and h(x+k) are similar for any
integer k.

In [27, 25, 23], algorithms for finding hypergeometric solutions of scalar
linear difference equations with rational-function coefficients were described
(algorithms for the q-difference scalar case are in [10], [23, Sect. 12]). Solutions
of this kind can be found in the differential case as well. An algorithm which,
for a scalar differential equations with rational-function coefficients constructs
its solutions z(x) such that z′(x)

z(x)
is a rational function, is published in [22].

Algorithms for finding rational solutions of higher-order systems are described
in [7] (the difference case) and in [8] (the differential case).

Example 2. Consider the following second-order system of difference equa-
tions with m = 2:
− 5x2 − 1

x2 − 5x+ 6
0

− 5x2 − 1

x2 − 5x+ 6
0

 y(x+ 2) +


0

x3 + x2 − 10x+ 8

x− 3

0 −x
3 + x2 − 10x+ 8

x− 3

 y(x+ 1) +

+

(
5x2 + 20x+ 19 −x3 − x2 + 5x− 3
5x2 + 20x+ 19 x3 + x2 − 5x+ 3

)
y(x) = 0. (27)

13

The leading matrix of this system is singular. EG-eliminations yield the fol-
lowing embracing system

0 −x2 − 4x+ 5

− 5x2 − 1

x2 − 5x+ 6
0

 y(x+ 2) +

+

0 x3 + 2x2 − 8x

0
x3 + x2 − 10x+ 8

x− 3

 y(x+ 1) +

+

(
0 0

5x2 + 20x+ 19 −x3 − x2 + 5x− 3

)
y(x) = 0

which gives rise to the normal first-order system Y (x + 1) = A(x)Y (x) with
Y (x) = (Y1(x), Y2(x), Y3(x), Y4(x))T = (y1(x), y2(x), y1(x+ 1), y2(x+ 2))T . We
can construct a resolving sequence for the new system. Taking l1 = 2 we obtain

L1 = (x2 + 4x− 5)E2 + (−x3 − 2x2 + 8x)E.

The matrix of the transformed system is

Ã =

 0 1
(x2 − 5x+ 6)(5x2 + 20x+ 19)

5x2 − 1
0

,
and Ỹ = (Y1, Y3)T . Constructing a resolving sequence for [Ã], we obtain for
the original system l2 = 1 and

L2 = (5x2 − 1)E2 + (−5x4 + 5x3 + 51x2 − 25x− 114).

For the equation L1(Y2) = 0 we get

b1 =

{
Γ(x− 3)(x− 2)

(x+ 3)

}
,

and for L2(Y1) = 0

b2 =

{
Γ(x− 3)

(
x2 − 1

5

)
, (−1)xΓ(x− 3)

(
x2 − 1

5

)}
.

Thus
` =

{
Γ(x− 3)(x− 2)

(x+ 3)
, (−1)xΓ(x− 3)

(
x2 − 1

5

)}
.

For the first element of `, we get r1(x) = x−3 since RNF of x3−x2−9x+9
x2+2x−8

is equal
to (x−3) (x−1)/(x+4)

(x−2)/(x+3)
. We substitute y(x) = (x−3)z(x) into the original system

(27). For the obtained system, a basis for the space of rational solutions is{(
x2 − 1

5
, 0

)T
,

(
0,
x− 2

x+ 3

)T}
.

For the second element of `, we get r1(x) = −x + 3 and a basis of a space
of rational solutions is {(

x2 − 1

5
, 0

)T}
.

14

Finally, the basis of the space of all solutions belonging to H2
K of the original

system is{((
x2 − 1

5

)
Γ(x− 3), 0

)T
,

(
0,

(x− 2)Γ(x− 3)

x+ 3

)T
,

(
(−1)x

(
x2 − 1

5

)
Γ(x− 3), 0

)T}
.

5 Formal exponential-logarithmic solutions of
differential systems

5.1 The case of a first-order normal system

Let again K be an algebraically closed field of characteristic 0 and K =
K(x). Let δ = d

dx
= ′, and let A(x) be an m×m matrix with entries in K(x).

