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1. INTRODUCTION

Finding rational solutions (i.e., solutions that have
the form of rational functions) of linear difference
equations and systems is of interest by itself and, in
addition, is a part of many computer algebra algo�
rithms.

Let k be a field of characteristic 0. In what follows,
we use standard notation k[x] and k(x) for the ring of
polynomials and the field of rational functions of x
with coefficients from the field k. We consider systems
of the form

(1)

where
• A0(x), A1(x), …, Ar(x) are square matrices of order

m with entries from k[x] (which is denoted as A0(x),
A1(x), …, Ar(x) ∈ Matm(k[x])), with A0(x) and Ar(x)
being nonzero matrices;

• b(x) = (b1(x), b2(x), …, bm(x))T ∈ k[x]m is the
right�hand side of the system;

• y(x) = (y1(x), y2(x), …, ym(x))T is the column of
unknown functions.

The number r is called the order of the system.
The homogeneous system corresponding to (1) is

as follows:

(2)

We assume that equations of the latter system are inde�
pendent over k[x, φ], where φ is the shift operator

A solution y(x) = (y1(x), y2(x), …, ym(x))T ∈ k(x)m

of system (1) is called rational. If y(x) ∈ k[x]m, then
this solution is also polynomial (a particular case of the
rational solution).

Ar x( )y x r+( ) … A1 x( )y x 1+( )+ +

+ A0 x( )y x( ) b x( ),=

Ar x( )y x r+( ) … A1 x( )y x 1+( )+ +

+ A0 x( )y x( ) 0.=

φ y x( )( ) y x 1+( ).=

Algorithms for finding all rational solutions of nor�
mal systems of the first�order equations

(3)

are well known (see [7, 10–13]). Here, A(x) is an
invertible matrix in Matm(k(x)). Algorithms from [7,
10–12] are based on finding a universal denominator
of rational solutions of the original system (for brevity,
we will refer to it as a universal denominator for the
system), i.e., a polynomial U(x) ∈ k[x] such that a
rational solution of system (if exists) y(x) ∈ k(x)m can

be represented as , where z(x) ∈ k[x]m. Hav�

ing known a universal denominator, one can make a
substitution and transform the original system to a sys�
tem for z(x) and, then, apply one of the known algo�
rithms for finding polynomial solutions (see, e.g., [5,
7, 11]).

In [12], algorithm AU for constructing universal
denominators for systems of form (3) was proposed.
Its improved version  proposed in [10] was shown
to have lesser complexity than AU and the algorithms

from [7, 11]. Algorithms AU and , as well as the
algorithms from [7, 11], find one and the same univer�
sal denominator U(x).

In Section 2, necessary notions are introduced, and
the basic idea of algorithm  is described. In Section
3, we show how this idea can be generalized to the case
of systems of form (1). Here, the construction of the
so�called embracing systems, which are discussed in
Section 2.3, plays an important role. The new algo�
rithm for constructing a universal denominator,
together with the algorithm for constructing polyno�
mial solutions [5], yields an efficient way for con�
structing all rational solutions. To the best of authors’
knowledge, this is the first algorithm of this kind that is
applicable to arbitrary systems of form (1).

y x 1+( ) A x( )y x( )=

1
U x( )
���������z x( )

AU'

AU'

AU'

Denominators of Rational Solutions
of Linear Difference Systems of an Arbitrary Order

S. A. Abramov and D. E. Khmelnov
Dorodnicyn Computing Center, Russian Academy of Sciences, ul. Vavilova 40, Moscow, 119991 Russia

e�mail: sergeyabramov@mail.ru, dennis_khmelnov@mail.ru
Received May 31, 2011

Abstract—An algorithm for finding a universal denominator of rational solutions of a system of linear differ�
ence equations with polynomial coefficients is proposed. The equations may have arbitrary orders.

