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ABSTRACT
We describe an algorithm for �nding the positive integer so-

lutions n of orbit problems of the form �

n

= �, where �

and � are given elements of a �eld K. Our algorithm cor-

rects the bounds given in [7], and shows that the problem

is not polynomial in the Euclidean norms of the polyno-

mials involved. Combined with a simpli�ed version of the

algorithm of [8] for the �speci�cation of equivalence�, this

yields a complete algorithm for computing the dispersion of

polynomials in nested hypergeometric extensions of rational

function �elds. This is a necessary step in computing sym-

bolic sums, or solving di�erence equations, with coe�cients

in such �elds. We also solve the related equations p(�

n

) = 0

and p(n;�

n

) = 0 where p is a given polynomial and � is

given.

1. INTRODUCTION
Given a polynomial ring K[X] over a �eld K and an auto-

morphism � ofK[X], the dispersion (w.r.t. �) is the function

Dis

�

: K[X] �K[X] ! Z[ f+1g

given by

Dis

�

(p; q) = maxfn � 0 such that deg(gcd(p; �

n

q)) > 0g ;

where max(;) = �1 by convention. We also write Dis

�

(p)

for Dis

�

(p; p). Introduced with respect to the shift �X =

X+1 in [1] in order to compute rational sums, this function

plays a key role in symbolic summation algorithms [1, 8,

9] as well as for solving linear ordinary di�erence and q�

di�erence equations [3, 5]. We call it the hypergeometric

dispersion when X is hypergeometric over K, i.e. �(X)=X 2

K. When � is the identity on K and either �X = X + 1

or �(X)=X 2 K, then it can be computed by looking at

the largest integer root of res

X

(p; �

m

q) 2 K[m], where res

X

denotes the resultant operation in K[X]. We address in this

paper the problem of computing it in the more general case

�
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when X is hypergeometric overK andK is a tower of nested

hypergeometric extension of C (resp. C(n)), where

C = fa 2 K such that �a = ag

is the invariant �eld of K (resp. and �n = n+ 1).

The, seemingly unrelated, ��orbit problem is, given nonzero

�; � in a �eld F and an automorphism � of F , to com-

pute all the integers n > 0 such that

Q

n�1

i=0

�

i

� = �. In

the base case, when � is the identity on F and the equa-

tion to solve is �

n

= �, this problem is known as the orbit

problem. It has many important applications in theoretical

computer science since many reachability problems can be

reduced to it: the accessibility problem for linear sequential

machines [6], whether a power of a given matrix equals an-

other given matrix, whether a given vector is reached from

another by iterating a given linear map etc. A solution in

the base case and when F is an algebraic number �eld was

presented in [7].

The link between the dispersion and the orbit problem was

provided by Karr, who reduced in [8] the computation of

the dispersion over ����elds, which include hypergeomet-

ric extensions, to solving the orbit problem in the invariant

�eld of K. The orbit problem was not yet solved at that

time, so he made the additional hypothesis of an existence

of an algorithm for solving the orbit problem in that �eld.

One might conclude that combining the algorithms of [8]

and [7] solves the dispersion problem, but it turns out that

the bound presented in [7] is incorrect when j�j = j�j = 1,

and that in that case the solution of the orbit problem is

not bounded by any polynomial of the Euclidean lengths of

the inputs as claimed in [7].

We describe in this paper a complete algorithm for com-

puting dispersions in nested hypergeometric extensions, by

combining Karr's reduction with correct bounds for the or-

bit problem. We also discuss the related power root problem

as well as a bivariate variant that occurs when computing

hypergeometric dispersions without factorization, using re-

sultants instead.

Notations and conventions: Given a ring R, any map

� : R! R, x 2 R and a positive integer n, we let

x

n;�

=

n�1

Y

i=0

�

i

x :

All rings and �elds are of characteristic 0.



2. KARR’S REDUCTIONS
We describe in this section a restricted version of Karr's

algorithm that is su�cient to compute dispersions in nested

��hypergeometric extensions. Following [9], we say that F

is ��regular w.r.t. � if for any a 2 F and n > 0,

a

n;�

= 1 =) a

n

= 1 :

For an example of a non ��regular �eld, consider Q(X) with

� the automorphism that maps X to 1�X. Then,

�

X

1 �X

�

2;�

=

X

1�X

1�X

X

= 1

although X=(1 �X) is not a root of unity. Note that when

� 2 F

�

is not a root of unity and F is ��regular, then

the ��orbit problem has at most one solution. Indeed, if

�

n;�

= �

m;�

for m > n > 0, then

1 =

m�1

Y

i=n

�

i

� = �

n

�

�

m�n;�

�

;

which implies that �

m�n;�

= 1, hence that �

m�n

= 1. We

then say that F is computably ��regular w.r.t. � if there

is an algorithm for solving the ��orbit problem when � is

not a root of unity. We also say that � 2 F is a ��radical

over a sub�eld K of F if �x = �

n

x for some x 2 K

�

and

an integer n > 0. Note that roots of unity are ��radicals

over any sub�eld of F , since �1 = 1 = �

m

1 when �

m

= 1.

