
A note on computing the regular solutions of linear differential

systems ∗

Sergei A. Abramov, Denis E. Khmelnov

Russian Academy of Sciences,

Dorodnicyn Computing Centre,

Vavilova 40, 119991, Moscow GSP-1,

Russia

abramov@ccas.ru, khmelnov@ccas.ru

Abstract

We present an approach to find all regular solutions of a system of linear ordinary differential equations
using EG

′-algorithm [2, 3] as an auxiliary tool.

1 Introduction

Let
L = Qρ(z)D

ρ + · · · +Q1(z)D +Q0(z), (1)

where D = d/dz.
Assume that Qρ(x), . . . , Q0(x) are polynomials in z over C. A regular solution of the equation Ly = 0,

or, the same of the operator L, at a fixed point z0 ∈ C, is a solution of the form

(z − z0)
λF (z) (2)

with F (z) ∈ C((z− z0))[log(z− z0)], where C((z− z0)) is the field of Laurent series (here we do not consider
convergence problems; all series are formal). The value λ is the exponent of regular solution (2). W.l.g. we
will suppose that z0 = 0. The problem of constructing all regular solutions of L at 0 can be solved, e.g., by
Frobenius algorithm ([6]), which is based on using the indicial equation f(λ) = 0 of L at 0 (a right-hand side
which contains, in particular, factors f(λ) and zλ, must be constructed for L; the corresponding solutions
must be differentiated by λ and so on). Not only the values of roots of f(λ) = 0, each taken separately, are
substantial for Frobenius’ algorithm, but also multiplicities of the roots and the existence of roots differing
by integers. To apply Frobenius’ algorithm to a system of linear difference equations one has to transform
the system into a large order scalar differential equation (e.g. by the cyclic vector method). The scalar
equation may have huge coefficients, that makes the approach quite unpractical.

In [4, Section 5] another algorithm for constructing regular solutions of a first order system of the form

y′ = Ay, A ∈ MatN (C(z)) (3)

was described (in [5, Section 3.3] an extended version of the same algorithm was presented). This algorithm
is direct, i.e., it uses neither the cyclic vector method nor any other decoupling procedure. For a given value λ
the algorithm constructs a basis of regular solutions at 0 whose exponent is λ (if there exists no such solution
then the basis is empty). The algorithm from [4, 5] does not need any information neither on multiplicity of
λ nor on the existence of other roots with integer distance from λ. This algorithm constructs step by step a
sequence of first order linear differential systems, enumerated by 0, 1, . . ., which are inhomogeneous starting

∗The work is partially supported by the ECO-NET program of the French Foreign Affairs Ministry.

1

from the system with the number 1 (the corresponding right-hand sides contain solutions of the preceding
systems). If

zλ

(

g0(z) + g1(z)
log z

1!
+ g2(z)

log2 z

2!
+ · · · + gm(z)

logm z

m!

)

(4)

is a regular solution of (3) then gi(z) is a Laurent series solution of the constructed i-th system; the process
of finding of regular solutions of (3) is terminated when the current constructed system has no non-zero
Laurent series solutions. It is necessary to be able to find Laurent series solutions of a given system (the
recognizing of the existence included). To do this in [4, 5] a transformation of the system into a so-called
super-irreducible form ([7]) is computed. Once the system is in a super-irreducible form then a bound of
the “pole order” of the Laurent series solution, and then the coefficients of the solutions themselves can be
computed directly (in turn). Additionally, if the original system is in a super-irreducible form, then one can
find all possible exponents λ1, λ2, . . . of its regular solutions.

We describe in this paper a modification of the algorithm from [4, 5]. This modification does not use
the transformation of a system into a super-irreducible form. Instead, we use EG′-algorithm from [2, 3] (see
Section 3). Note that sometimes the transformation into a super-irreducible form as well as the application
of EG′-algorithm is not fast. When we need to solve a linear differential system of a large size, then it could
make a sense to try both approaches; if we are lucky, at least one (it is possible that only one) of them will
solve the problem.

It is convenient for this purpose to reorganize the algorithm from [4, 5] in such a manner that it would
be applicable to any linear system

Ly = 0 (5)

where L has the form (1) with
Qi(z) ∈ MatN (C[z]), i = 0, . . . , ρ; (6)

in particular, L can be a scalar operator of arbitrary order (in this case N = 1). This is done in Section 2;
some useful properties of this version of the algorithm are described as well. In Section 4 the algorithm is
summarized and in Section 5 we describe some computing remarks useful for implementation of the algorithm.
Detailed example of the application of the algorithm is presented in Section 6. The implementation of the
algorithm in Maple and related experiments are described in Section 7.
Acknowledgements. We would like to thank Prof. M. Barkatou (University of Limoges) for valuable
discussions about regular solutions of linear differential systems.