DOI: 10.1134/S0361768812020028



PROGRAMMING AND COMPUTER SOFTWARE  Vol. 38  No. 2  2012

DENOMINATORS OF RATIONAL SOLUTIONS 85

Construction of a universal denominator and ratio�
nal solutions themselves can be performed by means of
a transformation of the original system to a first�order
system. In Section 5, we demonstrate advantages of
the proposed algorithm compared to the algorithm
based on the latter transformation.

2. PRELIMINARIES

2.1 Valuations at Irreducible Polynomials

Let us introduce some notation. The notation
f(x) ⊥ g(x) means that polynomials f(x), g(x) ∈ k[x] are
coprime; if F(x) ∈ k(x), then denF(x) is a monic poly�
nomial (with the leading coefficient equal to 1) such

that F(x) =  for some f(x) ∈ k[x], f(x) ⊥

denF(x). The set of monic irreducible polynomials
from k[x] is denoted as Irr(k[x]). If p(x) ∈ Irr(k[x]),
f(x) ∈ k[x], then valp(x) f(x) is defined to be the greatest
n ∈ � such that pn(x)| f(x) (valp(x)0 = ∞) and

valp(x)F(x) = valp(x) f(x) – valp(x)g(x) for F(x) = ,

f(x), g(x) ∈ k[x]. For two arbitrary nonzero rational
functions r(x) and s(x) and p(x) ∈ Irr(k[x]), the follow�
ing relations hold:

If F(x) = (F1(x), F2(x), …, Fm(x))T ∈ k(x)m, then

denF(x) = denFi(x) and valp(x)F(x) =

valp(x)Fi(x), where lcm is the least common
multiple of the polynomials.

For an arbitrary matrix A(x) = (aij(x)) ∈ Matm(k(x)),

we define denA(x) = denaij(x).

2.2 Normal Systems of First�Order Equations

For system (3), we set

Then, for any rational solution y(x) of this system and
any p(x) ∈ Irr(k[x]), the following inequality holds
[12]:

(4)

By means of this inequality, one can, first, efficiently
find a finite set M of irreducible polynomials such that,
if the denominator of some rational solution of this

f x( )
denF x( )
����������������

f x( )
g x( )
��������

valp x( ) r x( )s x( )( ) valp x( )r x( ) valp x( )s x( ),+=

valp x( ) r x( ) s x( )+( ) min valp x( )r x( ) valp x( )s x( ),{ }.≥

lcmi 1=
m

mini 1=
m

lcmi 1=
m

lcmj 1=
m

V x( ) denA x 1–( ), W x( ) denA 1– x( ).= =

valp x( )y x( ) min valp x j+( )V x( ),
j �∈

∑
⎩
⎨
⎧

–≥

valp x j–( )W x( )
j �∈

∑
⎭
⎬
⎫

.

system is divided by p(x) ∈ Irr(k[x]), then p(x) ∈ M
and, second, determine a universal denominator

(5)

where γp(x) denotes the absolute value of the right�hand
side of inequality (4).

Algorithm  differs from AU in that it takes into
account the fact that exponents γp(x) may be equal to
one another for different (sometimes, many) p(x) dif�
fering from one another by a shift by an integer. The
input data for  are polynomials V(x) and W(x), and
it does not matter for the algorithm whether they are
related to any system of equations.

In Section 3, we show how to find V(x) and W(x)
for system (2) in order that the universal denominator
for it could be found by algorithm . Here, construc�
tion of the so�called embracing systems for the given
system plays an important role.

2.3 Embracing Systems

For any system S of form (1), one can construct an

l�embracing system  of the form

(6)

with the leading matrix being invertible in Matm(k(x)),
the set of solutions of which contains all solutions of
the system S. Similarly, one can construct a t�embrac�

ing system  of the form

(7)

whose trailing matrix is invertible in Matm(k(x)) and
the set of solutions of which contains all solutions of
the system S. Note that elements of the matrices and
the right�hand sides in (6) and (7) belong to k[x] and

the matrices (x) and (x) may be zero – either one
or both of them.