We consider systems of the form

y′ = A(x)y, y = (y1(x), . . . , ym(x))T . (28)

Using the resolving sequences of operators, we can propose an algorithm which
for a given system of the form (28) constructs a basis for the space of its
formal exponential-logarithmic solutions. Any solution y(x) of this basis can
be represented in the form

eQ(x−1/q)xγΦ(x1/q), (29)

where Q(x−1/q) is a polynomial in x−1/q without constant term, q ∈ Z>0,
γ ∈ K, Φ(t) = (Φ1(t), . . . ,Φm(t))T is a column-vector with

Φi(t) =
k∑
j=0

(
∞∑
n=0

vi,j(n) tn

)
lnj t, (30)

where k ∈ Z>0, vi,j(n) ∈ K. In the case when q = 1 and Q = 0 the solution
(29) is a regular solution.

Let
L1, . . . , Lp ∈ K(x)

[
d

dx

]
(31)

be a resolving sequence for system (28), i.e., for [A(x)]. Similarly the difference
case (see Proposition 4), if (29) is a solution of [A(x)] then there is a solution of
at least one of operators (31) with the same pair (q,Q). Let (qj, Qj) correspond
to a solution of such an operator. We can substitute y(x) = eQj(1/t)z(t), x = tqj

into [A(x)], where z(t) = (z1(t), . . . , zm(t))T is a new unknown vector. Then
we get the system

dz

dt
=

(
qj t

qj−1A(tqj)−
(
d

dt
Qj(1/t)

)
Im

)
z, (32)

where Im is the m ×m identity matrix. If tγj,1Rj,1(t), . . . , tγj,sjRj,sj(t) (where
Rj,i ∈ K((t))m[ln t]) is a basis for regular solutions of system (32) then we
obtain K-linearly independent formal exponential-logarithmic solutions

eQj(x−1/qj)xγj,1/qjRj,1(x1/qj), . . . , eQj(x−1/qj)xγj,sj /qjRj,sj(x
1/qj) (33)

15

of [A(x)].
An algorithm for finding regular solutions of a differential system was

proposed in [4]. The algorithm for finding a basis for formal exponential-
logarithmic solutions of [A(x)] is as follows:

1. Construct the resolving sequence (31) and set ` = ∅.
2. For s = 1, . . . , p compute bs which is a set of all pairs (q,Q) corresponding

to formal exponential-logarithmic solutions of Ls. Include into ` those elements
of bs that are not in `.

3. For each pair (qj, Qj) belonging to `, construct a basis for the space of
regular solutions of (32). The union of all bases (33) gives a basis for the space
of formal exponential-logarithmic solutions of [A(x)].

5.2 The case of higher-order systems

Suppose that we are interested in formal exponential-logarithmic solutions
of a full rank system

An(x)y(n)(x) + · · ·+ A1(x)y′(x) + A0(x)y(x) = 0.

The substitution y(x) = eQ(1/t)z(t), x = tq yields a system of the form

Dn(t)z(n)(t) + · · ·+D1(t)z′(t) +D0(t)z(t) = 0,

which is the result of some equivalent transformations of the system

An(tq)Zn + · · ·+ A1(tq)Z1 + A0(tq)Z0 = 0,

where
Z0 = z(t),

Zi =
1

qtq−1

(
Zi−1

d

dt
Q(1/t) +

d

dt
Zi−1

)
, i = 1, . . . , n.

If yi(x) is a component of the vector (29) then y(k)
i (x) can be represented in the

analogous form with the same pair (q,Q) for any non-negative integer k. Due
to this we can use a resolving sequence for the corresponding first-order normal
differential system instead of a resolving sequence for the original higher-order
system (see Section 3.3).

Our substitutions transform the original system into new systems with
coefficients in K(t). To find formal exponential-logarithmic solutions of the
original system it will be sufficient to find regular solutions of the obtained
systems (note that those systems can have singular leading matrices). The
algorithms from [4] can be used.

Example 3. The leading matrix of the system(
x5 0
0 0

)
y′′(x) +

(
0 0
0 1

)
y′(x) +

(
0 −x+ 2

x+ 2 0

)
y(x) = 0

is singular. EG-eliminations yield the following embracing system(
x5 0
0 x+ 2

)
y′′(x) +

(
0 0

(x+ 2)2 −1

)
y′(x) +

(
0 −x+ 2
0 0

)
y(x) = 0.

