Rational Normal Forms and Minimal Decompositions of Hypergeometric Terms

S. A. ABRAMOV ${ }^{\dagger}$ AND M. PETKOVŠEK ${ }^{\ddagger}$
${ }^{\dagger}$ Dorodnicyn Computing Centre, Russian Academy of Science, Moscow, Russia
${ }^{\ddagger}$ Department of Mathematics, University of Ljubljana, Ljubljana, Slovenia

Abstract

We describe a multiplicative normal form for rational functions which exhibits the shift structure of the factors, and investigate its properties. On the basis of this form we propose an algorithm which, given a rational function R, extracts a rational part F from the product of consecutive values of $R: \prod_{k=n_{0}}^{n-1} R(k)=F(n) \prod_{k=n_{0}}^{n-1} V(k)$ where the numerator and denominator of the rational function V have minimal possible degrees. This gives a minimal multiplicative representation of the hypergeometric term $\prod_{k=n_{0}}^{n-1} R(k)$. We also present an algorithm which, given a hypergeometric term $T(n)$, constructs hypergeometric terms $T_{1}(n)$ and $T_{2}(n)$ such that $T(n)=\Delta T_{1}(n)+T_{2}(n)$ and $T_{2}(n)$ is minimal in some sense. This solves the additive decomposition problem for indefinite sums of hypergeometric terms: $\Delta T_{1}(n)$ is the "summable part", and $T_{2}(n)$ the "nonsummable part" of $T(n)$. In other words, we get a minimal additive decomposition of the hypergeometric term $T(n)$.

(C) 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Multiplicative normal forms for rational functions which exhibit the shift structure of the factors are useful tools in the investigation of problems of summation and solution of difference equations in closed form. In Section 2 we represent a rational function $R(x)$ in the form

$$
\begin{equation*}
R(x)=V(x) \frac{F(x+1)}{F(x)} \tag{1}
\end{equation*}
$$

where $V(x)=r(x) / s(x)$ and $F(x)$ are rational functions such that the polynomials $r(x)$ and $s(x+k)$ are relatively prime for all $k \in \mathbb{Z}$. We call such a representation a rational normal form (RNF) of R. Although a rational function can have several RNF's, the degrees of the numerator and denominator of V in (1) are uniquely defined.

Using the concept of RNF, we solve two decomposition problems for univariate hypergeometric terms. (For definitions, see the last paragraph of this section.) First, recall the well-known decomposition problems for indefinite integrals (Hermite, 1872; Ostrogradsky, 1845) and indefinite sums (Abramov, 1975, 1995; Paule, 1995; Pirastu and Strehl, 1995) of rational functions. Suppose for simplicity that a rational function R has no poles at non-negative arguments. Then it is possible to construct the representations

$$
\int_{0}^{x} R(t) d t=F(x)+\int_{0}^{x} H(t) d t, \quad \sum_{k=0}^{n-1} R(k)=S(n)+\sum_{k=0}^{n-1} T(k)
$$

where F, H and S, T are rational functions such that H, T have denominators of minimal possible degrees. In Section 3 we show how to obtain a minimal multiplicative representation of a hypergeometric term $T(n)$, i.e. how to find rational functions V and F such that $T(n)=F(n) \prod_{k=n_{0}}^{n-1} V(k)$ and the numerator and denominator of V are both of minimal possible degrees.
In Section 4 we describe an algorithm which solves the minimal additive decomposition problem for hypergeometric terms. Recall that the well-known Gosper's algorithm (Gosper, 1978) solves the problem of indefinite hypergeometric summation: given a hypergeometric term $T(n)$, find another hypergeometric term $T_{1}(n)$ such that

$$
\begin{equation*}
T(n)=\Delta T_{1}(n) \tag{2}
\end{equation*}
$$

provided that such a term exists. If no hypergeometric term $T_{1}(n)$ satisfies (2), we can ask for two hypergeometric terms $T_{1}(n)$ and $T_{2}(n)$ such that

$$
\begin{equation*}
T(n)=\Delta T_{1}(n)+T_{2}(n) \tag{3}
\end{equation*}
$$

and $T_{2}(n)$ is minimal in some sense. Given $T(n)=U(n) \prod_{k=n_{0}}^{n-1} D(k)$ with D having the numerator and denominator of minimal possible degrees, we describe how to find $T_{1}(n)$ and $T_{2}(n)$ such that $T_{2}(n)=V(n) \prod_{k=n_{0}}^{n-1} F(k)$ where the degrees of the numerator and denominator of F equal those of D. We show that for any other pair of terms $T_{1}(n)$, $T_{2}(n)$ it is impossible to decrease the degree of the denominator of V without increasing the degrees of the numerator and denominator of F. Preliminary publications on this topic have appeared as Abramov and Petkovšek (2001a,b).

Throughout the paper, K is a field of characteristic zero, and \mathbb{N} denotes the set of non-negative integers. A sequence $T(n)$ of elements of K defined for all integers $n \geq n_{0}$ is a hypergeometric term if there are polynomials $p, q \in K[x] \backslash\{0\}$ such that $q(n) T(n+1)=$ $p(n) T(n)$ for all $n \geq n_{0}$. Note that for every hypergeometric term $T(n)$ there is an integer $n_{1} \geq n_{0}$ such that either $T(n) \neq 0$ for all $n \geq n_{1}$, or $T(n)=0$ for all $n \geq n_{1}$. If $T(n)$ is eventually non-zero then the rational function p / q is unique and is called the certificate of T. A hypergeometric term $T(n)$ is rational if there is a rational function $R \in K(x)$ such that $T(n)=R(n)$ for all large enough n. Hypergeometric terms T_{1} and T_{2} are similar if there is a rational function $R \in K(x)$ such that $T_{1}(n)=R(n) T_{2}(n)$ for all large enough n. We write $p \perp q$ to indicate that polynomials $p, q \in K[x]$ are relatively prime.

As usual, if $R=p \oslash q$ where $p, q \in K[x], p \perp q$ and q is monic, we call p the numerator of R, q the denominator of R, and write $p=\operatorname{num} R, q=\operatorname{den} R$. The leading coefficient of a rational function is the quotient of the leading coefficients of its numerator and denominator. A rational function is monic if its leading coefficient is 1 . We denote the shift operator by E, and let it act on both sequences by $E T(n)=T(n+1)$, and on rational functions by $E R(x)=R(x+1)$. We write $\Delta=E-1$. A rational function $R \in K(x)$ is shift-reduced if there are $a, b \in K[x]$ such that $R=a \oslash b$ and $a \perp E^{k} b$ for all $k \in \mathbb{Z}$. A polynomial $p \in$ shift-free if $p \perp E^{k} p$ for all $k \in \mathbb{Z} Q\{0\}$.

2. Rational Normal Forms

Following Paule (1995) we introduce the notion of shift-equivalence among polynomials.

Definition 1. Irreducible polynomials $p, q \in K[x]$ are shift-equivalent if $p \mid E^{k} q$ for some $k \in \mathbb{Z}$. In this case we write $p \stackrel{\text { sh }}{\sim} q$. A rational function $R \in K(x)$ is shift-homogeneous
if all non-constant irreducible factors of num R and den R belong to the same shiftequivalence class, which we call the type of R.

It is clear that by grouping together shift-equivalent irreducible monic factors of its numerator and denominator every rational function can be written in the form

$$
\begin{equation*}
R(n)=z R_{1}(n) R_{2}(n) \cdots R_{k}(n) \tag{4}
\end{equation*}
$$

where $z \in K, k \geq 0$, each R_{i} is a monic shift-homogeneous rational function, and $R_{i} R_{j}$ is not shift-homogeneous whenever $i \neq j$. We call (4) a shift-homogeneous factorization of R.

Lemma 1. Let $R(n)=z R_{1}(n) R_{2}(n) \cdots R_{k}(n)=w S_{1}(n) S_{2}(n) \cdots S_{k}(n)$ be two shifthomogeneous factorizations of R such that R_{i} and S_{i} have the same type. Then $z=w$ and $R_{i}=S_{i}$ for all i.

Proof. Clearly $z=w$ because they are both equal to the leading coefficient of R. Therefore

$$
\frac{R_{i}(n)}{S_{i}(n)}=\prod_{\substack{j=1 \\ j \neq i}}^{k} \frac{S_{j}(n)}{R_{j}(n)} \quad(i=1,2, \ldots, k)
$$

As every non-constant irreducible factor of the left-hand fraction is shift-inequivalent to every such factor of the right-hand fraction, $R_{i}(n) / S_{i}(n)=1$, and $R_{i}=S_{i}$, for all i.

The following well-known form is used in algorithms for hypergeometric summation (Gosper, 1978), finding hypergeometric solutions of difference equations (Petkovšek, 1992), and rational summation (Pirastu and Strehl, 1995).

Definition 2. Let $R \in K(x)$ be a rational function. If $z \in K$ and monic polynomials $a, b, c \in K[x]$ satisfy
(i) $R=z \cdot \frac{a}{b} \cdot \frac{E c}{c}$,
(ii) $a \perp E^{k} b$ for all $k \in \mathbb{N}$,
then (z, a, b, c) is a polynomial normal form $(P N F)$ of R. If in addition,
(iii) $a \perp c$ and $b \perp E c$,
then (z, a, b, c) is a strict PNF of R.
Every non-zero rational function has a unique strict PNF. For a proof of this, and for an algorithm to compute it, see Petkovšek (1992) or Petkovšek et al. (1996).

Lemma 2. If (a, b, c) is a strict $P N F$ of p / q where $p, q \in K[x]$, then $a \mid p$ and $b \mid q$.
Proof. We have $p b c=a q E c$, hence $a \mid p b c$ and $b \mid a q E c$. By (ii) and (iii), $a \perp b c$ and $b \perp a E c$, so $a \mid p$ and $b \mid q$.

