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Abstract

Let an Ore polynomial ring k[X;σ, δ] and a nonzero pseudo-linear map θ : K → K, where K is a
σ, δ-compatible extension of the field k, be given. Then we have the ring k[θ] of operators K → K. It
is assumed that if a first-order equation Fy = 0, F ∈ k[θ], has a nonzero solution in a σ, δ-compatible
extension of the field k, then the equation has a nonzero solution in K. These solutions form the set
Hk ⊂ K of hyperexponential elements. An equation Py = 0, P ∈ k[θ], is called completely factorable if P
can be decomposed in the product of first-order operators over k. Solutions of all completely factorable
equations form the linear space Ak ⊂ K of d’Alembertian elements. The order of minimal operator over
k which annihilates a ∈ Ak is called the height of a. It is easy to see that Hk ⊂ Ak and the height of
any a ∈ Hk is equal to 1.

It is known ([12, 4]) that if L ∈ k[θ] and f ∈ Hk then all the hyperexponential solutions of the
equation

Ly = f (∗)
have the form uf, u ∈ k. Substitution y = uf , where u is a new unknown, gives us the equation

Mu = g, M ∈ k[θ], g ∈ k. (∗∗)

If all the solutions of (**) in k are found, then all the hyperexponential solutions of (*) are found as well.
The problem of solving in k an equation whose coefficients and the right-hand side belong to k, is called
the k-problem. Fast algorithms to solve k-problems are known for some concrete Ore polynomial rings
(e.g., such algorithms for linear ordinary differential and (q-)difference equations with rational functions
coefficients and right-hand sides have been given in [1, 2, 4]). They allow us to find hyperexponential
solutions of the equation (*) quickly.

We consider in this paper the search for d’Alembertian solutions of an equation of the form (*) with
f ∈ Ak (the height of f is r ≥ 1). We show that in general case the search can be reduced to k-problems
and to the search for hyperexponential solutions of homogeneous equations of the order ≤ ordL over k.
If the equation Ly = 0 has no hyperexponential solution then the search for d’Alembertian solutions of
(*) can be reduced only to k-problems. If (*) has a solution of the height r, then solving only k-problems
one can find a solution of the height ≥ r. We describe some algorithms and an implementation in Maple
5.3 of one of them. The implementation is oriented towards an arbitrary Ore polynomial ring and can
be adapted, for example, to the differential and (q-)difference cases.

1 Basic notions and formulation of problem
Linear inhomogeneous equations of the form

Ly = f (1)
∗Work reported herein was supported in part by the RFBR (Russia) under Grant 95-01-01138a.
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which we will consider can be, for example, ordinary differential, difference or q-difference equations. The
general approach to such equations is possible in the frame of pseudo-linear algebra ([9]) which has been
formed on the base of Ore polynomial rings theory ([11]). Considering equation (1) we assume that L is an
operator of the form p(θ), where p(X) belongs to Ore polynomial ring k[X;σ, δ], and θ is a pseudo-linear
map K → K of a σ, δ-compatible extension ring K of the field k. Here k is a field of characteristic 0, X is
an indeterminate over k, σ is an automorphism of k and δ : k → k is a map satisfying

δ(a+ b) = δa+ δb, δ(ab) = σ(a)δb+ δa b;

in turn, θ satisfies
θ(a+ b) = θa+ θb, θ(ab) = σ(a)θb+ δa b.

We will denote by Const(K) the constant subring of K (i.e. the set of all a ∈ K such that σ(a) = a,
δa = 0) and assume that K is such that its constant subring is a field.

We can consider the ring k[θ] of operators K → K of the form p(θ), p(X) ∈ k[X;σ, δ]. These operators
are linear over Const(K).

It is assumed that if a first-order equation Fy = 0, F ∈ k[θ], has a nonzero solution in a σ, δ-compatible
extension of the field k, then the equation has a nonzero solution in K. These solutions form the set Hk ⊂ K
of hyperexponential elements. An equation Py = 0 and the operator P are called completely factorable if
P can be decomposed in the product of first-order operators over k. Solutions of all completely factorable
equations form the linear space Ak ⊂ K of d’Alembertian elements. It is easy to see that Hk ⊂ Ak.

Let L ∈ k[θ] and S be the space of solutions of Ly = 0 belonging to K. We assume that dimS ≤ ordL
in such situation.

The following notions generalize those that have been used in [3] for an investigation of d’Alembertian
solutions of differential and difference equations:

• the operator ∇, which is an analog of d
dx and ∆:

∇ =
{
δ, if σ = 1,
σ − 1, if σ 6= 1.

It is easy to show that ∇f = 0⇔ f ∈ Const(K);

• the set I(f), f ∈ K, which is an analog of the indefinite integral and sum:

I(f) = {d | ∇d = f}.

