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Abstract. We consider linear homogeneous difference equations with ra-
tional-function coefficients. The search for solutions in the form of the m-
interlacing (1 ≤ m ≤ ord L, where L is a given operator) of finite sums of
hypergeometric sequences, plays an important role in the Hendriks–Singer
algorithm for constructing all Liouvillian solutions of L(y) = 0. We show
that Hendriks–Singer’s procedure for finding solutions in the form of such
m-interlacing can be simplified. We also show that the space of solutions
of L(y) = 0 spanned by the solutions of the form of the m-interlacing of
hypergeometric sequences possesses a cyclic permutation property. In addi-
tion, we describe adjustments of our implementation of the Hendriks–Singer
algorithm to utilize the presented results.

1 Introduction

In [5] the definition of Liouvillian sequence was given, and the fact that the Galois
group of a linear homogeneous difference equation with rational-function coefficients
is solvable iff the equation has a fundamental system of Liouvillian solutions was
proven (the definition of the Galois group of an equation of this type was given
earlier in [10]). Let C be an algebraically closed subfield of the field C of complex
numbers. In [5] two sequences u, v : N → C are supposed to be equal iff un = vn

for all integer n large enough, i.e., factually the germs of sequences are considered.
The ring of the germs of sequences is denoted by S. As it is done in [5], we will
frequently identify a sequence with its equivalent class in S. We will use the symbol
∀n as “for all integer n large enough”. Denote k = C(x). This field can be embedded
in S: since the germs of sequences are considered we can map f ∈ k, e.g., to the
sequence u such that un = 0 if n is a pole of f and f(n) otherwise.

The map φ : S → S defined by φ(u0, u1, u2, . . .) = (u1, u2, u3, . . .) is an auto-
morphism of S (with φ(f(x)) = f(x + 1) for f(x) ∈ k). We say that a sequence
u = 〈un〉 satisfies the equation L(y) = 0 with

L = φd + ad−1(x)φd−1 + . . . + a1(x)φ + a0(x), (1)

a1(x), a2(x), . . . , ad−1(x) ∈ k, a0(x) ∈ k \ {0}, if the sequence

〈un+d + ad−1(n)un+d−1 + . . . + a1(n)un+1 + a0(n)un〉

is equal to zero sequence, i.e., if

un+d + ad−1(n)un+d−1 + . . . + a1(n)un+1 + a0(n)un = 0, ∀n.

? Supported by ECONET grant 21315ZF.
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For short, we will talk about solutions of L instead of solutions of the equation
L(y) = 0.

The definition of Liouvillian sequence (we will discuss this definition in Section
5.1) uses the notion of the interlacing of sequences: for sequences b(0) = 〈b(0)

n 〉, b(1) =
〈b(1)

n 〉, . . . , b(m−1) = 〈b(m−1)
n 〉, m ≥ 1, their interlacing is the sequence u = 〈un〉

defined by

un =





b
(0)
n
m

, if n ≡ 0 (mod m),

b
(1)
n−1

m

, if n ≡ 1 (mod m),

. . . . . . . . . . . . . . . . . . . . . . . . . . .

b
(m−1)
n−m+1

m

, if n ≡ m− 1 (mod m).

(2)

For example, the interlacing of two sequences

b(0) : b
(0)
0 , b

(0)
1 , b

(0)
2 , . . . ,

b(1) : b
(1)
0 , b

(1)
1 , b

(1)
2 , . . .

is the sequence u0, u1, u2, . . . of the form

b
(0)
0 , b

(1)
0 , b

(0)
1 , b

(1)
1 , b

(0)
2 , b

(1)
2 , . . .

A non-zero sequence g is hypergeometric if it satisfies a first order operator

φ− h(x), h(x) ∈ k,

the rational function h(x) is the certificate of g. By definition, zero sequence is also
hypergeometric with zero certificate.

The interlacing of m sequences, m ≥ 1, which have the form of finite sums of
hypergeometric sequences will be called an m-interlacing.

The C-linear spaces of all sequences that satisfy L and, resp., of all m-interlacings,
that satisfy L will be denoted by V (L) and, resp., Vm(L), m ≥ 1. The Hendriks–
Singer algorithm (HS) for constructing a basis for the C-linear space of Liouvillian
solutions of L is based on two facts proven in [5]:

(a) If L has a Liouvillian solution then for some integer m, 1 ≤ m ≤ ordL, the
operator L has a solution in the form of an m-interlacing.

(b) For any integer m, 1 ≤ m ≤ ordL, one can construct algorithmically an
operator H ∈ k[φ] such that V (H) = Vm(H) = Vm(L). (It is possible, of course,
that ord H = dim Vm(H) = 0.)