Instead of (ii) we will need the stronger property that a / b is shift-reduced. Therefore we allow c to be a rational function.

Definition 3. Let $R \in K(x)$ be a rational function. If $z \in K$ and monic polynomials $r, s, u, v \in K[x]$ satisfy
(i) $R=z \cdot \frac{r}{s} \cdot \frac{E(u / v)}{u / v}$ where $u \perp v$,
(ii) $r \perp E^{k} s$ for all $k \in \mathbb{Z}$,
then (z, r, s, u, v) is a rational normal form $(R N F)$ of R. If in addition,
(iii) $r \perp u \cdot E v$ and $s \perp E u \cdot v$,
then (z, r, s, u, v) is a strict $R N F$ of R.
Sometimes we write the RNF $\varphi=(z, r, s, u, v)$ of R more succinctly as (F, V) where $F=z r / s$ and $V=u / v$. Then $F, V \in K(x)$, and
(i) $R=F \cdot \frac{E V}{V}$,
(ii) F is shift-reduced.

We call F the kernel of φ.
The following example shows that a rational function can have several RNF's, even strict ones.

Example 1. Let $R(x)=x(x+2) /\left((x-1)(x+1)^{2}(x+3)\right)$. Then we can write $R=$ $F(E V) / V$ where

$$
\begin{aligned}
& R=\frac{1}{(x-1)(x+3)} \cdot \frac{x(x+2)}{(x+1)^{2}}, \\
& R=\frac{1}{(x+1)^{2}} \cdot \frac{x(x+2)}{(x-1)(x+3)}, \\
& R=\frac{1}{(x+1)(x+3)} \cdot \frac{x(x+2)}{(x-1)(x+1)}, \\
& R=\frac{1}{(x-1)(x+1)} \cdot \frac{x(x+2)}{(x+1)(x+3)},
\end{aligned}
$$

$$
F=\frac{1}{(x-1)(x+3)}
$$

$$
V=\frac{x+1}{x}
$$

$$
F=\frac{1}{(x+1)^{2}}, \quad V=\frac{x-1}{x+2}
$$

$$
F=\frac{1}{(x+1)(x+3)}, \quad V=(x-1)(x+1),
$$

$$
F=\frac{1}{(x-1)(x+1)}, \quad V=\frac{1}{x(x+2)}
$$

so R has four different strict RNF's.
Proposition 1. Let $\varphi=(z, r, s, u, v)$ be an $R N F$ of $R=p / q$ where $p, q \in K[x]$.
(i) If φ is strict then $r \mid p$ and $s \mid q$.
(ii) $\varphi^{-1}=(1 / z, s, r, v, u)$ is an $R N F$ of $1 / R$. If φ is strict then so is φ^{-1}.
(iii) If $\left(z, r, s, u^{\prime}, v^{\prime}\right)$ is another $R N F$ of R then $u^{\prime}=u$ and $v^{\prime}=v$.
(iv) The set of strict RNF's of R is finite.

Proof. (i) As psuEv=zqrvEu, and $r \perp s u E v$, it follows that $r \mid p$. Similarly $s \mid q$. (ii) Clearly,

$$
\frac{1}{z} \cdot \frac{s}{r} \cdot \frac{E(v / u)}{v / u}=\left(z \cdot \frac{r}{s} \cdot \frac{E(u / v)}{u / v}\right)^{-1}=\frac{1}{R}
$$

Properties (ii) and (iii) of RNF are invariant on exchanging r with s and u with v, so they remain satisfied for the new form.
(iii) Write $V^{\prime}=u^{\prime} / v^{\prime}$. Then $u E v E V^{\prime}-v E u V^{\prime}=0$ which, given u and v, is a firstorder homogeneous linear recurrence with polynomial coefficients for the unknown function V^{\prime}, with general solution $V^{\prime}=C u / v$ where C is an arbitrary constant. As $u, v, u^{\prime}, v^{\prime}$ are monic, $u \perp v$, and $u^{\prime} \perp v^{\prime}$, this implies that $u=u^{\prime}$ and $v=v^{\prime}$.
(iv) By (i), there are only finitely many candidates for r and s. By (iii), each choice of r and s leads to at most one RNF of R.

Theorem 1. Every rational function $R \in K(x)$ has a strict $R N F$.

Proof. If $R=0$ take $z=0$ and $r=s=u=v=1$. Otherwise let (z, a, b, c) be a strict PNF of $R,(1, s, r, d)$ a strict PNF of b / a, and $c / d=u / v$ where $u, v \in K[x]$ are monic and $u \perp v$. We claim that (z, r, s, u, v) is a strict RNF of R. Indeed,

$$
z \cdot \frac{r}{s} \cdot \frac{E(u / v)}{u / v}=z \cdot \frac{r}{s} \cdot \frac{d}{E d} \cdot \frac{E c}{c}=z \cdot \frac{a}{b} \cdot \frac{E c}{c}=R,
$$

proving (i). Because $s \perp E^{k} r$ for $k \geq 0$, we have $r \perp E^{k} s$ for $k \leq 0$. By Lemma $2, s \mid b$ and $r \mid a$. As $a \perp E^{k} b$ for $k \geq 0$, it follows that $r \perp E^{k} s$ for $k \geq 0$ as well, proving (ii). To prove (iii), note that $u \mid c$ and $v \mid d$. Because ($1, s, r, d$) is a strict PNF we have $s \perp v$ and $r \perp E v$. Because (z, a, b, c) is a strict PNF we have $r \perp u$ and $s \perp E u$.

The proof of Theorem 1 provides the following algorithm for computing a strict RNF of R.

Algorithm RNF

input: $R \in K[x], R \neq 0$;
output: a strict RNF of R.

```
\((z, a, b, c):=\operatorname{strict}_{-} P N F(R) ;\)
\((1, s, r, d):=\) strict_PNF \((b / a)\);
\(g:=\operatorname{gcd}(c, d) ; \quad\) (take \(g\) monic)
\(u:=c / g ; \quad v:=d / g\);
return \((z, r, s, u, v)\).
```

Example 2. Take $R(x)=\left(x^{2}-1\right) /\left(x^{2}+2 x\right)$. As

$$
R(x)=\frac{x-1}{x+2} \cdot \frac{x+1}{x},
$$

we have $z=1, a=x-1, b=x+2, c=x$. Next,

$$
\frac{x+2}{x-1}=\frac{x(x+1)(x+2)}{(x-1) x(x+1)}
$$

so $s=r=1, d=x\left(x^{2}-1\right), u=1$, and $v=x^{2}-1$. Thus $\left(1,1 /\left(x^{2}-1\right)\right)$ is a strict RNF of R. Incidentally, we have discovered that $R=E V / V$ where $V \in K(x)$ (cf. Petkovšek, 1992, Lemma 5.1).

Even though RNF is not unique, the RNF's representing the same rational function are closely related. To describe their relationship, we use localization to shift-equivalence classes.

Lemma 3. If (z, r, s, u, v) is an $R N F$ of $z \in K \backslash\{0\}$ then $r=s=u=v=1$.
Proof. We have

$$
\begin{equation*}
r \cdot E u \cdot v=s \cdot u \cdot E v \tag{5}
\end{equation*}
$$

Let $t \in K[x] \backslash K$ be an irreducible factor of r. It follows from (5) that $t \mid u \cdot E v$. We distinguish two cases.
(a) If $t \mid u$ then $E t \mid E u$, so (5) implies that $E t \mid u \cdot E v$. As $u \perp v$, it follows that $E t \mid u$. By induction, $E^{n} t \mid u$ for all $n \in \mathbb{N}$, hence $t \in K$.
(b) If $t \mid E v$ then $E^{-1} t \mid v$, so (5) implies that $E^{-1} t \mid u \cdot E v$. As $u \perp v$, it follows that $E^{-1} t \mid E v$. By induction, $E^{-n} t \mid E v$ for all $n \in \mathbb{N}$, hence $t \in K$.

Thus we conclude that $r=1$. In the same way we find that $s=1$. Now (5) implies that $E(u / v)=u / v$, hence $u / v \in K$ as well. But u, v are monic and $u \perp v$, so $u=v=1$.

Lemma 4. Let $R \in K(x)$ be shift-homogeneous. If (z, r, s, u, v) is an $R N F$ of R then r, s, u, v are shift-homogeneous of the same type as R.

Proof. Let $r=r_{1} \cdots r_{k}, s=s_{1} \cdots s_{k}, u=u_{1} \cdots u_{k}, v=v_{1} \cdots v_{k}$ be shift-homogeneous factorizations where polynomials with the same subscript are of the same type, and $r_{1}, s_{1}, u_{1}, v_{1}$ are of the same type as R. Write $r^{\prime}=r / r_{1}, s^{\prime}=s / s_{1}, u^{\prime}=u / u_{1}, v^{\prime}=v / v_{1}$. Then Lemma 1 implies that $\left(1, r^{\prime}, s^{\prime}, u^{\prime}, v^{\prime}\right)$ is an RNF of 1 . Hence by Lemma $3, r^{\prime}=s^{\prime}=$ $u^{\prime}=v^{\prime}=1$. So $r=r_{1}, s=s_{1}, u=u_{1}, v=v_{1}$, proving the assertion.

Lemma 5. Let $R \in K(x)$ be shift-homogeneous. If (z, r, s, u, v) and $\left(z, r_{1}, s_{1}, u_{1}, v_{1}\right)$ are two RNF's of R then $r=r_{1}=1$ and $\operatorname{deg} s=\operatorname{deg} s_{1}$, or $s=s_{1}=1$ and $\operatorname{deg} r=\operatorname{deg} r_{1}$.