If f ∈ K, d ∈ I(f), c0 ∈ Const(K), then d+ c0 ∈ I(f) and, vice versa, for any d1, d2 ∈ I(f) we have
d1 − d2 ∈ Const(K). We assume that I(f) is not empty for any f ∈ K. If a d’Alembertian space A
is given, then we can construct the completely factorable operator over k such that A is its solution
space. If U is a set of elements of K, then I(U) denotes the set of all d such that ∇d ∈ U . We write
for brevity I(f1, . . . , fm) instead of f1I(f2I(f3 . . . fm−1I(fm) . . .));

• d’Alembert substitution
y = ϕI(u) (2)

connected with a solution ϕ of a linear equation Ly = 0. This substitution reduces the order of the
equation. The search for d’Alembertian solutions can be reduced to the search for hyperexponential
solutions and to d’Alembert substitutions;

• d’Alembertian space
I(ϕ1, . . . , ϕr, 0),

where ϕ1, . . . , ϕr ∈ Hk. Any d’Alembertian space is the solution space of a completely factorable
operator. It is easy to see that

I(ϕ1, 0) ⊂ I(ϕ1, ϕ2, 0) ⊂ . . . ⊂ I(ϕ1, . . . , ϕr, 0).
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Let k = C(x), σ = 1 (the identity authomorphism), δ = θ = d/dx. Then sinx ∈ Ak, because

sinx =
eix − e−ix

2i
∈ eix

∫
e−2ix

∫
0 = I(eix, e−2ix, 0).

We can define concretely the integrals for sinx:

eix
(∫ x

0

e−2it

(∫ t

0

0 + 1
)

+ 0
)

= eix
∫ x

0

e−2it;

sinx satisfies the completely factorable equation y′′ + y = 0.
Let k = C(x), σ = θ = E (the shift operator), δ = 0. Observe that E is not an authomorphism of a

ring of sequences, since it annihilates nonzero sequence of the form (c, 0, 0, . . .), c 6= 0. But we can identify
any two sequences which agree from some point on. To simplify notation, we will identify a class {u} of
equivalent sequences with its representative sequence u.

For Fibonacci numbers um we have um ∈ Ak because

um = 1√
5

((
1+
√

5
2

)m

−
(

1−
√

5
2

)m)
∈

∈
(

1+
√

5
2

)m∑(
1−
√

5

1+
√

5

)m∑
0 =

= I
((

1+
√

5
2

)m

,
(

1−
√

5

1+
√

5

)m

, 0
)
.

We can define concretely the sums for um:(
1+
√

5
2

)m
(∑m−1

l=0

(
1−
√

5

1+
√

5

)l (∑l−1

v=0
0 + 2

1+
√

5

)
+ 0

)
=

=
(

1+
√

5
2

)m∑m−1

l=0
2

1+
√

5

(
1−
√

5

1+
√

5

)l

(if the upper bound of a sum is less than the lower one then the sum is equal to zero). The sequence of
Fibonacci numbers satisfies the completely factorable equation E2y − Ey − y = 0.

It can be shown that the sum and the product of any two d’Alembertian elements are d’Alembertian
themselves. So, Ak is a ring, all hyperexponential elements are invertible in the ring. The consideration of
the difference case shows that Ak can have zero divisors. Let am = 1 + (−1)m, bm = 1 − (−1)m. These
sequences satisfy equation E2y − y = 0, therefore am, bm ∈ Ak. But ambm = 0.

For any two nonzero operators L,M ∈ k[θ] one can compute their greatest common right divisor
gcrd(L,M) ∈ k[θ]. If at least one of L and M is completely factorable then gcrd(L,M) is completely
factorable too.

It is known ([3]) that if L ∈ k[θ], a ∈ Ak, ϕ ∈ Hk then La ∈ Ak and there exists v ∈ k such that
Lϕ = vϕ ∈ Hk; additionally the following properties of d’Alembertian elements take place:

dA1. Let the equation Ly = 0, L ∈ k[θ], have a solution in Ak. Then this equation has a solution in Hk.
dA2. Let A = I(ϕ1, . . . , ϕr, 0), where ϕ1, . . . , ϕr ∈ Hk. Let ξ1 ∈ A∩Hk. Then there exist ξ2, . . . , ξr ∈ Hk

such that A = I(ξ1, . . . , ξr, 0).
Considering equation (1) we will suppose that f ∈ Ak and that the minimal d’Alembertian space in which

f can be expressed (the envelope of f) is given. If we know the envelope of f then it is easy to construct
minimal annihilating operator P ∈ k[θ] for f (and vice versa, but such construction requires the search for
hyperexponential solutions of homogeneous equations). Further we will denote the envelope of f by E(f).
It is easy to show that the envelope of a nonzero d’Alembertian element f is unique, and that the minimal
annihilating operator is unique up to a nonzero factor from k. The dimension of E(f) is called the height of
f (it is equal to the order of minimal annihilating operator) and will be denoted by h(f). The height of the
zero element is equal to 0.

When working with a d’Alembertian element f , we consider its envelope and minimal annihilating opera-
tor. This is analogous to working with algebraic numbers and functions, when we consider the corresponding
extensions of the ground field and their minimal polynomials.
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The problem of finding all d’Alembertian solutions of equation (1) has been considered in [7] for differ-
ential, difference and q-difference equations. This problem has been solved with the help of the standard
method of transition from equation (1) to the homogeneous equation

PLy = 0 (3)

(P is the minimal annihilating operator for f). Any solution of equation (1) satisfies equation (3) and for any
solution y of equation (3) we have Ly = f̃ , where P f̃ = 0. Let ordL = n and h(f) = r. It is sufficient to find
the space A of dimension s ≤ n+ r of all d’Alembertian solutions of equation (3) and choose those solutions
from A which satisfy (1). This choice is described in [7] differently for each of the three above-mentioned
types of equations. But, in fact, it can be reduced to equating the values of ∇ly and ∇lf for l = 0, . . . , s− 1
at a point p which is nonsingular for the equations considered (in the differential case this is equivalent to
consideration of the first terms of Taylor expansion in the neighborhood of a nonsingular point).

