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We consider systems of linear q-di�erence equations with polynomial coe�cients. The
equations of systems can be of arbitrary order. Using EG-eliminations, we propose for such
systems, a direct algorithm for �nding rational solutions, i.e., solutions whose components
are rational functions. The algorithm is direct, i.e., it does not require preliminary cyclic
vector method applying, or another type of uncoupling of the system.
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1. Introduction

Algorithms for q-di�erence equations are of interest for many areas of mathematics,
especially for combinatorics and partitions theory ( [1]).

Below, we consider linear q-di�erence systems with coe�cients belonging to K[x],
where K = K(q), and K is a �eld of characteristic 0, and q is transcendental over K.
A system is of the form

Ar(x)y(q
rx) + · · ·+A1(x)y(qx) +A0(x)y(x) = b(x), (1)

where

� A0(x), A1(x), . . . , Ar(x) are m × m-matrices, whose elements belong to K[x] (we
write: A0(x), A1(x), . . . , Ar(x) ∈ Matm(K[x])), it is supposed that the matrices
A0(x), Ar(x) are non-zero,

� b(x) = (b1(x), . . . , bm(x))T ∈ K[x]m is the right-hand side of the system,
� y(x) = (y1(x), . . . , ym(x))T is an unknown column.

r is the order of system (1).
The system

Ar(x)y(q
rx) + · · ·+A1(x)y(qx) +A0(x)y(x) = 0 (2)

is the homogeneous system for (1). Systems (1), (2) can be rewritten using the q-shift
operator σq : σqy(x) = y(qx). The matrices Ar(x) and A0(x) are called the leading
and, resp., the trailing matrices of systems (1), (2).

One of known computer algebra approaches to the search for solutions of linear
systems is the cyclic vector method, which transforms a system into a scalar equation
(a scalar equation can be considered as a system having only one equation involving
one unknown), which is equivalent in in a certain sense to the original system. Here
the main problem is the overgrowth of the coe�cients. This is the reason why this
method works in general, for systems of small orders. This stimulates elaborating of
direct algorithms which do not require preliminary cyclic vector method applying, or
another type of uncoupling of a system.

In this paper we consider direct algorithms for constructing the solutions of a sys-
tem having the form (1) with y1(x), . . . , ym(x) belonging to the �eld K(x) of rational
functions of x over K. We call such solutions rational. If y(x) ∈ K[x]m, then this



solution is polynomial (a particular case of rational solutions). Rational solutions may
be a building block for other types of solutions, and more general, such algorithms may
be a part of various computer algebra algorithms.

We will also need solutions y(x) = (y1(x), y2(x), . . . , ym(x))T ∈ K((x))m whose
components are formal Laurent series (Laurent solutions).

We will suppose that equations of the original system as well as equations of the
homogeneous system (2), are independent over K[x, σq , σ

−1
q

] (i.e., those systems are of

full rank).
Various questions related the search for rational solutions both for the scalar equa-

tions and for systems were discussed in, e.g., [2�8] For the q-di�erence case, some al-
gorithms were proposed in, e.g., [9], [10] for constructing all rational solutions of scalar
linear equations and for �rst-order linear normal systems, i.e., the systems of the form

y(qx) = A(x)y(x), (3)

where A(x) is a non-singular (invertible in Matm(K(x))) matrix.
The possible singularity of the leading or the trailing matrices give rise to interrup-

tions of the search for solutions of a system (by the way, if the system (3) is rewritten
as Imy(qx)−A(x)y(x) = 0, where Im is the identity m×m-matrix then −A(x) is the
trailing matrix of the system.

The same can be said about the possible singularity of the leading or the trail-
ing matrices of the so called induced recurrent (di�erence) system: a formal series∑

anxn, an ∈ Km, satis�es the original q-di�erence system if and only if the sequence
(an) of m-dimensional vectors satis�es the induced recurrent system. In Section 2,
we discuss the algorithm of EG-eliminations which allows to transform the original q-
di�erence system and the induced recurrent system into systems having a non-singular
leading or trailing matrix. After computing the determinant of the non-singular lead-
ing matrix one can �nd a lower bound for valuations of formal Laurent series solutions.
An upper bound for degrees of polynomial solutions can be found using the non-zero
determinant of the trailing matrix (see subsection 2.2).

As for rational solutions, the search for them consists of two steps:
1) constructing a so called universal denominator or, in another terminology, a de-

nominator bound, and
2) constructing the corresponding numerators of the components of the solutions.
The numerators mentioned in step 2 are the components of polynomial solutions of

the system obtained from the original system by means of a special substitution on the
base of the universal denominator constructed on step 1. Using the leading and the
trailing matrices of the original system (possibly that after applying EG-eliminations)
allows to construct the part of the universal denominator that contains only the factors
other than x. Concerning the factors of the form xk, it is remarked in [10, Sect. 2.2]
that a bound for n can be obtained when one considers rational solutions as Laurent
series solutions at x = 0.