The embracing systems can be constructed by algo�
rithms EG [6] and EG' [8]; algorithm EG' is an
improved version of EG.

Remark 1. If  and  are l� and t�embracing sys�
tems constructed by algorithm EG ' for (1), then l� and
t�embracing systems constructed by algorithm EG ' for
(2) coincide with the homogeneous systems correspond�

ing to  and .
The operation of algorithm EG' consists in succes�

sive repetition of two—reduction and shift—steps. The
repetition continues until rows of the leading (trailing)

U x( ) p
γp x( ) x( ),

p x( ) M∈

∏=

AU'

AU'

AU'

S

Ar x( )y x r+( ) … A1 x( )y x 1+( )+ +

+ A0 x( )y x( ) b x( ),=

S

Ar x( )y x r+( ) … A1 x( )y x 1+( )+ +

+ A0 x( )y x( ) b x( ),=

A0 Ar

S S

S S
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matrix remain linear dependent over k. At the reduc�
tion step, dependence coefficients are found; then, the
equation corresponding to one of the dependent rows
is replaced by a linear combination of other equations,
and the row of the leading (trailing) matrix becomes
equal to zero. At the shift step, the operator φ (accord�
ingly, φ–1) is applied to the new equation. Selection of
the dependent rows to be replaced in accordance with
some simple rules guarantees that the algorithm stops.

3. UNIVERSAL DENOMINATOR
OF RATIONAL SOLUTIONS

OF AN ARBITRARY ORDER SYSTEM

First, let us consider the homogeneous case (2).
If the leading matrix Ar(x) of system (2) is invertible in
Matm(k(x)), this system can be rewritten as a system of
form (3):

where

(8)

( (x) = – (x)Ak(x) and Im is the identity matrix of
order m),

(9)

the matrix A(x) belongs to Matrm(k(x)), and the vector
Y(x) has rm components. If, additionally, the matrix
A0(x) is invertible in Matm(k(x)), then A(x) is invertible
in Matrm(k(x)):

(10)

( (x) = – (x)Ak(x)). Hence, if the matrices A0(x)
and A1(x) are invertible, then the universal denomina�
tor for system (2) can be found by applying algorithm

 to

The use of A(x – r) instead of A(x – 1) for V(x) is cor�
rect in view of the fact that we need a universal denom�
inator only for components y1(x), y2(x), …, ym(x) of the
vector Y(x).

Y x 1+( ) A x( )Y x( ),=

A x( )

0 Im … 0

… … … …
0 0 … Im

Â0 x( ) Â1 x( ) … Âr 1– x( )⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

=

Âk Ar
1–

Y x( ) y x( )T y x 1+( )T …,,,(=

y x r 1–+( )T )
T

,

A 1– x( )

A1 x( ) … Ar 1– x( ) Ar x( )

Im … 0 0

… … … …
0 … Im 0⎝ ⎠

⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

=

‹ ‹ ‹

Ak

‹

A0
1–

AU'

V x( ) denA x r–( ), W x( ) denA 1– x( ).= =

Now, let us consider system (2) without the
assumption of invertibility of the matrices A0(x) and
Ar(x) in Matm(k(x)). For the original system, one can
find l� and t�embracing systems of form (6) and (7)
with zero right�hand sides. Any solution of the original
system will also be a solution to the system

(11)

whose leading and trailing matrices are invertible in
Matm(k(x)), which makes it possible to apply the
above�described approach. Thus, we arrive at the fol�
lowing lemma.

Lemma 1. Let (x) be a leading matrix of the

l�embracing system and (x) be a trailing matrix of the
t�embracing system for the homogeneous system (2). Let
U(x) be a result of the application of algorithm  to

V(x) = den (x – r), W(x) = den (x). Then, the poly�
nomial U(x) is a universal denominator for system (2).

It turns out that, in the construction of universal
denominators for nonhomogeneous systems, the
right�hand sides can be ignored.