We can now describe Karr's �rst algorithm, which reduces

computing the dispersion of irreducibles in K[X] to solving

��orbit problems over K.

Theorem 1. [8] Let K[X] be a polynomial ring over a

�eld K and � be an automorphism of K[X] mapping K onto

K and X to aX for some a 2 K

�

. If a is not a ��radical

over K and K is computably ��regular, then there is an

algorithm for computing Dis

�

(p; q) for any irreducible p; q 2

K[X].

Proof. The proof is contained in the proof of Theo-

rem 4 of [8], but is reproduced here because it contains

the algorithm. Let p; q 2 K[X] be irreducible and sup-

pose that deg(gcd(p; �

m

q)) > 0 for some integer m > 0.

Since � preserves the degree and maps irreducibles to irre-

ducibles, it follows that �

m

q = up for some u 2 K

�

and

that deg(p) = deg(q). Since �X = aX, �

n

X = a

n;�

X for

n � 0. Write p =

P

d

i=0

p

i

X

i

and q =

P

d

i=0

q

i

X

i

where

p

d

6= 0 6= q

d

. Then,

�

m

q =

d

X

i=0

�

m

q

i

�

m

X

i

=

d

X

i=0

�

m

(q

i

)(a

m;�

)

i

X

i

= up ;

which implies that �

m

(q

i

)(a

m;�

)

i

= up

i

for 0 � i � d, hence

that p

i

6= 0 () q

i

6= 0 and

�

a

d�i

�(q

d

=q

i

)

q

d

=q

i

�

m;�

= (a

m;�

)

d�i

�

m

(q

d

=q

i

)

q

d

=q

i

=

p

d

=p

i

�

m

(q

d

=q

i

)

�

m

(q

d

=q

i

)

q

d

=q

i

=

p

d

=p

i

q

d

=q

i

for 0 � i < d such that p

i

6= 0 6= q

i

. If p

i

= q

i

= 0 for

0 � i < d, then d = 1, p = p

1

X and q = q

1

X, implying

that Dis

�

(p; q) = +1. Otherwise, let i < d be such that

p

i

6= 0 6= q

i

. Then, deg(gcd(p; �

m

q)) > 0 if and only if

�

m;�

= � where � = p

d

q

i

=p

i

q

d

2 K

�

and

� = a

d�i

�(q

d

=q

i

)=(q

d

=q

i

) 2 K

�

:

Since a is not a ��radical over K, � is not a root of unity,

so Dis

�

(p; q) can be computed. Note that it is �nite.

Although the above theorem requires p and q to be irre-

ducible, if we have an algorithm for factoring the elements

of K[X] into irreducibles, Theorem 7 of [5] shows how com-

puting dispersions of arbitrary polynomials can be reduced

to computing dispersions of irreducibles. We are thus re-

duced to solving ��orbit problems in K. If � is the identity

on K, then this is the classical orbit problem in K. Oth-

erwise, if K is the fraction �eld of a polynomial ring F [Y ]

where F is a sub�eld of K, then Karr's second reduction,

described below, reduces the ��orbit problem in K to com-

puting dispersions in F [Y ].

We �rst need to extend the notion of dispersion to fractions:

if � is an automorphism of F [Y ], then for p; q 2 F [Y ] such

that q 6= 0 and gcd(p; q) = 1, we de�ne

Dis

�

�

p

q

�

= maxfDis

�

(p);Dis

�

(p; q);Dis

�

(q; p);Dis

�

(q)g :

Recall that the order at 1 is the function �

1

(q) = � deg(q)

for q 2 F [Y ] n f0g, and given an irreducible p 2 F [Y ], the

order at p is the function

�

p

(q) = maxfn 2 Z such that p

n

jqg

for q 2 F [Y ] n f0g. They satisfy �

1

(ab) = �

1

(a) + �

1

(b)

and �

p

(ab) = �

p

(a) + �

p

(b) for a; b 2 F [Y ] n f0g. Both

functions are extended to fractions via �

1

(a=b) = �

1

(a)�

�

1

(b) and �

p

(a=b) = �

p

(a)� �

p

(b). Karr's algorithm relies

on the following properties of those functions.

