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Abstract

It is well known that if the leading matrix of a linear ordinary di↵erential or di↵erence system is
nonsingular, then the determinant of this matrix contains some useful information on solutions of the
system. We investigate a kind of non-arithmetic complexity of known algorithms for transforming a
matrix of scalar operators to an equivalent matrix which has non-singular frontal, or, leading matrix.
In the algorithms under consideration, the di↵erentiation in the di↵erential case and the shift in the
di↵erence case play a significant role. We give some analysis of the complexity measured as the number
of di↵erentiations or, resp., shifts in the worst case. We not only o↵er estimates of the complexity written
using the O-notation, but we also show that some estimates are sharp and can not be improved.

1 Introduction

We will consider a di↵erential, or di↵erence field K of characteristic 0 with a derivation @ (the di↵erential
case) or with an automorphism � (the di↵erence case). To consider both cases simultaneously, we use the
common notation > for @ and �. We denote by K[>] the ring of Ore polynomials in > over K. For seek of
clarity, we will use the symbol � to denote the operation of multiplication (composition) in the ring K[>] :
if f, g 2 K[>] then f � g, the composition of f and g, denotes the product of f and g as Ore polynomials.
If a 2 K then >(a) denotes the > � image of a, i.e., the result of applying the map > to a; one gets
>(a) 2 K. The multiplication in K[>] is performed according to known rules, which di↵er in the cases
of > = @ and > = �. If, e.g., f 2 K then > � f = >(f)> when > = � and > � f = f> + >(f) when
> = @. Elements of K[>] are called scalar operators (we will also say ‘scalar >-operators’). The order of
a nonzero scalar operator f 2 K[>] is equal to the degree of f considered as a polynomial in >. The order
of the zero operator is �1. For a finite collection F of scalar operators (a vector, matrix, row matrix etc),
ord F is defined as the maximum of the orders of its elements. We will denote by K[>]m⇥n, the set of
m⇥ n-matrices of scalar operators (i.e., m⇥ n-matrices with entries in K[>]). Any nonzero L 2 K[>]n⇥n

can be represented in the expanded form i.e., as a >-operator with coe�cients belonging to Kn⇥n:

L = Ad>d + Ad�1>d�1 + · · · + A0, (1)

where Ad (the leading matrix of L) is non-zero. The notation d will be used for the order of L (we write
d = ord L). We will refer to a matrix L 2 Kn⇥n of the form (1)) as a matrix operator of size n and order
d. In the sequel, we will associate to such a matrix of >-operators some matrices belonging to Kn⇥n (like
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the leading matrix Ad in (1)). To avoid a terminology confusion, matrices of >-operators will be briefly
referred to as operators.

If r = (r1, . . . , rn) 2 K1⇥n[>] and f 2 K[>] then f � r = (>� r1, . . . ,>� rn) where as above f � ri is the
composition of f and ri. If r is a row matrix belonging to K1⇥n[>] then the composition > � r is called
the > - portage of the row r.

An operator L is of full rank (or is a full-rank operator) if its rows are linearly independent over K[>].
In the sequel, we shall consider without special mention only operators of full rank. In particular, a full

rank operator has no zero row. This is quite enough for our purposes: we will prove that even for those
operators the >-complexity of the transformations of interest to us is quite large. The assumption that the
operator L is of full rank, concerns, in particular, the definition of the frontal matrix and the description
of the algorithm Row Reduction.

Definition 1 Suppose that L 2 K[>]n⇥n, d = ordL. Let ↵i = ord Li,⇤ (i.e., ↵i is the order of the ith row
of L), i = 1, . . . , n. The leading matrix of the product

diag(>d�↵1 , . . . ,>d�↵n)L

is the frontal matrix of L (in [10, 9], this matrix is called the leading coe�cient matrix).

The Row Reduction algorithm [10, 9] allows to construct for a given operator L an equivalent operator
L0 such that its frontal matrix is non-singular (L0 = UL for some unimodular, i.e. invertible in K[>]n⇥n,
operator U). A description of this algorithm is given in Section 2; the algorithm itself is named RR there.