The �rst algorithm and an example of constructing polynomial solutions of q-di�e-
rence systems of arbitrary order were given in [13, Sect. 3.6, Ex. 9]. Concerning
the universal denominators, note that strictly speaking the paper [10] is dedicated to
�rst-order systems. However, in that paper, some general principals are formulated
which allow to solve the problem of constructing rational solutions in the case of higher
order systems, by modifying algorithms for the di�erence case (such algorithms were
published earlier). In [10], [11] it is noted that for constructing the part of the universal
denominator that contains only the factors other than x, it is reasonable to use the
slightly modi�ed version (x + i → xqi) of an algorithm for the di�erence case (such
an algorithm for higher order di�erence systems was proposed in [12]). The treatment
of rational solutions as Laurent ones to work with the factors xk was considered also
in [10].

In the present paper we follow this natural plan and obtain an algorithm for con-
structing rational solutions of systems of the form (1) (we suppose that the system



is of full rank). More, in Section 3 we mention another approach, transferring to the
q-di�erence case the approach which was discussed in [6], [7], [8] for constructing uni-
versal denominators in the di�erence case. For constructing polynomial solutions the
algorithms from [13], [18], [16] can be used. Those algorithms are also based on EG-
eliminations.

In [17], J.Middeke shown that the Popov normal form can also be used for �nding
bounds for the exponent k and the degrees of polynomial solutions. At the same time,
comparisons of the di�erent tools were not carried out.

2. Preliminaries

2.1. Embracing systems

Consideration of the so-called embracing systems, described in Section 2.2, allows us to
avoid the assumption of invertibility of the matrices Ar(x), A0(x).

For any system S of the form (1) one can construct an l-embracing system S̄

Ār(x)y(q
rx) + · · ·+ Ā1(x)y(qx) + Ā0(x)y(x) = b̄(x), (4)

with the leading matrix Ār(x) being non-singular, and with the set of solutions con-
taining all the solutions of the system S. Similarly, one can construct a t-embracing

system ¯̄S
¯̄Ar(x)y(q

rx) + · · ·+ ¯̄A1(x)y(qx) +
¯̄A0(x)y(x) =

¯̄b(x), (5)

whose trailing matrix is non-singular, and with the set of solutions containing all the
solutions of the system S. All the entries of the matrices and of the right-hand sides of

(1), (2) are in K[x]. It is possible that the matrices Ā0(x),
¯̄Ar(x) are zero, either both

or one of them.
The construction of the embracing systems can be performed with the algorithms

EG ( [13]) or its improved version ( [18]).

Remark 1 If S̄ and ¯̄S are l- and t-embracing systems constructed for (1) by the al-
gorithm EG then l- and t-embracing systems constructed by the algorithm EG for (2),

coincide with the homogeneous systems corresponding to S̄ and ¯̄S.

The algorithm EG is applicable also to di�erence (recurrent) systems. Sequential
solutions (i.e., solutions having the form of sequences) of such systems are interesting
for us.

2.2. Induced recurrent systems

A formal Laurent series
∑

anxn, an ∈ Km satis�es original q-di�erence system (1), if
and only if the sequence (an) of m-dimensional vectors satis�es the induced recurrent
system

Pl(n)an+l + · · ·+ Pt(n)an+t = cn, (6)

where (cn) is the sequence of coe�cients of the Laurent series which is the expansion
of the right-hand side b(x) of the original q-di�erence system. The induced system can
be constructed in 3 steps:

1) rewrite the original system in the operator-matrix form My = b, where
M ∈ Matm(K[x, σq ]),

2) in the matrix M , replace σq → qn, x → σ−1, where σ is the shift-operator:
σfn = fn+1 for any double sided sequence (fn),

3) rewrite the obtained system in the form (6).



Below, we will need the notion of the valuation of a series: for a non-zero Laurent
series f(x) =

∑
fix

i. The valuation of this series is

valf(x) = min{i ∈ Z | fi ̸= 0},

and conventionally valf(x) = ∞ for the zero series f(x). The valuation of the vector
whose components are series, is the minimal valuation of the components.

The degree of the vector with polynomial components is the maximal degree of the
components. The degree of the zero polynomial is −∞.

If the induced system (6) is such that detPt(n) is a non-zero polynomial in qn, then
one can �nd a lower bound for valuations of formal Laurent series solutions. An upper
bound for degrees can be found using the non-zero determinant of the trailing matrix.
The following theorem is a combined version of Theorem 1, 2 from [10].