Proof. From

$$
z \cdot \frac{r}{s} \cdot \frac{E(u / v)}{u / v}=z \cdot \frac{r_{1}}{s_{1}} \cdot \frac{E\left(u_{1} / v_{1}\right)}{u_{1} / v_{1}}
$$

we obtain $r s_{1} E u u_{1} v E v_{1}=r_{1} s u E u_{1} E v v_{1}$, so $\operatorname{deg} r-\operatorname{deg} r_{1}=\operatorname{deg} s-\operatorname{deg} s_{1}$. Lemma 4 implies that r and s are shift-homogeneous of the same type. As r / s is shift-reduced, it follows that $r=1$ or $s=1$. In the same way, $r_{1}=1$ or $s_{1}=1$. We distinguish four cases: if $r=r_{1}=1$ then $\operatorname{deg} s=\operatorname{deg} s_{1}$. If $s=s_{1}=1$ then $\operatorname{deg} r=\operatorname{deg} r_{1}$. If $r=s_{1}=1$ then $\operatorname{deg} s+\operatorname{deg} r_{1}=0$, so $s=r_{1}=1$. If $r_{1}=s=1$ then $\operatorname{deg} r+\operatorname{deg} s_{1}=0$, so $r=s_{1}=1$. In all four cases, the assertion is true.

Theorem 2. Let (z, r, s, u, v) and $\left(z^{\prime}, r^{\prime}, s^{\prime}, u^{\prime}, v^{\prime}\right)$ be two $R N F$'s of $R \in K(x)$. Then
(i) $z=z^{\prime}$,
(ii) $\operatorname{deg} r=\operatorname{deg} r^{\prime}$ and $\operatorname{deg} s=\operatorname{deg} s^{\prime}$,
(iii) there is a one-to-one correspondence f between the multisets of non-constant irreducible monic factors of r and r^{\prime} such that $p \stackrel{\text { sh }}{\sim} f(p)$ for all $p \mid r$,
(iv) there is a one-to-one correspondence g between the multisets of non-constant irreducible monic factors of s and s^{\prime} such that $q \stackrel{\text { sh }}{\sim} g(q)$ for all $q \mid s$.

Proof. Obviously $z=z^{\prime}$ because they both equal the leading coefficient of R. Let $r=r_{1} \cdots r_{k}, s=s_{1} \cdots s_{k}, u=u_{1} \cdots u_{k}, v=v_{1} \cdots v_{k}$, and likewise for $r^{\prime}, s^{\prime}, u^{\prime}, v^{\prime}$, be shift-homogeneous factorizations where polynomials with the same subscript are of the same type. For $i=1,2, \ldots, k$ write

$$
R_{i}=\frac{r_{i}}{s_{i}} \cdot \frac{E\left(u_{i} / v_{i}\right)}{u_{i} / v_{i}}, \quad R_{i}^{\prime}=\frac{r_{i}^{\prime}}{s_{i}^{\prime}} \cdot \frac{E\left(u_{i}^{\prime} / v_{i}^{\prime}\right)}{u_{i}^{\prime} / v_{i}^{\prime}} .
$$

Then, clearly, $\left(r_{i}, s_{i}, u_{i}, v_{i}\right)$ is an RNF of R_{i}, and $\left(r_{i}^{\prime}, s_{i}^{\prime}, u_{i}^{\prime}, v_{i}^{\prime}\right)$ is an RNF of R_{i}^{\prime}. As $R=R_{1} R_{2} \cdots R_{k}=R_{1}^{\prime} R_{2}^{\prime} \cdots R_{k}^{\prime}$, Lemma 1 implies that $R_{i}=R_{i}^{\prime}$, for all i. By Lemma 5, $\operatorname{deg} r_{i}=\operatorname{deg} r_{i}^{\prime}$ and $\operatorname{deg} s_{i}=\operatorname{deg} s_{i}^{\prime}$. It follows that $\operatorname{deg} r=\operatorname{deg} r^{\prime}$ and $\operatorname{deg} s=\operatorname{deg} s^{\prime}$. To obtain the desired correspondences f resp. g, let the non-constant irreducible monic factors of r_{i} (resp. s_{i}) correspond to the non-constant irreducible monic factors of r_{i}^{\prime} (resp. s_{i}^{\prime}).

3. The Minimal Multiplicative Representation Problem

If $T(n)$ is a hypergeometric term then there is a rational function $R \in K(x)$ and an integer $n_{0} \in \mathbb{Z}$ such that

$$
T(n)=T\left(n_{0}\right) \prod_{k=n_{0}}^{n-1} R(k)
$$

for all $n \geq n_{0}$. This motivates the following definition.
Definition 4. Let $T(n)$ be a hypergeometric term. A multiplicative representation of T is a triple $\left(F, V, n_{0}\right)$ where $F, V \in K(x), n_{0} \in \mathbb{Z}$, and
(i) $T(n)=V(n) \prod_{k=n_{0}}^{n-1} F(k)$, for all integers $n \geq n_{0}$,
(ii) if $V \neq 0$ then F, V have neither a pole nor a zero at any integer $n \geq n_{0}$.

This representation is minimal if for any other multiplicative representation (G, W, n_{1}) of T we have deg num $F \leq \operatorname{deg} \operatorname{num} G$ and $\operatorname{deg} \operatorname{den} F \leq \operatorname{deg} \operatorname{den} G$.

If $V=0$ we simply write 0 instead of $\left(F, 0, n_{0}\right)$.
Proposition 2. Let $R \in K(x)$ have neither a pole nor a zero at integers $n \geq n_{0}$, and let (z, r, s, u, v) be a strict $R N F$ of R. Then the polynomials r, s, u, v have no zero at integers $n \geq n_{0}$.

Proof. For r and s this follows from Proposition 1 (i). Write $p=\operatorname{num} R$ and $q=\operatorname{den} R$. Then

$$
\begin{equation*}
p \cdot s \cdot E v \cdot u=z \cdot q \cdot r \cdot E u \cdot v . \tag{6}
\end{equation*}
$$

Assume that $n_{1} \geq n_{0}$ is a zero of u. Then (6) implies that n_{1} is a zero of $E u$, hence $n_{1}+1$ is a zero of u. By induction, each $n \geq n_{1}$ is a zero of u, which is impossible. This shows that u has no zero at integers $n \geq n_{0}$. For v the proof is analogous.

Using the concept of RNF, we can compute minimal multiplicative representations of hypergeometric terms. Unlike the decomposition problems of integration and summation where the degree of the numerator of the remaining integrand resp. summand is not important, the degree of the numerator of F in (i) is important. Luckily it is possible to minimize the degrees of the numerator and denominator of F simultaneously.

Theorem 3. Let (z, r, s, u, v) be an $R N F$ of $R \in K(x)$. If

$$
R=\frac{p}{q} \cdot \frac{E V}{V}
$$

where $p, q \in K[x]$ and $V \in K(x)$, then $\operatorname{deg} r \leq \operatorname{deg} p$ and $\operatorname{deg} s \leq \operatorname{deg} q$.
Proof. Let $\left(z^{\prime}, r^{\prime}, s^{\prime}, u^{\prime}, v^{\prime}\right)$ be a strict RNF of p / q. Then $\left(z^{\prime} r^{\prime} / s^{\prime}, V u^{\prime} / v^{\prime}\right)$ is an RNF of R, and Theorem 2 implies that $\operatorname{deg} r=\operatorname{deg} r^{\prime}$ and $\operatorname{deg} s=\operatorname{deg} s^{\prime}$. By Proposition 1 (i), $r^{\prime} \mid p$ and $s^{\prime} \mid q$, hence $\operatorname{deg} r \leq \operatorname{deg} p$ and $\operatorname{deg} s \leq \operatorname{deg} q$.

THEOREM 4. Let $T(n)$ be a hypergeometric term with multiplicative representation (R, $\left.T\left(n_{0}\right), n_{0}\right)$. If (F, V) is an RNF of R, then $\left(F, W, n_{0}\right)$ where $W(n)=V(n) T\left(n_{0}\right) / V\left(n_{0}\right)$ is a minimal multiplicative representation of T.

Proof. Proposition 2 guarantees that F and V have neither zeros nor poles at integers $n \geq n_{0}$. A short computation

$$
T(n)=T\left(n_{0}\right) \prod_{k=n_{0}}^{n-1} R(k)=T\left(n_{0}\right) \prod_{k=n_{0}}^{n-1} F(k) \frac{V(k+1)}{V(k)}=\frac{T\left(n_{0}\right)}{V\left(n_{0}\right)} V(n) \prod_{k=n_{0}}^{n-1} F(k)
$$

shows that $\left(F, W, n_{0}\right)$ is indeed a multiplicative representation of T. If $\left(G, U, n_{1}\right)$ is another then $T(n)=U(n) \prod_{k=n_{1}}^{n-1} G(k)$, therefore

$$
R(n)=\frac{T(n+1)}{T(n)}=G(n) \frac{U(n+1)}{U(n)}
$$

By Theorem 3, deg num $F \leq \operatorname{deg} \operatorname{num} G$ and $\operatorname{deg} \operatorname{den} F \leq \operatorname{deg} \operatorname{den} G$, so $\left(F, W, n_{0}\right)$ is minimal.

Example 3. Consider the hypergeometric term $T(n)$ defined by

$$
\begin{aligned}
T(0) & =2 \\
\frac{T(n+1)}{T(n)} & =\frac{(n+3)(2 n+5)(3 n+1)(4 n+1)}{(n+1)(n+4)(2 n+1)(3 n+4)} \quad(n \geq 0)
\end{aligned}
$$

We can express this hypergeometric term explicitly as

$$
T(n)=2 \prod_{k=0}^{n-1} \frac{(k+3)(2 k+5)(3 k+1)(4 k+1)}{(k+1)(k+4)(2 k+1)(3 k+4)}
$$

As an RNF of $T(n+1) / T(n)$ is

$$
\left(4, n+\frac{1}{4}, n+4,(n+1)(n+2)\left(n+\frac{1}{2}\right)\left(n+\frac{3}{2}\right), n+\frac{1}{3}\right),
$$

we can also write

$$
T(n)=\frac{(n+1)(n+2)(2 n+1)(2 n+3)}{3(3 n+1)} \prod_{k=0}^{n-1} \frac{4 k+1}{k+4}
$$

where the factors in the product have numerators and denominators of minimal possible degrees.