The central part of HS is constructing for a given m the operator H mentioned
in (b), and a basis for Vm(H). This procedure (a part of HS) will be denoted by
mHS.

In Section 2, a simplification of the procedure mHS by removing some unnec-
essary actions is described. (The authors of the paper [5] notice that they ignore
effectiveness questions and just try to present their algorithm in an understandable
form — see Remarks on p. 251 of [5].)

In Section 3, we briefly consider the special cases when C is not algebraically
closed, and the case of an irreducible L (the Cha – van Hoeij algorithm [2]).

In Section 4, we prove some properties of the space Vm(L).
In Section 5, an implementation of a simplified version of mHS and a modified

version of the search for all Liouvillian solutions is described.

Acknowledgement. The authors wish to express their thanks to M. van Hoeij for
useful discussions.
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2 Search for m-interlacing Solutions of L for a Fixed m

2.1 The Hendriks–Singer Procedure for Finding m-interlacing
Solutions

Let L be of the form (1), an integer m such that 1 ≤ m ≤ d be fixed, and τ :
k → k be the automorphism defined by x 7→ mx. The procedure described in
[5] by Hendriks and Singer for finding all solutions of L which have the form of
m-interlacings is as follows.

mHS1: Constructing a polynomial P ∈ k[Z] of smallest degree such that the
operator P (φm) is right divisible by L in k[φ].

mHS2: Constructing polynomials P0, P1, . . . , Pm−1 ∈ k[Z] such that if L has
a solution in the form of an m-interlacing of some sequences l(0) = 〈l(0)n 〉, l(1) =
〈l(1)n 〉, . . . , l(m−1) = 〈l(m−1)

n 〉, then Pi(φ)(l(i)) = 0:

Pi = τφiP, i = 0, 1, . . . , m− 1.

mHS3: Constructing finite sets Gi ⊂ k∗, i = 0, 1, . . . , m−1, such that V1(Pi(φ)) ⊂
V (LCLM

h∈Gi

(φ− h)) (one can use algorithms from [8], [6], and [3] for this).

mHS4: Constructing an operator Lm such that Vm(L) ⊂ Vm(Lm) = V (Lm):

Lm = LCLM
h∈H

(φm − h), (3)

where
H =

⋃

0≤i≤m−1

{φ−iτ−1(h) |h ∈ Gi}. (4)

mHS5: Constructing the operator H = GCRD(L,Lm) and a basis for V (H) such
that each element of this basis is the m-interlacing of hypergeometric sequences.

2.2 A Simplification of the Hendriks–Singer Procedure

The procedure mHS can be simplified by removing some unnecessary actions.

Theorem 1 Let G0,G1, . . . ,Gm−1 be as in mHS3, and G = τ−1G0. In this case

(i) Gi = τφiτ−1G0 = τφiG, i = 0, 1, . . . , m− 1;
(ii) one can use G instead of H in the right-hand side of (3).

Proof: (i) For P as in mHS1, and P0, P1, . . . , Pm−1 as in mHS2 we have

Pi = τφiP = τφiτ−1(τP ) = τφiτ−1P0.

The proof follows from the definition of G. (Notice that τφiτ−1 is defined by x 7→
x + i

m , and τφi is defined by x 7→ mx + i.)
(ii) We have Gi = τφiG. Therefore, if h ∈ Gi, then φ−iτ−1(h) ∈ G. ut
As a consequence of this theorem we obtain a simplified version of mHS which

we denote by mHS′:

mHS′1: The same as mHS1.

mHS′2: Constructing the polynomial P0 = τP .
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mHS′3: Constructing G = τ−1G0, where the finite set G0 ⊂ k∗ is such that
V1(P0(φ)) ⊂ V (LCLM

h∈G0
(φ− h)).

mHS′4: Set Lm = LCLM
h∈G

(φm − h).

mHS′5: The same as mHS5.

The cost of mHS′1, mHS′5 is the same as the cost of mHS1, mHS5. The cost of
mHS′2, mHS′3, mHS′4 is m times less than the cost of mHS2, mHS3, mHS4.

Example 1 Let

L = φ5 − 2
x + 5

φ3 +
x− 1
x + 5

φ2 − 2
x + 5

, (5)

m = 2. Then

P (Z) = (x+10)(x+7)Z5−(4x+30)Z4 +4Z3−(x+4)(x+1)Z2 +(4x+6)Z−4,
P0(φ) = (2x+10)(2x+7)φ5−(8x+30)φ4+4φ3−(2x+4)(2x+1)φ2+(8x+6)φ−4,
G0 =

{
1

x+1 , 2
2x−1

}
,

G =
{

2
x+2 , 2

x−1

}
,

L2 = φ4 − (4x+6)
(x+4)(x+1)φ

2 + (4x+16)
(x+1) ,

H = φ2 + (12x+12)
(x+2)(x3−x−8)φ− (2x3+6x2+4x−16)

(x+2)(x3−x−8) .

