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1. INTRODUCTION

For a system of first-order linear differential equa-
tions

(1)

where 

 

a

 

ij

 

, 

 

b

 

i

 

, and 

 

c

 

i

 

 are polynomials over some field 

 

K

 

of zero characteristic,  = , 

 

i

 

 = 1, …, 

 

n

 

, we will

extend the notion of 

 

universal denominator

 

 [1—3] in
the following way: vector (

 

u

 

1

 

, …, 

 

u

 

n

 

) 

 

∈

 

 (

 

K

 

[

 

x

 

])

 

n

 

 will be
referred to as universal denominator for the left-hand
side of system (1) if any component 

 

y

 

i

 

 in an arbitrary
vector (

 

y

 

1

 

, …, 

 

y

 

n

 

) 

 

∈

 

 (

 

K

 

(

 

x

 

))

 

n

 

 that turns the left-hand
sides of the system into polynomials can be represented

in the form , 

 

z

 

i

 

 

 

∈

 

 

 

K

 

[

 

x

 

].

Similarly, we can define universal denominator for
the left-hand side of a system of first-order difference
equations

(2)

where 

 

a

 

ij

 

, 

 

b

 

i

 

, 

 

c

 

i

 

 

 

∈

 

 

 

K

 

[

 

x

 

], 

 

i

 

, 

 

j

 

 = 1, …, 
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.

Universal denominator for the left-hand side of (1)
is determined ambiguously: indeed, together with (

 

u

 

1

 

,
…, 

 

u

 

n

 

), any vector (

 

U

 

1

 

, …, 

 

U

 

n

 

) 

 

∈

 

 (

 

K

 

[

 

x

 

])

 

n

 

 with compo-
nents satisfying 

 

u

 

i

 

|

 

U

 

i

 

, 

 

i

 

 = 1, …, 

 

n

 

, has the above prop-
erty. A similar assertion is valid for (2).

After the universal denominator (

 

u

 

1

 

, …, 

 

u

 

n

 

) for the
left-hand side of one of the systems (1) or (2) has been
calculated, the task of finding rational solution (

 

y

 

1

 

, …,

 

y

 

n

 

) of the system is reduced to finding polynomial solu-
tion (

 

z

 

1

 

, …, 

 

z

 

n

 

) to a new system obtained by the substi-
tution

bi x( )yi' x( ) ai1 x( )y1 x( ) …+ +

+ ain x( )yn x( ) ci x( ), i 1 … n,, ,= =

yi'
dyi

dx
-------

zi

ui

----

biyi x 1+( ) ai1y1 x( ) …+ +

+ ainyn x( ) ci, i 1 … n,, ,= =

 

(3)

Methods for calculating universal denominators are
well known for both differential and difference cases
[1–5].

The paper discusses methods to decrease the
degrees of universal denominator components, which
allows us to decrease degrees of coefficients in the sys-
tem obtained by substitution (3) and, in some cases, to
reduce time costs for its solution. In addition, in the
case of differential equations, the proposed method can
allow finding relations of the form 

 

w

 

i

 

|

 

, where 

 

w

 

i

 

 is a
known polynomial. These relations do not immediately
decrease degrees of universal denominator compo-
nents, but they can be used to reduce computational
time costs for solving the system obtained by substitu-
tion (3).

All results obtained for the difference case can eas-
ily be transferred to the 

 

q

 

-difference case (finding of
rational solutions of 

 

q

 

-difference systems is discussed
in [5, 6]).

For difference and 

 

q

 

-difference scalar equations of
an arbitrary order, such an approach to improving uni-
versal denominator is proposed in [7]. The approach
described in [8] is applicable not only to difference sca-
lar equations but also to systems of equations; however,
it is significantly more complicated than that proposed
in this paper and, moreover, cannot be directly
extended to the differential case.

The balancing method proposed in Section 2.2 can
be used not only for improving universal denominators
but also for finding any solution of a differential or dif-
ference system in the neighborhood of the point that is
an isolated pole for its components.

In the last section, we show that construction of uni-
versal denominator can be used in Zeilberger’s algo-
rithm [9] instead of Gosper’s algorithm [10] applica-
tion. This simplifies the structure of Zeilberger’s algo-
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rithm, facilitates the adjustment of the algorithm for the
difference and q-difference cases, and allows us to
avoid difficulties in the situation where the recurrent
relation obtained by Zeilberger’s algorithm is homoge-
neous (see [11]).