4. The Minimal Additive Decomposition Problem

4.1. INTRODUCTION

Definition 5. A hypergeometric term T is summable if there is a hypergeometric term T_{1} such that $T=\Delta T_{1}$. A rational term T is rational-summable if there is a rational term T_{1} such that $T=\Delta T_{1}$.

By means of RNF, we can now state the problem of minimal additive decomposition of hypergeometric terms:
Given a hypergeometric term T, find hypergeometric terms T_{1}, T_{2} such that
(1) $T=\Delta T_{1}+T_{2}$,
(2) if T is summable then $T_{2}=0$,
(3) if T is not summable then $\left(E T_{2}\right) / T_{2}$ has an $R N F(F, V)$ where V 's denominator is of minimal possible degree.

We call any pair of terms T_{1}, T_{2} such that $T=\Delta T_{1}+T_{2}$ an additive decomposition of T with summable component T_{1} and non-summable component T_{2}.

This formulation agrees with the minimal additive decomposition problem for rational functions (Abramov, 1975, 1995; Pirastu and Strehl, 1995) because if $T_{2} \in K(x)$, then $r=s=1$ and v is the denominator of T_{2}.

In the rest of this section we prepare some tools that we need in the sequel. In particular, we define dispersion of two polynomials, and describe relations among multiplicative decompositions of hypergeometric terms T, T_{1} and T_{2} which satisfy $T=\Delta T_{1}+T_{2}$. In Section 4.2 we describe algorithm dterm which, given a hypergeometric term T, constructs an additive decomposition of T. In Section 4.3 we prove that this decomposition is minimal, and hence that our algorithm solves the additive decomposition problem. Finally, in Section 4.4 we extend it to algorithm $h g_{-} a d d_{-} d e c$ which also recognizes when T is summable.

Definition 6. Let $a, b \in K[x] \backslash\{0\}$. The dispersion $\operatorname{dis}(a, b)$ is the largest $n \in \mathbb{N}$ such that $a(x)$ and $b(x+n)$ have a non-constant common divisor. If no such n exists then $\operatorname{dis}(a, b)=-1$.

Note that $\operatorname{dis}(a, b)$ can be computed as the largest non-negative integer root of the polynomial $R(n)=\operatorname{Res}_{x}(a(x), b(x+n))$. An alternative way of computing $\operatorname{dis}(a, b)$ consists in factoring a and b into irreducible factors over K, then finding all pairs u, v of factors of a resp. b such that $u(x)=v(x+n)$ for some $n \in \mathbb{N}$, and selecting the largest such n.

Lemma 6. Let $\left(D, U, n_{0}\right)$ be a multiplicative representation of a term $T, n_{1} \geq n_{0}$, and

$$
V(n)=U(n) \frac{T\left(n_{1}\right)}{U\left(n_{1}\right)}=U(n) \prod_{k=n_{0}}^{n_{1}-1} D(k)
$$

Then $\left(D, V, n_{1}\right)$ is a multiplicative representation of T.
Proof. A direct check.
We will need an algorithm which, given multiplicative representations of two similar terms, computes a multiplicative representation of their sum.

Algorithm sum_of_terms

input: multiplicative representations $\left(D_{1}, U_{1}, n_{1}\right),\left(D_{2}, U_{2}, n_{2}\right)$ of similar terms T_{1}, T_{2};
output: multiplicative representation of $T_{1}+T_{2}$.
let (F, S) be an RNF of D_{1} / D_{2};
find $n_{3} \geq n_{1}, n_{2}$ s.t. $S(n)$ has neither a pole nor a zero for $n \geq n_{3}$;
$\alpha=\prod_{k=n_{1}}^{n_{3}-1} D_{1}(k) / S\left(n_{3}\right) ;$
$\beta=\prod_{k=n_{2}}^{n_{3}-1} D_{2}(k)$;
$G:=\alpha S U_{1}+\beta U_{2}$;
if $G=0$ then return 0
fi;
find $n_{4} \geq n_{3}$ s.t. $G(n)$ has neither a pole nor a zero for $n \geq n_{4}$;
$\gamma=\prod_{k=n_{3}}^{n_{4}-1} D_{2}(k)$;
return $\left(D_{2}, \gamma G, n_{4}\right)$.

Theorem 5. Given multiplicative representations $\left(D_{1}, U_{1}, n_{0}\right)$ resp. $\left(D_{2}, U_{2}, n_{1}\right)$ of similar terms T_{1} resp. T_{2}, algorithm sum_of_terms constructs a multiplicative representation of $T_{1}+T_{2}$.

Proof. Since T_{1} and T_{2} are similar, the ratio of their certificates is of the form $E R / R$ where $R \in K(x), T_{1}=R T_{2}$, and

$$
\frac{E R}{R}=\frac{D_{1}}{D_{2}} \cdot \frac{E\left(U_{1} / U_{2}\right)}{\left(U_{1} / U_{2}\right)} .
$$

This implies that

$$
\frac{D_{1}}{D_{2}}=\frac{E\left(R U_{2} / U_{1}\right)}{R U_{2} / U_{1}}
$$

hence $F=1$ and $D_{1} / D_{2}=(E S) / S$. Therefore

$$
\begin{aligned}
\gamma G(n) \prod_{k=n_{4}}^{n-1} D_{2}(k) & =G(n) \prod_{k=n_{3}}^{n-1} D_{2}(k) \\
& =\left(\alpha S(n) U_{1}(n)+\beta U_{2}(n)\right) \prod_{k=n_{3}}^{n-1} D_{2}(k)
\end{aligned}
$$

$$
\begin{aligned}
& =\alpha S(n) U_{1}(n) \prod_{k=n_{3}}^{n-1} D_{1}(k) \frac{S(k)}{S(k+1)}+\beta U_{2}(n) \prod_{k=n_{3}}^{n-1} D_{2}(k) \\
& =\alpha S\left(n_{3}\right) U_{1}(n) \prod_{k=n_{3}}^{n-1} D_{1}(k)+U_{2}(n) \prod_{k=n_{2}}^{n-1} D_{2}(k) \\
& =U_{1}(n) \prod_{k=n_{1}}^{n-1} D_{1}(k)+U_{2}(n) \prod_{k=n_{2}}^{n-1} D_{2}(k) \\
& =T_{1}(n)+T_{2}(n) .
\end{aligned}
$$

Lemma 7. Let the triples $\left(D, U, n_{0}\right)$ and $\left(D, U_{1}, n_{0}\right)$ be multiplicative representations of (similar) terms T and T_{1}. Then the certificate of $T_{2}=T-\Delta T_{1}$ is

$$
\begin{equation*}
D \frac{E U_{2}}{U_{2}} \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
U_{2}=U-D\left(E U_{1}\right)+U_{1} . \tag{8}
\end{equation*}
$$

Proof. For all integer $n \geq n_{0}$ we have

$$
\begin{aligned}
T_{2}(n) & =U(n) \prod_{k=n_{0}}^{n-1} D(k)-\Delta\left(U_{1}(n) \prod_{k=n_{0}}^{n-1} D(k)\right) \\
& =U(n) \prod_{k=n_{0}}^{n-1} D(k)-U_{1}(n+1) \prod_{k=n_{0}}^{n} D(k)+U_{1}(n) \prod_{k=n_{0}}^{n-1} D(k) \\
& =\left(U(n)-D(n) U_{1}(n+1)+U_{1}(n)\right) \prod_{k=n_{0}}^{n-1} D(k) .
\end{aligned}
$$

It follows that $E T_{2} / T_{2}$ agrees with (7) for all integers $n \geq n_{0}$ which proves the claim.

Lemma 8. Let $\left(D, U, n_{0}\right)$ be a multiplicative representation of a term T, and let $U_{1}, U_{2} \in$ $K(x)$ satisfy $U_{2}=U-D\left(E U_{1}\right)+U_{1}$. Then there are terms T_{1}, T_{2} such that
(1) $T=\Delta T_{1}+T_{2}$,
(2) if $U_{i} \neq 0$ then T_{i} has a multiplicative representation of the form $\left(D, \beta U_{i}, n_{1}\right)$ where $n_{1} \geq n_{0}$ and $\beta \in K(i=1,2)$.

Proof. Choose $n_{1} \geq n_{0}$ such that if $U_{i} \neq 0$, then U_{i} has neither a pole nor a zero for $n \geq n_{1}, i=1,2$. Let

$$
\begin{align*}
& T_{1}(n)=\beta U_{1}(n) \prod_{k=n_{1}}^{n-1} D(k), \tag{9}\\
& T_{2}(n)=\beta U_{2}(n) \prod_{k=n_{1}}^{n-1} D(k), \tag{10}
\end{align*}
$$

where $\beta=\prod_{k=n_{0}}^{n_{1}-1} D(k)$. Then

$$
\begin{aligned}
\Delta T_{1}(n)+T_{2}(n) & =\beta\left(U_{1}(n+1) D(n)-U_{1}(n)+U_{2}(n)\right) \prod_{k=n_{1}}^{n-1} D(k) \\
& =U(n) \prod_{k=n_{1}}^{n-1} D(k)=T(n) .
\end{aligned}
$$

4.2. ALGORITHM $d t e r m$

The following lemma and its proof contain the main idea of our algorithm.