Theorem 1. Let U(x) be a universal denominator for
system (2) obtained as described in Lemma 1. Let the
l� and t�embracing systems for (2) be found by algorithm
EG '. Then, U(x) is a universal denominator for system
(1) for any right�hand side b(x) ∈ k[x]m.

Proof. Let us write system (11) in the form

where

(12)

According to Remark 1, there is a right�hand side c(x)
∈ k[x]m such that any solution of system (1) is also a
solution to the system

(13)

Adding the component ym + 1(x) to y(x), we can trans�
form (13) to the homogeneous system

(14)

such that, if (y1(x), y(2), …, ym(x))T satisfies system (13),
then (y1(x), y2(x), …, ym(x), 1)T satisfies system (14):

Ar x 1+( )y x r 1+ +( ) Ar 1– x 1+( )(+

+ Ar x( ) )y x r+( ) … A0 x 1+( )(+ +

+ A1 x( ) )y x 1+( ) A0 x( )y x( )+ 0,=

Ar

A0

AU'

Ar
1–

A0
1–

Br 1+ x( )y x r 1+ +( ) … B1 x( )y x 1+( )+ +

+ B0 x( )y x( ) 0,=

Br 1+ x( ) Ar x( ), B0 x( ) A0 x( ).= =

Br 1+ x( )y x 1+( ) … B1 x( )y x 1+( )+ +

+ B0 x( )y x( ) c x( ).=

B̃r 1+ x( )y x r 1+ +( ) … B̃1 x( )y x 1+( )+ +

+ B̃0 x( )y x( ) 0=
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and

i = 2, 3, …, r + 1.

The multiplication of the last equation of system (14)
by –1 and the eliminations in the last column of the
trailing matrix yield system S1:

Applying the operator φ to all but the last equations of
system (14) and operator φr to the last equation, we
obtain system S2:

Adding systems S1 and S2 together, we obtain

B̃0 x( )

c1 x( )–

B0 x( )

cm x( )–

0 … 0 1–⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

,=

…

B̃1 x( )

0

B1 x( )

0

0 … 0 1⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

,=

…

B̃i x( )

0

Bi x( )

0

0 … 0 0⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

,=

…
0

Br 1+ x( )

0

0 … 0 0⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

y x r 1+ +( ) …+

+ …

0

B0 x( )

0

0 … 0 1⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

y x( ) 0.=

…

…

0

Br 1+ x 1+( )

0

0 … 0 1⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

y x r 2+ +( ) …+

…+

0

B0 x 1+( )

0

0 … 0 0⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

y x 1+( ) 0.=

…
…

(15)

Any solution of system (14) is a solution of system
(15); therefore, any universal denominator for (15) is a
universal denominator for (14). The denominators of
the leading and trailing matrices of system (15) are
equal to denBr(x + 1) and denB0(x), respectively.
Using (12), we obtain

With regard to this, the application of Lemma 1 to sys�
tem (15) yields the desired result. �

From Theorem 1, we obtain the following algo�
rithm for constructing a universal denominator for an
arbitrary system of form (1):

By means of algorithm EG ' (Section 2.3), find l� and
t�embracing systems (6) and (7) for system (1) and set

V(x) = den , W(x) = den (x). Then, by means of

algorithm , find a universal denominator (5) for the
original system.

0

Br 1+ x 1+( )

0

0 … 0 1⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

y x r 2+ +( ) …+

…+

0

B0 x( )

0

0 … 0 1⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

y x( ) 0.=

…
…

0

Br 1+ x 1+( )

0

0 … 0 1⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

1–

=  

0

Ar
1–

x 1+( )
0

0 … 0 1⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

,

…
…

0

B0 x( )

0

0 … 0 1⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

1–

=  

0

A0
1–

x( )
0

0 … 0 1⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

.