The output operator L0 is constructed in several steps by using elementary transformations of the rows
of L. This needs to apply a significant amount of >-portages to the rows of the input operator. Therefore,
this algorithm requires a significant number of >-images of elements in the ground field K. This number
is estimated1 to

⇥(n3d 3), (2)

in the worst case (see [2, Sect. 3.1, Prop. 2] and Remark ?? below). To reduce this number, one could
store the results of the row >-portages. This, of course, will increase the space complexity of the algorithm,
but in counterpart it could be hoped that the number of computed >�images (di↵erentiations or shifts)
will decrease, in the worst case. We will refer to this number as the > � complexity (we will sometimes
say “di↵erential, resp. shift complexity”). The aim of this paper is, however, to show that a significant
decreasing in the >�complexity, in the worst case does not occur here.

Concerning the Row Reduction algorithm, the situation that develops here is as follows (recall that n
and d represent the size and the order of the input operator):

– If the di↵erentiated or, resp., shifted rows are stored, then, as was shown in [2], the di↵erential
complexity admits the estimate O(n2d3). Similarly, for the shift complexity, this estimate is valid in
the di↵erence case (see below Proposition 1). Note that, in [2], it was not stated that this estimate
is sharp.

In the present paper, we show that

– The exponent 2 for n and the exponent 3 for d cannot be decreased in the estimate for the complexity
in question: we prove the estimate ⌦(n2d 3).

1In the rest of the paper, in asymptotic complexity estimates, along with O-notation we will use ⌦- and ⇥-notation (see
[15]).
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– The estimate ⌦(n2d 3) and the earlier estimate O(n2d 3) imply together that for the complexity in
question, the estimate ⇥(n2d 3) holds in the di↵erential and di↵erence cases, and, as a consequence,
e.g., the estimate O(n2d 2) does not hold.

In general, the di↵erentiations and shifts required in the transformation of systems of equations or
matrices of scalar operators require time as well as arithmetic operations. Thus, in the complexity estimates
associated with algorithms for the transformation of systems of equations and operator matrices, the
operations of di↵erentiation and shift should also be taken into account. Incidentally, this also applies to
situations in which arithmetic complexity is not considered and instead of it the complexity as the number
of bit operations in the worst case or in average is investigated, as, e.g., in [12].

We add that the EG algorithm [1], [6] allows us to obtain L0 having an invertible leading matrix and
the > -complexity of EG is ⇥(n2d2), that is, less, than the >-complexity of the Row Reduction algorithm.
Given that this estimate of complexity was obtained without a predestination for storage intermediate
results. However, here L0 = UL, but in the di↵erential case, the operator U can be not invertible. (In the
di↵erence case, U is invertible, though.) While Row Reduction always provides invertibility of the operator
U . Section 5.1 is devoted to these questions.

It should be noted that very often the costs of di↵erentiations and shifts are considered in terms of the
costs of arithmetic operations (see, for example, [11]; [13]) assuming that the field K has a specific form,
such as K = k(t) or a finite field. In the present paper, we consider an arbitrary di↵erential or di↵erence
field K of characteristic 0 and count the number of di↵erentiations or shifts in the worst case. A research
of this kind of complexity is not very typical for computer algebra, although here one can cite, for example,
the publication [14] where an upper bound on the number of di↵erentiations of equations in a di↵erential
system su�cient for testing its compatibility is established. Factually, such a bound is an estimate for
the di↵erential complexity of algorithms for the compatibility test. For other examples see [2, 3, 8]. Such
studies are important because of the mentioned reason: the operations of di↵erentiations and shifts are not
cheap, at least they are not for free. It is also possible that two algorithms for solving a certain problem
have the same arithmetic complexity, but the complexity as the number of derivations or analogously, the
shifts for these algorithms is di↵erent for the first and the second algorithms. This opens up the possibility
of a meaningful choice of one of these algorithms. An example will be discussed in Section 5.1.