Lemma 9. Let $\left(z, d_{1}, d_{2}, u_{1}, u_{2}\right)$ be a strict $R N F$ of some $R \in K(x)$. Write $D=z d_{1} / d_{2}$, $U=u_{1} / u_{2}$. Then there are $U_{1} \in K(x), v_{1}, v_{2} \in K[x]$ and $i, j \in\{0,1\}$ such that
(i) $U-D\left(E U_{1}\right)+U_{1}=\frac{v_{1}}{\left(E^{-1} d_{1}\right)^{i} d_{2}^{j} v_{2}}$ where $v_{1} \perp\left(E^{-1} d_{1}\right)^{i} d_{2}^{j} v_{2}$,
(ii) $v_{2} \perp E^{-h} d_{1}, v_{2} \perp E^{h} d_{2}$ for all $h \geq 0$,
(iii) v_{2} is shift-free.

Proof. Let q be an irreducible factor of u_{2}. Write $u_{2}=u_{2}^{\prime} q^{k}$ where $q \perp u_{2}^{\prime}$. Then, by the partial fraction decomposition, there are $a, b \in K[x]$ such that

$$
\begin{equation*}
U=\frac{a}{u_{2}^{\prime}}+\frac{b}{q^{k}} . \tag{11}
\end{equation*}
$$

We distinguish two cases.
(a) There is an integer $h \geq 0$ such that $E^{h} q \mid d_{1}$. Let $U_{1}{ }^{\prime}=-b / q^{k}$. Then $U-D\left(E U_{1}{ }^{\prime}\right)+$ $U_{1}{ }^{\prime}$ can be written as

$$
\frac{c_{0}}{u_{2}^{\prime}}+\frac{c_{1}}{d_{2}}+\frac{c_{2}}{(E q)^{l}}
$$

where $l \leq k$ and $c_{0}, c_{1}, c_{2} \in K[x]$.
(b) There is an integer $h \leq 0$ such that $E^{h} q \mid d_{2}$. Let $U_{1}{ }^{\prime}=E^{-1}\left(b /\left(D q^{k}\right)\right)$. Then $D\left(E U_{1}{ }^{\prime}\right)=b / q^{k}$, so $U-D\left(E \bar{U}_{1}{ }^{\prime}\right)+U_{1}{ }^{\prime}$ can be written as

$$
\frac{c_{0}}{u_{2}^{\prime}}+\frac{c_{1}}{E^{-1} d_{1}}+\frac{c_{2}}{\left(E^{-1} q\right)^{l}}
$$

where $l \leq k$ and $c_{0}, c_{1}, c_{2} \in K[x]$.
Since D is shift-reduced, at most one of the cases (a), (b) can occur. Repeating these steps if necessary (using $U_{1}{ }^{\prime \prime}, U_{1}{ }^{\prime \prime \prime}, \ldots$) we obtain a rational function $U-D E\left(U_{1}{ }^{\prime}+U_{1}{ }^{\prime \prime}+\right.$ $\cdots)+\left(U_{1}{ }^{\prime}+U_{1}{ }^{\prime \prime}+\cdots\right)$ whose denominator is of the form $\left(E^{-1} d_{1}\right)^{i} d_{2}^{j} v_{2}^{\prime}$ where v_{2}^{\prime} has no irreducible factor q such that $E^{h} q \mid d_{1}$ or $E^{-h} q \mid d_{2}$ with $h \geq 0$.

We proceed similarly with the remaining irreducible factors of u_{2} (those that are not shift-equivalent to q), and finally obtain U_{1}, v_{1}, v_{2} which satisfy (i) and (ii). If v_{2} is not shift-free then there is an integer $h>0$ and an irreducible $q \in K[x]$ such that q and $E^{h} q$ both divide v_{2}. In this case we further transform U_{1} in the same way as U was transformed in (a) above.

Theorem 6. Let T be a hypergeometric term. Then there exists a term T_{1} similar to T such that the certificate of the term $T_{2}=T-\Delta T_{1}$ has an $R N F$ of the form $\left(z, f_{1}, f_{2}, v_{1}, v_{2}\right)$ which satisfies the following two properties:
(A) v_{2} is shift-free,
(B) $v_{2} \perp E^{-h} f_{1}, v_{2} \perp E^{h} f_{2}$ for all $h \geq 0$.

Proof. Combining Lemmas 8 and 9 we obtain hypergeometric terms T_{1} and $T_{2}=$ $T-\Delta T_{1}$ with certificates $E T_{1} / T_{1}=D\left(E U_{1}\right) / U_{1}$ and $E T_{2} / T_{2}=D\left(E U_{2}\right) / U_{2}$ where

$$
U_{2}=\frac{v_{1}}{\left(E^{-1} d_{1}\right)^{i} d_{2}^{j} v_{2}}
$$

with $v_{1}, v_{2}, d_{1}, d_{2}, i, j$ as in Lemma 9. To remove the factors $\left(E^{-1} d_{1}\right)^{i}$ and d_{2}^{j} from the denominator of U_{2} we set

$$
F=D \frac{\left(E^{-1} d_{1} / d_{1}\right)^{i}}{\left(E d_{2} / d_{2}\right)^{j}}, \quad V=\frac{v_{1}}{v_{2}}
$$

Then $D\left(E U_{2}\right) / U_{2}=F(E V) / V$ and F is still shift-reduced, proving the theorem.
The proofs of Theorem 6 and Lemma 9 contain an algorithm to compute the terms T_{1}, T_{2} (mentioned in Theorem 6) that we now state explicitly. In case (a) of the proof of Lemma 9 we considered the irreducible q 's and integers $h \geq 0$ such that $q \mid u_{2}$ and $E^{h} q \mid d_{1}$. All the q 's (say $q_{1}, \ldots, q_{\kappa}$) that relate to the maximal possible h can be considered together. Using the concept of dispersion, we find the maximal value of h along with $q^{\prime}=q_{1}^{\nu_{1}} \ldots q_{\kappa}^{\nu_{\kappa}}, q^{\prime} \mid u_{2}, \nu_{1}, \ldots, \nu_{\kappa}>0$, then compute $\tilde{q}=q_{1}^{\mu_{1}} \ldots q_{\kappa}^{\mu_{\kappa}}$, where $\mu_{1}, \ldots, \mu_{\kappa}$ are the maximal possible such that $q_{1}^{\mu_{1}} \ldots q_{\kappa}^{\mu_{\kappa}} \mid u_{2}$. For this, we use the following simple algorithm:

Algorithm pump

input: $f, g \in K[x]$ such that $f \mid g$;
output: $\tilde{f}, \tilde{g} \in K[x]$ such that $f|\tilde{f}, q| \tilde{f} \wedge q$ irreducible $\Rightarrow q \mid f, \tilde{f} \tilde{g}=g, \tilde{f} \perp \tilde{g}$.

$$
\begin{aligned}
& \tilde{f}:=f ; \tilde{g}:=g / f ; \\
& \text { repeat } d=\operatorname{gcd}(\tilde{f}, \tilde{g}) ; \\
& \quad \tilde{f}:=\tilde{f} d ; \tilde{g}:=\tilde{g} / d ; \\
& \text { until } \operatorname{deg} d=0 ; \\
& \text { return }(\tilde{f}, \tilde{g}) \text {. }
\end{aligned}
$$

With $\left(\tilde{q}, \tilde{u}_{2}\right)=\operatorname{pump}\left(q, u_{2}\right)$, we compute a partial fraction decomposition

$$
\begin{equation*}
U=\frac{\tilde{a}}{\tilde{u}_{2}}+\frac{\tilde{b}}{\tilde{q}} \tag{12}
\end{equation*}
$$

which serves in place of (11).
In case (b) of the proof of Lemma 9, we proceed similarly. Thus we have the following algorithm:

Algorithm dcert

input: $\quad D, U \in K(x)$ where (D, U) is a strict RNF of some $R \in K(x)$;
output: $U_{1}, F, V \in K(x)$ such that

1. if $F=0$ then $U=D\left(E U_{1}\right)-U_{1}$,
2. if $F \neq 0$ then
(a) $F(E V) / V=D\left(E U_{2}\right) / U_{2}$ where $U_{2}=U-D\left(E U_{1}\right)+U_{1}$,
(b) $f_{1}=\operatorname{num} F, f_{2}=\operatorname{den} F, v_{1}=\operatorname{num} V, v_{2}=\operatorname{den} V$ have properties (A), (B) of Theorem 6.
```
\(U_{1}:=0 ; U_{2}:=U ;\)
\(u_{2}:=\operatorname{den} U\);
\(d_{1}:=\operatorname{num} D ; \quad d_{2}:=\operatorname{den} D ;\)
\(N_{1}:=\operatorname{dis}\left(d_{1}, u_{2}\right)\);
\(M:=\operatorname{dis}\left(u_{2}, u_{2}\right)\);
if \(M=0\) then \(M:=-1\);
\(N_{1}=\max \left\{N_{1}, M\right\}\);
for \(h:=N_{1}\) downto 0 do
    \(q:=\operatorname{gcd}\left(u_{2}, E^{-h} d_{1}\right) ;\)
    if \(h>0\) then
        \(t:=u_{2} / q ;\)
        \(q:=q \operatorname{gcd}\left(t, E^{-h} t\right)\)
    fi;
    \(\left(\tilde{q}, \tilde{u}_{2}\right):=\operatorname{pump}\left(q, u_{2}\right)\);
    write \(U_{2}=\tilde{a} / \tilde{u}_{2}+\tilde{b} / \tilde{q}\) where \(\tilde{a}, \tilde{b} \in K[x]\);
    \(U_{1}{ }^{\prime}:=-\tilde{b} / \tilde{q} ;\)
    \(U_{2}:=U_{2}-D\left(E U_{1}{ }^{\prime}\right)+U_{1}{ }^{\prime} ; \quad U_{1}:=U_{1}+U_{1}{ }^{\prime} ;\)
    \(u_{2}:=\operatorname{den} U_{2}\)
od;
\(N_{2}:=-\operatorname{dis}\left(d_{2}(-n), u_{2}(-n)\right)\);
for \(h:=N_{2}\) to 0 do
    \(q:=\operatorname{gcd}\left(u_{2}, E^{-h} d_{2}\right) ;\)
    \(\left(\tilde{q}, \tilde{u}_{2}\right):=\operatorname{pump}\left(q, u_{2}\right)\);
    write \(U_{2}=\tilde{a} / \tilde{u}_{2}+\tilde{b} / \tilde{q}\) where \(\tilde{a}, \tilde{b} \in K[x]\);
    \(U_{1}{ }^{\prime}:=E^{-1}(\tilde{b} /(D \tilde{q})) ;\)
    \(U_{2}:=U_{2}-D\left(E U_{1}^{\prime}\right)+U_{1}{ }^{\prime} ; \quad U_{1}:=U_{1}+U_{1}{ }^{\prime} ;\)
    \(u_{2}:=\operatorname{den} U_{2}\)
od;
\(v_{1}:=\operatorname{num} U_{2} ; v_{2}:=u_{2} ;\)
if \(E^{-1} d_{1} \mid v_{2}\)
    then \(v_{2}:=v_{2} /\left(E^{-1} d_{1}\right) ; f_{1}:=E^{-1} d_{1}\)
    else \(f_{1}:=d_{1}\)
fi;
if \(d_{2} \mid v_{2}\)
    then \(v_{2}:=v_{2} / d_{2} ; f_{2}:=E d_{2}\)
    else \(f_{2}:=d_{2}\)
```

```
fi;
F:= f}/\mp@subsup{f}{2}{};V:=\mp@subsup{v}{1}{}/\mp@subsup{v}{2}{}
return ( U , F,V).
```