A basis for V (H) = V2(L) consists of two following sequences

the 2-interlacing of the sequences
〈

1
Γ (n−1/2)

〉
and

〈
1

Γ (n+3/2)

〉
,

the 2-interlacing of the sequences
〈

1
Γ (n+1)

〉
and

〈
1

Γ (n)

〉
.

Notice that once the set G is constructed the operators Lm and H are not needed
for constructing a basis for Vm(L). This would simplify mHS′. But the operator H
is used by the Hendriks–Singer algorithm for a recursion to construct all Liouvillian
solutions of L (Section 5.3).

3 Some Special Cases

3.1 When C is Not Algebraically Closed

Suppose that C is not algebraically closed. Then L may have hypergeometric solu-
tions whose certificates belong to C̄(x) but not to k = C(x). However, the following
statement holds (has been proven in [7]):

Let L ∈ k[φ] and each of the sets Gi, i = 0, 1, . . . , m, constructed at the step mHS3

contains all belonging to C̄(x) certificates of hypergeometric solutions of Pi(φ). Then
the operator H computed at the step mHS5 belongs to k[φ].

As a consequence we have that if L ∈ k[φ], and and the step mHS4 we use some
algorithm A for finding all certificates belonging to C̄(x), then we obtain H ∈ k[φ].
The operator L is right-divisible by H, and we have L = L̃H, L̃ ∈ k[φ]. Even if the
algorithm A is applicable only to operators from k[φ] then we always can apply this
algorithm to L̃. The same is correct if we use mHS′ instead of mHS for constructing
H since we construct the same H in both cases. This fact might be quite important
for finding all Liouvillian solutions of L, if the corresponding implementation of an
algorithm for finding hypergeometric solution is not applicable to operators with
the coefficients from C̄(x).
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3.2 When L Is Irreducible

An algorithm which does not compute hypergeometric solutions of P0(φ) was pro-
posed in [2] for the case of an irreducible operator L. The idea of this algorithm is
based on the notion of gauge equivalence of operators. Two operators L, L̃ ∈ k[φ]
are gauge equivalent if ord L = ord L̃ and there exists an operator T , ord T < ordL,
such that V (L) = T (V (L̃)). If T exists then there also exists an “inverse” T ′ such
that V (L̃) = T̃ (V (L)). An irreducible L is gauge equivalent to an operator of the
form (6) iff L has Liouvillian solutions. When L is irreducible, getting (6) is equiva-
lent to computing Liouvillian solutions ([5]). It was shown in [2] that this approach
is very productive for irreducible L of order 2 or 3. However the gauge equivalence
is not sufficient to get (6) for L in the general case. The full factorization has a
high complexity. In addition L may have a Liouvillian solution although L = KM
with an irreducible operator M which has no Liouvillian solution. It means one
factorization L = KM may not be sufficient for finding Liouvillian solution using
factorization and paper [5]; it can happen that other factorizations L = K ′M ′ are
needed to be searched for. So algorithms that are directly applicable in the general
case are of definite value.

4 Some Properties of the Space Vm(L)

4.1 The Dimension of the Space Vm(L)

Lemma 1 Any operator A of the form

φd − a(x), a(x) ∈ k, (6)

can be written as
A = LCLM(Q1, Q2, . . . , Ql) (7)

for some irreducible operators Q1, Q2, . . . , Ql of the same order ρ, lρ = d.

Proof: By Corollary 4.4 from [5] A has an irreducible right factor Q of the form
φs− b(x), b(x) ∈ k, s divides d. Let Rj be the operator φ−e

2πji
d , and the sequences

z(j) = 〈z(j)
n 〉 be such that z

(j)
n = e

2πji
d n, j = 1, 2, . . . , d (recall that k = C(x) and

the ground field C is an algebraically closed subfield of C). Set Qj to be equal to
the symmetric product of Q and Rj . The operator Qj is monic irreducible and
of same order as Q, j = 1, 2, . . . , d. Then A = LCLM(Q1, Q2, . . . , Qd) holds since
there exists y ∈ V (Q) such that yn 6= 0 for all n, and therefore the sequences z(j)y,
j = 1, 2, . . . , d, are linearly independent elements of V (A). Notice that some of
operators Q1, Q2, . . . , Qd can be equal. We get (7) with pairwise different irreducible
Q1, Q2, . . . , Ql after removing duplicates.4 ut

Lemma 2 Let L be of the form (1), Vj(L) = 0 for j = 0, 1, . . . , m−1 and Vm(L) 6=
0. Let H be an operator such that V (H) = Vm(L). Then H can be written as

H = LCLM(S1, S2, . . . , St) (8)

for some irreducible S1, S2, . . . , St of order m.