2 Linear differential systems of arbitrary order

First, consider the problem of the search for Laurent series solutions of (5). We can construct the associated
recurrent system Rc = 0 with

R = Pl(n)El + · · · + Pt(n)Et, Pj(n) ∈ MatN (C[n]), j = t, . . . , l (7)

for the coefficients of any such solution. If detPl(n) is the zero polynomial, then it is possible to transform
the recurrent system into a system with a non-zero detPl(n). This can be done by EG′-algorithm (see
Section 3). In the rest of this section we suppose that ϕ(n) = detPl(n), ϕ(n) ∈ C[n] \ {0}.

Set ψ(n) = ϕ(n− l) and n0, n1, resp., minimal and maximal integer roots of ψ(n) (if there is no integer
root, then (5) has no Laurent series solution). Any Laurent series solution of (5) has no term ckz

k, ck ∈ C
n,

with k < n0. Using the recurrence Rc = 0 and the constructed constraints, we can, by a linear algebra
procedure, compute a basis of the linear space of initial segments

cn0
zn0 + cn0+1z

n0+1 + · · · + cMzM ,

where M is a fixed integer such that M ≥ n1 and M is greater than all indexes involved into the constraints.
Observe, that if our differential system is inhomogeneous with a Laurent series right-hand side (the

coefficients of that right-hand side are given using a recurrence), then similarly we will be able to construct
a basis of the affine space of Laurent series solutions.

2

If ψ(n) has a non-integer root λ, then the preliminary change of the depended variable y = xλȳ will
produce a new equation ψ̄(n) = 0, where ψ̄(n) = ψ(n−λ). Therefore we always can work with integer roots.

Apparently, the result of application of L to

g(z)
logm z

m!
(8)

where m ≥ 0 can be represented in the form

Lm,m(g)
logm z

m!
+ Lm,m−1(g)

logm−1 z

(m− 1)!
+ · · · + Lm,1(g)

log z

1!
+ Lm,0(g), (9)

where the coefficients of differential operators Li,j belong to MatN (C(z)).

Proposition 1 The coefficients of all operators Li,j belong to MatN (C[z, z−1]) and, additionally,

L0,0 = L1,1 = L2,2 = . . . = L,

L1,0 = L2,1 = L3,2 = . . . , (10)

L2,0 = L3,1 = L4,2 = . . . ,

.............................

in (9).

Proof: After the applying of L to (8) one gets, e.g., Lm,m−1(g) by gathering together all terms that contain
one time differentiated factor (8); but

(

logm z

m!

)′

=
1

z
·
logm−1 z

(m− 1)!

and the new factor 1/z does not depend on m (due to considering (logm z)/m! instead of logm z).
Set

L0 = L0,0 (= L1,1 = L2,2 = . . . = L),

L1 = L1,0 (= L2,1 = L3,2 = . . .),

.............................

If ordL = d, then ordLi = d− i, i = 0, . . . , d, Ld+1 = Ld+2 = . . . = 0. We obtain

L

(

k
∑

m=0

gk−m(z)
logm z

m!

)

= L0(g0)
logk z

k!
+(L1(g0)+L0(g1))

logk−1 z

k − 1!
+· · ·+(Lk(g0)+Lk−1(g1)+· · ·+L0(gk)).

Therefore the equality

L

(

k
∑

m=0

gk−m(z)
logm z

m!

)

= 0

is valid iff
L0(g0) = 0,

L0(g1) = −L1(g0),

L0(g2) = −L1(g1) − L2(g0), (11)

L0(g3) = −L1(g2) − L2(g1) − L3(g0),

................

Denote Si the system of first i + 1 equations from (11), i.e., of the equations whose left hand sides are
L0(g0), . . . , L0(gi). Hence we have the following proposition.

3

Proposition 2 The equality (5) has regular solution

k
∑

m=0

gk−m(z)
logm z

m!
(12)

iff (g0(z), . . . , gk(z)) is a Laurent series solution of Sk.