Lemma 1. Let F [Y ] be a polynomial ring over a �eld F

and � be an automorphism of F [Y ] mapping F onto F and

Y to aY + b for some a 2 F

�

and b 2 F . Then, for any

f 2 F (Y )

�

and any integer n > 0,

(i) �

1

(f

n;�

) = n�

1

(f).

(ii) �

p

(f

n;�

) = n�

p

(f) for any irreducible p 2 F [Y ] such

that p j �p.

(iii) f =2 F =) Dis

�

(f

n;�

) = Dis

�

(f) + n� 1.

Proof. (i) (ii) Write f = q=h where q; h 2 F [Y ]nf0g and

gcd(q; h) = 1. Since � is a morphism, f

n;�

= (q

n;�

)=(h

n;�

).

Since � preserves the degree, deg (r

n;�

) = n deg(r) for any

r 2 F [Y ]nf0g, so �

1

(f

n;�

) = n deg(h)�n deg(q) = n�

1

(f).

Since p j �p and � maps irreducibles to irreducibles, �p = up

for some u 2 F

�

. Let r 2 F [Y ]nf0g and write r = p

�

t where

� = �

p

(r) and t 2 F [Y ] is such that p does not divide t.

Then, up = �p does not divide �t, so p does not divide �t.

Therefore, �r = �(p)

�

�t = u

�

p

�

�t so �

p

(�r) = � = �

p

(r),

which implies that �

p

(f

n;�

) = n�

p

(q)� n�

p

(h) = n�

p

(f).

(iii) For any irreducible p 2 F [Y ], we say that g 2 F (Y )

�

is p�orbital if g can be written as g = u

Q

�

i=�

�

i

(p)

e

i

where



u 2 F

�

and the e

i

's are integers such that and e

�

e

�

6= 0.

An orbital decomposition of g 2 F (Y )

�

is a factorization g =

g

1

: : : g

m

such that each g

i

is p

i

�orbital for some irreducible

p

i

and Dis

�

(p

i

; p

j

) = �1 for i 6= j. Suppose �rst that f 2

F (Y ) n F is p�orbital and write f = u

Q

�

i=�

�

i

(p)

e

i

. Then,

f

n;�

= (u

n;�

)

�+n�1

Y

i=�

�

i

(p)

f

i

where f

�

= e

�

6= 0 and f

�

= e

�

6= 0. If p j �

m

p for

some integer m > 0, then Dis

�

(f) = Dis

�

(f

n;�

) = +1 by

Theorem 6 of [5]. Otherwise, Lemma 17 of [5] states that

Dis

�

(f) = � � � and that Dis

�

(f

n;�

) = � + n � 1 � � =

Dis

�

(f) + n � 1.

Let now f 2 F (Y ) n F be arbitrary. By Lemma 17 of [5],

f has an orbital decomposition f = f

1

: : : f

m

. It follows

that f

n;�

= (f

1

n;�

) : : : (f

m

n;�

) is an orbital decomposition

of f

n;�

, and Lemma 15 of [5] implies that

Dis

�

(f

n;�

) = max

1�i�n

(Dis

�

(f

i

n;�

))

= max

1�i�n

(Dis

�

(f

i

) + n� 1)

= max

1�i�n

(Dis

�

(f

i

)) + n� 1 = Dis

�

(f) + n� 1 :

We need some additional terminology: p 2 F [Y ] is called

semi�invariant (w.r.t. �) if �(p)=p 2 F

�

, and it is called

semi�periodic (w.r.t. �) if �

m

(p)=p 2 F

�

for some integer

m > 0. The smallest such m is then called the period of

p (w.r.t. �). Karr's reduction of the ��orbit problem to

dispersions now follows.

Theorem 2. [8] Let F [Y ] be a polynomial ring over a

�eld F , � be an automorphism of F [Y ] mapping F onto F

and Y to aY + b for some a 2 F

�

and b 2 F . If every semi�

periodic p 2 F [Y ] has period 1, if F is computably ��regular

and if there is an algorithm for computing Dis

�

(p; q) for any

p; q 2 F [Y ], then F (Y ) is computably ��regular.