16

Taking l1 = 1 we obtain a resolving sequence which consists of the single
operator

L1 = x5(x− 2)2(x+ 2)
d4

dx4
+ x4(x− 2)(7x2 − 2x− 40)

d3

dx3
+

+ 2x3(4x3 − 9x2 − 30x+ 80)
d2

dx2
+ (x− 2)3(x+ 2)2 d

dx
.

For this operator we get

` =

{
(q = 1, Q = 0) ,

(
q = 3, Q = −3

2

4
1
3

x
2
3

)
,(

q = 3, Q = −3

2

(−1)
2
3 4

1
3

x
2
3

)
,

(
q = 3, Q =

3

2

(−1)
1
3 4

1
3

x
2
3

)}
.

For (q = 1, Q = 0) a substitution is not needed, and we test the existence of
regular solutions of the original system. There is no such solution.

For the next three pairs, we substitute y(x) = eQ(1/t)z(t), x = t3 into the
original system. We get three new systems whose spaces of regular solutions
are one-dimensional and have the bases{(

−41/3

2
+O(t), t5 +O(t6)

)T}
,

{(
−(−1)2/341/3

2
+O(t), t5 +O(t6)

)T}
,{(

(−1)1/341/3

2
+O(t), t5 +O(t6)

)T}
.

Thus, the space of formal exponential-logarithmic solutions of the original
system has the basis{

e
− 3

2
41/3

x2/3

(
−41/3

2
+O(x1/3), x5/3 +O(x2)

)T
,

e
− 3

2
(−1)2/341/3

x2/3

(
−(−1)2/341/3

2
+O(x1/3), x5/3 +O(x2)

)T
,

e
3
2

(−1)2/341/3

x2/3

(
(−1)1/341/3

2
+O(x1/3), x5/3 +O(x2)

)T}
.

6 Implementation and experiments

6.1 Procedure ResolvingSequence

We have implemented the algorithm from Section 3 in Maple 2015 ([29])
as the procedure ResolvingSequence. The arguments of this procedure are
a system of the form (7) or (15), a name of the unknown function, and the
standard Maple representation of an Ore algebra generated by the procedure
SetOreRing from the package OreTools. A system of the form (7) is repre-
sented by a square matrix with rational-function entries, while a system of the
form (15) is represented by a homogeneous linear equation with matrix coef-
ficients. The output is a list of resolving equations, i.e., a resolving sequence

17

L1, . . . , Lp having the indicator (l1, . . . , lp) is represented as the list of equa-
tions L1(yl1) = 0, . . . , Lp(ylp) = 0. For matrix calculations we use procedures
from the package LinearAlgebra.

The algorithms for constructing resolving sequences in the differential and
difference cases have much in common. They can be described in a unified
way using Ore noncommutative polynomials (the use of such polynomials in
computer algebra is described, e.g., in [21]). For this reason, the algorithm can
also be used in the q-difference case — see Remark 7.

Example 4. Applying ResolvingSequence to the matrix A(x) from Exam-
ple 1

> A1 := Matrix([[(x-1)/x, 0, -(x-1)/(x+1), 0],
[1, 0, 2/(x+1), -x],
[-1, 1, x-1, 1],
[-(x+2)/x, (x+1)/x, (x^2-x-1)/((x+1)*x),

(x^2+x+1)/x]]):

we get:

> ResolvingSequence(A1, y(x), OreTools:-SetOreRing(x, ’shift’));

[(−x6 − x5 + 4x4 + 3x3 − 3x2 − 2x)y1(x)+
(2x6 + 6x5 + 2x4 − 6x3 − 6x2 − 4x)y1(x+ 1)+
(−x6 − 6x5 − 11x4 − 2x3 + 8x2 + 8x+ 4)y1(x+ 2)+
(x5 + 4x4 + x3 − 6x2)y1(x+ 3) = 0,
−xy4(x) + y4(x+ 1) = 0]

Example 5. We applied ResolvingSequence to a system with a 16 × 16
matrix. We cannot present here that matrix and the corresponding result
since they are too large. The matrix is such that 80% of its entries are zeros.
The maximum degree of the numerators of the entries is 13. The maximum
degree of their denominators is 11. The procedure finds a resolving sequence
in 43.767 CPU sec1.