2. IMPROVEMENT OF UNIVERSAL 
DENOMINATOR

2.1. Preliminary System Simplification

Let g1, …, gn be polynomials such that the substitu-
tion

(4)

converts system (1) to a system with polynomial coef-
ficients in the left-hand side (i.e., gi |aji for j ≠ i, and

there exist ,  ∈ K[x] such that bi  + aiiyi =

(giyi)' + giyi). If some of the polynomials g1, …, gn

are not constant, substitution (4) removes common fac-
tors of the corresponding coefficients.

Proposition 1. Among the polynomials satisfying
conditions of substitution (4), polynomials

(5)

i = 1, …, n, have the greatest degree.

Proof. From bi  + aiiyi = (giyi)' + giyi , it fol-

lows that bi = gi , aii =  + gi , aii –  = (  +

)gi; hence, gi |bi , gi |(aii – ). It is easy to see that,
together with gi |aji , j ≠ i, the last two relations present a

sufficient condition for substitution yi =  to transform

(1) to a system with polynomial coefficients. �
Example 1. For the system

 = x2,  = x – 1. By performing substitution (5), we
obtain the system

The universal denominator for the left-hand side of
this system (obtained by applying the algorithm from
[4]) is equal to (x2, x2); the universal denominator for
the left-hand side of the original system is (x4(x – 1),
x4(x – 1)).

In the above example, substitution (4) simplifies sig-
nificantly solution of the system. Moreover, this substi-
tution can also simplify the process of finding universal

yi

ỹi

gi

----, i 1 … n, ,= =

b̃i ãii yi'

b̃i ãii

gi* gcd a1i … ai 1– i, aii, , , bi'– ai 1+ i, … ani bi, , , ,( ),=

yi' b̃i ãii

b̃i b̃igi' ãii bi' b̃i'

ãii bi'

ỹi

gi

----

x3y1' 4x2y1 x 1–( )y2–+ 0,=

x x 1–( )2y2' x3y1 x 1–( ) x 2–( )y2+ + 0,=⎩
⎨
⎧

g1* g2*

xỹ1' 2 ỹ1 ỹ2–+ 0,=

x x 1–( ) ỹ2' xỹ1 2 ỹ2–+ 0.=⎩
⎨
⎧

denominator. Computational costs for calculating ,

…,  are insignificant compared to the costs for find-
ing universal denominator.

In order to avoid introducing new notation, we will
assume that such substitutions have been already per-
formed in constructing (1), i.e.,  = 1, i = 1, …, n.

A similar simplifying substitution for systems of
difference equations is proposed in [2], where

2.2. Balancing A Priori Estimates of Upper Bounds
for the Orders of Poles of the System Solution 

Components

Let system (1) satisfy the following condition: the
components y1, …, yn of some solution to this system
have poles at point x0 of orders that do not exceed α1,
…, αn, respectively. By performing substitution

(6)

we obtain a system whose corresponding solution ( ,

…, ) has no poles at this point. Let coefficients of ,

, …,  in the ith equation of the new system have
poles at point x0 of orders β0, β1, …, βn, respectively.

Proposition 2. Let  be attained at a single

j = j0, and let δ =  – . Then, the corresponding

solution component  for j0 > 0, or the derivative 
for j0 = 0, has a zero at point x0 of order δ.

Proof. Let us assume this is not so and multiply both

sides of the ith equation by (x – . Only one term
on the left-hand side of the obtained equation has a pole
at point x0; therefore, the sum cannot be equal to the
polynomial on the right-hand side. �

Proposition 2 allows us to improve the orders of the
poles of solution components of system (1) if the sys-
tem obtained from (1) by substitution (6) contains an
equation satisfying the conditions of Proposition 2 with
j0 > 0. In this case, the order of pole  at point x0 does

not exceed  – δ, and, after performing substitution
(6) with new α1, …, αn, we can obtain again an
improved estimate for the order of pole for one of the
solution components by means of this proposition. It
makes sense to repeat these operations until the esti-
mates cease to change. The described procedure will be
referred to as balancing of a priori estimates of upper
bounds for the orders of poles at point x0.