Proof. This is essentially Theorem 5 of [8], with the

hypothesis that F [Y ] is a ���extension of F replaced by

the weaker hypothesis that every semi�periodic polynomial

is a semi�invariant. Let f; g 2 F (Y )

�

and suppose that f is

not a root of unity and that f

n;�

= g for some n > 0. If

�

1

(f) 6= 0, then n = �

1

(g)=�

1

(f) by part (i) of Lemma 1.

If �

p

(f) 6= 0 for any irreducible semi�periodic p 2 F [Y ],

then n = �

p

(g)=�

p

(f) by part (ii) of Lemma 1. Otherwise,

neither the numerator nor the denominator of f has a semi�

periodic factor, and Theorem 6 of [5] implies that Dis

�

(f) is

�nite. If f =2 F , then n = Dis

�

(g)�Dis

�

(f)+1 by part (iii)

of Lemma 1. Otherwise, f 2 F , which implies that g 2 F

and the value of n can be computed since F is computably

��regular.

We can now apply the above reductions one after the other

to compute dispersions in towers of ��hypergeometric exten-

sions: let R = C(X

1

; : : : ; X

m

)[X

m+1

] (respectively C(X

0

)

(X

1

; : : : ; X

m

)[X

m+1

]) where � is the identity on C, �X

0

=

X

0

+ 1 and �(X

i+1

)=X

i+1

= a

i

2 K

�

i

for 0 � i � m, where

K

i

= C(X

1

; : : : ; X

i

) (resp. C(X

0

)(X

1

; : : : ; X

i

)). Suppose

that a

i

is not a ��radical over K

i

for 0 � i � m, which

implies that the hypotheses of Theorems 1 and 2 are sat-

is�ed throughout the tower (this follows from Theorem 2

of [8] or Theorem 4 of [5]). Theorem 1 reduces comput-

ing dispersions in R to solving ��orbit problems in K

m

.

This is reduced by Theorem 2 to computing dispersions in

K

m�1

[X

m

], which is again reduced by Theorem 1 to solv-

ing ��orbit problems in K

m�1

. Continuing this process, we

eventually get to solving ��orbit problems in either C or

C(X

0

). In C, this is the classical orbit problem, which we

address in the next section. In C(X

0

), this is reduced by

Theorem 2 to computing dispersions in C[X

0

], a problem

which is classically solved by computing the integer roots of

res

X

0

(p(X

0

); q(X

0

+m)) 2 C[m], although one can also use

factorization into irreducibles and Theorem 7 of [5].

3. THE ORBIT PROBLEM
We now turn to the orbit problem, i.e. given �; � in a �eld

F , �nd the positive integer solutions of �

n

= �. To avoid

the various open problems associated with transcendental

numbers, we make the following computability assumptions

about F : that we can test whether an element of F is alge-

braic or transcendental over Q, and that we can test whether

any two elements of F are algebraically independent over Q.

Suppose �rst that � is transcendental over Q. If � and �

are algebraically independent over Q, then the correspond-

ing orbit problem has no solution. Otherwise, � is algebraic

over Q(�) and looking at the degree at which � appears in

� gives at most one candidate solution for the orbit prob-

lem, which is then solved. So suppose from now on that �

is algebraic over Q and let f

�

2 Q[X ] be its monic mini-

mal polynomial over Q and n

�

= deg(f

�

). Since the orbit

problem has no solution if � is transcendental over Q or if

� =2 Q(�) (something that we can test when � is algebraic

over Q), we can assume that � 2 Q(�), hence that � = q(�)

for some polynomial q 2 Q[X ] such that deg(q) < n

�

. If

�

m

= 1 for some integer m > 0, then we can test whether

�

i

= � for 0 � i < m. If this is not the case, then the or-

bit problem has no solution, otherwise its solutions consist

of all the integers of the form i

0

+ km

0

where k � 0, i

0

is

the smallest i � 0 such that �

i

= � and m

0

is the small-

est m > 0 such that �

m

= 1. So we assume in the rest of

this section that � is not a root of unity, which implies that

the orbit problem has at most one solution. We �rst give

a counterexample to Theorem 3 of [7], in which the solu-

tion m is not bounded by any polynomial in n

�

, log jqj and

log jf

�

j, where jpj denotes the Euclidean norm of the vector

of coe�cients of p 2 Q[X ].

Example 1. Take � = (3 + 4

p

�1)=5, then f

�

(X) =

X

2

�6X=5+1, n

�

= 2 and jf

�

j =

p

1 + 36=25 + 1 =

p

86=5.