Note the following. We find g0(z) using the first equation from (11). This solution may contain some
arbitrary constants. When we use g0(z) in the right-hand side of the second equation from (11), some of
those arbitrary constants have to be specified to make the second equation solvable in non-zero Laurent
series; if this is possible, then we get g1(z) that in its turn may contain arbitrary constants and so on. So
when Laurent series solutions of Si are constructed and we solve Si+1, we, in general situation, decrease the
number of the arbitrary constants in solutions of Si and find new Laurent series gi+1 (which may contain
some arbitrary constant as well).

Denote Gk the set of all regular solutions of the form (12) of equation (5) (the case g0(z) = 0 is not
excluded).

Proposition 3 G0 ⊂ G1 ⊂ · · · ⊂ Gk ⊂ · · ·.

Proof: Suppose that (g∗0 , . . . , g
∗

i) is an (i + 1)-tuple of Laurent series which is a solution of Si. Set
(g∗∗0 , . . . , g∗∗i+1) = (0, g∗0 , . . . , g

∗

i). It is easy to check that (g∗∗0 , . . . , g∗∗i+1) then satisfies the system Si+1. The
claimed follows from Proposition 2.

Apparently, if (12) is a solution of (5) (g0, . . . , gk) ∈ C((z))k+1 with g0 6= 0, then k ≤ ordL−1. Therefore,
starting from some non-negative integer k, all systems Sm, m > k, have only such solutions in C((z))k+1

that contain g0 = 0. If k is such non-negative integer and we have constructed the set U of all solutions of
Sk in C((z))k+1, then using the elements of this set we can construct all wanted regular solutions of (5). We
will obtain U in the form of a vector (g0(z), . . . , gk(z)) whose entries may contain some arbitrary constants.

It is very valuable, that all equations from (11) have in the left-hand side the operator L0 = L, and we
have the corresponding recurrent operator for it with the non-singular leading matrix.

3 EG
′-algorithm as an auxiliary tool for constructing regular so-

lutions

Linear recurrences with variable coefficients are of interest for many applications (e.g. in combinatorics and
numeric computation). Consider the recurrence of the form

Pl(n)zn+l + Pl−1(n)zn+l−1 + · · · + Pt(n)zn+t = rn (13)

where l ≥ t are arbitrary integers, z = (z1, . . . , zN)T is a column vector of unknown sequences (such that
zi = (z1

i , . . . , z
N
i)T), the right-hand side rn is a vector of polynomials in n and the matrix coefficients

Pt(n), . . . , Pl(n) are polynomial in n, and Pt(n), Pl(n) are non-zero. Note that it’s often convenient to regard
the matrix P (n) = (Pl(n)| . . . |Pt(n)), which is referred to as the explicit matrix of the recurrence. Each of the
matrices Pt(n), . . . , Pl(n) is called a block of the explicit matrix (resp. of the system (13)) and the matrices
Pl(n) and Pt(n) are called leading and trailing matrices of the explicit matrix (resp. of the system (13)).

The roots of the determinants of the matrices Pt(n) and Pl(n) (when those matrices are non-singular
over C(n)) are always important for determining the structure of the solution space (e.g. bounds on the
orders of the solutions). It may happen however that either Pt(n) or Pl(n) is singular. In that case, not
only it is impossible to compute bounds on the orders of the solutions, but it also makes difficult, from a
computational standpoint, to use the recurrence (13) to compute the sequence of vectors it generates.

A natural solution in that case is to compute an equivalence transformation of the recurrence system,
which transforms it into a form with either the leading or trailing matrix nonsingular. This transformation
may be a “quasi–equivalence”, in the sense that the eventual changes in the solution set can be easily taken
into account.

4

Such EG-algorithm was developed in [1] and later improved (EG′-algorithm) in [2]. It allows transforming
the recurrence (13) to the form with the non-singular leading (resp. trailing) matrix. The given system is
equivalent to the transformed system accompanied by a set of linear constraints (the set may be empty).

The general scheme of the algorithm is the following: if the leading (resp. trailing) matrix is singular,
then we left-multiply it by another matrix (obtained for example by elimination, but not necessarily so) in
order to zero one of its rows. This stage is called a reduction of the block. Suppose that the i-th row of the
block is now zero. Then, we shift the i-th row of the transformed explicit matrix, which corresponds to left-
multiplication of the i-th equation of the system (13) by the shift operator E (resp. E−1) after the reduction
step (so along with shifting the i-th row, we replace n by n+ 1 (resp. n− 1) in that row). Obviously, all the
corresponding transformations are performed on the right-hand side as well. Note that the reduction step
may generate a set of linear constraints because of multiplications of the transformed rows by polynomials
having integer roots. Each of the constraints is a linear relation that contains a finite set of variables zj

i .
The process terminates if some special precautions are taken. To guarantee termination, it is sufficient that
each reduction does not increase the width of any row: then the sum of all the widths decreases after the
shift.