g1*

gn*

gi*

gi* gcd a1i x( ) … ani x( ) bi x 1–( ), , ,( ),=

i 1 … n., ,=

yi

ỹi

x x0–( )
αi

----------------------, i 1 … n,, ,= =

ỹ1

ỹn ỹi'

ỹ1 ỹn

β j
j 0 … n, ,=
max

β j0
β j

j j0≠
max

ỹ j0
ỹi'

x0 )
β j0

δ–

y j0

α j0
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Example 2. Preliminary estimation demonstrates
that the orders of poles of the solution components of
the system

at point x0 = 0 do not exceed 5. By setting α1 = α2 = α3 = 5
and performing substitution (6) we obtain in the first
equation β0 = 3, β3 = 5; consequently, y3 has a pole of
order not greater than 3. Let us set α1 = α2 = 5, α3 = 3
and apply substitution (6) again. In the third equation of
the obtained system, β0 = 4, β2 = 5; therefore, the order
of the pole y2 does not exceed 4. Substitution (6) with
α1 = 5, α2 = 4, and α3 = 3 does not result in any
improvements.

A similar procedure can be proposed for the differ-
ence case. Let (2) be a system such that the components
y1, …, yn of some solution of this system have poles at
the points x0 + k (k ∈ M, M is a finite subset of Z) of
orders not greater than αk1, …, αkn, respectively, and do

not have poles at points x0 + ,  ∈ Z\M. By applying
the substitution

(7)

we obtain a system whose corresponding solution ( ,

…, ) does not have poles at the points x0 + k, k ∈ Z.

Let coefficients of , , …,  in the ith equation of
the obtained system have poles at the point x0 of orders
β0, β1, …, βn, respectively.

Proposition 3. Let  be attained for a sin-

gle j = j0, and let δ =  – . Then, the correspond-

ing solution component (x) for j0 > 0, or (x + 1) for
j0 = 0, has a zero at point x0 of order δ.

Proof is similar to that of Proposition 2. �

Example 3. Let solution components of the system

have poles of order not greater than 1 at points –2, –1,

0, 1, – , and , and have no other poles. Let us choose

x0 = 0 and perform the substitution

x3y1' x( ) 60y3 x( )+ 0,=

y2' x( ) y1 x( )– 0,=

y3' x( ) y2 x( )– 0=⎩
⎪
⎨
⎪
⎧

k̃ k̃

yi

ỹi

x x0– k–( )
αki

k M∈
∏
------------------------------------------, i 1 … n,, ,= =

ỹ1

ỹn

ỹi' ỹ1 ỹn

β j
j 0 … n, ,=
max

β j0
β j

j j0≠
max

ỹ j0
ỹi

x x 3+( ) 2x 3+( )y1 x 1+( )
– x 1–( ) x 2+( ) 2x 1–( )y2 x( ) 0,=

y2 x 1+( ) y1 x( )– 0=⎩
⎪
⎨
⎪
⎧

1
2
--- 1

2
---

From the first equation, we obtain x | (x), (x +

2)| (x + 1); from the second equation, we have (x –

1)| (x), (x + 3)| (x + 1). Then, we perform another
substitution

and obtain from the second equation (x + 1),

(x). Therefore, y1 has poles of order not

greater than 1 at points –2, 0, and – , and y2 has poles

at points –1, 1, and .

If we additionally consider the right-hand sides of
the system, the balancing of upper bounds can be per-
formed for zero and negative bounds for the order of
poles of the system solution components, which allows
establishing existence of zeros for some components.

Example 4. Preliminary estimation shows that the
orders of poles of solution components of the system

at the point x0 = 0 do not exceed 1. After substitution
(6), the first equation of the system takes the form

The right-hand side and coefficients of ,  have

zeros of order 2 at x0; therefore, the component 
should have zero of order not less than 3 at point x0.

2.3. Universal Denominators

The balancing procedure proposed in Section 2.2
can be used not only for the pole order bounds, but also
for any bounds of order of irreducible factors included
in the universal denominator under consideration.