Example 6. For the system from Example 2

> Syst1:=<<-(5*x^2-1)/(x^2-5*x+6)|0>,
<-(5*x^2-1)/(x^2-5*x+6)|0>>.y(x+2)+

<<0|(x^3+x^2-10*x+8)/(x-3)>,
<0|-(x^3+x^2-10*x+8)/(x-3)>>.y(x+1)+

<<5*x^2+20*x+19|-x^3-x^2+5*x-3>,
<5*x^2+20*x+19|x^3+x^2-5*x+3>>.y(x)=0:

we set the last (optional) argument of ResolvingSequence as ’se-
lect_indicator’ = 2 and get

> ResolvingSequence(Syst1, y(x),
OreTools:-SetOreRing(x, ’shift’),
’select_indicator’ = 2);

[(−x3 − 2x2 + 8x)y2(x+ 1) + (x2 + 4x− 5)y2(x+ 2) = 0,
(−5x4 + 5x3 + 51x2 − 25x− 114)y1(x) + (5x2 − 1)y1(x+ 2) = 0]

1by Maple 2015, Ubuntu 8.04.4 LTS, AMD Athlon(tm) 64 Processor 3700+, 3GB RAM

18

Example 7. For the differential system from Example 3 we obtain

> Syst2 :=<<x^5|0>,<0|0>>.diff(y(x),x$2)+
<<0|0>,<0|1>>.diff(y(x),x)+
<<0|-x+2>,<x+2|0>>.y(x)=0:

ResolvingSequence(Syst2, y(x),
OreTools:-SetOreRing(x, ’differential’));

[(x5 − 2x4 − 8x3 + 16x2 + 16x− 32)
d

dx
y1(x) +

(8x6 − 18x5 − 60x4 + 160x3)
d2

dx2
y1(x) +

(7x7 − 16x6 − 36x5 + 80x4)
d3

dx3
y1(x) +

(x8 − 2x7 − 4x6 + 8x5)
d4

dx4
y1(x) = 0]

Remark 7. As we mentioned above, a resolving system can also be constructed
for a linear q-difference system of arbitrary order. It can be done by

> ResolvingSequence(S, y(x),
OreTools:-SetOreRing([x, q], ’qshift’));

where S is a system for y(x).

The code and examples of using the procedure ResolvingSequence are
available from http://www.ccas.ru/ca/doku.php/resolvingsequence.

6.2 Hypergeometric solutions

We have implemented the algorithm to find hypergeometric solutions of
a difference system. The implemented procedures are put together in the
package LRS (Linear Recurrence Systems). The main procedure of the package
is HypergeometricSolution.

To find a basis of hypergeometric solutions of resolving equations, the pro-
cedure hypergeomsols from the package LREtools is used. It implements
the algorithm from [25]. To find a basis of rational solutions of a first-order
difference system, we use the procedure RationalSolution from the pack-
age LinearFunctionalSystems. This procedure implements the algorithms
from [1, 2, 3, 26]. For higher-order systems, the procedure RationalSolution
from our package LRS is used, it implements the algorithms from [7]. To
perform RNF transformation, we use the procedure RationalCanonicalForm
from the package RationalNormalForms. It implements the algorithms
from [11].

The arguments of the procedure HypergeometricSolution can be in two
different forms. The first one is the normal form: a square matrix with rational-
function entries and a name of an independent variable. The second one is a
homogeneous linear equation with matrix coefficients and an unknown func-
tion. The output is a list of vectors whose entries are hypergeometric terms.

Example 8. Applying HypergeometricSolution to the matrix A1 from Ex-
ample 4 we get the result in 0.303 CPU sec:

19

> st := time():
LRS:-HypergeometricSolution(A1, x);
time()-st; 


0

−Γ(x)
0

Γ(x)




0.303

Example 9. We applied HypergeometricSolution to the system mentioned
in Example 5. The procedure finds a two-dimensional hypergeometric solutions
space in 346.046 CPU sec. For normal systems we implemented not only the
resolving procedure, but also the search for hypergeometric solutions based on
the cyclic vector approach. A comparison of the timings obtained with the
two implementations is given in Table 1, with time needed for the initial phase
in which a resolving sequence resp. a cyclic vector is constructed shown in the
first column of the table.

initial phase total time

Resolving sequence approach 43.767 sec 346.046 sec
Cyclic vector approach 94.776 sec 1063.747 sec

Table 1: CPU times needed to find a basis of the hypergeometric solutions
space for the system from Example 5.