Let (a

m

)

m>0

and (b

m

)

m>0

be the sequences of rational num-

bers de�ned by �

m

= a

m

�+ b

m

, and let q

m

= a

m

X + b

m

2

Q[X]. It is easy to verify by induction on m that a

1

= 1,

b

1

= 0,

a

m+1

=

6

5

a

m

+ b

m

and b

m+1

= �a

m

for m > 0 :



Solving the above recurrences yields

a

m

=

5

8

p

�1

��

3� 4

p

�1

5

�

m

�

�

3 + 4

p

�1

5

�

m

�

=

5

4

sin(m�)

and

b

m

= �

5

8

p

�1

 

�

3� 4

p

�1

5

�

m�1

�

�

3 + 4

p

�1

5

�

m�1

!

= �

5

4

sin((m� 1)�)

where � 2 R is such that � = e

�

p

�1

. Therefore,

jq

m

j =

p

a

2

m

+ b

2

m

=

5

4

p

sin(m�)

2

+ sin((m� 1)�)

2

�

5

4

p

2:

The function f(x) =

p

sin(x)

2

+ sin(x� �)

2

is periodic and

continuous on R so let �(f) = min

0�x<2�

(f(x)) � 0. Since

sin(�) = 4=5, � is not an integer multiple of �, so �(f) > 0

and we have

0 <

5

4

�(f) �

5

4

f(m�) = jq

m

j �

5

4

p

2 ;

which implies that there are real numbers A < B such that

A � log jq

m

j � B. So for any function P (x; y; z) continuous

on (2; log(

p

86=5); [A : : : B]), in particular any polynomial,

choosing � = q

m

(�) where m is larger than the maximum of

P on the above domain yields an instance of the orbit prob-

lem whose solution is not bounded by P (n

�

; log jf

�

j; log jqj).

We now correct the upper bounds given in [7] for solving

the orbit problem. If �, which is assumed not to be a root

of unity, is an algebraic integer, then the bound of [7] is

correct: they use the results of [4] and obtain the bound

m � n

�

+ 60n

2

�

ln(6n

�

)(log(n

�

+ 1) + log jqj) : (1)

If � is not an algebraic integer, let then B;D 2 Z be such

that B > 0, D > 0, B� is an algebraic integer and Dq 2

Z[X]. B can be chosen to be the least common multiple

of the denominators of the coe�cients of f

�

(but B is not

always bounded by jf

�

j as is wrongly stated in [7], see Ex-

ample 2), and D can be chosen to be the least common

multiple of the denominators of the coe�cients of q. Since

deg(q) < n

�

, B

n

�

�1

Dq(�) is an algebraic integer. How-

ever B

n

�

q(�) is not always an algebraic integer (as wrongly

stated in [7]) since it can happen that D > B as in Exam-

ple 2. Using the unique factorization of ideals in number

rings as in [7], we then obtain the bound

m � (n

�

� 1) logB + logD (2)

on the solution of the orbit problem. Together, bounds (1)

and (2) provide a complete solution to the orbit problem.

This new bound is polynomial in n

�

, log jqj and in the num-

ber of bits required to express the coe�cients of f

�

and q

as exact rational numbers: let M 2 Z be the maximum of

the absolute values of the denominators of those coe�cients.

Since we can choose B �M

n

�

and D �M

n

�

, it follows that

the bound (2) is at most n

2

�

logM .

Example 2. Using the same � as in Example 1, we see

that B = 5 is the smallest positive integer such that B� is

an algebraic integer, while jf

�

j =

p

86=5 < B. It follows

from the expressions for a

m

and b

m

that 5

m�1

8q

m

2 Z[X].

Therefore, the bound given by (2) for the orbit problem �

n

=

q

m

(�) is

n � logB + logD = log 5 + log(5

m�1

8)

= m log 5 + log 8 � 2:3m+ 3 ;

which is correct since the solution is n = m.

Bounds (1) and (2) provide a worst�case guaranteed algo-

rithm but a smaller set of candidate solutions can be ob-

tained for most practical instances of the orbit problem:

whenever we can compute A;B;C;D 2 Q such that A <

j�j < B and either C < j�j < D < 1 or 1 < C < j�j < D,

then the constraint (C

n

; D

n

) \ (A;B) 6= ; yields a (gener-

ally small) number of possibilities for n. Finally we note

that they are other algorithms for special cases of the or-

bit problem that can yield better bounds: Shank [11] and

Abramov [2] both describe algorithms for the quadratic case.

ForM 2 Z larger than the absolute values of the numerators

and denominators of the coe�cients of f

�

and q, the number

of arithmetic operations of the method of [2] is O(log logM)

and its bit�complexity is O(logM(log logM)

2

log log logM).