The standard method just mentioned requires the search for hyperexponential solutions of homogeneous
equations whose order greater than the order of the initial equation. When k is the field of rational functions,
algorithms to find hyperexponential solutions of differential ([8]), difference ([12]) and q-difference ([6])
equations are known. All these algorithms are quite laborious: they require, for example, the complete
factorization of polynomials, separate considerations of several hypothesis about the form of solution; it is
necessary to work with algebraic numbers even if k = Q(x) or k = Q(q, x).

The goal of this work is to minimize the search for hyperexponential solutions of homogeneous equations
in the process of finding d’Alembertian solution of (1). We will propose some algorithms which have some
advantages over the standard method. However using the standard method let us easily prove one important
feature of d’Alembertian solutions.
Proposition 1 Let f on the right of (1) be of height r. Let (1) have a solution a ∈ Ak such that h(a) > r.
Then the homogeneous equation Ly = 0 corresponding to (1) has a solution in Hk.
Proof: Consider the space A constructed by the standard method. The fact that h(a) is greater then r
means that dimA > r. Hence, it is possible to find a1, a2 ∈ A such that a1 6= a2 and La1 = La2. The latter
equation means that L(a1 − a2) = 0. With the help of dA1 we get the desired conclusion. 2

A possible approach to the construction of d’Alembertian solutions of equation (1) is based on the
following fact. Let f ∈ Hk. If (1) has a solution in Hk, then this solution must be of the form uf, u ∈ k.
After the substitution y = uf , where u is a new unknown, and simplifications we get

Mu = g, M ∈ k[θ], g ∈ k. (4)

Thus the question about existence in Hk of solutions of the initial equation is reduced to the question about
existence in k of solutions of equation (4). This fact was initially stated in [12] for difference equations and
was than generalized to the case of an arbitrary Ore ring in [4]. We will call the k-problem the problem of
searching in k for solutions of an equation of the form (4). Hence, the search in Hk for solutions of equation
(1) with f ∈ Hk is reduced to a k-problem. There exist fast algorithms to solve k-problems for differential,
difference and q-difference equations when k is the field of rational functions ([1, 4, 5]). To generalize
this approach (which can be called the method of reduction to k-problems) to the case of d’Alembertian
right-hand side, we will discuss in detail the following task:

T. Let (1) have a d’Alembertian solution and E(f) be of the form

I(ψ1, . . . , ψr, 0), (5)

ψ1, . . . , ψr ∈ Hk. Decide whether the equation

LY = E(f) (6)

has a solution in the class of d’Alembertian spaces, or not, i.e. whether there is a d’Alembertian space A of
the form

I(ϕ1, . . . , ϕs, 0), (7)
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ϕ1, . . . , ϕs ∈ Hk, such that
LA = E(f), (8)

or not. If A exists, construct ϕ1, . . . , ϕs.
Obviously, if (8) takes place, then s ≥ r. If s > r then the homogeneous equation of order n

Ly = 0 (9)

has a hyperexponential solution. We will show that the search for some spaces A (and for the maximal A)
satisfying (8) can be reduced to k-problems and to the search for hyperexponential solutions of homogeneous
equations of order ≤ n. The corresponding algorithms will be given in details. With additional assumptions
about equation (1) or (8) one needs no search for hyperexponential solutions of homogeneous equations
(some algorithms of this kind will be described).

Equation (1) is of the main interest to us. We will show further that if (1) has a solution a ∈ Ak then
for some d’Alembertian space A equation (8) is satisfied. Therefore solving equation (1) can be reduced to
the task T and to the search in A for an element satisfying (1).

2 Equations in the class of d’Alembertian spaces
First of all we clarify how to apply the operator L ∈ k[θ] to the space A of the form (7) defined by
ϕ1, . . . , ϕr. We will see that the result of this application is a d’Alembertian space again. Below, we will
describe the process of this application recursively, reducing it to the application of another operator to the
space I(ϕ2, . . . , ϕr, 0). In order to describe this reduction more concisely, we define the operator L[ϕ] ∈ k[θ]
for ϕ ∈ Hk and L ∈ k[θ]. Consider T = L◦ϕ (we use the sign ◦ here having in mind the product of operators
L and ϕ). It is easy to show that

T = T ∇+ Lϕ, (10)

where T is some operator with coefficients from Hk and Lϕ means as usually the result of applying L to ϕ.
Let

T̃ =


1
ϕT, if Lϕ = 0,

∇ 1
LϕT, if Lϕ 6= 0.

(11)

In any case T̃ ∈ k[θ]. We define L[ϕ] from the operator equality

T̃ = L[ϕ]∇,

which is solvable in k[θ] because of (10). We can see that

ordL[ϕ] =
{

ordL, if Lϕ 6= 0,
ordL− 1, if Lϕ = 0.

A practical way to construct L[ϕ] is the following. Compute T̃ ∈ k[θ] according to (11) and take the right
quotient of T̃ by ∇ (for this purpose the operator ∇ has to be represented as an element of k[θ]).