Example 10. For the system from Example 6 we get

> st := time();
LRS:-HypergeometricSolution(Syst1, y(x));
time()-st;(−1)xΓ(x− 3)

(
x2 − 1

5

)
0

,
Γ(x− 3)

(
x2 − 1

5

)
0

,
 0

Γ(x− 3)(x− 2)

x+ 3


0.296

The code and examples of applications of HypergeometricSolution are
available from http://www.ccas.ru/ca/doku.php/lrs.

6.3 Formal exponential-logarithmic solutions

We have implemented the algorithm for finding formal exponential–loga-
rithmic solutions of a differential system as the procedure FormalSolution.

In the implementation, we use the procedure EG_delta from the pack-
age EG to construct an embracing system. This package is described in
[9], and the code of the package and some examples are available from
http://www.ccas.ru/ca/doku.php/eg. We use also the procedure gen_exp
from the package DEtools for constructing all exponential parts Q(x−1/q) for
solutions of the resolving equations, the procedure dchange from the pack-
age PDEtools to substitute y(x) = eQ(1/t)z(t), x = tq, and the procedure

20

RegularSolutions from the package LinearFunctionalSystems for finding
a basis of the space of regular solutions.

The arguments of the procedure FormalSolution can be in two different
forms. The first one is the normal form: a square matrix with rational-function
entries and a name of an independent variable. The second one is a homoge-
neous linear equation with matrix coefficients and an unknown function. The
output is a list of pairs. The first element of a pair is an expression of the form
eQ(x−1/q), the second element is a vector whose entries are truncated series
xγ/q Φi(x

1/q), see (29) and (30).

Example 11. For the differential system

> Syst4 := <<-15*x+4 | 60*x^3-120*x^2>,
<60*x^4+120*x^3| -15*x+4 >>.y(x) +

<<60*x^3| 0 >,
< 0 | 60*x^3>>.diff(y(x), x):

we have

> FormalSolution(Syst4, y(x));e− 1
4x

+ 1
30x2 .

 ln(x) +O(x))

1

2
+O(x)

, e− 1
4x

+ 1
30x2 .

1 +O(x)

O(x)




Example 12. We tested FormalSolution for a third-order system with 6× 6
matrix coefficients, the leading matrix is not invertible. The procedures find a
resolving sequence (it consists of four resolving equations) in 428.027 CPU sec,
two different exponential parts for the resolving equations in 0.127 sec, eight-
dimensional regular solution space in 5.117 sec and two-dimensional solution
space with exponential part e−

2601
92416x

− 621
1216x2 in 0.613 sec. The total time is

434.746 sec.

The code of the procedure together with examples of the use are available
from http://www.ccas.ru/ca/doku.php/formalsolution.

Acknowledgments
The authors are thankful to M. Barkatou for numerous discussions about

the problem of the search for hypergeometric solutions of difference systems,
to A. Bostan for consultations on cyclic vector algorithms, and to anonymous
referee for useful comments.

References
[1] S. Abramov. EG-Eliminations, J. Difference Equations Appl. 5 (1999)

393–433.

[2] S. Abramov, M.A. Barkatou. Rational solutions of first-order linear dif-
ference systems, ISSAC’98 Proceedings (1998) 124–131.

21

[3] S. Abramov, M.A. Bronstein. On solutions of linear functional systems,
ISSAC’2001 Proceedings (2001) 1–6.

[4] S. Abramov, M. Bronstein, D. Khmelnov. On regular and logarithmic so-
lutions of ordinary linar differential systems. In Proc. of CASC’05 Lecture
Notes in Computer Science 3718, Springer Verlag (2005) 1–12.

[5] S. Abramov, A. Gheffar, D. Khmelnov. Factorization of polynomials and
gcd computations for finding universal denominators. CASC’2010 Pro-
ceedings (2010) 4–18

[6] S. Abramov, A. Gheffar, D. Khmelnov. Rational Solutions of linear dif-
ference equations: universal denominators and denominator bounds. Pro-
gramming and Computer Software, No 2 (2011) 78–86.