4. THE POWER ROOT PROBLEM
We discuss in this section the variant of the orbit prob-

lem that arises when solving q�di�erence equations, as well

as a more general bivariate version. When bounding the

degree n of the polynomial solutions of a q�di�erence equa-

tion with coe�cients in a polynomial ring C[X], one obtains

an indicial equation p 2 C[X] similar to the one used for

di�erential or di�erence equations. But instead of having

p(n) = 0 as in the classical cases, the condition on the de-

gree is p(q

n

) = 0 [3] where q 2 C is such that �X = qX.

This is an instance of the power root problem: given � al-

gebraic over a �eld F and a polynomial p with coe�cients

in F , determine all the integers n > 0 such that p(�

n

) = 0.

Assuming that we can determine all the roots in F (�) of

polynomials with coe�cients in F , which is always the case

if we can factor elements of F (�)[X] into irreducibles, then

it simply means solving the orbit problems �

n

= �

i

, where

�

1

; : : : ; �

m

2 F (�) are the roots of p in F (�).

Example 3. Consider the q�di�erence equation

4(2x+ 1)y(2x)� 3

p

2y(x

p

2) + (x+ 1)y(x) = 0 : (3)

If it has a solution y 2 Q(

p

2)(x) with a denominator of the

form x

m

d(x) where m � 0 and d(0) 6= 0, then

p

2

m

is a root

of the indicial equation Z

2

� 3

p

2Z + 4 = 0 (see [3]). This

is an instance of the power root problem. Since the indicial

equation factors in Q(

p

2)[Z] as

Z

2

� 3

p

2Z + 4 = (Z � 2

p

2)(Z �

p

2)

we must solve the orbit problems �

m

= �

1

and �

m

= �

2

where � = �

1

=

p

2 and �

2

= 2

p

2. We have n

�

= 2, q = X

for �

1

and q = 2X for �

2

, so (1) yields the upper bounds

m < 948 for �

1

and m < 1544 for �

2

. In that particular

case, since

1 <

7

5

< j�j <

36

25

;

7

5

< j�

1

j <

36

25

and

14

5

< j�

2

j <

72

25



we obtain the necessary conditions

�

7

5

�

m

<

36

25

for �

1

and

�

7

5

�

m

<

72

25

for �

2

:

Taking logarithms on both sides yields the improved bounds

m < 2 for �

1

and m < 4 for �

2

. Checking powers �nally

yields the solutions �

1

= �

1

and �

2

= �

3

. It turns out that

1=x

3

is indeed a rational solution of (3).

A more interesting variant arises when one computes dis-

persions through resultants in C(n)[t] with respect to the

automorphism � that maps n to n+ 1 and t to at for some

a 2 C(n). This yields an instance of the following bivariate

power root problem: given � algebraic over a �eld F and a

bivariate polynomial p with coe�cients in F , determine all

the integers n > 0 such that p(n; �

n

) = 0. To solve it, we

need the following variant of Theorem 1 of [10].

Lemma 2. Let p; q 2 K[X] be polynomials over a �eld K,

with p 6= 0, q monic and n = deg(q) > 0. Let Y

0

; : : : ; Y

n�1

be indeterminates over K and write the remainder of

p(Y

0

+ Y

1

X + � � �+ Y

n�1

X

n�1

)

by q in K[Y

0

; : : : ; Y

n�1

][X] as V

n�1

X

n�1

+ � � �+ V

1

X + V

0

where V

i

2 K[Y

0

; : : : ; Y

n�1

]. If q is squarefree, then the

system of equations

V

0

(Y

0

; : : : ; Y

n�1

) = � � � = V

n�1

(Y

0

; : : : ; Y

n�1

) = 0 (4)

has at most deg(p)

deg(q)

solutions in the algebraic closure K

of K.

Proof. Because of di�erences between our lemma and

Osipov's result [10], we present a modi�cation of his proof

adapted for our case. Since q is squarefree, let �

1

; : : : ; �

n

be its distinct roots in K, and let �

1

; : : : ; �

k

be the dis-

tinct roots of p in K, where k � deg(p). For any root

(y

0

; : : : ; y

n�1

) 2 K

n

of (4) and for 1 � i � n we have

p(y

0

+ y

1

�

i

+ � � �+ y

n�1

�

n�1

i

) =

V

0

(y

0

; : : : ; y

n�1

) + V

1

(y

0

; : : : ; y

n�1

)�

i

+ � � �+ V

n�1

(y

0

; : : : ; y

n�1

)�

n�1

i

= 0 :

Therefore, y

0

+ y

1

�

i

+ � � � + y

n�1

�

n�1

i

2 f�

1

; : : : ; �

k

g for

1 � i � n, so (y

0

; : : : ; y

n�1

) is a solution of the linear system

0

B

B

B

@

1 �

1

: : : �

n�1

1

1 �

2

: : : �

n�1

2

.