Example 5. The universal denominator for the left-
hand side of the system

yi

ỹi

x 1–( )x x 1+( ) x 2+( )
------------------------------------------------------, i 1 2.,= =

ỹ2

ỹ1

ỹ1 ỹ2

yi

ỹi

x
1
2
---–⎝ ⎠

⎛ ⎞ x
1
2
---+⎝ ⎠

⎛ ⎞
-----------------------------------, i 1 2,,= =

x
3
2
---+⎝ ⎠

⎛ ⎞ ỹ2

x
1
2
---–⎝ ⎠

⎛ ⎞ ỹ1

1
2
---

1
2
---

x4y1' x3y1– y2+ x2,–=

y2' 2x2y1– 0,=

xy3' y1– y2 y3–+ x2=⎩
⎪
⎨
⎪
⎧

x3 ỹ1' 2x2 ỹ1–
1
x
--- ỹ2+ x2.–=

ỹ1 ỹ1'

ỹ2
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calculated by the algorithm from [4] is equal to ((x2 + 1)2,
(x2 + 1)2). Let us perform substitution (3). The first
equation of the obtained system is

therefore, (x2 + 1)|z2. Substitution (3) for the obtained
universal denominator ((x2 + 1)2, x2 + 1) does not lead
to further improvement.

Let us assume that, after we have obtained improved
upper bounds for the orders of occurrence of v in the
universal denominator component, some additional
relations of the form (x – x0)δ|  have been derived.
Such relations can be used directly in the course of sys-
tem solving by representing zi as a Hermite interpola-
tion polynomial and equating coefficients of x – x0, …,
(x – x0)δ to zero. This makes it possible to decrease the
number of unknown coefficients zi .

Example 6. The system

by substitution z1 = , z2 =  takes the

form

which allows us to use the relation (x + 1)|  for solving
it. After we have obtained an estimate degxz1 ≤ 2, we
can write z1(x) = h2(x + 1)2 + h0, which yields h2 = c/2.

If we have several additional relations | , j = 1,
…, k, and some of irreducible polynomials vj have a
degree greater than 1, it is convenient to use the follow-
ing method: to find the upper bound d of the order zi , to
set zi = hdxd + … + h0 and to divide dhdxd – 1 + … + h1
with remainder by

The remainder r must be equal to zero, which also
reduces the number of unknown coefficients hj .

x2 1+( )2
y1' 3x x2 1+( )y1 y2–+ 0,=

y2' y1– 0=⎩
⎨
⎧

z1'
x

x2 1+
--------------z1–

1

x2 1+( )2
---------------------z2– 0;=

zi'

x 1+( )y1' 2y1+ c,=

x 1+( )y2' 2y1– c–=⎩
⎨
⎧

y1

x 1+( )2
-------------------

y2

x 1+( )2
-------------------

z1'

x 1+
------------ c,=

z2'

x 1+
------------

2z1

x 1+( )2
-------------------–

2z2

x 1+( )2
-------------------– c,–=

⎩
⎪
⎪
⎨
⎪
⎪
⎧

z1'

v j
δ j zi'

wi v j
δ j.

j 1=

k

∏=

Example 7. Let the derivative of polynomial zi satisfy
relations (x – 1)| , (x + 1)| , (x2 + 1)| , (x4 + 1)| , and
let degzi ≤ 12. Dividing 12h12x11 + … + h1 by x8 – 1 and
equating the remainder to zero, we obtain h8 = h7 = h6 =

h5 = 0, h4 = –3h12, h3 = – h11, h2 = –5h10, h1 = –9h9.

By using the equation r = 0 we can reduce consider-
ably the time for solving the system if its right-hand
side contains parameters, since r = 0 is easily solved
and does not contain parameters. However, the addition
of such equations to the system may also increase the
computation time.

In the difference case, all relations obtained in the
course of balancing the bounds of order of irreducible
factors can be used for improvement of the universal
denominator.

Example 8. The universal denominator for the left-
hand side of the system

obtained by the algorithm from [2] is equal to (x(x +
1)(x + 2)(x + 3)(x + 4)(x2 + 1)(x2 – 2x + 2), x(x + 1)(x +
2)(x + 3)(x + 4)(x2 + 1)(x2 – 2x + 2)). By performing
substitution (3), from the first equation, we obtain (x2 +
2x + 2)|z1(x + 1), (x2 – 2x + 2)|z1(x), x |z2(x); from the
second equation, we obtain (x + 5)|z2(x + 1). Further
improvements give the universal denominator (x(x + 1),
(x2 + 1)(x2 – 2x + 2)).