Proof: Follows from the construction of the operator H (see mHS4, mHS5), Lemma
1 and the fact that if H has a right factor of order s < m then Vj(L) 6= 0 for some
j such that 1 ≤ j ≤ s < m. ut
4 This proof is by M. van Hoeij (a private communication).
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Theorem 2 Let L be of the form (1), Vj(L) = 0 for j = 0, 1, . . . ,m − 1 and
Vm(L) 6= 0. Then m divides dim Vm(L).

Proof: Follows from Lemma 2. ut
Example 2 The operator

L = φ5 − φ4 − (x + 1)(x + 3)φ + x(x + 2) (9)

has no hypergeometric (i.e. 1-interlacing) solutions, so V1(L) = 0. But it has 2-
interlacing solutions, a basis for V2(L) consists of four following sequences

the 2-interlacing of the sequences 〈0〉 and
〈
(−2)n+1/2Γ (n + 1/2)

〉
,

the 2-interlacing of the sequences 〈0〉 and
〈
2n+1/2Γ (n + 1/2)

〉
,

the 2-interlacing of the sequences 〈(−2)nΓ (n)〉 and 〈0〉,
the 2-interlacing of the sequences 〈2nΓ (n)〉 and 〈0〉.

As by Theorem 2, m = 2 divides dim V2(L) = 4.

4.2 Structure of m-interlacing Solutions

Let sequences 〈fn〉, 〈f (0)
n 〉, 〈f (1)

n 〉, . . . , 〈f (m−1)
n 〉 be such that

fn =





f
(0)
n , if n ≡ 0 (mod m),

f
(1)
n , if n ≡ 1 (mod m),

. . . . . . . . . . . . . . . . . . . . . . . . . . .

f
(m−1)
n , if n ≡ m− 1 (mod m),

(10)

∀n. Then we will use the notation

f =
〈

f (0)
n , f (1)

n , . . . , f (m−1)
n

〉
,

e.g., we will write 〈
b
(0)
n
m

, b
(1)
n−1

m

, . . . , b
(m−1)
n−m+1

m

〉

for the sequence defined by (2) for all integer n large enough.
If h(x) ∈ k is the certificate of a hypergeometric sequence 〈gn〉 then the source

of the sequence 〈gn〉 is a meromorphic function G(x) such that

– G(x) is defined for all x with large enough Re x, and G(x + 1)− h(x)G(x) = 0,
– gn = G(n), ∀n.

Remark. A priory the function G(x) is not defined uniquely but up to a factor
in the form of a 1-periodic holomorphic function. We suppose that one of such
functions which does not vanish for x ∈ 1

mZ is fixed, and, therefore, we get the
source uniquely defined by the certificate h(x).

Let
〈g(1)

n 〉, 〈g(2)
n 〉, . . . , 〈g(s)

n 〉 (11)

be hypergeometric sequences whose certificates are in G (see mSH′3), and

G1(x), G2(x), . . . , Gs(x) (12)

be the sources of the hypergeometric sequences (11). By Theorem 1(i) any element
of Vm(L) can be represented in the form

〈
s∑

j=1

c0,j Uj(n),
s∑

j=1

c1,j Uj(n), . . . ,

s∑

j=1

cm−1,j Uj(n)

〉
, (13)



On m-Interlacing Solutions of Linear Difference Equations 7

with
Uj(x) = Gj

( x

m

)
, j = 1, 2, . . . , s, (14)

and with some concrete complex constants

ci,j , i = 0, 1, . . . , m− 1, j = 1, 2, . . . , s. (15)

Note that in representation (13), all components of any element of Vm(L) have
identical structure, and each of the steps mHS5 and mHS′5 constructs a basis for
the space of suitable constants (15).

Example 3 The sequences belonging to the basis constructed in Example 1 can be
presented as

〈
c1

Γ (n
2 − 1

2 )
+

c2

Γ (n
2 + 1)

,
c2

Γ (n
2 − 1

2 )
+

c1

Γ (n
2 + 1)

〉
,

with (1, 0), (0, 1) as (c1, c2), and the sequences belonging to the basis constructed in
Example 2 can be presented as

〈
c1 (−2)n/2 Γ (n/2) + c2 2n/2 Γ (n/2), c3 (−2)n/2 Γ (n/2) + c4 2n/2 Γ (n/2)

〉

with (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1) as (c1, c2, c3, c4).
We suppose that one unique value α of 21/2 and, resp., one unique value β of

(−2)1/2 are selected. Then 2n/2 = αn, (−2)n/2 = βn. This is in agreement with the
remark to definition of the source of a hypergeometric sequence.