Using Lemma 8 it is now easy to write down the algorithm dterm.

Algorithm dterm

input: multiplicative representation $t=\left(D, U, n_{0}\right)$ of a term T where D is shift-reduced;
output: multiplicative representations t_{1}, t_{2} of terms T_{1}, T_{2} such that

1. $T=\Delta T_{1}+T_{2}$,
2. if $T_{2} \neq 0$ then $\left(E T_{2}\right) / T_{2}=F(E V) / V$ where $f_{1}=\operatorname{num} F, f_{2}=\operatorname{den} F, v_{1}=\operatorname{num} V$, $v_{2}=\operatorname{den} V$ have properties (A), (B) of Theorem 6.
```
\(\left(U_{1}, F, V\right):=\operatorname{dcert}(D, U)\);
if \(U_{1}=0\) then
    return \((0, t)\)
fi;
find \(n_{1} \geq n_{0}\) s.t. \(U_{1}(n)\), and also \(F(n), V(n)\) if \(V \neq 0\),
    have neither a pole nor a zero for \(n \geq n_{1}\);
\(\beta=\prod_{k=n_{0}}^{n_{1}-1} D(k)\);
\(t_{1}:=\left(D, \beta U_{1}, n_{1}\right) ;\)
if \(V=0\) then
    return \(\left(t_{1}, 0\right)\)
fi;
\(U_{2}\left(n_{1}\right):=U\left(n_{1}\right)-D\left(n_{1}\right) U_{1}\left(n_{1}+1\right)+U_{1}\left(n_{1}\right) ;\)
\(t_{2}:=\left(F, \beta U_{2}\left(n_{1}\right) / V\left(n_{1}\right) V, n_{1}\right)\);
return \(\left(t_{1}, t_{2}\right)\).
```

Example 4. Applying dterm to $D(n)=1 /(n+2), U(n)=1 /(n+1)-1 / n, n_{0}=1$ which is a multiplicative representation of the term

$$
T(n)=\left(\frac{1}{n+1}-\frac{1}{n}\right) \frac{2}{(n+1)!}
$$

results in the additive decomposition $T(n)=\Delta T_{1}(n)+T_{2}(n)$ where

$$
T_{1}(n)=\frac{2}{n n!}, \quad T_{2}(n)=\frac{2}{(n+1)!} .
$$

We show in Section 4.3 that algorithm dterm constructs a decomposition where the denominator v_{2} of V from the certificate of T_{2} has minimal possible degree. In Abramov and Petkovšek (2001b), it is shown that in addition, we can also reduce the degree of the
numerator v_{1} of V so that it is less than

$$
\lambda= \begin{cases}\operatorname{deg} v_{2}+\operatorname{deg} f_{2} & \text { if } \operatorname{deg}\left(f_{2}-f_{1}\right)>\operatorname{deg} f_{1} \\ \operatorname{deg} v_{2}+\operatorname{deg} f_{1} & \text { if } \operatorname{deg}\left(f_{2}-f_{1}\right)=\operatorname{deg} f_{1} \\ & \text { or } \operatorname{deg}\left(f_{2}-f_{1}\right)<\operatorname{deg} f_{1}-1, \\ \operatorname{deg} v_{2}+\operatorname{deg} f_{1}+\tau & \text { if } \operatorname{deg}\left(f_{2}-f_{1}\right)=\operatorname{deg} f_{1}-1\end{cases}
$$

where in the last case τ is equal to lc $\left(f_{2}-f_{1}\right) / \mathrm{lc} f_{1}$ if this is a non-negative integer, and -1 otherwise.

Example 5. Consider the rational term

$$
T(n)=\frac{1}{8} \frac{(n+3)(n+2)(n+4)(43 n+35)}{(2 n+1)(2 n+3)(2 n+5)(2 n+7)} .
$$

An application of dterm yields

$$
T_{1}=-\frac{15}{256} \frac{168 n^{2}+460 n+251}{(2 n+1)(2 n+3)(2 n+5)}, \quad T_{2}=\frac{86 n+457}{256 n+896} .
$$

Using techniques from Abramov and Petkovšek (2001b) this can be rewritten as

$$
T_{2}=\Delta\left(\frac{43}{128} n\right)+\frac{156}{256 n+896}
$$

hence

$$
T=\Delta\left(\frac{1}{256} \frac{688 n^{4}+3096 n^{3}+1436 n^{2}-5610 n-3765}{(2 n+1)(2 n+3)(2 n+5)}\right)+\frac{156}{256 n+896} .
$$

4.3. PROOF OF MINIMALITY OF DECOMPOSITION CONSTRUCTED BY dterm

Definition 7. A rational function $F \in K(x)$ is adequate for a hypergeometric term $T(n)$ if the certificate $E T / T$ has an RNF with F as its kernel.

Let T, T_{1}, T_{2} satisfy $T=\Delta T_{1}+T_{2}$. Note that these terms are similar (cf. Petkovšek et al., 1996, Proposition 5.6.2), hence any rational function adequate for one of them is also adequate for the other two.

First we prove that the additive decomposition produced by dterm is minimal if we consider only RNF's having the same kernel F as the one constructed by dcert.

Theorem 7. Let the terms T, T_{1}, T_{1}^{\prime} be such that $T_{2}=T-\Delta T_{1}, T_{2}^{\prime}=T-\Delta T_{1}^{\prime}$, and $F=f_{1} / f_{2}$ is a shift-reduced rational function adequate for these terms. Let $E T_{2} / T_{2}=$ $F(E V) / V$ where $F, V \in K(x)$ have properties (A), (B) of Theorem 6, and $E T_{2}^{\prime} / T_{2}^{\prime}=$ $F\left(E V^{\prime}\right) / V^{\prime}$. If $V=v_{1} / v_{2}$ and $V^{\prime}=v_{1}^{\prime} / v_{2}^{\prime}$ where $v_{1}, v_{2}, v_{1}^{\prime}, v_{2}^{\prime} \in K[x]$ and $v_{1} \perp v_{2}$, then $\operatorname{deg} v_{2} \leq \operatorname{deg} v_{2}^{\prime}$.

Proof. We have

$$
T_{2}^{\prime}=T_{2}-\Delta\left(T_{1}^{\prime}-T_{1}\right)
$$

Suppose that the certificate of $T_{1}^{\prime}-T_{1}$ is equal to $F \frac{E W}{W}$ where $W=w_{1} / w_{2}$ and $w_{1} \perp w_{2}$. Then, by Lemma 7,

$$
\begin{equation*}
\frac{v_{1}^{\prime}}{v_{2}^{\prime}}=\frac{v_{1}}{v_{2}}-\frac{f_{1}}{f_{2}} \frac{E w_{1}}{E w_{2}}+\frac{w_{1}}{w_{2}} \tag{13}
\end{equation*}
$$

Consider an arbitrary irreducible $p \in K[x]$ such that $p \mid v_{2}$. We set

$$
k=\max \left\{\alpha ; p^{\alpha} \mid v_{2}\right\}
$$

and claim that $E^{l} p^{k} \mid v_{2}^{\prime}$ for some $l \in \mathbb{Z}$. Since the pair F, V has property (A), this claim implies the statement of the theorem. Suppose that p^{k} does not divide v_{2}^{\prime}. Equation (13) implies that v_{2} and hence p^{k} divides the lcm of $v_{2}^{\prime}, f_{2} E w_{2}$, and w_{2}. By property (B) we have $p \perp f_{2}$, therefore $p^{k} \mid E w_{2}$ or $p^{k} \mid w_{2}$.

Let $p^{k} \mid E w_{2}$. Then

$$
\begin{equation*}
E^{-1} p^{k} \mid w_{2} \tag{14}
\end{equation*}
$$

Set $l=\min \left\{m: E^{m} p^{k} \mid w_{2}\right\}$. Evidently $E^{l} p^{k}$ does not divide $E w_{2}$. It follows from (14) that $l \leq-1$; together with property (B) this gives $E^{l} p \perp f_{2}$. As v_{2} is shift-free and $p \mid v_{2}$, it follows that $E^{l} p^{k}$ does not divide v_{2}. Therefore (13) implies

$$
\begin{equation*}
E^{l} p^{k} \mid v_{2}^{\prime} \tag{15}
\end{equation*}
$$

Let $p^{k} \mid w_{2}$. Then

$$
\begin{equation*}
E p^{k} \mid E w_{2} \tag{16}
\end{equation*}
$$

Set $l=\max \left\{m: E^{m} p^{k} \mid E w_{2}\right\}$. Evidently $E^{l} p^{k}$ does not divide w_{2}. It follows from (16) that $l \geq 1$; together with property (B) this gives $E^{l} p \perp f_{1}$. Therefore (13) implies (15) in this case as well.