Using operators of the form L[ϕ] we can prove by induction on s that LI(ϕ1, . . . , ϕs, 0) is a d’Alembertian
space and describe the process of its construction. We will concentrate on the process of construction. Let

L[ϕ1]I(ϕ2, . . . , ϕs, 0) = I(ξ1, . . . , ξt, 0),

where ξ1, . . . , ξt ∈ Hk, t ≥ 0. By definition of L[ϕ1] we have

LI(ϕ1, . . . , ϕs, 0) = I(Lϕ1, ξ1, . . . , ξt, 0),
if Lϕ1 6= 0,
L I(ϕ1, . . . , ϕs, 0) = I(ϕ1ξ1, ξ2, . . . , ξt, 0),
if Lϕ1 = 0.

(12)
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Proposition 2 Let ϕ1, . . . , ϕs, ψ1, . . . , ψr ∈ Hk, s ≥ r. Let L ∈ k[θ].
If Lϕ1 = ψ1, then

LI(ϕ1, . . . , ϕs, 0) = I(ψ1, . . . , ψr, 0)⇔
⇔ L[ϕ1] I(ϕ2, . . . , ϕs, 0) = I(ψ2, . . . , ψr, 0).

(13)

If Lϕ1 = 0, then
LI(ϕ1, . . . , ϕs, 0) = I(ψ1, . . . , ψr, 0)⇔
⇔ L[ϕ1] I(ϕ2, . . . , ϕs, 0) = I(ψ1/ϕ1, ψ2, . . . , ψr, 0).

(14)

Proof: In both the cases

⇒: by definition of L[ϕ1].

⇐: with the help of (12). 2

Observe that in the case where Lϕ1 = 0 the transformation of (9) into L[ϕ1]y = 0, or of (1) into
L[ϕ1]y = f/ϕ1, is equivalent to D’Alembert substitution (2).
Proposition 3 Let (1) have a solution a ∈ Ak such that f and a have the same height r. Let A = E(a) and
B = E(f). Then LA = B.
Proof: The space LA is d’Alembertian, dimLA ≤ r. The space LA∩B is not empty, because f ∈ LA∩B.
This intersection is a d’Alembertian space (it follows from the existence of gcrd in k[θ]). It is obvious that
if LA 6= B then dim(LA ∩B) < r which contradicts the fact that B = E(f). 2

Proposition 4 Suppose that equation (1) has a solution a ∈ Ak while equation (9) has no solution in Hk.
Then the space A = E(a) (dimA = r) is the unique solution of equation (6) in the class of d’Alembertian
spaces. If a1 ∈ Ak and a1 /∈ A then La1 /∈ B.
Proof: Due to Proposition 1, h(a) = r. The space A is a solution of equation (6) due to Proposition
3. Finally, equation (6) has no solutions except for A because otherwise it would be possible to find two
different d’Alembertian elements a1, a2 such that La1 = La2. The latter equation means that a1 − a2 solves
(9). But a1 − a2 ∈ Ak and equation (9) has solution in Hk due to dA1. Contradiction. 2

Let (9) have a solution ϕ1 ∈ Hk. Transform (9) into L[ϕ1]y = 0. Assume the new equation is transformed
again using its solution ϕ2 and so on, until the last d’Alembert substitution connected with ϕm produces the
equation L[ϕ1]...[ϕm]y = 0 (Lmy = 0, for brevity) with no solution in Hk. It is known ([3]) that the operator
Lm is unique up to a nonzero factor from k.

Inhomogeneous equation (1) (for which (9) is the corresponding homogeneous) will be transformed in
this way to

Lmy =
f

ϕ1 . . . ϕm
. (15)

The following proposition does not depend on the existence of solutions of (9) in Hk.
Proposition 5 Let (1) have a solution a ∈ Ak. Let B = E(f). Then the set

D = {d |d ∈ Ak , Ld ∈ B} (16)

is a d’Alembertian space.
Proof: Assume that (9) has been transformed with the help of ϕ1, . . . , ϕm as described above, and let
equation (1) be converted to (15) (if the initial equation Ly = 0 had no solution in Hk then m = 0 and
Lm = L). Let B = I(ψ1, . . . , ψr) be E(f). The space

B̃ =
1

ϕ1 . . . ϕm
B = I(

ψ1

ϕ1 . . . ϕm
, ψ2, . . . , ψr, 0)

is equal to E(f̃), where f̃ is the right-hand side of (15), i.e., f/(ϕ1 . . . ϕm), because if P is a minimal
annihilating operator for f then the operator

ϕ1 . . . ϕmP ◦
1

ϕ1 . . . ϕm
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is a minimal annihilating operator for f̃ . Due to Proposition 4 the equation LmY = B̃ has the unique
solution G = I(ξ1, . . . , ξr, 0) in the class of d’Alembertian spaces and if d /∈ G then Lmd /∈ B̃. Therefore

D = I(ϕ1, . . . , ϕm, ξ1, . . . , ξr, 0) (17)

2

Corollary 1 If (1) has a solution a ∈ Ak then (6) has a solution in the class of d’Alembertian spaces (for
example, space (16)). Any space which satisfies (6) includes a solution of (1).