3. ZEILBERGER’S ALGORITHM BASED
ON UNIVERSAL DENOMINATOR 

CONSTRUCTION

3.1. Difference Case

Let the hypergeometric term T(n, k) be given by its
certificates that are rational functions

Enf(n) = f(n + 1), Ek f(k) = f(k + 1).
Let d ≥ 0 be a fixed integer, and we try to find, for

T(n, k), a k-free operator L ∈ K[n, En] of order d such
that LT(n, k) = EkG(n, k) – G(n, k) for some hypergeo-
metric term G(n, k). Application of any operator from
K(n, k)[En, Ek] to T(n, k) gives a hypergeometric term
of form R(n, k)T(n, k) (it is not excluded that R(n, k) = 0).

In particular, application of a k-free operator L = ad(n)  +
… + a0(n) with undefined coefficients a0(n), …, ad(n)
gives the rational function

zi' zi' zi' zi'

11
3
------

x 2+( ) x 5+( )y1 x 1+( ) 4xy1 x( )–

– x2 2x– 2+( ) x2 1+( )y2 x( ) 0,=

x2 2x 2+ +( )y2 x 1+( )

– x2 2x– 2+( )y2 x( ) 0=⎩
⎪
⎪
⎨
⎪
⎪
⎧

�n T( )
EnT n k,( )

T n k,( )
-----------------------, �k T( )

EkT n k,( )
T n k,( )

-----------------------,= =

En
d
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(8)

where

(9)

and polynomials q(n, k), p0(n, k), …, pd(n, k) ∈ K[n, k]
are calculated using �n(T) and d. Our goal is to find a0,
…, ad ∈ K(n), ad ≠ 0, such that the following equality
is valid:

(10)

where G(n, k) = F(n, k)T(n, k), F(n, k) ∈ K(n, k). From
(10), we obtain the equation for the rational function
F(n, k):

(11)

Setting

and introducing a new unknown function

we obtain

(12)

Considering q(n, k)s(n, k) and q(n, k)t(n, k – 1) as
polynomials in k with coefficients lying in K[n], we
find the universal denominator u(n, k) ∈ K[n, k] for the

left-hand side of (12). Making a substitution (n, k) =

 in (12) and excluding denominators from the

left-hand side, we obtain the equality

(13)

where h(n, k, a0, …, ad) = h0(n, k)a0 + … + hd(n, k)ad,
and h0(n, k), …, hd(n, k) are the known polynomials
from K[n, k]. The problem of finding a0, …, ad ∈ K(n),
ad ≠ 0, for which equation (13) has solution f(n, k) ∈
K(n)[k] is resolved in the same way as in the initial ver-
sion of Zeilberger’s algorithm [9].

Example 9. Let

R n k a0 … ad, , , ,( )
p n k a0 … ad, , , ,( )

q n k,( )
------------------------------------------,=

p n k a0 … ad, , , ,( )
=  p0 n k,( )a0 … pd n k,( )ad,+ +

LT n k,( ) Ek 1–( )G n k,( ),=

�k T( )F n k 1+,( ) F n k,( )–

=  
p n k a0 … ad, , , ,( )

q n k,( )
------------------------------------------.

�k T( ) S n k,( ) s n k,( )
t n k,( )
----------------, s n k,( ) t n k,( ),⊥= =

F̃ n k,( ) F n k,( )
t n k 1–,( )
------------------------,=

q n k,( )s n k,( )F̃ n k 1+,( )

– q n k,( )t n k 1–,( )F̃ n k,( )
=  p n k a0 … ad, , , ,( ).

F̃
f n k,( )
u n k,( )
-----------------

g1 n k,( ) f n k 1+,( ) g0 n k,( ) f n k,( )–

=  h n k a0 … ad, , , ,( ),

T n k,( ) 2n k+( ) k 2+( )! k 5+( )!
k!