2 Preliminaries

Definition 2 We consider >-complexity of reduction algorithms as a function of n and d. The >-
complexity is the number of computed >-images of elements of K (the >-cost) in the worst case, when
values n and d are fixed (a given L is of size n ⇥ n, its order is d).

When estimating >-complexity, we assume that the >-cost of computing >m(a), a 2 K, is equal to m.
The algorithm Row Reduction which we will call RR for short, allows to construct an operator L0 such

that its frontal matrix is non-singular, and L0 = UL for some unimodular (i.e. invertible in K[>]n⇥n)
operator U . This algorithm can be described as follows (we omit the operator U computation).

Algorithm: RR (it has been described similarly in [9, Sect 2.1] ).
Input: An operator L 2 K[>]n⇥n, let ↵ = (ord L1,⇤, . . . , ord Ln,⇤) and d = maxm

i=1 ↵i.
Output: An operator L0 2 K[>]n⇥n such that

1) L0 = UL for some unimodular U 2 K[>]n⇥n, and
2) the frontal matrix of L0 is non-singular.

L0 := L; L0
fr:= the frontal matrix of L0; ↵0 := ↵;

while the rows of L0
fr are linearly dependent over K do
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compute a vector v = (v1, . . . , vn) 2 K1⇥n in the left nullspace of L0
fr;

select an integer ⌫ such that ↵0
⌫ = max16i6n

vi 6=0

↵0
i;

adjust the coe�cients v1, . . . , vn so that after the adjustment the rowPn
i=1 vi>↵0

⌫�↵0
i � L0

i,⇤ is of order < ↵0
⌫ (see Remark 1 below);

L0
⌫,⇤ :=

Pn
i=1 vi>↵0

⌫�↵0
i � L0

i,⇤;
↵0
⌫ := ord L0

⌫,⇤; L0
fr:= the frontal matrix of L0

od

Remark 1 This is a comment on the step ‘adjust the coe�cients v1, . . . , vn so that . . . ’. In the di↵erential
case, the coe�cients v1, . . . , vn do not change (note that only the di↵erential case is discussed in [9, Sect
2.1], and the step under consideration is not involved into the algorithm). In the di↵erence case we should
replace, accordingly with Definition 1, vi by � ↵0

⌫�d (vi), i = 1, . . . , n. We have ↵0
⌫ � d 6 0, and consider

| ↵0
⌫ � d | as the >-cost of applying � ↵0

⌫�d to an element of K.

Remark 2 It may be that there are multiple choice options for the vector v on the step ‘compute a vector
v = (v1, . . . , vn) 2 K1⇥n in the left nullspace of L0

0 ’. Any such a choice option may be realized. The
algorithm RR does not regulate that. (This is significant for discussing the “worst case”.)

3 When the transformed rows are stored: Algorithm RR

One can store the results of applying the transformation > to the rows of an operator L. It was shown
in [2, Sect. 3.4, Prop. 6] that in the case of storing the transformed rows, the di↵erential complexity is
O(n2d 3). The same holds for the >-complexity in the di↵erence case.

For the sake of completeness we sketch a quick general proof of this fact for the >-case.
The version of the RR-algorithm that assumes the storage of the rows >-portages will be denoted as

RR.

Proposition 1 The number of the row >-portages without repetitions (when the result of each di↵erenti-
ation is stored, i.e., when we collect all such results) executed by the algorithm RR is O(nd 2) in the worst
case; as a consequence, the number of computing >-images of elements of K is O(n2d 3).