It is easy to see that if Lϕ1 = ψ1 then ∇(a/ϕ1) is a d’Alembertian solution of L[ϕ1] = ∇(f/ψ1) and
I(ψ2, . . . , ψr, 0) = E(∇(f/ψ1)). If Lϕ1 = 0 then ∇(a/ϕ1) is a d’Alembertian solution of L[ϕ1] = f/ψ1, and
I(ψ1/ϕ1, ψ2, . . . , ψr, 0) = E(f/ψ1). In both the cases we obtain simpler equation L[ϕ1]Y = B1, where B1 is
I(ψ2, . . . , ψr, 0) or I(ψ1/ϕ1, ψ2, . . . , ψr, 0) respectively, instead of equation LY = B of the form (6).

Thanks to Corollary 1 we have the following
Corollary 2 Let (1) have a solution a ∈ Ak. Let B = E(f) in the equation LY = B. Let this equation
be transformed into L[ϕ1]...[ϕm]Y = Bm by transformations described above. Then the last equation has a
solution in the class of d’Alembertian spaces. If we know a solution of this kind then we can use formulae
(13), (14) and get a solution of LY = B.

Proposition 6 Let (9) have no solution in Hk. Let the equation LY = I(ψ1, . . . , ψr, 0) have a solution A
in the class of d’Alembertian spaces. Then the equation Ly = ψ1 has a solution in Hk.
Proof: There exists a ∈ A such that La = ψ1. It follows from Proposition 4, that dim E(a) = dim E(ψ1) = 1.
Therefore a ∈ Hk. 2

Corollary 3 Let (1) have a d’Alembertian solution and E(f) = I(ψ1, . . . , ψr, 0). Then at least one of
equations Ly = 0, Ly = ψ1 has a solution in Hk.
Corollaries 1-3 are the key results of this section. They give a base for designing algorithms to find solutions
of (6) and of (1).

3 Algorithms
We consider equations (1), (6) with E(f) given in the form (5). Our goal is the minimization of the search
for solutions in Hk of homogeneous equations like (9) in the process of solving equation (6). If (9) has no
solutions in Hk then one can use a very simple algorithm. In its description we will use the operations
head(B) and tail(B): if B is given in the form (5), then head(B) = ψ1, tail(B) = I(ψ2, . . . , ψr, 0).

Observe that the representation of d’Alembertian space in form (5) is not unique, but the algorithm
below treats (5) as a fixed collection of elements ψ1, . . . , ψr ∈ Hk. Strictly speaking, the operations head
and tail are operations not over spaces, but over these collections of elements.

If τ ∈ Hk then 1
τB will denote I(ψ1

τ , ψ2, . . . , ψr, 0).
Our algorithm is applied to

L, B, r,

where L ∈ k[θ], B = E(f) is of the form (5), r = dimB.
Algorithm 1
1. If ordL = 0, i.e., L is some q ∈ k, then the result will be 1

qB.
2. Let ψ = head(B). Reduce the equation Ly = ψ to a k-problem. If the k-problem has no solution, the

algorithm stops with the result "no solution".
3. Let u ∈ k be a solution of k-problem. Let ϕ = uψ. If r = 1 then the result will be I(ϕ, 0), else apply

the algorithm recursively to
L[ϕ], tail(B), r − 1.

4. If the result of the recursive call was "no solution" then the final result will be the same. Otherwise,
if the result of the recursive call was a d’Alembertian space I(ξ1, . . . , ξt, 0), then the final result will be
I(ϕ, ξ1, . . . , ξt, 0). 2
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Consider as an example the equation of the form (6)

(
d2

dx2
− x)Y =

4x3 + 1
x3/2

∫
1
x

∫
0, (18)

with k = C(x).
Here L = d2

dx2 − x. The equation Ly = 0 has no solution in Hk. Reduction of the equation Ly = ψ1,
where ψ1 = 4x3+1

x3/2 to a k-problem gives us

u′′(x) +
3(4x3 − 1)
x(4x3 + 1)

u′(x)− 16x6 − 8x3 − 15
4x2(4x3 + 1)

u(x) = 1.

This equation has the unique solution u = −4x2/(4x3 + 1) in k, which is why ϕ1 = uψ1 = −4
√
x. Further

computations give us the k-problem

− 4x2

4x3 + 1
u′′(x) +

4x(8x3 − 1)
(4x3 + 1)2

u′(x) + u(x) = 1

with the unique solution 1 and ϕ2 = 1/x. The final result is

Y = −4
√
x

∫
1
x

∫
0.

Using Corollary 2 we get the following
Proposition 7 Let (1) have a solution in Ak. Let the equation Ly = 0 have linearly independent solutions
ν1, . . . , νl ∈ Hk and the equation Ly = ψ1 have a solution µ. Let

χ1 = ν1, χ2 = ∇(ν2/χ1), . . . ,
χl = ∇(. . .∇(νl/χ1) . . . /χl−1),
ϕ = ∇(. . .∇(µ/χ1) . . . /χl).