The following proposition enables one to apply an operator of k[φ] to an m-
interlacing of sequences.

Proposition 1 If 〈f (0)
n 〉, 〈f (1)

n 〉, . . . , 〈f (m−1)
n 〉 are arbitrary sequences, then

φ
(〈

f (0)
n , f (1)

n , . . . , f (m−1)
n

〉)
=

〈
f

(1)
n+1, f

(2)
n+1, . . . , f

(m−1)
n+1 , f

(0)
n+1

〉
.

Proof: A direct check. ut

4.3 Cyclic Permuted Solutions

Some of functions (12) can be similar, i.e., such that Gi(x)/Gj(x) ∈ k for some
indexes i 6= j (the corresponding hypergeometric sequences are also called similar).

Lemma 3 Let h = 〈hn〉 be a hypergeometric sequence with the source G(x). Let
f = 〈fn〉 be the m-interlacing of sequences 〈S0(n)hn〉, 〈S1(n)hn〉, . . . , 〈Sm−1(n)hn〉
with S0(x), S1(x), . . . , Sm−1(x) ∈ k. Then for some R0(x), R1(x), . . . , Rm(x) ∈ k
and U(x) = G

(
x
m

)

f = 〈R0(n) U(n), R1(n) U(n− 1), . . . , Rm−1(n) U(n−m + 1) 〉 , (16)

and

φ(f) = 〈R1(n + 1) U(n), R2(n + 1) U(n− 1), . . .

. . . , Rm(n + 1) U(n−m + 1) 〉 . (17)
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Proof: Indeed, by definition of f

f =
〈

S0

( n

m

)
G

( n

m

)
, S1

(
n− 1

m

)
G

(
n− 1

m

)
, . . .

. . . , Sm−1

(
n−m + 1

m

)
G

(
n−m + 1

m

)〉
.

This proves (16). By Proposition 1 applying φ to a sequence of the form (16) gives

〈R1(n + 1) U(n), R2(n + 1) U(n− 1), . . .

. . . , Rm−1(n + 1) U(n−m + 2), R0(n + 1) U(n + 1) 〉 .

But U(n + 1) = U((n−m + 1) + m) = S(n)U(n−m + 1) with a rational function
S(x). Setting Rm+1(x) = S(x− 1)R0(x) we get (17). ut

Lemma 4 Any element of Vm(L) can be represented as a sum of solutions such that
each of these solutions has the form of an m-interlacing of similar hypergeometric
sequences.

Proof: We can present any element of Vm(L) as a sum of the m-interlacings of
similar hypergeometric sequences such that the components of different summands
are not similar. Application of L to the m-interlacing of similar hypergeometric
sequences gives again the m-interlacing of similar hypergeometric sequences whose
components are similar to components of the original m-interlacing. The claimed
follows. ut

Theorem 3 Let L have a solution (13). Then L has the cyclic permuted solution
〈

s∑

j=1

c1,j Uj(n),
s∑

j=1

c2,j Uj(n), . . . ,

s∑

j=1

cm−1,j Uj(n),
s∑

j=1

c0,j Uj(n)

〉
. (18)

Proof: By Lemmas 3, 4 it is sufficient to consider the case (16) of the m-interlacing
of similar hypergeometric sequences. We have to prove that if (16) is a solution of
L then

〈R1(n) U(n− 1), R2(n)U(n− 2), . . .

. . . , Rm−1(n)U(n−m + 1), R0(n) U(n)〉 (19)

is also a solution of L. By the second part of Lemma 3 the result of applying L to
(19) has the form

〈S0(n) U(n− 1), S1(n)U(n− 2), . . . , Sm−1(n) U(n−m) 〉 , (20)

S0(x), S1(x), . . . , Sm−1(x) ∈ k.
We introduce the operation ′:

〈
f (0)

n , f (1)
n , . . . , f (m−1)

n

〉′
=

〈
f

(0)
n+1, f

(1)
n+1, . . . , f

(m−1)
n+1

〉

(in the case m = 1 this operation coincides with φ). For the operator (1) we set
L′ = φd + ad−1(x + 1)φd−1 + . . . + a1(x + 1)φ + a0(x + 1). It is easy to see that
L′(f ′) = (L(f))′ for any m-interlacing.

Using Proposition 1 we have

L (〈R0(n) U(n), R1(n) U(n− 1), . . . , Rm−1(n)U(n−m + 1) 〉) =
= Lφ−1 (〈R1(n + 1) U(n), R2(n + 1) U(n− 1), . . .
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. . . , Rm−1(n + 1) U(n−m), R0(n + 1) U(n + 1) 〉) =
= φ−1L′ (〈R1(n + 1) U(n), R2(n + 1) U(n− 1), . . .