…
…

Ar
1–

A0
1–

AU'



88

PROGRAMMING AND COMPUTER SOFTWARE  Vol. 38  No. 2  2012

ABRAMOV, KHMELNOV

If, for the given V(x) and W(x), algorithm  finds
a polynomial U(x) and, simultaneously, V(x)|V '(x) and
W(x)|W '(x), then, for V '(x) and W '(x), algorithm 
will find a polynomial U '(x) such that U(x)|U '(x).

Therefore, instead of V(x) = den (x – r) and W(x) =

den (x), one can take V(x) = det (x – r) and

W(x) = det (x). Such V(x) and W(x) are easier to
calculate; however, they can result in a universal
denominator of a greater degree. Note also that Theo�
rem 1 reveals an analogy of the proposed algorithm
with an algorithm for the scalar case

a1(x), …, ar – 1(x), y(x) ∈ k[x], a0(x), ar(x) ∈ k[x]\{0}
([2, 12, 10]): up to constant factors, den(ar(x – r))–1 =
ar(x – r) and den(a0(x))–1 = a0(x). The “scalar” algo�
rithm from [2] can be used for systems as well if we
replace ar(x – r) and a0(x) with V(x) and W(x). Actu�
ally, the latter fact underlies the algorithm for normal
systems from [7]. However, as has already been noted,
algorithm  has lesser complexity.

In the proposed algorithm for finding a universal
denominator, algorithm EG' is applied to the original
system of difference equations rather than to the so�
called induced recurrence system, which is satisfied by
the coefficients of the expansion of the desired solu�
tions in an appropriate basis. This seems to be the first
example of such use of the algorithm in the computer
algebra. Note that the differential version EGδ of algo�
rithm EG' suggested in [4] was applied exactly to the
original differential system for finding its rational solu�
tions. This fact justifies once again likeness of the algo�
rithms EGδ and EG'. To emphasize this, in [4], algo�
rithm EG' was denoted as EGσ (the notation δ and σ
is used, for example, in the theory of the Ore polyno�
mials for mappings possessing differential and shift
properties correspondingly).

4. IMPLEMENTATION

The computer algebra system Maple [15] includes
package LinearFunctionalSystems, which pro�
vides procedures for finding solutions of systems of
ordinary equations (including difference ones). The
package implements algorithms based on the con�
struction of induced recurrence systems and on find�
ing embracing systems for them by means of EG'. Pro�
cedure RationalSolutions in this package finds
rational solutions only for normal systems of form (3).
It is based on the algorithm from [7] and uses proce�
dure UniversalDenominator from the same pack�
age, which is designed for constructing universal
denominators for only such systems. In our new

implementation, procedure UniversalDenomina-
tor uses the algorithm described in Section 3 and
relies on the implementation of algorithm  [10] and
the implementation of algorithm EG' [9] in the pack�
age LinearFunctionalSystems. As a result, proce�
dures UniversalDenominator and RationalSo-
lutions are applicable to any systems of form (1).

Let us demonstrate the operation of these proce�
dures on the example of the system of difference equa�
tions presented on the help page of the RationalSo-
lutions procedure in the Maple system.
> with(LinearFunctionalSystems):

> sys:=

[(x+3)*(x+6)*(x+1)*(x+5)*x*y1(x+1)–

(x–1)*(x+2)*(x+3)*(x+6)*(x+1)*

y1(x)–x*(x^6+11*x^5+41*x^4+65*x^3

+50*x^2–36)*y2(x)

+6*(x+2)*(x+3)*(x+6)*(x+1)*x*t4(x),

(x+6)*(x+2)*y2(x+1)–x^2*y2(x),

(x+6)*(x+1)*(x+5)*x*y3(x+1)

+(x+6)*(x+1)*(x–1)*y1(x)–

x*(x^5+7*x^4+11*x^3+4*x^2–5*x+6)*

y2(x)–y3(x)*(x+6)*(x+1)*(x+5)*x

+(x+6)*(x+1)*x*3*(x+3)*y4(x),

(x+6)*y4(x+1)+x^2*y2(x)

–(x+6)*y4(x)];

vars:=[y1(x), y2(x), y3(x), y4(x)]:

Let us find a universal denominator and rational
solutions for this system (they can be found by the old
version of the program as well, since the system has
form (3) written in an equivalent form free of the
denominators).