(19)

Then the equation (6) has a solution in the class of d’Alembertian spaces iff the equation

L[χ1]...[χl][ϕ]Y = I(ψ2, . . . , ψr, 0) (20)

has a solution in this class. If I(ξ1, . . . , ξt, 0) is a solution of (20) then

I(χ1, . . . , χl, ϕ, ξ1, . . . , ξt, 0)

is a solution of (6). 2

Now let the k-problem (4) correspond to the equation Ly = ψ. Let û ∈ k be a particular solution of the
k-problem and e1, . . . , el be a basis of all the solutions belonging to k of the equation

Mu = 0. (21)

Then we can set ν1 = e1ψ, . . . , νl = elψ, µ = ûψ. If l > 0 then instead of using the formulae (19) it makes
sense to compute

v =
û

e1
, w1 =

e2
e1
, . . . , wl−1 =

el
e1

and then compute χ1, . . . , χl, ϕ as follows:

χ1 = e1ψ,
χ2 = ∇(w1),
χ3 = ∇(∇(w2)/χ2),
. . .
χl = ∇(. . .∇(∇(wl−1)/χ2) . . .)/χl−1),
ϕ = ∇(. . .∇(∇(w)/χ2) . . .)/χl).

(22)
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If l = 0 then ϕ = ûψ.
The last computational formulae let us formulate the following version of the algorithm:
Algorithm 2
1. If ordL = 0, i.e., L is some q ∈ k, then the result will be 1

qB.
2. Let ψ = head(B). Reduce the equation Ly = ψ to a k-problem. If the k-problem has no solution, the

algorithm stops with the result "no solution".
3. Let û be a solution of the k-problem, and e1, . . . , el(l ≥ 0) a basis of all solutions in k of the equation

Mu = 0, which is the homogeneous counterpart of the k-problem. Construct χ1, . . . , χl and ϕ according to
(22). If r = 1 then the result will be I(χ1, . . . , χl, ϕ, 0), else apply the algorithm recursively to

L[χ1]...[χl][ϕ], tail(B), r − 1.

4. If the result of the recursive call was "no solution" then the final result will be the same. Otherwise,
if the result of the recursive call was the d’Alembertian space I(ξ1, . . . , ξt, 0), then the final result will be
I(χ1, . . . , χl, ϕ, ξ1, . . . , ξt, 0). 2

This version of the algorithm again does not use the search for hyperexponential solutions of equations
of the form (9). Consider the differential case. Let

k = C(x), L =
d2

dx2
− 2

d

dx
+ 1, E(f) = ex

∫
0.

The equation Ly = ex produces the k-problem u′′ = 1. We take û = 1
2x

2, e1 = 1, e2 = x. Thus χ1 = ex, χ2 =
1, ϕ = 1 and we get the following solution of equation (6):

ex
∫

1
∫

1
∫

0,

i.e., the space ex(c1x2 + c2x+ c3), where c1, c2, c3 are arbitrary constants.
Consider a similar example for the difference case (k = C(x)). Let L = ∆2 − 2∆ + 1, E(f) =

∑
0 (i.e.,

B is the field of constants). Then ψ = 1, the equation ∆2y− 2∆y+ 1 = 1 produces the k-problem ∆2u = 1.
We take û = x2/2, e1 = 1, e2 = x. It gives χ1 = 1, χ2 = 1, ϕ = 2 and we get the solution of equation (6)

1
∑

1
∑

2
∑

0,

which is equal to 1
∑

1
∑

1
∑

0, i.e to the space of all polynomials of the degree ≤ 2.
The following example shows, that in some cases an existing solution of the equation (6) is not found

with the help of the considered algorithm. Let in the differential case

k = C(x), L =
d

dx
, E(f) = e−x

2
∫

0.

Obviously the equation y′ = e−x
2
has no solution in Hk (the corresponding k-problem u′ − 2xu = 1 has no

rational solution). But, if we use the fact that the equation Ly = 0 has the hyperexponential solution y = 1
then formula (17) gives us the solution ∫

e−x
2
∫

0

of equation (6).
If one uses Algorithm 2 the finding of a solution of (6) is guaranteed in the situation when (9) has

no solution in Hk. Consider the situation when (1) has a solution a ∈ Ak such that h(a) = h(f). Here
LE(a) = E(f) because obviously E(f) ⊆ LE(a) and dimLE(a) ≤ dim E(f). Therefore (6) has a solution
A = E(a) such that dimA = dim E(f).
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Proposition 8 Let (6) have a solution A in the class of d’Alembertian spaces and dimA = dim E(f). Then
the equation Ly = ψ1 has a solution in A ∩Hk.
Proof: Let Lϕ1 = ψ1, ϕ1 ∈ A. We have I(ψ1, 0) ⊂ LE(ϕ1) and LE(ϕ1) ⊂ I(ψ1, 0) (since E(ϕ1) ⊂ A∩ {d|d ∈
Ak, Ld ∈ I(ψ1, 0)}). Therefore I(ψ1, 0) = LE(ϕ1). Now taking into account that dimA > dim E(f), we have
dim E(ϕ1) = 1. 2

If ϕ1 is the unique solution in Hk of the equation Ly = ψ1 then we can consider the equation L[ϕ1]Y =
I(ψ2, . . . , ψr, 0) and proceed to the search for ϕ2 and so on. But if the equation Ly = ψ1 has other solutions
in Hk then we can meet difficulties in the process of constructing A of the same dimension as E(f). Consider,
for example, the equation y′ = lnx:

k = C(x), L =
d

dx
, E(f) = 1

∫
1
x

∫
0.