. . . , Rm−1(n + 1) U(n−m), R0(n + 1) U(n + 1) 〉) =
= φ−1L′ (〈R1(n)U(n− 1), R2(n) U(n− 2), . . .

. . . , Rm−1(n)U(n−m− 1), R0(n)U(n) 〉′) =

= φ−1((L (〈R1(n) U(n− 1), R2(n) U(n− 2), . . .

. . . , Rm−1(n)U(n−m− 1), R0(n)U(n) 〉))′) =
= φ−1 (〈S0(n + 1) U(n), S1(n + 1) U(n− 1), . . .

. . . , Sm−1(n + 1) U(n−m + 1) 〉) =
= (〈Sm−1(n)U(n−m), S0(n)U(n− 1), . . . , Sm−2(n) U(n−m + 1) 〉) .

Since (16) is a solution of L we have

Si(n) = 0 when n ≡ i + 1 (mod m), i = 0, 1, . . .m− 1.

But this implies that Si(x), i = 0, 1, . . . , m− 1, are equal to zero identically. There-
fore, (19) is a solution of L. ut

Example 4 The sequences belonging to the basis constructed in Example 1 can be
presented as

〈
1

Γ (n
2 − 1

2 )
,

1
Γ (n

2 + 1)

〉
,

〈
1

Γ (n
2 + 1)

,
1

Γ (n
2 − 1

2 )

〉
.

5 Implementation

The improvements proposed in Section 2 are implemented as a modification of the
MAPLE implementation [7] of the original Hendriks–Singer algorithm for finding
Liouvillian solutions. The implementation is done as LiouvillianSolution func-
tion that extends the MAPLE package LREtools containing various functions for
solving linear recurrence equations. To the best of the authors’ knowledge it is the
only one existing full implementations (at least, in MAPLE) of this algorithm.

The paper [1] presents a modification of the Hendriks–Singer algorithm HS and
describes its implementation. However, the implementation described in that paper
is not full since it solves the second-order equations only.

5.1 Liouvillian Solutions

By [5] the ring L of Liouvillian sequences is the smallest subring of S such that
k ⊂ L,
u ∈ L iff φ(u) ∈ L,
u ∈ k implies that v ∈ L if φ(v) = uv,
u ∈ L implies that v ∈ L if φ(v) = u + v,
u(0), u(1), . . . , u(m−1) ∈ L implies that the interlacing of these sequences belongs

to L.
Note that the definition of Liouvillian sequences may be given in a different way,

but the defined object is still the same. For example, by [9] (also used in [7]) the
ring L of Liouvillian sequences is the smallest subring of S that contains the set
of all hypergeometric elements from S and closed with respect to φ, φ−1, Σ (the
summation), and the interlacing.

The space of all Liouvillian solutions of L will be denoted by VL(L). We also
will use notations V (L), Vm(L) introduced before.
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5.2 Finding the Operator H and a Basis
for the Space Vm(H) for a Fixed m

The implementation [7] was adjusted to utilize the procedure mHS′ described in
Section 2.2. In the initial implementation [7], the procedure mHS was an internal
integral part of the function LiouvillianSolution to find all Liouvillian solutions.
The output option output=interlacing[m] is added to LiouvillianSolution to
provide users with a possibility to search for the space Vm(L) for a given m. Note
that m can be omitted in the option, and in this case, the function will find itself
the smallest m for which Vm(L) 6= 0 (if such integer m exist). This is exactly what
is needed as a first step for finding all Liouvillian solutions by HS, i.e., to construct
the space VL(L). Our implementation represents m-interlacing solutions in the form
(13) using MAPLE’s structure piecewise in the sense of the expression (10).

Example 5 Consider equation (5) from Example 1:
> rec := (n+5)*y(n+5)-2*y(n+3)+(n-1)*y(n+2)-2*y(n):

There is no 1-interacing solution:
> sol1 := LiouvillianSolution(rec, y(n), {},
output=interlacing[1]);

sol1 := FAIL

There are 2-interacing solutions as was presented in Example 1, and 2 is the
smallest m for which there are m-interlacing solutions:

> sol2 := LiouvillianSolution(rec, y(n), {}, output=interlacing);

sol2 :=





C 1

Γ (
n

2
+ 1)

+
C 2

Γ (
n

2
− 1

2
)

irem(n, 2) = 1

C 2

Γ (
n

2
+ 1)

+
C 1

Γ (
n

2
− 1

2
)

otherwise

Now try to find 4-interlacing solutions:
> sol4 := LiouvillianSolution(rec, y(n), {},
output=interlacing[4]);

sol4 :=





(
1
4
)(

n
4 ) C 1

Γ (
n

4
+

1
4
) Γ (

n

4
− 1

4
)