One of the important applications of the algorithms is solving linear functional (e.g. differential) systems
with polynomial coefficients. The systems induce recurrence systems for the coefficients of their series
solutions in some basis. This associated recurrence is of the form (13). EG′-algorithm is shown to be
efficient enough ([3]) for the purpose and used for finding polynomial, rational, and formal series solutions
of linear functional systems.

4 Algorithm

Summarizing the above information, the general scheme of finding regular solutions of the system (5) is the
following:

1. For a given system S in the form (5), construct the associated matrix recurrence in the form (13).
Using EG′-algorithm transform it into the recurrence of the same form but such that ϕ(n) = detPl(n)
is not identically zero. Compute all roots of ϕ(n), divide them into the groups of ones having integer
differences, and construct the set Λ consisting of representatives of the groups (one representative out
of each group).

2. For each λ ∈ Λ compute regular solution whose exponent is λ:

(a) Compute system Sλ by substituting y = xλyλ. Construct the associated matrix recurrence in
the form (13). Using EG′-algorithm transform it into the recurrence Rλ of the same form but
such that ϕλ(n) = detPl(n) is not identically zero. The transformed recurrence includes a set of
additional constraints (the set may be empty) and the transformed right-hand side in a generic
form.

(b) Determine the number Mλ of needed initial terms of Laurent series such that all integer roots of
ϕλ(n) and all indices of constraints are less than the number.

(c) Successively solve systems (11) for the needed number of initial terms of Laurent series using the
recurrence Rλ while it’s possible. It gives regular solutions yλ of Sλ in the form (12).

3. Combine all solutions {yλ}λ∈Λ into general regular solution y =
∑

λ∈Λ
xλyλ.

5 Computing remarks

5.1 Associated recurrence

The main part of the algorithm (see Section 4) is solving a single system from the sequence (11). As it is
mentioned above all systems from (11) have in the left-hand side the same operator L0 = L. Hence the
associated matrix recurrences have the same left-hand side as well. But the right-hand sides of the recurrences

5

are different. In order to regard the different right-hand sides at once during EG′-algorithm transformations
we may apply all the transformations to a generic right-hand side. Then as a result of EG′-algorithm we
have the transformed recurrence in the form (13) with non-singular Pl(n), set of linear constraints and the
transformed right-hand side in a generic form. Each component of this generic transformed right-hand side
is a linear combination of possibly shifted components of the right-hand side before transformations (this is
consequence of the corresponding operations in the recurrence during EG′-algorithm). In this way we can
use the same transformed recurrence for solving any single system from the sequence (11) specifying the
concrete right-hand side by substituting corresponding values into the generic right-hand side.

5.2 Computing the right-hand side

Computing the right-hand side is not so simple since the right-hand side for the m-th system before trans-
formations is in the form

−

m
∑

k=1

Lk(gm−k), (14)

where g0, . . . , gm−1 are Laurent series solutions of the preceding systems in the sequence (11). Since in
practice we represent Laurent series solution by segment of initial terms, we need to determine the needed
numbers of initial terms of g0, . . . , gm−1.

In its turn the numbers depend on the number Mλ of initial terms of transformed right-hand side which
is determined on the step 2b of the algorithm (see Section 4) for all systems in the sequence (11) and ensures
that next terms of the series are computed from preceding ones by simple use of the recurrence.

So we compute the transformed right-hand side in the following way:

1. Taking into account Mλ and the form of the components of transformed generic right-hand side, com-
pute the numbers of needed initial terms of the components of right-hand side before transformations
to ensure the number of initial term in the transformed right-hand side being equal to Mλ.

2. Taking into account form of the operators L1, . . . , Lm, compute the numbers of initial terms of
g0, . . . , gm−1 to ensure the needed numbers of initial terms of the components of right-hand side before
transformations.

3. Compute the corresponding initial segments of g0, . . . , gm−1.

4. Compute the initial segment of the right-hand side before transformations substituting the initial
segments of g0, . . . , gm−1 into (14).