Theorem 1 Let recurrent system (6) is such that if a formal Laurent series
∑

anxn,
an ∈ Km (in particular, it can be a polynomial over Km) satis�es the original q-
di�erence system (1), then the sequence (an) of m-dimensional vectors satis�es (6).
Let pl(n) = detPl(n), pt(n) = detPt(n) (thus, pl(n), pt(n) are polynomials in qn). In
this case

(i) If the right-hand side b(x) is a Laurent series, and

� pl(n) is a non-zero polynomial in qn,
� Nl is the set (possibly empty) of all integer roots of the equation pl(n) = 0,
� the number β does not exceed the valuation of the right-hand side of the original

q-di�erence system (β = ∞, when the right-hand side b(x) is the zero column
vector),

then the valuation of any Laurent solution of system (1) cannot be less than

min(Nl ∪ {β}) + l.

(ii) If the right-hand side b(x) is polynomial, and

� pt(n) is a non-zero polynomial in qn,
� Nt is the set (possibly empty) of all integer roots of the equation pt(n) = 0,
� the number γ does not exceed the degree of the right-hand side of the original

q-di�erence system (γ = −∞, when the right-hand side b(x) is the zero column
vector),

then the degree of any polynomial solution of system (1) cannot be bigger than

max(Nt ∪ {γ}) + t.

If the leading or, resp., the trailing matrix of the induced system is singular then
one can apply the corresponding version of the algorithm EG and with Theorem 1 �nd
the needed bounds, this gives a key to construct Laurent and polynomial solutions.

3. Rational solutions

First, we �nd U(x) ∈ K(x) (U(0) ̸= 0) and k ∈ Z such that any rational solution
y(x) can be written as

y(x) =
xk

U(x)
z(x), (7)

where z(x) ∈ K[x]m. Then we produce the substitution (7) for y(x), and after cleaning
denominators we apply an algorithm for �nding polynomial solutions. The dissimilarity
between x and other irreducible polynomials is such that if p(x) ∈ K[x] is irreducible and
p(0) ̸= 0, then p(qhx) is also irreducible and relatively prime with p(x) for any h ∈ Z,



and di�erent values of h give di�erent irreducible polynomials. However this does not
take place for the polynomial x, which is not relatively prime with qx. This gives the
polynomial x a special status, which is not the case for the di�erence equations, when
any irreducible p(x) (in particular, p(x) = x) is relatively prime with p(x+ 1)).

We have stated that any rational solution can be considered as a Laurent solution.
Thus Theorem 1(ii) gives an opportunity to de�ne k for the factor xk. As for the poly-
nomial U(x), we �nd it in accordance with our scheme, using the �di�erence� algorithm
with the replacement of the shift σ by the q-shift σq . We give some de�nitions and then
describe the algorithm.

If F (x) is a rational function then we denote by denF (x) the denominator of F (x), i.e.

a monic polynomial such that F (x) =
f(x)

denF (x)
for a polynomial f(x) which is co-prime

with denF (x). If F (x) is a vector with rational function components F1(x), . . . , Fm(x)
then denF (x) is the least common multiple (lcm) of denF1(x), . . . , denFm(x).

We write f(x) ⊥ g(x) for relatively prime f(x), g(x) ∈ K[x], and f(x) ̸⊥ g(x), when
the polynomials have a common divisor of positive degree.

Each polynomial f(x) ∈ K(x) \ {0} can be represented as f(x) = xvs(x), where
v ∈ Z>0 and the polynomial s(x) is not divisible by x, i.e., s(0) ̸= 0. In this case we will
call s(x) the stem of f(x), we will use the notation ν(f(x)) for v. If ν(f(x)) = ν(g(x)) = 0,
then we can introduce the q-dispersion set of the polynomials f(x) and g(x):

qds(f(x), g(x)) = {h ∈ Z>0 | f(x) ̸⊥ g(qhx)}

and their q-dispersion:

qdis(f(x), g(x)) = max(qds(f(x), g(x)) ∪ {−∞}).

Similarly to the di�erence case, the q-dispersion is either a non-negative integer, or is
equal to −∞, the latter takes place if and only if f(x)⊥g(qhx) for all h ∈ Z>0.

As we have already said, if a polynomial p(x) ∈ K[x] is irreducible and ν(p(x)) = 0,
then the polynomial p(qhx), h ∈ Z>0, is also irreducible, and such polynomials are
relatively prime for di�erent values of h. This implies that if ν(f(x)) = ν(g(x)) =
0, then qds(f(x), g(x)) is a �nite set. This set can be found, e.g., by computing
all the roots having the form λ = qh, h ∈ Z>0, of the equation R(λ) = 0, where
R(λ) = Resx(f(x), g(λx)), or by an analog of the algorithm of Y.Man and F.Wright
( [14]), which is originally for the di�erence case. We see that if an irreducible p(x)
has the form p(x) = xl + al−1x

l−1 + . . . then p(qhx) = qlh(xl + q−hal−1x
l−1 + . . . );

it is important that deg g(x) = deg g(qhx) for all h ∈ Z>0. (In [15], an algorithm was
proposed which is applicable also in the case where q is algebraic number which is not
a root of 1.)