.

.

.

.

.

.

.

.

.

.

.

1 �

n

: : : �

n�1

n

1

C

C

C

A

0

B

B

B

@

Y

0

Y

1

.

.

.

Y

n�1

1

C

C

C

A

=

0

B

B

B

@

z

0

z

1

.

.

.

z

n�1

1

C

C

C

A

(5)

where the right�hand side is in f�

1

; : : : ; �

k

g

n

. This means

that there are at most k

n

possible systems of the form (5),

each having a unique solution in K

n

since its matrix is an

invertible Vandermonde. Therefore, the system (4) has at

most k

n

solutions in K.

We also make use of the following classical result, whose

proof is a simple exercise in high�school mathematics, for

bounding the numerators and denominators of fractional ze-

ros of polynomials with integer coe�cients.

Lemma 3. Let p =

P

b

i=a

p

i

X

i

be a polynomial over a

unique factorization domain R with a � b. For any q 6= 0

in the quotient �eld of R,

p(q) = 0 =) p

b

q 2 R and p

a

q

�1

2 R :

We now have the following algorithm for solving the bivari-

ate power root problem over Q.

Theorem 3. If � 2 Q is not a root of unity, then for any

p 2 Q[Z; Y ] with deg

Z

(p) > 0, the set of positive integer so-

lutions of p(n; �

n

) = 0 is �nite, and it is possible to compute

an upper bound for that set.

Proof. Let f

�

2 Q[X] is the monic minimal polynomial

for � over Q, n

�

= deg(f

�

) and write the remainder of

p(Z; Y

0

+ Y

1

X + � � �+ Y

n

�

�1

X

n

�

�1

)

by f

�

in Q[Z; Y

0

; : : : ; Y

n

�

�1

][X] as V

n

�

�1

X

n

�

�1

+ � � � +

V

1

X + V

0

where V

i

2 Q[Z; Y

0

; : : : ; Y

n

�

�1

]. Let I be the

ideal of Q[Z; Y

0

; : : : ; Y

n

�

�1

] generated by (V

0

; : : : ; V

n

�

�1

).

Lemma 2 applied to p, q = f

�

and K = Q(Z) implies that

for 0 � i < n

�

, I\Q[Z; Y

i

] contains some polynomial U

i

such

that deg

Y

i

(U

i

) > 0 (the system (4) would have in�nitely

many solutions otherwise). Furthermore, such U

i

's can be

computed using elimination techniques (e.g. resultants or

Gröbner bases) and any (z; y

0

; y

1

; : : : ; y

n

�

�1

) 2 Q

n+1

satis-

fying p(z; y

0

+ y

1

� + : : : y

n

�

�1

�

n

�

�1

) = 0 must also be a

zero of I, so it is a solution of

U

0

(z; y

0

) = � � � = U

n

�

�1

(z; y

n

�

�1

) = 0 : (6)

Multiplying them by su�ciently large integers, we can as-

sume that U

i

2 Z[Z;Y

i

] for each i, so write them as

U

i

= W

i;M

i

Y

M

i

i

+ � � �+W

i;m

i

Y

m

i

i

where W

ij

2 Z[Z],W

i;M

i

6= 0 and W

i;m

i

6= 0. Let now

S =

[

0�i<n

�

fm 2 Z s.t. W

i;M

i

(m) = 0 or W

i;m

i

(m) = 0g :

Since S is �nite, the solutions m 2 S of p(m;�

m

) = 0 can

be found by exhaustive search. Let now m > 0 be a solution

outside S of the bivariate power root problem, i.e. m =2 S

and p(m;�

m

) = 0, and let q = q

0

+q

1

X+: : : q

n

�

�1

X

n

�

�1

be

the unique polynomial in Q[X] of degree at most n

�

�1 such

that �

m

= q(�). Then, (m; q

0

; q

1

; : : : ; q

n

�

�1

) is a solution

of the system (6), which implies that each q

i

is a root of

Q

i

= W

i;M

i

(m)Y

M

i

+ � � �+W

i;m

i

(m)Y

m

i

2 Z[Y ] :

Lemma 3 then implies that W

i;M

i

(m)q

i

and W

i;m

i

(m)q

�1

i

are both in Z. Suppose �rst that � is an algebraic integer.