> UniversalDenominator(sys, vars)

> RationalSolutions(sys, vars)

AU'

AU'

Ar
1–

A0
1–

Ar

A0

ar x( )y x r+( ) … a1 x( )y x 1+( )+ +

+ a0 x( )y x( ) ψ x( ),=

AU'

AU'

sys := x 3+( ) x 6+( ) x 1+( ) x 5+( )xy1 x 1+( )[

– x 1–( ) x 2+( ) x 3+( ) x 6+( ) x 1+( )y1 x( )

– x x6 11x5 41x4 65x3 50x2 36–+ + + +( )y2 x( )

+ 6 x 2+( ) x 3+( ) x 6+( ) x 1+( )xy4 x( ),

x 6+( ) x 2+( )y2 x 1+( ) x2y2 x( ),–

x 6+( ) x 1+( ) x 5+( )xy3 x 1+( )

+ x 6+( ) x 1+( ) x 1–( )y1 x( )

– x x5 7x4 11x3 4x2 5x– 6+ + + +( )y2 x( )

– y3 x( ) x 6+( ) x 1+( ) x 5+( )x

+ 3 x 6+( ) x 1+( )x x 3+( )y4 x( ),

x 6+( )y4 x 1+( ) x2y2 x( ) x 6+( )y4 x( ) ].–+

1

x 5+( ) x 4+( )2 x 3+( )2 x 2+( )3 x 1+( )4x3 x 1–( )
�����������������������������������������������������������������������������������������������
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Now, let us transform the system by shifting three of
the four its equations.

> sys2:=[eval(sys[1],x=x+1),

eval(sys[2],x=x+3),

sys[3],eval(sys[4],x=x+2)];

The system obtained has the fourth order, and its
leading and trailing matrices are not invertible over the
field of rational functions. Such a system cannot be
solved by the old version of the program. Let us apply
the new version:

> UniversalDenominator(sys2, vars)

> RationalSolutions(sys2, vars)

As it could be expected, the solution found coin�
cides with the solution of the original system.

(4 7108272_c2– c1+( )
x 1–( ) x 2+( ) x 3+( ) x 4+( )

��������������������������������������������������������, 0,

(5x5
_c2 50x4

_c2 175x3
_c2 250x2

_c2+ + +

– 35 541240x_c2 5x_c1 28433088_c2–+

+ 4_c1)/ 5x x 1+( ) x 2+( ) x 3+( ) x 4+( )( ) 0 ].,

sys := x 4+( ) x 7+( ) x 2+( ) x 6+( ) x 1+( )y1 x 2+( )[

– x x 3+( ) x 4+( ) x 7+( ) x 2+( )y1 x 1+( )

– x 1+( )( x 1+( )6 11 x 1+( )5 41 x 1+( )4+ +

+ 65 x 1+( )3 50 x 1+( )2 36 )y2 x 1+( )–+

+ 6 x 3+( ) x 4+( ) x 7+( ) x 2+( ) x 1+( )y4 x 1+( ),

x 9+( ) x 5+( )y2 x 4+( ) x 3+( )2y2 x 3+( ),–

x 6+( ) x 1+( ) x 5+( )xy3 x 1+( )

+ x 6+( ) x 1+( ) x 1–( )y1 x( )

– x x5 7x4 11x3 4x2 5x– 6+ + + +( )y2 x( )

– y3 x( ) x 6+( ) x 1+( ) x 5+( )x

+ 3 x 6+( ) x 1+( )x x 3+( )y4 x( ),

x 8+( )y4 x 3+( ) x 2+( )2y2 x 2+( )+

– x 8+( )y4 x 2+( ) ].