5. Compute the initial segment of the transformed right-hand side substituting the initial segment of
right-hand side before transformations into the transformed right-hand side in a generic form.

5.3 Extending solution component

Computing the transformed right-hand side depends on computing initial segments of g0, . . . , gm−1 (step 3
in Section 5.2). Since the required number of initial terms of the solution component gk may be greater than
the number of the initial terms computed on the preceding steps of the algorithm, we need to extend the
component. In order to do it we need to compute next terms using the associated recurrence. It means we
need to extend the corresponding transformed right-hand side, computing it using approach from Section
5.2 substituting Mλ by new number. Note that again it may require extending other solution components.
So this procedure is recursive.

5.4 Computing initial segment

When the transformed right-hand side of the recurrence is computed, solving a system from the sequence (11)
for the needed number of initial terms of Laurent series may be performed one by one using the recurrence.
In each step one of the following options occurs:

6

• the next term is computed being expressed as a function of the previous terms;

• a linear constraint on the previous terms appears, which can be either resolved or is inconsistent that
means that there is no Laurent series solution;

• the next term is a new arbitrary constant (it may be defined on the next steps of the computations by
resolving constraints).

After all steps either all initial terms are computed (some of them being arbitrary constants) or it’s determined
that there is no Laurent series solution.

Note the following:

1. Since each of the g0, . . . , gm−1 may have arbitrary constants, the right-hand side for m-th system in
the sequence (11) may have the same arbitrary constants. It leads to the fact that during computing
the initial segment of the Laurent series solution of the m-th system some of the constants may be
defined due to resolving appearing constraints. It may lead to transforming the initial segment of g0
to zero. Since the number of terms in the segment is determined in such a way that all the rest terms
are computed in turn by the associated recurrence with the non-singular leading matrix, it gives that
g0 is identically zero. As it is noted above, if the case happens it means that all solution components
are computed and m-th system has no proper Laurent series solutions.

2. As it follows from the Proposition 3 we can use only the last found solution of the form (12) as the
regular solution whose exponent is λ, since it contains all previously found solutions of the form as
well.

6 Example

Consider the following system:

13

2
x2D2y1(x) + 33

4
xDy1(x) + 9

8
y1(x) + x3D3y1(x) − x2D2y2(x) − 3xDy2(x) − 3

4
y2(x) = 0

x2Dy2(x) + 3

2
y2(x) − x2y2(x) = 0

(15)

The explicit matrix of the associated recurrence is
(

(n− 2)(n− 1)n+ 13

2
(n− 1)n+ 33

4
n+ 9

8
−(n− 1)n− 3n− 3

4
0 0 0 0

0 0 0 n+ 1

2
0 −1

)

,

with leading index of the recurrence l = 0, and trailing one t = −2. EG′-algorithm gives
(

(n− 2)(n− 1)n+ 13

2
(n− 1)n+ 33

4
n+ 9

8
−(n− 1)n− 3n− 3

4
0 0 0 0

0 n+ 3

2
0 −1 0 0

)

,

with no constarints. The determinant of the leading matrix is 1

16
(8n3 + 28n2 + 30n+ 9)(2n+ 3). The roots

are − 1

2
and − 3

2
and they form one group. Let set of representatives Λ = {− 1

2
}.

After substitution y = x−
1

2 ȳ, explicit matrix of the associated recurrence is
(

(n− 2)(n− 1)n+ 5(n− 1)n+ 4n −(n− 1)n− 2n 0 0 0 0
0 0 0 n 0 −1

)

,

with leading index of the recurrence l = 0, and trailing one t = −2. EG′-algorithm gives
(

(n− 2)(n− 1)n+ 5(n− 1)n+ 4n −(n− 1)n− 2n 0 0 0 0
0 n+ 1 0 −1 0 0

)

, (16)

with no constraints. The right-hand side before transformations in a generic form is
(

r1n
r2n

)

,

7

and the transformed one is
(

r1n
r2n+1

)

(17)

The determinant of the leading matrix is n(n2 +2n+1)(n+1). The roots are 0 and −1. Taking into account
l = 0, it means that the initial segment needs to be from x−1 till x0.

Solving first system from the sequence (11) means solving the recurrence (16) with the zero right-hand
side for terms from −1 till 0. It gives

g0 =

(

c0,1x
−1 + c0,2 +O(x)

c0,3x
−1 + c0,3 +O(x)

)

Here and below O(xk) means the tail of the formal series, i.e. the terms of the power greater than or equal
to k.