----------------------------------------------------------.=

For d = 1,

After the preliminary substitution (n, k) =

, the left-hand side of equation

(12) takes the form

and the universal denominator is equal to k(k + 1)(k +
2)(k + 3)(k + 4)(k + 5). After finding the improved uni-
versal denominator u = k(k + 1)(k + 2) as described in
Section 2.3 and performing the substitution f0(n, k) =

, we obtain the equation

hence, f(n, k) = –22k2 – 6k – 4, a1 = 22n – 47, a0 =
−22n + 25.

If we succeed in finding the corresponding values
a0, …, ad and the expression (9) is equal to 0 for these
values, this does not obstruct obtaining equality (10);
we will merely have G(n, k) = 0 in this equality (some
implementations of the initial version of the algorithm
work inappropriately in this case, see [11] for details).

The described procedure presents one step of the
algorithm for a given d. If we fail to find a0, …, ad sat-
isfying (13), the algorithm proceeds to the next step,
increasing d by one.

3.2. Differential Case

Let d ≥ 0 be a fixed integer, and we need to find a

y-free operator L = ad(x)  + … + a0(x), Dx = , for

a hyperexponential function F(x, y) (F(x, y) is called

hyperexonential if /F(x, y), /F(x, y) ∈

K(x, y)) such that

(14)

where G(x, y) = S(x, y)F(x, y), S(x, y) ∈ K(x, y). An ana-
logue of equation (11) in the differential case is the
equation

(15)

s n k,( )q n k,( ) k 3+( ) k 6+( ) 2n k+( ) 2n k 1+ +( ),=

t n k 1–,( )q n k,( ) k 2n k 1–+( ) 2n k+( ).=

F̃
f 0 n k,( )

2n k 1–+( ) 2n k+( )
------------------------------------------------

k 3+( ) k 6+( ) f 0 n k 1+,( ) k f 0 n k,( ),–

f n k,( )
u

-----------------

k 6+( ) f n k 1+,( ) f n k,( )–

=  k 1+( ) k 2+( ) 2n k+( )a0 2n k 2+ +( )a1+( );

Dx
d ∂

∂x
------

∂F x y,( )
∂x

-------------------- ∂F x y,( )
∂y

--------------------

LF x y,( ) ∂
∂y
-----G x y,( ),=

Sy' x y,( ) s x y,( )
t x y,( )
----------------S x y,( )+

=  
p x y a0 … ad, , , ,( )

q x y,( )
------------------------------------------,
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where  = , s(x, y) ⊥ t(x, y). Multiplying

both sides of (15) by q(x, y) and making the substitution

we obtain the equation with polynomial coefficients

(16)

We will now calculate the universal denominator u(x, y)

for the left-hand side of (16), make the substitution (x,

y) = , and get rid of the denominators. The

obtained equation

(17)

is solved for unknowns z ∈ K[x, y], a0, …, ad ∈ K[x]

(one can also use additional relations (x, y) if
they have been derived).

3.3. Use of Previous Steps of the Algorithm

Besides applying the proposed methods of improv-
ing the universal denominator, the efficiency of Zeil-
berger’s algorithm (both the proposed version based on
universal denominators and the original version) can be
increased by applying at each step the intermediate
results of the previous steps.

These results can be used, for example, in convert-
ing Rd(n, k) = R(n, k, a0, …, ad) from (8) into an irreduc-
ible form. Redundant factors in q(n, k) can increase sig-
nificantly the time for finding universal denominator
for the left-hand side of (12) and the time required for
solving (13). Elimination of these factors by finding the
greatest common divisor also requires much time due to
the presence of parameters a0, …, ad in the numerator.

For d = 1, one can use

where

Let the denominator qd(n, k) be known for some d ≥ 1.
By virtue of the relations

s x y,( )
t x y,( )
----------------

Fy' x y,( )
F x y,( )
-------------------

S x y,( ) S̃ x y,( )t x y,( ),=

q x y,( )t x y,( )S̃y' x y,( ) q x y,( ) s x y,( )(+

+ ty' x y,( ) )S̃ x y,( ) p x y a0 … ad, , , ,( ).=

S̃
z x y,( )
u x y,( )
----------------

g1 x y,( )zy' x y,( ) g0 x y,( )z x y,( )–

=  h x y a0 … ad, , , ,( )

v j
δ j zy'

p n k a0 a1, , ,( ) a0q̂ n k,( ) a1 p̂ n k,( ),+=

q n k,( ) q̂ n k,( ),=

p̂ n k,( )
q̂ n k,( )
----------------- �n T( ), p̂ n k,( ) q̂ n k,( ).⊥=

and qd(n, k)|qd + 1(n, k), we obtain qd + 1(n, k) = qd(n, k),
where

In a similar way, Rd(x, y) is converted to an irreduc-
ible form in the differential case.