1

x 5+( ) x 4+( )2 x 3+( )2 x 2+( )3 x 1+( )4x3 x 1–( )
�����������������������������������������������������������������������������������������������

(4 7108272_c2– _c1+( )
x 1–( ) x 2+( ) x 3+( ) x 4+( )

��������������������������������������������������������, 0,

(5x5
_c2 50x4

_c2 175x3
_c2 250x2

_c2+ + +

– 35 541240x_c2 5x_c1 28433088_c2–+

+ 4_c1 )/ 5x x 1+( ) x 2+( ) x 3+( ) x 4+( )( ) 0 ].,

Our experiments demonstrate that our new version
of the program is capable of solving systems of rather
large size and order. For example, experiments were
carried out for which 16 sets consisting of 10 difference
systems were generated with m = 3, 6, 9, 12 and r = 5,
10, 15, 20, respectively. All systems were constructed
in such a way that they had randomly generated ratio�
nal solutions. Rational solutions were sought for all
systems in each set by means of the new program.
Results of the experiments are presented in Table 1.
The numbers in the cells show the total times (in sec�
onds) spent on finding rational solutions for all sys�
tems in each set.

Note that, for m = 12 and r = 20, the major part of
the total time (17314.594 s) was spent on one example,
which turned out to be more inconvenient for solving
than on the average.

5. TRANSFORMATION OF A SYSTEM
OF AN ARBITRARY ORDER

TO A FIRST�ORDER SYSTEM

If r = 1 in (1), i.e., the system has the form

(16)

and the rank of the matrix A1(x) over k(x) is s, 0 < s < m,
then, after the reduction (see Section 2.3), the system
can be rewritten as a pair consisting of a linear differ�
ence and linear algebraic systems:

where the matrices B1(x) and B0(x) have the size s × m,
with the rank of B1(x) being equal to s, and the rank of
matrix R(x) of the size (m – s) × m is equal to m – s by
virtue of the fact that equations of the original system
are independent over k[x, φ].

Further, an approach similar in some way to that
for the differential case considered in [14] can be
applied (see also [4, Section 2.3]). Shifting the system
R(x)y(x) = h(x), we obtain

(17)

Now, using (17), we eliminate in the system B1(x)y(x +
1) + B0(x)y(x) = g(x) some yi(x + 1) for m – s different
values of index i. Next, by means of the equations of
the algebraic system R(x)y(x) = h(x), we eliminate
unknowns yi(x) corresponding to the same values of

A1 x( )y x 1+( ) A0 x( )y x( )+ b x( )=

B1 x( )y x 1+( ) B0 x( )y x( )+ g x( ),=

R x( )y x( ) h x( ),=

R x 1+( )y x 1+( ) h x 1+( ).=

Table 1

m = 3 m = 6 m = 9 m = 12

r = 5 4.265 14.203 53.109 130.376

r = 10 9.812 48.828 234.969 455.719

r = 15 37.688 263.484 894.094 1962.578

r = 20 254.921 1021.390 5013.687 26160.547
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the index. If the rank of the leading matrix of the dif�
ference system obtained is less than s, these actions are
repeated (go from the difference system to the pair
consisting of a difference and algebraic systems), and
so on. As a result, we obtain a first�order difference
system

with the leading matrix (x) invertible in (k(x)).

If the rank of the matrix (x) is less than , similar
actions are applied to the new difference system with the

aim to make the trailing matrix (x) invertible (the
order of the difference system will further decrease), and
so on. Finally, we obtain the difference system

(18)

with invertible leading and trailing matrices of the

order  and the relation

(19)

which allows us to express the original unknowns (16)
in terms of the unknowns occurring in (18) (T(x) is a

matrix of size m ×  with elements from k(x)). System
(18) can be reduced to form (3). In so doing, the intro�
duction of an additional unknown function allows us
to get rid of its right�hand side. Next, any algorithm
from those discussed in [7, 10–13] can be applied for
finding a universal denominator of its solutions. After
this, one can either find all rational solutions of the
system obtained by means of the universal denomina�
tor found and obtain solutions of the original system
(16) by means of (19) or transform the universal
denominator found into the universal denominator of
the solutions of (16) by using the denominators of
coefficients T(x) and, with its help, find all rational
solutions of the original system.