Compute the operator needed for right-hand side of the second system from the sequence (11):

L1(y(x)) =

(

y1(x) + 7xDy1(x) + 3x2D2y1(x) − y2(x) − 2xDy2(x)
xy2(x)

)

(18)

Taking into account (17), we compute that the initial terms of the right-hand side before transformations
should be up to x1. Then from (18) we conclude that the initial terms of g0 should be up to x1 as well.
Extending g0 gives

g0 =

(

c0,1x
−1 + c0,2 + 1

4
c0,3x+O(x2)

c0,3x
−1 + c0,3 + 1

2
xc0,3 +O(x2)

)

That leads to the transformed right-hand side being equal to
(

−c0,3x
−1 − c0,2 + c0,3 −

1

2
c0,3x+O(x2)

−c0,3x
−1 − c0,3 −

1

2
c0,3x+O(x2)

)

(19)

Solving the recurrence (16) with respect to the right-hand side (19) gives

g1 =

(

c1,1x
−1 + c1,2 +O(x)

c1,3x
−1 + c1,3 +O(x)

)

.

and due to resolving appearing constraints changes preceding solution component

g0 =

(

c0,1x
−1 +O(x2)

0 +O(x2)

)

Compute the next operator needed for the right-hand side of the third system from the sequence (11):

L2(y(x)) =

(

2y1(x) + 3xDy1(x) − y2(x)
0

)

(20)

Taking into account (17), (18), and (20) we compute that the initial terms both of g0 and of g1 should be
up to x1. g0 is already in the needed form and extending g1 gives

g1 =

(

c1,1x
−1 + c1,2 + 1

4
c1,3x+O(x2)

c1,3x
−1 + c1,3 + 1

2
xc1,3 +O(x2)

)

That leads to the transformed right-hand side being equal to
(

−c1,3x
−1 − c1,2 + c1,3 −

1

2
c1,3x+O(x2)

−c1,3x
−1 − c1,3 −

1

2
c1,3x+O(x2)

)

(21)

Solving the recurrence (16) with respect to the right-hand side (21) changes preceding component g0 to be
zero due to resolving appearing constraints. It means that all solutions components are already found and
no proper g2 exists.

Combining all the above we find the solution of (15)

y =

(

x−1/2(ln(x) ∗ (c1x
−1 +O(x2)) + c4x

−1 + c2 + 1

4
c3x+O(x2))

x−1/2(c3x
−1 + c3 + 1

2
xc3 +O(x2))

)

8

7 Implementation and experiments

The algorithm is implemented in Maple on top of the package LinearFunctionalSystems, which is imple-
menting EG′-algorithm and some algorithms for finding closed-form solutions of linear functional systems
with polynomial coefficients. The algorithm is implemented as the function that returns the regular solutions
of the specified linear differential system of equations with polynomial coefficients with involved Laurent se-
ries represented as their initial segments. The number of the initial terms are determined automatically to
ensure that the rest terms of the series can be directly computed (in turn) using associated recurrences (i.e.
the leading matrix is invertible for all the rest terms). In order to extend initial segments of the Laurent
series of the found regular solution the other function is provided, which returns the regular solution with
the segments extended to the specified degree.

For experiments we use as well a Maple implementation of the algorithm from [5] (presented in the
package ISOLDE).

We compared the two programs on two types of sets of generated systems.
For the first type of the sets we generated randomly the systems of the form Y ′(x) = A(x)Y (x), where

A(x) is the matrix of rational functions, and the entries on each row of the matrix have the same denominator.
For each n ∈ {4, 7, 10}, three sets of 20 random n×nmatrices were generated. For each of the sets, numerators
and denominators of the entries of the generated matrices had degrees bounded by d ∈ {4, 8, 12} respectively.
More precisely the following Maple instruction was used as a generator:

randpoly(x, terms=rand(1..floor(d/2))(), expons=rand(0..d))

Additionally, the probability of non-zero entries in the matrix was set to 3/5. The entire col-
lection of matrices (as well as for the other comparisons reported here) is available at the URL
http://www.ccas.ru/~zavar/abrsa/regsol/comparisons.html. The results for the first type of the sets
are presented in Table 1, where the rows represent the degree bound on the coefficients, and the columns
represent the size of the system. Each cell of the table corresponds one series of 20 systems and contains
2 fractions: the first is the number of systems solved faster by the program from ISOLDE over the number
of systems solved faster by EG′-based one, and the second is the total CPU time (in seconds) taken by the
program from ISOLDE for the 20 systems over the CPU time taken by EG′-based one. Additionally two
numbers are indicated: the first one shows the number of solutions of the systems in the set containing
logarithms and the second one shows the number of trivial (zero) solutions of the systems in the set.