Proof: Let a row r be changed in the course of RR performance (we have in mind the elimination
L0
⌫,⇤ :=

Pn
i=1 vi>↵0

⌫�↵0
i �L0

i,⇤, with L0
⌫,⇤ = r). Let the order of r after the changing be d0 < d. In this case,

we can compute and store the following d � d0 rows

> � r, >2 � r, . . . , >d�d0 � r. (3)

After this, when a row of the form >m �r, m 6 d�d0, is needed for following eliminations, pick the needed
row from the collection of the stored rows. Thus, we get a modified version of RR (this is an auxiliary

version that is used only in this proof, we denote it as RR) whose numbers of the row >-portages is not

less than the analogous number for RR. Therefore, it is su�cient to prove for RR the estimate O(nd 2) for
the number of the row >-portages.

Evidently, the total number of elimination steps of each of RR, RR, RR does not exceed nd. The
number of the row >-portages on the accompanying steps of the form (3) is O(nd · d), i.e., O(nd 2).

For RR, besides the elimination steps and the accompanying steps (3) we need also a preliminary
step of constructing and storing the >-portages of all the rows of L which are of order less than d. This
preliminary step will require no more than nd computations of the >-portages.

So, the total number of the row > -portages is O(nd 2) in the worst case. As a consequence, the number
of computing the >-images of the elements of K in the worst case is O(n2d 3). 2
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Remark 3 Concerning RR , we suppose that if a row is changed (i.e., replaced by a linear combinations
over K of other rows) then the original row as well as all its >-portages are removed from the storage.
Note also that Remark 2 is evidently valid for RR.

4 Complexity Analysis

4.1 Operator Having Four Rows

Let n, d be positive integers and a1, a2, a3, a4 row matrices from K1⇥n which are linearly independent over
K. Let us define the function { : Z ! {1, 2}:

{(m) =

⇢
2, if 2 | m,
1, otherwise,

and the sequence P0, P1, . . . of rows belonging to K[>]1⇥n :

P0 = 0, Pi =

iX

s=1

>s � a{(s), i = 1, 2, . . .

(i.e., P0 = 0, P1 = > � a1, P2 = >2 � a2 + > � a1, P3 = >3 � a1 + >2 � a2 + > � a1, and so on). Evidently
ord Pi = i when i > 0. Set

d 0 =

⇢ ⌅
d
2

⇧
, if {

�
d �

⌅
d
2

⇧�
= 2,⌅

d
2

⇧
� 1, otherwise,

and d 00 = d � d0.
We construct an operator Q 2 K[>]4⇥n, ord Q = d, as follows. Set

Q1,⇤ = a1, Q2,⇤ = a2,

Q3,⇤ = Pd0 + a3, Q4,⇤ =

 
d 0X

i=0

>d 00 � (Pd 0�i + a3)

!
+ a4.

Example 1 For d = 4 we have
Q⇤,1 = a1,
Q⇤,2 = a2,
Q⇤,3 = >2 � a2 + > � a1 + a3,
Q⇤,4 = >2 � (>2 � a2 + > � a1 + a3) + >2 � (> � a1 + a3) + >2 � a3 + a4.

Proposition 2 In the worst case, the amount of >-images of elements of K computed during the process
of applying algorithm RR to Q is ⌦ (nd 3).

Proof: According to Remarks 2, 3, the applying of the algorithm RR to Q, can be equivalent to the
following transformation (the symbol • marks a checkpoint; we will also consider (a), (b) not only as names
of sub-steps of the loop for . . . do . . . od but also as checkpoints of the algorithm):

for k = d 0 downto 0 do

(a) Q4,⇤ := Q4,⇤ �>d 00 � Q3,⇤ ;
(b) Q3,⇤ := Q3,⇤ �>k � Q{(k),⇤
•

od;
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indeed, when passing through the point (a), the orders of the rows Q4,⇤ and >d 00
Q3,⇤ are equal, and the

order of the di↵erence of those rows is less by 1 than the order of each of them; similarly for (b): the orders
of the rows Q3,⇤ and >kQ{(k),⇤ are equal and the order of their di↵erence is less by 1 than the order of
each of those rows.