+
1
4

(
1
4
)(

n
4 )
√

2 C 2

Γ (
n

4
+

1
2
)Γ (

n

4
+ 1)

irem(n, 4) = 1

(
1
4
)(

n
4 ) C 2

Γ (
n

4
+

1
4
) Γ (

n

4
− 1

4
)

+
1
4

(
1
4
)(

n
4 )
√

2 C 1

Γ (
n

4
+

1
2
)Γ (

n

4
+ 1)

irem(n, 4) = 2

(
1
4
)(

n
4 ) C 1

Γ (
n

4
+

1
4
) Γ (

n

4
− 1

4
)

+
1
4

(
1
4
)(

n
4 )
√

2 C 2

Γ (
n

4
+

1
2
)Γ (

n

4
+ 1)

irem(n, 4) = 3

(
1
4
)(

n
4 ) C 2

Γ (
n

4
+

1
4
) Γ (

n

4
− 1

4
)

+
1
4

(
1
4
)(

n
4 )
√

2 C 1

Γ (
n

4
+

1
2
)Γ (

n

4
+ 1)

otherwise

They exist. But in this case, they actually correspond to the 2-interlacing solutions
up to arbitrary constants transformation, which can be checked directly.
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There is also an implementation consideration which does not relate to the
algorithm efficiency but to the efficiency of the implementation in MAPLE. As
follows from Theorem 1(ii) the elements of the union in the right-hand side of (4)
are equal for all i. But if LCLM function is applied to H directly without removing
duplicated elements it works very ineffective. Since it is just a peculiarity of the
MAPLE implementation rather than algorithm’s feature, in order to check only the
gain from the algorithm simplification itself, the trick of removing duplicates in H
before application of LCLM was added into our mHS implementation.

Example 6 Consider the following equation:
> rec := m^2*y(n+4+m)-((n+4)^2-m^2)*y(n+4)+(n-10)*m^2*y(n+1+m)-
> (n-10)*((n+1)^2-m^2)*y(n+1)-m^2*y(n+m)+(n^2-m^2)*y(n);

rec := m2 y(n + 4 + m)− ((n + 4)2 −m2) y(n + 4) + (n− 10)m2 y(n + 1 + m)
− (n− 10) ((n + 1)2 −m2) y(n + 1)−m2 y(n + m) + (n2 −m2) y(n)

The equation has m-interlacing solutions with the components which differ by
constant factors. For example, let m = 3.

> m := 3: LiouvillianSolution(rec, y(n), {},
> output=interlacing[m]);





Γ (
n

3
+ 1) Γ (−1 +

n

3
) C 1 irem(n, 3) = 1

Γ (
n

3
+ 1) Γ (−1 +

n

3
) C 2 irem(n, 3) = 2

Γ (
n

3
+ 1) Γ (−1 +

n

3
) C 3 otherwise

To check the performance changes we use m = 10.

> m := 10:

Let us find 10-interlacing solutions (not printed, but it has the same structure as
above for the case m = 3) and check the time needed to compute the result.

> st := time(): LiouvillianSolution(rec, y(n), {},
> output=interlacing[m]): time()-st;

m=10:

---Finding P took 0.6 seconds

---Constructing L_10 took 3.3 seconds

---Computing H took 0.0 seconds

---Constructing basis took 0.1 seconds

4.063
> st := time(): LiouvillianSolution_old(rec, y(n), {},
> output=interlacing[m]): time()-st;

m=10:

---Finding P took 0.6 seconds

---Constructing L_10 took 34.9 seconds

---Computing H took 0.0 seconds

---Constructing basis took 0.1 seconds
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35.562

The old version (mHS) took more time than the simplified one (mHS’) to check
existence of 10-interlacing solution. But if we missed LCLM trick the old version
is even worse. Note that unchanged parts in both versions took the same time.

> st := time(): LiouvillianSolution_old_no_trick(rec, y(n), {},
> output=interlacing[m]): time()-st;

m=10:

---Finding P took 0.6 seconds

---Constructing L_10 took 74.5 seconds

---Computing H took 0.0 seconds

---Constructing basis took 0.1 seconds

75.125

5.3 Finding All Liouvillian Solutions

Liouvillian solutions of general form are constructed recursively by HS. The recur-
sive application of mHS or mHS′ leads to a factorization L = RHt . . . H2H1 where
the operator R is such that Vm(R) = 0 for all integer m ≥ 1, and where each of
the operators Hi satisfies V (Hi) = Vmi(Hi) 6= 0 for an integer mi ≥ 1. For any
i = 1, 2, . . . , t a basis Bi for Vmi(Hi) has to be constructed. Once a basis Bi for
V (Hi) = Vmi(Hi) is constructed, i = 1, 2, . . . , t, algorithm HS constructs a basis B
of V (Ht . . .H2H1) = VL(Ht . . .H2H1) = VL(L), using the difference version of the
method of variation of parameters ([4]). To do this HS solves t− 1 linear algebraic
systems whose determinants are shifted Casoratians which correspond to the bases
B1, B2, . . . , Bt−1 for solutions spaces of the operators H1,H2, . . . , Ht−1.