Then the equation Ly = 1 leads to the k-problem u′ = 1; if we take ϕ1 = x then the second step will give the
k-problem xu′ + u = 1 with the solution u = 1, and we obtain the solution x

∫
1
x

∫
0 of the original equation

in the class of d’Alembertian spaces. But if we take ϕ1 = x+ 1 then the second step will give the k-problem
(x+ 1)u′ + x−1

x u = 1 which has no rational solution.
Fortunately Algorithm 2, in the situation where Ly = ϕ1 has not unique solution in Hk, reduces the

equation LY = E(f) to the equation L[χ1]...[χl]Y = 1
χ1...χl

E(f) which produces the equation L[χ1]...[χl]y =
ψ1

χ1...χl
having the unique hyperexponential solution ϕ (see (22)). Therefore if there exists a d’Alembertian

space A, dimA = dim E(f), such that LA = E(f), then finding a solution Ã, dim Ã ≥ dim E(f) of (6) is
guaranteed.

To construct the complete answer to the question whether (6) has a solution in the class of d’Alembertian
spaces, or not, it is sufficient (due to Proposition 2) to use the search for hyperexponential solutions of
homogeneous equations only once, when we first meet an equation Ny = ψ which produces an unsolvable
k-problem. This time we have to consider the equation Ny = 0, find the corresponding λ1, . . . , λm ∈ Hk
such that N [λ1]...[λm]y = 0 has no solution in Hk and pass from the equation Ny = ψ to

N [λ1]...[λm]y =
ψ

λ1 . . . λm
.

This gives us a new version of the algorithm, which together with L,B and r has the additional argument
b: if it is guaranteed that the equation Ly = 0 has no hyperexponential solutions, then b = 1 else b = 0.

Algorithm 3
1. If ordL = 0, i.e., L is some q ∈ k, then the result will be 1

qB.
2. Let ψ = head(B). Reduce the equation Ly = ψ to a k-problem. If the k-problem has no solution then

go to 5.
3. Let û be a solution of the k-problem, and e1, . . . , el(l ≥ 0) a basis of all solutions in k of the equation

Mu = 0, which is the homogeneous counterpart of the k-problem. Construct χ1, . . . , χl and ϕ according to
(22). If r = 1 then the result will be I(χ1, . . . , χl, ϕ, 0), else apply the algorithm recursively to

L[χ1]...[χl][ϕ], tail(B), r − 1, b.

4. If the result of the recursive call was "no solution" then the final result will be the same. Otherwise,
if the result of the recursive call was the d’Alembertian space I(ξ1, . . . , ξt, 0), then the final result will be
I(χ1, . . . , χl, ϕ, ξ1, . . . , ξt, 0).

5. If b = 1 the algorithm stops with the result "no solution". If b = 0 then find λ1, . . . , λm ∈ Hk such
that L[λ1]...[λm]y = 0 has no solution in Hk. Apply the algorithm recursively to

L[λ1]...[λm],
1

λ1 . . . λm
B, r, 1.

6. If the result of recursive call was "no solution" then the final result will be the same. Otherwise,
if the result of the recursive call was the d’Alembertian space I(ξ1, . . . , ξt, 0), then the final result will be
I(λ1, . . . , λm, ξ1, . . . , ξt, 0). 2
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Algorithm 3 calls an algorithm for finding hyperexponential solutions only when required. Therefore
in the general case this algorithm does not give the space of all d’Alembertian elements which have the
L-image in B. But we can construct this space if we revise the fragment "If r = 1 then the result will be
I(χ1, . . . , χl, ϕ, 0)" in step 3 of the algorithm. If r = 1 and simultaneously b = 1 then this fragment gives
complete solution of the problem; but if r = 1 and b = 0 then it is possible to construct additionally λ1, . . . , λm
for the operator which we have at this step (as in step 5) and return the answer I(χ1, . . . , χl, ϕ, λ1, . . . , λm, 0).
This version of the algorithm (Algorithm 4) gives the maximal solution of (6).

Algorithm 4 to search for the space of all d’Alembertian elements which have the L-image in B has
the advantage over the approach based on formula (17): the homogeneous equation we deal with has in
some cases the order less than n = ordL (and sometimes this order is equal to 0). Observe that if this
homogeneous equation has the order 1 then its hyperexponential solution can be written directly without
using special complicated algorithms.

When the space A such that LA = E(f), dimA = s is constructed we need to choose the elements of this
space, which are solutions of (1). It can be done by equating the values of ∇ly and ∇lf for l = 0, . . . , s− 1.

4 Implementation
Algorithm 2 was implemented in Maple 5.3 for an arbitrary Ore polynomial ring and includes several
procedures. The main procedure dAsolve2 takes an operator L and the envelope of the right-hand side B
and returns (if found) a solution A of (6) in class of d’Alembertian spaces. Consider again equation (18) and
a Maple log of the session which solves this equation in the class of d’Alembertian spaces (here the program
is set to the differential case, i.e., σ = 1, δ = θ = d/dx):

> L:=[-x,0,1]; B:=dA((4*x^3+1)/x^(3/2), 1/x, 0);

L := [−x, 0, 1 ]

B := dA
(

4x3 + 1
x3/2

,
1
x
, 0
)

> dAsolve2(L, B);

dA
(
−4
√
x,

1
x
, 0
)

It takes 7 seconds 1 to find this solution, of which 5 seconds where spent solving two k-problems. As can
be seen from this session, an Ore polynomial L is represented as a list of coefficients and the d’Alembertian
space of the form (5) is represented as dA(ψ1, . . . , ψr, 0), where dA is an unevaluated name.