Table 1: Results for the first type of the sets

4 7 10

4 3/17 1/19 1/19
13.642/11.279 747.451/187.077 1060.768/399.171

8–0 10–0 13–0
8 2/18 2/18 0/20

17.405/10.362 276.639/312.407 627.547/164.203
4–0 9–1 13–0

12 4/16 2/18 1/19
15.609/13.251 211.671/389.345 1371.342/184.999

4–2 8–2 10–0

For the second type of the sets we constructed the systems in the following way. First for each pair l and
d, where l ∈ {2, 4, 6} and d ∈ {3, 5, 7}, we constructed 20 random scalar recurrences of the order bounded
by l and coefficients of the degrees bounded by d. More precisely the following Maple instruction was used
as a generator:

(n-rand(-5..5)())^2*E^l+randpoly(E, terms=rand(1..l)(), expons=rand(l), coeffs=

(()->randpoly(n, coeffs=rand(-5..5), terms=rand(1..floor(d/3)+1)(), expons=rand(0..d))))

9

Each scalar recurrence can be treated as being induced by scalar differential equation. So, second, for the con-
structed scalar recurrences we constructed corresponding scalar differential equations. Third we constructed
first order differential systems corresponding to these equations. And as the last step we transformed the
systems in accordance with changing function variables induced by randomly generated transformation ma-
trices with integer entries and the probability of non-zero entries in the matrices set to 1/2 (only invertible
matrices were selected). The results for the second type of the sets are presented in Table 2, where the rows
represent the order bound on the source scalar recurrence, and the columns represent the degree bound on
its coefficients. Cells contain the same information as in the first type, except for the numbers of logarithmic
and trivial solutions since all solutions for the second type are non-trivial and logarithmic.

Table 2: Results for the second type of the sets

3 5 7

2 0/20 1/19 5/15
9.640/4.376 22.625/25.594 64.592/185.720

4 0/20 2/18 7/13
15.811/7.390 30.248/46.553 71.404/122.832

6 0/20 1/19 9/11
21.567/8.920 45.389/23.609 125.859/517.655

As it is mentioned above, since the programs use different approaches, their weak and strong features are
displayed on different systems. As we can see for the first type of the sets most systems were solved faster by
the EG′-based program, however for some sets the total CPU time was less for ISOLDE since a few systems
in these sets were solved much faster by this program. For the second type of the sets we can see both the
same effect and the growth of the number of the systems solved faster by ISOLDE with the growth of the
degree bound of the coefficients of the source scalar recurrences. So it seems like a difficult task to implement
a poly-algorithm that would detect automatically the most efficient method to use for a particular input.

We conclude with a final remark: while EG′-based program has improved its efficiency after the recent
update of some modules, the package ISOLDE has not been updated for quite a long time, so we do not
exclude the possibility that further improvements in the package could lead to some changes in the table. It
nevertheless reflects accurately the current status of those programs.

References

[1] S.A.Abramov. EG-eliminations. Journal of Difference equations and applications, 1999, Vol. 5, 393–433.

[2] S. Abramov, M. Bronstein. On solutions of linear functional systems. In Proc. of ISSAC’2001, ACM
press, 2001, 1–6.

[3] S. Abramov, M. Bronstein, D. Khmelnov. Regularization of linear recurrence systems. In Transactions
of French-Russian A.M.Lyapunov Institute, MSU, 2003, Vol.4, 158 – 171.

[4] M. Barkatou. On rational solutions of systems of linear differential equations. J. Symbolic Computation,
28(4 and 5), 547–568, October/November 1999.

[5] M. Barkatou, E. Pfluegel. An algorithm computing the regular formal solutions of a system of linear
differential equations. J. Symbolic Computation, 28(4 and 5), 569—587, October/November 1999.

[6] E.A. Coddington, N. Levinson. Theory of ordinary differential equations. McGraw-Hill book company
Inc. 1955

[7] A. Hilali, W. Wazner. Formes super-irréducible de systèmes différentiels linéares. Num. Math. 50, 1987,
429–449.

10