Thus, when k is found, we have to construct such a polynomial U(x) that possess
the following properties

(a) ν(U(x)) = 0,
(b) if the original system has a rational solution having the denominator u(x), then

U(x) is divisible by the stem of u(x).

When k and U(x) are known we can use substitution (7).
One can �nd U(x) similarly to the universal denominator in the di�erence case

( [12]). In the algorithm, we use the notation gcd(f(x), g(x)) for the greatest common
divisor of polynomials f(x), g(x).
Set
A(x) = (det Ār(q−rx))/xar , B(x) = (det ¯̄A0(x))/xa0 ,
where

ar = ν (det Ār(x)), a0 = ν (det ¯̄A0(x)).



Compute H = qds(A(x), B(x)). If H = ∅ then stop with U(x) = 1 (in the sequel we
suppose that H = {h1, h2, . . . , hs} with h1 > h2 > · · · > hs, s > 1).
Set U(x) = 1.
for i=1 to s do

N(x) = gcd(A(x), B(qhix))
A(x) = A(x)/N(x)
B(x) = B(x)/N(q−hix)

U(x) = U(x)
∏hi

j=0 N(q−jx).
od.
Return U(x) and stop.

Theorem 2 Let each solution of the original q-di�erence system of the form (1) be

also a solution of systems (4), (5), and det Ār(x), det ¯̄A0(x) be non-zero. Then the
polynomial U(x) computed by the latter algorithm possesses properties (a), (b) formu-
lated above.

The main idea of the proof is similar to the idea used in [6], [8], [12] for the dif-
ference case. First of all, if f(x), p(x) are polynomials and p(x) is irreducible then the
valuation valp(x)f(x) is de�ned to be the greatest n ∈ Z>0 such that f(x) is divisible

by p(x)n (valp(x)0 = ∞, and valp(x)
f(x)
g(x)

= valp(x)f(x)− valp(x)g(x). The valuation of

a vector whose components are polynomials or rational functions is the minimal of the
component valuations.

The following statement can be proven: For any rational solution y(x) of (1) and
any irreducible p(x) we have

valp(x)y(x) > max

−
∑

n∈ Z>0

valp(qnx)A(x), −
∑

n∈ Z>0

valp(q−nx)B(x)

 , (8)

and valp(x)U(x) does not exceed the valuation of the right-hand side of (8).

Remark that similarly to the di�erence case (see [8]), inequality (8) can be taken as
a base for another algorithm for constructing the polynomial U(x). That algorithm uses
the full factorization of A(x), B(x) which is used also for the dispersion computation
by the q-version of the Man and Wright algorithm. However the algorithm given above
is more convenient for implementation.
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ÓÄÊ 519.7

EG-èñêëþ÷åíèÿ êàê èíñòðóìåíò ïîñòðîåíèÿ ðàöèîíàëüíûõ
ðåøåíèé ñèñòåì ëèíåéíûõ q-ðàçíîñòíûõ óðàâíåíèé

ïðîèçâîëüíîãî ïîðÿäêà ñ ïîëèíîìèàëüíûìè
êîýôôèöèåíòàìè

Ñ. À. Àáðàìîâ∗

∗ Âû÷èñëèòåëüíûé öåíòð èì. À.À. Äîðîäíèöûíà ÔÈÖ ÈÓ ÐÀÍ,
óë. Âàâèëîâà, ä. 40, ÂÖ ÐÀÍ, Ìîñêâà, Ðîññèÿ, 119333

Ðàññìàòðèâàþòñÿ ñèñòåìû ëèíåéíûõ q-ðàçíîñòíûõ óðàâíåíèé ñ ïîëèíîìèàëüíûìè êî-
ýôôèöèåíòàìè. Óðàâíåíèÿ ñèñòåìû ìîãóò èìåòü ïðîèçâîëüíûå ïîðÿäêè. Äëÿ òàêèõ ñè-
ñòåì ïðåäëàãàåòñÿ ïðÿìîé àëãîðèòì, èñïîëüçóþùèé EG-èñêëþ÷åíèÿ, ïîèñêà ðàöèîíàëü-
íûõ ðåøåíèé, ò.å. ðåøåíèé, âñå êîìïîíåíòû êîòîðûõ ÿâëÿþòñÿ ðàöèîíàëüíûìè ôóíê-
öèÿìè.

Êëþ÷åâûå ñëîâà: ëèíåéíûå q-ðàçíîñòíûå ñèñòåìû, èíäóöèðîâàííûå ðåêóððåíòíûå
ñèñòåìû, EG-èñêëþ÷åíèÿ, ðàöèîíàëüíûå ðåøåíèÿ.