Corollary 1. Let $F, U, S_{1}, S_{2} \in K(x)$ where F is shift-reduced. Let the rational functions

$$
V_{1}=U-F E S_{1}+S_{1}, V_{2}=U-F E S_{2}+S_{2}
$$

be such that the pairs F, V_{1} and F, V_{2} have properties $(A),(B)$ of Theorem 6 . Then the degrees of the denominators of V_{1} and V_{2} are the same.

In the rest of this section we prove that algorithm dterm gives a complete solution to the additive decomposition problem. If rational functions $F_{1}, F_{2} \in K(x)$ are both adequate for a term T then there exists $G \in K(x)$ such that

$$
\begin{equation*}
\frac{F_{1}}{F_{2}}=\frac{E G}{G} . \tag{17}
\end{equation*}
$$

Indeed, for some $U_{1}, U_{2} \in K(x)$ we have

$$
F_{1} \frac{E U_{1}}{U_{1}}=F_{2} \frac{E U_{2}}{U_{2}}
$$

and therefore $G=U_{1}^{-1} U_{2}$. The case where $G \in K[x]$ is of special interest.
THEOREM 8. Let F_{1}, F_{2} be rational functions adequate for a term T, and such that (17) holds with $G \in K[x]$. If the pair F_{1}, V has properties (A), (B) of Theorem 6 then $\operatorname{den} V \perp G$, and the pair $F_{2}, G V$ also has properties (A), (B) of Theorem 6.

Proof. First we prove that den $V \perp G$. If they have a common irreducible factor p then the set $\left\{\nu ; E^{\nu} p \mid G\right\}$ is non-empty and finite. Suppose that m resp. M are the minimal resp. the maximal elements of this set. Write

$$
W=\frac{G}{E G}=\frac{F_{2}}{F_{1}}=\frac{w_{1}}{w_{2}}, \quad w_{1} \perp w_{2} .
$$

Then $E^{M+1} p \mid w_{2}$ and $E^{m} p \mid w_{1}$. We have $F_{2}=W F_{1}$. As p divides the denominator of V and the pair F_{1}, V has properties (A) and (B), the numerator of F_{1} is not divisible by $E^{M+1} p$ since $M+1>0$. Similarly the denominator of F_{1} is not divisible by $E^{m} p$ since $m \leq 0$. Therefore the numerator of F_{2} is divisible by $E^{m} p$ while the denominator of F_{2} is divisible by $E^{M+1} p$. But F_{2} is shift-reduced by Definition 3(ii), a contradiction.

Now we prove that the pair $F_{2}, G V$ has properties (A) and (B). We have

$$
F_{2}=\frac{G}{E G} F_{1}
$$

and the pair $F_{2}, G V$ has property (A) because the denominator of $G V$ divides the denominator of V. Now we shall be concerned with (B). Let p be an irreducible from $K[x]$ that divides the denominator of $G V$ and thereby divides the denominator of V. Let $E^{h} p, h \leq 0$, divide the denominator of F_{2}. Then $E^{h} p$ does not divide the denominator of F_{1} since the pair F_{1}, V has properties (A) and (B). The equality $(E G) F_{2}=G F_{1}$ implies that $E^{h} p \mid E G$. Set $h_{0}=\min \left\{\nu: E^{\nu} p \mid E G\right\}$. Then $h_{0} \leq h \leq 0$ and $E^{h_{0}-1} p \mid G$, but $E^{h_{0}-1} p$ does not divide $E G$. The denominator of F_{1} is not divisible by $E^{h_{0}-1} p$ since the pair F_{1}, V has properties (A) and (B). Therefore $E^{h_{0}-1} p$ divides the numerator of F_{2}. But as $E^{h} p$ divides the denominator of F_{2}, this contradicts the fact that F_{2} is shift-reduced.

Similarly it can be shown that $E^{h} p, h \geq 0$, cannot divide the numerator of F_{2}.
Lemma 10. Let $F, F_{1}, U, U_{1} \in K(x), G \in K[x]$ be such that $F / F_{1}=E G / G, G \in K[x]$ and $F \frac{E U}{U}=F_{1} \frac{E U_{1}}{U_{1}}$. Then there exists $\bar{G} \in K[x]$ such that $\bar{G} U=U_{1}$ and for any $S \in K(x)$ we have

$$
\bar{G}(U-F E S+S)=U_{1}-F_{1} E(\bar{G} S)+\bar{G} S
$$

Proof. We have

$$
\frac{E\left(U^{-1} U_{1}\right)}{U^{-1} U_{1}}=\frac{E G}{G}
$$

It follows from this that there exists $\alpha \in K$ such that $U^{-1} U_{1}=\alpha G$. Set $\bar{G}=\alpha G$. We get

$$
\frac{E \bar{G}}{\bar{G}} F_{1}=F, \quad U_{1}=\bar{G} U
$$

Substituting U_{1} for $\bar{G} U$ and $(E \bar{G} / \bar{G}) F_{1}$ for F in $\bar{G} U-(\bar{G} F) E S+\bar{G} S$ gives $U_{1}-F_{1} E(\bar{G} S)$ $+\bar{G} S$.

TheOrem 9. Let F_{1}, F_{2} be rational functions that are adequate for a term T. Let U_{1}, U_{2}, $R \in K(x)$ be such that

$$
\begin{equation*}
F_{1} \frac{E U_{1}}{U_{1}}=F_{2} \frac{E U_{2}}{U_{2}}=R . \tag{18}
\end{equation*}
$$

For $S_{1}, S_{2} \in K(x)$, let

$$
\begin{equation*}
V_{1}=U_{1}-F_{1} E S_{1}+S_{1}, V_{2}=U_{2}-F_{2} E S_{2}+S_{2} \tag{19}
\end{equation*}
$$

be such that the pairs F_{1}, V_{1} and F_{2}, V_{2} have properties (A) and (B) of Theorem 1. Then the denominators of V_{1} and V_{2} are of the same degree.

Proof. First of all we show that there exists a shift-reduced rational function a / b, such that for the rational functions

$$
\begin{equation*}
F_{0}=\frac{a}{b}, \quad F_{-1}=\frac{E^{-1} a}{b}, \quad F_{-2}=\frac{a}{E b}, \quad F_{-3}=\frac{E^{-1} a}{E b} \tag{20}
\end{equation*}
$$

the equalities

$$
\begin{equation*}
\frac{F_{i}}{F_{1}}=\frac{E G_{i}^{\prime}}{G_{i}^{\prime}}, \quad \frac{F_{i}}{F_{2}}=\frac{E G_{i}^{\prime \prime}}{G_{i}^{\prime \prime}}, \quad G_{i}^{\prime}, G_{i}^{\prime \prime} \in K[x] \tag{21}
\end{equation*}
$$

hold for $i=-1,-2,-3$. It is sufficient to prove the theorem for shift-homogeneous F_{1}, F_{2} which belong to the same shift-homogeneous class. Then, by Lemma 5 , either both F_{1} and F_{2} are polynomials, or both F_{1} and F_{2} are reciprocals of polynomials. By Theorem 2(ii) we have

$$
\begin{equation*}
F_{1}=\prod_{i=1}^{\tau} E^{h_{i}} p, \quad F_{2}=\prod_{i=1}^{\tau} E^{l_{i}} p \tag{22}
\end{equation*}
$$

in the former case, and

$$
\begin{equation*}
F_{1}=\frac{1}{\prod_{i=1}^{\tau} E^{h_{i}} p}, \quad F_{2}=\frac{1}{\prod_{i=1}^{\tau} E^{l_{i} p}} \tag{23}
\end{equation*}
$$

in the latter, where $p \in K[x]$ is irreducible. In the case of (22), set

$$
a=\prod_{i=1}^{\tau} E^{\max \left\{h_{i}, l_{i}\right\}+1} p, \quad b=1
$$

and in the case of (23), set

$$
a=1, \quad b=\prod_{i=1}^{\tau} E^{\min \left\{h_{i}, l_{i}\right\}-1} p .
$$

It is easy to see that if $F_{0}, F_{-1}, F_{-2}, F_{-3}$ are defined as in (20) then the equalities (21) hold for some polynomials $G_{i}^{\prime}, G_{i}^{\prime \prime}$.
Considering the RNF of R with the kernel a / b and using algorithm dcert we can get $i,-3 \leq i \leq 0$, and $F, U, V, S \in K[x]$ such that

- $F=F_{i}$;
- $R=F \frac{E U}{U}, U=\frac{u_{1}}{u_{2}}, u_{1} \perp u_{2}$;
- $V=U-F E S+S$;
- the pair F, V has properties (A) and (B).

Set

$$
G^{\prime}=G_{i}^{\prime}, G^{\prime \prime}=G_{i}^{\prime \prime}
$$

for the computed i. By Lemma 10 there exists a polynomial \bar{G}^{\prime} such that

$$
\bar{G}^{\prime} V=\bar{G}^{\prime}(U-F E S+S)=U_{1}-F_{1} E\left(\bar{G}^{\prime} S\right)+\bar{G}^{\prime} S .
$$

By Theorem 8 the pair $F_{1}, U_{1}-F_{1} E\left(\bar{G}^{\prime} S\right)+\bar{G}^{\prime} S$ has properties (A) and (B) and the degree of denominator of $\bar{G}^{\prime} V$ is equal to the degree of the denominator of V. By Corollary 1 the denominator of V is of the same degree as the denominator of V_{1}, and similarly for the degrees of the denominators of V and V_{2}. The claim follows.