[7] S. Abramov, D. Khmelnov. Denominators of rational solutions of linear
difference systems of arbitrary order. Programming and Computer Soft-
ware, No 2 (2012) 84–91.

[8] S. Abramov, D. Khmelnov. On singular points of solutions of linear differ-
ential systems with polynomial coefficients, J. of Mathematical Sciences
185 No. 3 (2012) 347–359 (Translated from Fundamentalnaya i Priklad-
naya Matematika 17 No. 1, (2011/12) 3–21)

[9] S. Abramov, D. Khmelnov. Linear differential and difference systems:
EGδ- and EGσ-eliminations. Programming and Computer Software, No
2 (2013) 91-109.

[10] S. Abramov, P. Paule, M. Petkovšek. q-Hypergeometric solutions of q-
difference equations, Disctrete Math. 180, (1998) 3–22.

[11] S. Abramov, M. Petkovšek. Rational normal forms and minimal represen-
tation of hypergeometric terms, J. Symb. Comp. 33 (2002) 521–543.

[12] S. Abramov, M. Petkovšek, A. Ryabenko, Hypergeometric solutions of
first-order linear difference systems with rational-function coefficients,
CASC’2015 Proceedings, Lecture Notes in Computer Science 9301,
Springer Verlag (2015) 1–14.

[13] G. E. Andrews. The Theory of Partitions. Encyclopedia of Mathematics
and its Applications, Vol. 2, Addison-Wesley, Reading, Mass., 1976.

[14] G. E. Andrews. q-Series: Their Development and Application in Analysis,
Number Theory, Combinatorics, Physics, and Computer Algebra. CBMS
Regional Conference Series, No. 66, AMS, R.I., 1986.

[15] M.A. Barkatou. A fast algorithm to compute the rational solutions of
systems of linear differential equations. RR 973–M– Mars 1997, IMAG–
LMC, Grenoble (1997).

[16] M.A. Barkatou. Rational solutions of matrix difference equations: prob-
lem of equivalence and factorization. In: ISSAC’99 Proceedings, ACM
Press (1999) 277–282

22

[17] M.A. Barkatou. An algorithm for computing a companion block diagonal
form for a system of linear differential equations, AAECC 4 (1993) 185–
195.

[18] M.A. Barkatou. An algorithm to compute the exponential part of a formal
fundamental matrix solution of a linear differential system, AAECC 8
(1997) 1–23.

[19] M.A. Barkatou. Hypergeometric solutions of linear difference systems,
http://www.ricam.oeaw.ac.at/conferences/aca08/aadios.html

[20] A. Bostan, F. Chyzak, E. de Panafieu. Complexity estimates for two
uncoupling algorithms, ISSAC’2013 Proceedings (2013) 85–92.

[21] M. Bronstein, M. Petkovšek. An introduction to pseudo-linear algebra.
Theoret. Comput. Sci. 157 (1996) 3–33.

[22] T. Cluzeau, M. van Hoeij. A modular algorithm to compute the exponen-
tial solutions of a linear differential operator, J. Symb. Comp. 38 (2004)
1043–1076.

[23] T. Cluzeau, M. van Hoeij. Computing hypergeometric solutions of linear
difference equations, AAECC 17 (2006) 83–115.

[24] M. van Hoeij. Rational solutions of linear difference equations. In: IS-
SAC’98 Proceedings, ACM Press (1998) 120–123

[25] M. van Hoeij. Finite singularities and hypergeometric solutions of linear
recurrence equations, J. Pure Appl. Algebra 139 (1999), 109–131.

[26] D. Khmelnov. Search for polynomial solutions of linear functional systems
by means of induced recurrences, Programming Comput. Software 30, no.
2 (2004) 61–67.

[27] M. Petkovšek. Hypergeometric solutions of linear recurrences with poly-
nomial coefficients, J. Symb. Comp. 14 (1992) 243–264.

[28] A. Storjohann. High-order lifting and integrality certification J. Symb.
Comp. 36 (2003) 613–648.

[29] Maple online help: http://www.maplesoft.com/support/help/

23