Several auxiliary procedures are needed in order to use this implementation in practical cases. For
example, a procedure to construct E(b) for a given right-hand side b (we use a partial algorithm that can
prompt the user for input), a procedure to choose those solutions from A which satisfy (1) (it is done by
equating the values of ∇sy and ∇sf for s = 0, . . . , r− 1 at a point p, which is nonsingular for the equations
considered, and then by solving a system of linear algebraic equations) and so on.

Before using this program it needs to be set to a concrete k[θ] by pointing out the independent variable
and the concrete δ, σ. Additionally it is necessary to provide the program with the full name (including
path) of a procedure to solve k-problems. In the standard cases, such as differential, difference, q-difference
and so on, this adjustment is hidden from user and he needs only to select the appropriate standard case.
After this is done, the user can call the procedure dAsolver which takes an operator L and a right-hand side
b and returns a d’Alembertian solution of equation (1) if it was found. This procedure uses the auxiliary
procedures mentioned above and the main solver in the class of d’Alembertian spaces dAsolve2.

1All the timings reported in this paper were obtained on 66Mhz IBM PC 486DX.
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Consider an example. The equation

y′′ − xy =
(4x3 + 1)ln(x)

x ∗
√
x

has the elementary particular solution −4
√
x ln(x ). The procedure dsolve from Maple 5.3 gives a partic-

ular solution expressed in terms of integrals and Bessel functions and spends 48 seconds searching for that
solution:

> eq:=diff(diff(y(x),x),x)-x*y(x)=
(4*x^3+1)*ln(x)/(x*sqrt(x)):

> z:=dsolve(eq, y(x));

z := y(x ) =
∫

ln(x ) ( 4x3 + 1 ) %1
/(

x5/2

(
%1 BesselI

(
4
3
,

2
3
x3/2

)
+ BesselK

(
4
3
,

2
3
x3/2

)
%2
))

dx
√
x

%2−
∫

ln(x ) %2 ( 4x3 + 1 )
/(

x5/2

(
%1 BesselI

(
4
3
,

2
3
x3/2

)
+ BesselK

(
4
3
,

2
3
x3/2

)
%2
))

dx
√
x

%1 + _C1
√
x%2 + _C2

√
x%1

%1 := BesselK
(

1
3
,

2
3
x3/2

)
%2 := BesselI

(
1
3
,

2
3
x3/2

)
Below we give the log of a Maple session which uses our program to find a particular solution of this

equation:

> read‘c:\\dale\\iss‘;
First of all it is required to define
- independent variable,
- automorphism sigma,
- a map delta

What is the name of independent variable?
> v
Please, choose one of possibilities:
1. differential case
2. difference case
3. recurrent case
4. q-difference case
5. q-differential case
6. non-standard case

> 1
> L:=[-v,0,1]; b:=(4*v^3+1)*ln(v)/(v*sqrt(v));
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L := [−v, 0, 1 ]

b :=
( 4 v3 + 1 ) ln( v )

v3/2

> dAsolver(L,b);

−4
√
v ln( v )

Our program spent 12 seconds to produce this answer. In particular, 2 seconds were spent on constructing
the envelope of the right-hand side, 7 seconds – on the search for solution in the class of d’Alembertian spaces
(of which 5 seconds were spent in order to solve two k-problems) and 3 seconds – to choose a particular
solution of the equation. To solve k-problems in differential case we use M.Bronstein’s package ratlode from
the Maple share library.

We do not use a general toolkit to handle Ore polynomials such as T.Mulders’ package. Algorithms
described in this paper do not need operations in k[θ] more complicated then division by a linear polynomial
or multiplication of two polynomials. It allows us to implement our algorithms more efficiently.

We remark that there is an advanced theory concerning inhomogeneous linear ordinary differential equa-
tions ([10]). But this theory does not consider, for example, difference and q-difference equations, and is not
as elementary as the one proposed in this paper.

5 A remark about the representation of results
The final result of Algorithms 2-4 could be represented as the pair (a,H) where a is a solution of (1)
and H is a d’Alembertian space of solutions of (9). Observe that using, for example, Algorithm 2 we
get hyperexponential solutions of homogeneous equations when consider different k-problems. We have to
transform all these solutions into solutions of (9) and to construct H.
Proposition 9 Let ϕ ∈ Hk, Lϕ 6= 0. Let v ∈ Ak, L[ϕ]v = 0. Then there exists w ∈ Ak such that
∇(w/ϕ) = v, Lw = 0.
Proof: We consider the operator T defined by (10). Then

1
Lϕ

L ◦ ϕ =
1
Lϕ

T∇+ 1.

Let
z = − 1

Lϕ
Tv. (23)

Applying ∇ to the both sides of (23) and taking into account that L[ϕ]v = 0, we obtain ∇z = v. Substituting
∇z for v into (23) we obtain

1
Lϕ

T∇z + z = 0,

i.e. 1
LϕLϕz = 0. Hence we can take w = ϕz, that is

w = − ϕ

Lϕ
Tv.

2

Corollary 4 If we know a space C of solutions of L[ϕ]y = 0 then we can construct the space ϕ
LϕTC of

solutions of Ly = 0.
The last corollary can be used repeatedly.
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