Recall that the bases B1, B2, . . . , Bt and the basis B consist of the elements of
the ring S of the germs of sequences. The problem of defining integer n0 such that
any of the germs from B is a sequence (in the usual meaning) that satisfies L for
all n ≥ n0 looks like quite actual. We will describe below two rules following which
a suitable n0 can be computed. Our implementation provides users with such n0 in
addition to B.

We will suppose that all operators under consideration are of the form

φs + rs−1(x)φs−1 + . . . + r0(x), (21)

where r0(x), r1(x), . . . , rs−1(x) ∈ k. For an integer l we set Nl = {n ∈ N, n ≥ l}.
The mentioned rules are as follows.

1) If a rational function h(x) is defined and does not vanish on Nl then a
hypergeometric sequence with certificate h(x) is defined and does not vanish on Nl.
Note that the Casoratian of a basis for the solutions space of (21) also represents a
hypergeometric sequence with h(x) = (−1)sr0(x) ([4]).

2) If operators L, L̃,H are such that L = L̃H and we use the procedure described
in [5, Lemma 5.4.1] for constructing a basis for V (H) in the form of a finite set
of linear combinations of some computed sequences, then elements of the basis
sequences are defined on Nl if initial computed sequences are defined on Nl and all
coefficients of L, L̃,H are defined on Nl as well.

Our implementation computes the Casoratian as a hypergeometric sequence
using its certificate. The computed result may differ from the Casoratian by a
constant factor. It still leads to computing correct basis elements since the elements
are also defined up to an arbitrary constant non-zero factor.
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Example 7 Consider again equation (5) from Example 1:
> rec := (n+5)*y(n+5)-2*y(n+3)+(n-1)*y(n+2)-2*y(n):

Find all Liouvillian solutions. We use the implicit output form, since the explicit
forms are too huge. The computation time is also printed:

> st := time(): LiouvillianSolution(rec, y(n), {},
output=implicit, usepiecewise=true); time()-st;


 C 1

((
n−1∑

i1=2

(
−B12(i1 + 1) B21(i1 )

D1(i1 )

))
B11(n)+

(
n−1∑

i1=2

B11(i1 + 1) B21(i1 )
D1(i1 )

)
B12(n)

)
+

C 2

((
n−1∑

i1=2

(
−B12(i1 + 1) B22(i1 )

D1(i1 )

))
B11(n)+

(
n−1∑

i1=2

B11(i1 + 1) B22(i1 )
D1(i1 )

)
B12(n)

)
+

C 3

((
n−1∑

i1=2

(
−B12(i1 + 1) B23(i1 )

D1(i1 )

))
B11(n)+

(
n−1∑

i1=2

B11(i1 + 1) B23(i1 )
D1(i1 )

)
B12(n)

)
+ C 4 B11(n) + C 5 B12(n),


B21(n) =

(−1)n (6 + 3n + n2)
(n + 2) (n3 − n− 8)

,

B22(n) =
(
1
2
− 1

2
I
√

3)n (−3−√3 I + n
√

3 I + n2)

(n + 2) (n3 − n− 8)
,

B23(n) = −
(
1
2

+
1
2

I
√

3)n (3−√3 I + n
√

3 I − n2)

(n + 2) (n3 − n− 8)
,

B11(n) =





1

Γ (
n

2
+ 1)

irem(n, 2) = 1

1

Γ (
n

2
− 1

2
)

otherwise
,

B12(n) =





1

Γ (
n

2
− 1

2
)

irem(n, 2) = 1

1

Γ (
n

2
+ 1)

otherwise
,

D1(n) =
(−2)(n+1) ((n + 1)3 − n− 9)

Γ (n + 3)


 , 2 ≤ n



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4.125

The solutions basis is formed from a 2-interlacing basis of 2 elements and a
1-interlacing basis of 3 elements. The corresponding shifted Casoratian D1(n) is
also presented. The expression is applicable for n ≥ 2.
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8. Petkovšek, M.: Hypergeometric solutions of linear recurrences with polynomial coeffi-
cients. J. Symb. Comput. 14 (1992) 243–264
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