Since m =2 S, W

i;m

i

(m) 6= 0 must be a multiple of the

numerator of q

i

, which implies that jq

i

j � jW

i;m

i

(m)j, hence

that

jqj �

q

W

2

0;m

0

(m) + � � � +W

2

n

�

�1;m

n

�

�1

(m) :

By the results of Section 3, the inequality (1) must hold

since �

m

= q(m), so combining with the above bound on jqj

we obtain

m � c

1

+ c

2

log

�

W

2

0;m

0

(m) + � � �+W

2

n

�

�1;m

n

�

�1

(m)

�

(7)



where

c

1

= n

�

+ 60n

2

�

ln(6n

�

) log(n

�

+ 1) and c

2

= 30n

2

�

ln(6n

�

) :

Suppose now that � is not an algebraic integer and let B 2 Z

be such that B > 0 and B� 2 Z. Since W

i;M

i

(m) 6= 0 must

be a multiple of the denominator of q

i

, W (m)q 2 Z where

W = lcm(W

0;M

0

; : : : ;W

n

�

�1;M

n

�

�1

) 2 Z[Z]. By the results

of Section 3, the inequality (2) must hold, which implies that

m � (n

�

� 1) logB + log jW (m)j : (8)

In all cases we have produced real constants C

1

� 0, C

2

> 0

and a polynomial Q 2 Z[Z] such that for any solution m > 0

of p(m;�

m

) = 0, either m 2 S or m � C

1

+ C

2

log jQ(m)j.

Since

lim

m!+1

C

1

+ C

2

log jQ(m)j

m

= 0

and S is �nite, this proves that there are �nitely many solu-

tions. We have a trivial bound for m when Q has degree 0,

so suppose that d = deg(Q) > 0, and write Q =

P

d

i=0

Q

i

Z

i

with Q

d

6= 0. Then, jQ(m)j � �m

d

for m � 1 where

� = max(1; (d+ 1)max

0�i�d

jQ

i

j), which implies that

1 � m � C

1

+ C

2

log jQ(m)j � B

1

+B

2

logm

where B

1

= C

1

+ C

2

log � � 0 and B

2

= C

2

d > 0. Let g be

the function mapping x > 0 to x � (B

1

+ B

2

log x). Since

dg=dx = 1�B

2

=x is positive for x > B

2

, g is monotonically

increasing for x > B

2

. If g(B

2

) � 0, then x > B

1

+B

2

log x

for x > B

2

, which implies thatm � B

2

. Otherwise, since g is

smooth and strictly increasing on (B

2

;+1), it has exactly

one zero in (B

2

;+1), which can be approximated easily

since dg=dx tends to 1 as x tends to in�nity. The ceiling of

any such approximation is an upper bound for m.

5. REFERENCES
[1] S. A. Abramov. On the summation of rational

functions. USSR Computational Mathematics and

Mathematical Physics, 11:324�330, 1971.

[2] S. A. Abramov. Complexity of the solution of

exponential equation and the orbit problem for

second-order matrices. Moscow University

Computational Mathematics and Cybernetics, 4:55�63,

1987.

[3] S. A. Abramov. Rational solutions of linear di�erence

and q�di�erence equations with polynomial

coe�cients. Programming and Computer Software,

21:273�278, 1995.

[4] P. Blanksby and H. Montgomery. Algebraic integers

near the unit circle. Acta Arithmetica, 18:355�369,

1971.

[5] M. Bronstein. On solutions of linear ordinary

di�erence equations in their coe�cient �eld. Journal

of Symbolic Computation, 29(in press), 2000. Also

available as INRIA Research Report RR�3797.

[6] M. Harrison. Lectures on sequential machines.

Academic Press, Orlando, 1969.

[7] R. Kannan and R. Lipton. Polynomial�time algorithm

for the orbit problem. Journal of the ACM,

33(4):808�821, October 1986.

[8] M. Karr. Summation in �nite terms. Journal of the

ACM, 28:305�350, Apr. 1981.

[9] M. Karr. Theory of Summation in Finite Terms. J.

Symbolic Computation, 1(3):303�316, September 1985.

[10] N. Osipov. On the simpli�cation of nested real

radicals. Programming and Computer Software,

23:142�146, 1997.

[11] H. Shank. The rational case of a matrix problem of

Harrison. Discrete Mathematics, 28:207�212, 1979.