In the difference case, in calculating the universal
denominator, one can use intermediate results of the
previous steps (with smaller values of d). To demon-
strate this, we need the notion of dispersion set of poly-
nomials f(k), g(k) (which is denoted as ds(f(k), g(k))),
i.e., the set of all nonnegative integers h such that f(k + h)
and g(k) are not coprime. The universal denominator
for the left-hand side of equation (12) is calculated
using

(18)

Direct calculation of Md can be replaced by calculation
of  = ds(Q(n, k + 1)t(n, k), Q(n, k)s(n, k)), where

with the subsequent checking whether the elements of
 belong to Md. Under such an approach, it is suffi-

cient to find the decomposition of s(n, k), t(n, k), and
(n, k) into irreducible factors only once for the entire

time of Zeilberger’s algorithm operation. The disper-
sion set calculated for d can be used at the next step of
the algorithm (i.e., for d + 1), since

The proposed method for calculating the dispersion set
for d ≥ 2 may occur considerably more efficient than the
direct calculation; for d = 0, d = 1, the difference is
insignificant.

Example 10. For the hypergeometric term

we have  = {0, 1, 2}. Using the decompositions into
irreducible factors obtained earlier for the polynomials

Rd 1+ n k,( ) Rd n k,( ) ad 1+ En
i �n T( )

i 0=

d

∏+=

=  
a0 p0 n k,( ) … ad pd n k,( )+ +

qd n k,( )
--------------------------------------------------------------------

+ ad 1+

pd n k,( )
qd n k,( )
------------------- p̂ n d+ k,( )

q̂ n d+ k,( )
--------------------------

q̃d

q̃d
q̂ n d+ k,( )

gcd q̂ n d+ k,( ) pd n k,( ),( )
--------------------------------------------------------------.=

Md = ds q n k,( )t n k 1–,( ) q n k 1–,( )s n k 1–,( ),( ).

Md'

Q n k,( ) q̂ n i+ k,( ),
i 0=

d 1–

∏=

Md'

q̂

Md 1+' Md' ds q̂ n d+ k 1+,( ) q̂ n k,( )s n k,( ),( )∪=

∪ ds t n k,( )q̂ n k 1+,( ) q̂ n d+ k,( ),( ).

T n k,( )

n
k 1+⎝ ⎠

⎛ ⎞

2n 3k–
------------------,=

M3'
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s(n, k) = (n – k – 1)(2n – 3k), t(n, k) = (k + 2)(2n – 3k – 3),
(n, k) = (n – k)(2n – 3k + 2), it is easy to find ds( (n + 3,

k + 1), (n, k)) = {1, 2}, ds( (n + 3, k + 1), s(n, k)) = {3},
ds(t(n, k) (n , k + 1), (n + 3, k)) = , from which we
obtain  = {0, 1, 2, 3}. After the preliminary substi-

tution (n, k) = ,

equation (12) takes the form

(19)

h1 = (2n – 3k)(2n – 3k + 2)(2n – 3k + 4)(2n – 3k + 6)(2n –
3k + 8)(n – k + 3), h0 = (2n – 3k)(2n – 3k + 2)(2n – 3k +
4)(2n – 3k + 6)(2n – 3k + 8)(k + 1). Let us find ri =

gcd(h0, h1) for all i ∈ \{0} (common factors
for i = 0 have been eliminated by the preliminary sub-
stitution): r3 = 1, r2 = 1, r1 = (2n – 3k + 6)(2n – 3k + 8).

Therefore, ds(h0, h1) = {1}, and the universal
denominator for the left-hand side of (19) is equal to
(2n – 3k + 3)(2n – 3k + 5)(2n – 3k + 6)(2n – 3k + 8).

In the differential case calculation of the universal
denominator is simplified by the fact that, at any step,
all irreducible polynomials included in it divide s(x,
y) (x, y).
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