The following is the main result of this section.
Theorem 10. Let T, T_{1}, T_{1}^{\prime} be similar terms. Let the certificates of the terms $T_{2}=T-$ $\Delta T_{1}, T_{2}^{\prime}=T-\Delta T_{1}^{\prime}$ be written in the form

$$
F \frac{E V}{V}, \quad F^{\prime} \frac{E V^{\prime}}{V^{\prime}}
$$

with shift-reduced F, F^{\prime}. Let the pair F, V have properties (A) and (B) of Theorem 1. Then $\operatorname{deg} \operatorname{den} V \leq \operatorname{deg} \operatorname{den} V^{\prime}$.

Proof. Since $E T_{2}^{\prime} / T_{2}^{\prime}=F^{\prime}\left(E V^{\prime} / V^{\prime}\right)$, where F^{\prime} is shift-reduced, there exists $U \in K(x)$ such that $E T / T=F^{\prime}(E U / U)$. Now applying dcert to the input F^{\prime}, U yields $\tilde{U}, \tilde{V} \in K(x)$ such that the term T has the decomposition $T=\Delta \tilde{T}_{1}+\tilde{T}_{2}$ where $\tilde{T}_{1}, \tilde{T}_{2}$ have the certificates $F^{\prime}(E \tilde{U} / \tilde{U})$ and $F^{\prime}(E \tilde{V} / \tilde{V})$, resp. with F^{\prime}, \tilde{V} satisfying properties (A) and (B). From Theorem 9, one concludes that the denominators of V and \tilde{V} are of the same degree. The claim now follows, since it is clear from Theorem 7 that $\operatorname{deg} \operatorname{den} \tilde{V} \leq \operatorname{deg} \operatorname{den} V^{\prime}$.

4.4. THE ISSUE OF SUMMABILITY

Any algorithm to solve the decomposition problem for rational functions guarantees that if the input rational function T is rational-summable, then it will return a rational function T_{1} such that

$$
T=\Delta T_{1}
$$

It would be natural to expect that an algorithm to solve the same problem for hypergeometric terms would exhibit analogous behaviour. It is clear, however, that by simply applying dterm one will not achieve this goal. One solution is to apply an indefinite hypergeometric summation algorithm (such as Gosper's algorithm (Gosper, 1978)) first, and only in the case of failure proceed with the additive decomposition. But we can also detect summability from the minimal additive decomposition as follows.

Theorem 11. Let T and T_{1} be hypergeometric terms such that $\Delta T_{1}=T$. If $E T / T=$ $F(E V) / V$ and $E T_{1} / T_{1}=F(E R) / R$ where $F, V, R \in K(x), F$ is shift-reduced, and the pair F, V has properties $(A),(B)$ of Theorem 6 , then V, R are polynomials.

Proof. Set $V=v_{1} / v_{2}, F=f_{1} / f_{2}, v_{1}, v_{2}, f_{1}, f_{2} \in K[x]$. If $\Delta T_{1}=T$ then there exists $\mu \in K$ such that $F E(\mu R)-\mu R=V$. Set $S=\mu R$ then

$$
\begin{equation*}
F E S-S=V \tag{24}
\end{equation*}
$$

or equivalently,

$$
\begin{equation*}
v_{2} f_{1} E S-v_{2} f_{2} S=f_{2} v_{1} \tag{25}
\end{equation*}
$$

Since the pair F, V has properties (A), (B) of Theorem 6, the dispersion of $f_{2} v_{2}, f_{1} v_{2}$ cannot be a positive integer. Therefore there is no non-polynomial rational function S that satisfies (25) (see Abramov (1989)). Consequently, $S, R \in K[x]$. It follows from (24) that $V \in K[x]$.

Consider the following algorithm for the case where $V \in K[x]$:

Algorithm dpol

input: multiplicative representation $\left(F, V, n_{0}\right)$ of a term T where F, V have properties (A), (B) of Thm $6, F$ is shift-reduced, and $V \in K[x]$;
output: multiplicative representation of a term T_{1} such that $T=\Delta T_{1}$ if it exists, and 0 otherwise.
if the equation $F E y-y=V$ has a polynomial solution
then set S to an arbitrary polynomial solution
else return 0
fi;
find integer $n_{1} \geq n_{0}$ s.t. $S(n)$ has neither a pole nor a zero

$$
\begin{aligned}
& \text { at } n \geq n_{1} ; \\
& \beta=\prod_{k=n_{0}}^{n_{1}=1} F(k) ; \\
& \text { return }\left(F, \beta S, n_{1}\right) .
\end{aligned}
$$

Finally, we present algorithm $h g_{-} a d d_{-} d e c$ that solves the additive decomposition problem, and also recognizes summability of its input.

Algorithm hg_add_dec

input: multiplicative representation $t=\left(D, U, n_{0}\right)$ of a term T where D is shift-reduced;
output: multiplicative representations t_{1}, t_{2} of terms T_{1}, T_{2} such that

1. $T=\Delta T_{1}+T_{2}$,
2. if T is summable then $T_{2}=0$,
3. if T is not summable then $\left(E T_{2}\right) / T_{2}$ has an RNF (F, V) where V 's denominator is of minimal possible degree.
```
\(\left(U_{1}, F, V\right):=\operatorname{dcert}(D, U)\);
\(\left(t_{1}, t_{2}\right):=\operatorname{dterm}\left(D, U, n_{0}\right) ;\)
if \(t_{2}=0\) or \(V \notin K[x]\)
    then return \(\left(t_{1}, t_{2}\right)\)
fi;
\(t_{3}:=\operatorname{dpol}\left(t_{2}\right)\);
if \(t_{3}=0\) then return \(\left(t_{1}, t_{2}\right)\)
            else return (sum_of_terms \(\left.\left(t_{1}, t_{3}\right), 0\right)\)
```

fi.

Example 6. For the hypergeometric term

$$
T(n)=\frac{1}{n(n+1)} \prod_{k=1}^{n-1} \frac{k^{2}}{k^{2}+k+1}
$$

applying dterm results in

$$
T_{1}(n)=-\frac{1}{3} \frac{n^{2}-n+1}{n(n-1)^{2}} \prod_{k=2}^{n-1} \frac{k^{2}}{k^{2}+k+1}, \quad T_{2}(n)=-\frac{1}{3} \prod_{k=2}^{n-1} \frac{(k-1)^{2}}{k^{2}+k+1}
$$

where T_{2} has a multiplicative decomposition $\left(F, V, n_{0}\right)$ with

$$
F=\frac{f_{1}}{f_{2}}, \quad f_{1}=(n-1)^{2}, \quad f_{2}=n^{2}+n+1, \quad V=-\frac{1}{3}
$$

Since $V \in K[n]$, we apply dpol. The equation

$$
f_{1} E y-f_{2} y=f_{2} V
$$

has a polynomial solution

$$
y=-\frac{1}{3}(n-2)\left(n^{2}-n+1\right)
$$

Therefore

$$
T_{2}(n)=\Delta\left(-\frac{1}{21}(n-2)\left(n^{2}-n+1\right) \prod_{k=3}^{n-1} \frac{(k-1)^{2}}{k^{2}+k+1}\right)
$$

hence T is summable as well, and $h g_{-} a d d_{-} d e c$ returns

$$
T(n)=\Delta\left(-\frac{1}{21} \frac{n^{4}-3 n^{3}+4 n^{2}-3 n+1}{n} \prod_{k=3}^{n-1} \frac{(k-1)^{2}}{k^{2}+k+1}\right)
$$

Acknowledgements

We wish to express our thanks to H. Q. Le for implementing the algorithms presented here, and also for his careful reading of the paper and many useful suggestions. This work was partially supported by the French-Russian Lyapunov Institute under grant 98-03 and by MZT RS under grant P0-0511-0101.

References

Abramov, S. A. (1975). Rational component of the solutions of a first-order linear recurrence relation with a rational right-hand side. USSR Comput. Math. Phys., Translated from Zh. Vychisl. Mat. Mat. Fiz., 14, 1035-1039.
Abramov, S. A. (1989). Rational solutions of linear difference and differential equations with polynomial coefficients. USSR Comput. Math. Phys., 29, 7-12; Translated from Zh. Vychisl. Mat. Mat. Fiz., 29, 1611-1620.
Abramov, S. A. (1995). Indefinite sums of rational functions. In Levelt, A. H. M. ed., Proceedings of ISSAC '95, pp. 303-308. New York, NY, ACM Press.
Abramov, S. A., Petkovšek, M. (2001a). Canonical representations of hypergeometric terms. In Barcelo, H., Welker, V. eds, Proceedings of FPSAC'01, pp. 1-10. Tempe, AZ, Arizona State University.

Abramov, S. A., Petkovšek, M. (2001b). Minimal decomposition of indefinite hypergeometric sums. In Mourrain, B. ed., Proceedings of ISSAC'01, pp. 7-14. New York, NY, ACM Press.
Gosper, R. W. Jr (1978). Decision procedure for indefinite hypergeometric summation. Proc. Natl. Acad. Sci. USA, 75, 40-42.
Hermite, Ch. (1872). Sur l'integration des fractions rationelles. Nouv. Ann. de Mathematiques (2 serie), 11, 145-148.
Ostrogradsky, M. (1845). De l'integration des fractions rationelles. Bull. de la Classe PhysicoMathématique de l'Académie Imperiale des Sciences de Saint-Petersburg, IV, 147-168, 286-300.
Paule, P. (1995). Greatest factorial factorization and symbolic summation. J. Symb. Comput., 20, 235-268.

Petkovšek, M. (1992). Hypergeometric solutions of linear recurrences with polynomial coefficients. J. Symb. Comput., 14, 243-264.

Petkovšek, M., Wilf, H. S., Zeilberger, D. (1996). $A=B$, A K Peters.
Pirastu, R., Strehl, V. (1995). Rational summation and Gosper-Petkovšek representation. J. Symb. Comput., 20, 617-635

Received 13 November 2001
Accepted 27 February 2002