The introduction of additional unknown functions
(9) allows us to rewrite any system of form (1) as a sys�
tem of form (16):

(20)

where

Ã1 x( )ỹ x 1+( ) Ã0 x( )ỹ x( )+ b̃ x( )=

Ã1 Matm̃

Ã0 m̃

Ã0

Ã
˜

1 x( ) ỹ̃ x 1+( ) Ã
˜

0 x( ) ỹ̃ x( )+ b̃
˜

x( )=

m̃̃

y x( ) T x( ) ỹ̃ x( ),=

m̃̃

M1 x( )Y x 1+( ) M0 x( )Y x( )+ B x( ),=

M1 x( )

Im 0 … 0

0 Im … 0

… … … …
0 0 … Ar x( )⎝ ⎠

⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

,=

The matrices M1(x) and M0(x) belong to Matrm(k(m));
the vectors Y(x) and B(x) have rm components. It is
known that, for large r, the transition from system (1)
to a first�order system is not convenient, since there
arise matrices of great size, the operation on which is
cumbersome.

As an example, we consider again the fourth�order
system from Section 4. For this system, the matrices
M1(x) and M0(x) in (20) have the size 16 × 16 and are
not invertible. Let us turn to system (18) with invert�
ible matrices of size 4 × 4 and to the corresponding
relation (19) with the matrix T(x) of size 16 × 4. Our
program in Maple performs this for 104.719 s. Further,
by means of the algorithm from [10], we find a univer�
sal denominator u(x) for the system obtained. Our
program described in [10] performs this work for
42.797 s. The construction of the corresponding ratio�
nal solution takes additional 0.468 s, and the construc�
tion of rational solutions of the original system with
the help of (19) takes additional 0.079 s. The alterna�
tive variant requires 0.266 s to transform u(x) to the
universal denominator of the solutions of the original
system and additional 6.734 s to construct the corre�
sponding rational solution. In the given case, the first
variant turned out faster. It may happen that, in some
other cases, the situation will be different; however,
from the standpoint of comparison with the algorithm
from Section 3, this does not matter: the common part
of these variants took much more time than the entire
search for a rational solution by the program discussed
in Section 4, which required only 1.422 s. We carried
out additional experiments to compare the algorithm
based on the use of EG' (Section 3) and the algorithm
based on the transition to a first�order system, which
substantiated this conclusion. In these experiments,
16 sets consisting of 10 difference systems with m = 5
and r = 5, 10, 15, 20, respectively, were generated. The
coefficients of all these systems were polynomials of
degree not greater than two with integer roots; the sys�
tems were generated in such a way that the number of
nonzero coefficients constituted 50%. The results of
the experiments are presented in Table 2. The numbers
in the cells show the total times (in seconds) spent on
finding rational solutions by the compared methods
for all systems in each set. The numbers in the paren�

M0 x( )

0 Im … 0

… … … …
0 0 … Im

A0 x( ) A1 x( ) … Ar 1– x( )⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

,=

B x( )

0

…
0

b x( )⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

.=
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theses show the corresponding total times required for
constructing universal denominators (for the
approach based on the reduction to a first�order sys�
tem, it is the time of construction of system (18) and of
the universal denominator of its solutions; further, a
variant of the construction of a rational solution of this
system and the calculation of a rational solution of the
original system by means of relation (19) was used).
Note that the universal denominator of the solution of
each system constructed in the above�described way is
not trivial. Accordingly, in spite of the fact that each
such a system almost always has only a trivial rational
solution, in order to find this out, it is required to run
the algorithm of finding rational solutions. Therefore,
such experiments are well suited for the comparison of
the considered approaches.
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