When passing through the point • on each of steps of the loop, we have

Q3,⇤ = Pk + a3, Q4,⇤ =

 
d00+k�1X

i=d00
>d 00 � (Pi + a3)

!
+ a4,

ord Q3,⇤ = k, ord Q4,⇤ = d 00 + k � 1. (4)

At the last passage through this point (with k = 0) we have

Q3,⇤ = P0 + a3 = a3, Q4,⇤ =

 
d 00�1X

i=d 00
>d 00 � (Pi + a3)

!
+ a4 = a4.

By Remark 3, if some compositions >d 00 � Q3,⇤ were stored then after the sub-step (b), they would
be removed from the storage, and the next performance of the sub-step (a) requires the computation
>d 00 �Q3,⇤. (On the other hand, all the compositions >k �Q1,⇤ and >k �Q2,⇤ which are used in (b) can be
stored till the end of the computation.)

According to (4), the amount of >-images of elements of K computed on the step (a) of the loop is not
less than

d0X

k=0

kd 00n =

✓
d 02d 00

2
+ O(d 0d 00)

◆
n

By d 0 ⇠ d 00 ⇠ d
2 we have ✓

d 02d 00

2
+ O(d 0d 00)

◆
n ⇠ d 3

16
n . (5)

The claim follows. 2

4.2 Operator Having n Rows

Let A 2 Kn⇥n, det A 6= 0. We can pick bn/4c quadruples (sets of four) from the set of rows of A. For each
of them we can construct four rows of an operator L as it was explained in Section 4.1. The remaining
n�bn/4c · 4 rows of L coincide with the corresponding rows of A. By Remarks 2, 3, the algorithm RR can
operate with the constructed sets of four rows independently. For low estimating the total >-cost Cn,d of
those transformations, we multiply (5) by n

4 and get

Cn,d ⇠ 1

64
n2d 3. (6)

Theorem 1 The >-complexity of RR is ⇥(n2d 3).

Proof: Relation (6) indicates that the >-complexity of RR is ⌦(n2d 3). We know that this complexity is
O(n2d 3), as it was mentioned in Section 1. The claim follows. 2

28



S.A. Abramov & M.A. Barkatou

5 Specifics of the di↵erence case

5.1 Another approach for desingularization of the leading matrix

A visible dissimilarity between the di↵erence and di↵erential cases is that the automorphism � has an
inverse in K[�,��1], while in the di↵erential case the derivative @ is not invertible in K[@]. The RR-
algorithm (Section 2) computes L0 of the form UL where L0 has a non-singular frontal matrix, and U is
invertible in K[>]n⇥n (the version of RR under consideration does not compute U , but the existence of
such U is guaranteed) and both U, U�1 do not contain >�1. In the di↵erence case, it is acceptable though
that U�1 contains ��1. The computation of such U can be cheaper, i.e. can have a smaller >-complexity.
It can be achieved by using EG-algorithm [1, 5, 6]. The version which is presented in [1] computes in the
di↵erence case an equivalent operator (i.e. an operator L0 which can be represented as ŨL, where Ũ is
invertible in K[�,��1]n⇥n) having a triangular leading matrix: an analogous idea was independently used
in [[16]] for constructing the so called weak Popov form of a polynomial matrix. The >-complexity of the
EG-algorithm is O(n2d 2) (see, e.g. [3, 8]).

Note that it does not hold in the di↵erential case: if we use EG-algorithm, then Ũ is not, in general,
invertible in K[@]n⇥n, but the leading matrix of the output operator L0 is invertible in both di↵erential
and di↵erence cases.

5.2 On arithmetic complexity

The arithmetic complexity of RR is ⇥(n!+1d 2), where ! is the matrix multiplication exponent, ! > 2. As
for the version of EG which is mentioned in Section 5.1, its arithmetic complexity is O(n3d 2). However it
is possible to use for RR the same complexity decreasing approach as for EG (see, for example, [3]), getting
an operator with a triangular frontal matrix. The arithmetic complexity is then O(n3d 2), as for EG.
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